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                    Abstract
Is logical consistency required for a set of beliefs or propositions to be categorically coherent? An affirmative answer is often assumed by mainstream epistemologists, and yet it is unclear why. Cases like the lottery and the preface call into question the assumption that beliefs must be consistent in order to be epistemically rational. And thus it is natural to wonder why all inconsistent sets of propositions are incoherent. On the other hand, Easwaran and Fitelson (2015) have shown that particular kinds of inconsistency entail the epistemically ‘irrationality’ of holding certain sets of beliefs. In cases of the latter kind of inconsistency, it seems more reasonable to insist that such sets of beliefs or propositions are categorically incoherent. What the precise relationship is between coherence and consistency depends on the nature of the coherence relation. We shall examine recent attempts to explicate the coherence relation in terms of probabilistic measures of confirmation or agreement to see what they can teach us about the relationship between coherence and consistency. We shall show that some probabilistic measures of coherence allow for inconsistent sets to be categorically coherent, while satisfying plausible epistemic rationality constraints. Other probabilistic measures of coherence impose very strong logical consistency requirements, and some measures are tolerant of most forms of inconsistency. As we try to understand what distinguishes coherence measures in this respect, we will also draw some important lessons about Bayesian confirmation measures and differences in the way that they treat contradictory propositions.
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Foley (1979) originally formulates an objection to coherentism along the lines of the objection put forward by Kvanvig. See also Roche (2013) who recognizes a similar but somewhat different problem of inconsistent justified beliefs that also could motivate our investigation into whether it is possible for inconsistent sets of propositions to be coherent.


	See Kyburg (1961, p. 197) for an overview of the lottery paradox, and Makinson (1965) for an explanation of the preface paradox.


	I am here using “formal constraints” in the sense put forward by Easwaran and Fitelson (2015). We are interested in constraints that can be defined in terms of the logical relations, like joint satisfiability, between members of a set of propositions.


	It is worth noting that this choice will only eliminate two prominent proposals for coherence, namely the measure defended in Olsson (2002) and Glass (2002), and Meijs’ (2006) alternative generalization of that measure.


	See Schippers and Siebel (2015, p. 19) for additional discussion on this point.


	See Roche (2013), Schippers (2014a, (2014b, (2015) and Schippers and Siebel (2015) for further discussion of why many coherence measures cannot be defined over all inconsistent sets of propositions, and for further discussion about various strategies we might take in extending the definition of those measures to cover inconsistent sets. As is clear from the discussion in Schippers and Siebel (2015), most strategies for extending coherence measures are fraught with difficulties.


	
Schippers and Siebel (2015) offer a few different generalizations that they acknowledge come with some complications, and that would require too much space to cover here (proofs involving this measure would be very different from those currently in the appendix). For space reasons, I leave investigation into some of these alternative proposals to future research.


	It is also worth noting that Schupbach (2011) proposes an alternative generalization of Shogenji’s measure that takes the log of Shogenji’s measure over the non-empty subsets of a set of propositions and then averages them out. This results in the measure assigning \(-\infty \) to all inconsistent sets of propositions. Thus, whatever can be said about the relationship between categorical coherence and inconsistency for Shogenji’s measure will apply to Schupbach’s generalization as well. See Schippers and Siebel (2015) for further discussion on this point.


	It is worth noting that there is one other measure of coherence that deems all inconsistent sets of propositions maximally incoherent, and that is the Olsson (2002) and Glass (2002) measure. Meijs (2006) shows that this feature of the measure brings with it many problems, and suggests an alternative generalization to make it sensitive to coherence’s mixed nature. We are setting both measures aside, since neither satisfies the threshold critia.


	For further discussion of what it takes to be a measure of incremental confirmation, see Crupi et al. (2007b, pp. 230–231) and Hájek and Joyce (2008).


	A number of prominent measures are omitted due to the fact that they deliver an equivalent account of coherence to one of those in the list when they are plugged into Douven and Meijs’ scheme above. See Schippers (2014a, p. 3824) for a more exhaustive list that includes and explains redundancies, and provides references to papers defending confirmation measures that have been omitted.
It is also worth flagging that we here consider just one of many equivalent methods for defining the z-measure defended in Crupi et al. (2007b). See their work for various ways of obtaining an equivalent measure of confirmation. For comparison and discussion of the various virtues and vices of confirmation measures see Crupi et al. (2007a, (2007b).


	It is worth noting that the proposal is revisionary in that a measure, m, might be defined for \(\varphi \) and \(\psi \) even though \(\varphi \), \(\psi \vDash \bot \). And yet on the proposed revision, in such cases, \(m^{*}(\varphi ,\ \psi )=-1\) even if \(m(\varphi ,\ \psi )\) is defined and received some other value. Consider for instance the case where \(0<Pr(\varphi )<1\). In such a case, \(d(\varphi ,\ \lnot \varphi )=-Pr(\varphi )\ne d^{*}(\varphi ,\ \lnot \varphi )=-1\). Ultimately, this revisionary aspect of the proposal can be motivated by the same sorts of intuitions as those given by Schippers and Siebel (2015, p. 19). Unless our proposal is revisionary in such cases, one may, in certain cases, increase the coherence of a set by adding a proposition that is pairwise inconsistent with all of the members of the set, just as long as the initial set of propositions are sufficiently incoherent, and the added proposition has a sufficiently low prior probability.


	When \(m=F^{*}\), the resulting confirmation measure comes very close to that employed in Fitelson’s (2003, 2004) definition of coherence. The one caveat this fails to cover is the fact that his measure can be defined over sets containing tautologies, and there is a third condition to cover the case when \(\varphi \) is necessarily true and hence \(Pr(\psi |\lnot \varphi )\) is undefined.


	To appreciate the difference between a notion of coherence defined in terms of absolute confirmation and a notion of coherence defined in terms of incremental confirmation, see the objections to the latter contained in Glass (2005) and note that the former does not depend on prior probabilities.


	I want to thank an anonymous referee for suggesting this example and for pressing me to think about this issue.


	One might try to trace the semantic insensitivity back to our chosen method for revising the confirmation measures so that they are defined over all inconsistent pairs of propositions. It is true that some of the alternative strategies for extending the confirmation measures considered by Schippers and Siebel (2015) would make them more semantically sensitive, but Siebel and Schippers present many counter-intuitive costs that come with these alternatives strategies, which in my view, are clearly unacceptable. Additionally, Schippers and Siebel (2015, p. 27) demonstrates that similar semantic insensitivity problems arise for these alternative strategies when the propositions in question have the same priors. I thus think that if we are going to define coherence measures that are semantically sensitive in the above sense, we are going to have to take a radically different approach from the methods considered in this paper or in most of the literature on probabilistic measures of coherence.
On the other hand, it should be noted that some work has already been done to define semantically sensitive measures of coherence that do take a radically different approach. See Glass (2006) for a variety of approaches to defining coherence measures that have analogous structural properties to some of the coherence measures we have considered above. Glass’ proposals give up on using the relations of probabilistic support or agreement amongst members of a set of propositions to measure coherence, and we thus set it aside for our current investigation. One avenue that may be fertile for further research is to consider utilizing the approaches to measuring the degree of inconsistency of information presented in the work of Hunter and Konieczny (2005) and Grant and Hunter (2006). Either one might try to use that work to develop semantically sensitive probabilistic measures of coherence, or one could try to define other kinds of consistency constraints that one might use to distinguish extant coherence measures.


	
Schippers and Siebel (2015) and Roche (2013) consider whether it is possible for a set containing \(\bot \) to be coherent, but even if they can’t, there are many other sorts of inconsistent sets of propositions that may still be coherent.


	Technically, Easwaran and Fitelson focus on formal coherence constraints on sets of judgments, i.e., sets of beliefs and disbeliefs, but these constraints can be easily adapted to provide analogous constraints on sets of propositions where the constraints on propositions are derivable from constraints on judgment sets (and vice versa).


	This is the most general sort of witnessing set that they define, and it provides the strongest witnessing requirement that they derive from (R). See Easwaran and Fitelson (2015, pp. 85–86) for their definitions of different kinds of witnessing sets.


	
Roche (2013) also considers whether a set of propositions containing a contradiction can be categorically coherent, and proves that it cannot. However, he doesn’t consider the more general question of whether all inconsistent sets are incoherent.


	It is worth noting that because this first expectation isn’t met, there is no limit on how coherent a set of propositions can be that contain contradictory hypotheses. For instance, if \(m\in \{r_{1}^{*},\ r_{2}^{*}\}\), then \(C_{m}(\{h_{1},\ h_{2},\ e\})\) converges to \(\infty \) as x approaches 0 and y approaches 1 for Fig. 1. So, even if one doesn’t find this first expectation reasonable for the ratio measures, perhaps because one thinks those measures are only intended to yield an ordinal ranking on confirmation, the fact that the measures violate that expectation leads to highly counter-intuitive coherence measures. So, that expectation is reasonable insofar as we want a plausible coherence measure.


	I am not saying all things are equal. It is often the case that the theoretical virtues of one confirmation measure have to be weighed against its other theoretical vices, and it may well turn out that the measures satisfying (ICC) come with problems that are avoided by \(F^{*}\). Nevertheless, I think it is fair to say that satisfying (ICC) is a major theoretical advantage that the other measures enjoy over \(F^{*}\).


	As a matter of fact, one might claim we are forced to separate these issues, given that, as Schippers and Siebel (2015) argue, the strategy we used to extend the confirmation measures to cover inconsistent evidence means that the measures aren’t, strictly speaking, measures of incremental confirmation.
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Appendices
Appendices
Appendix 1: Proof of Lemmas needed for later proofs

                  Lemma 1

                  For any \(\varphi '\) and \(\psi '\) where \(\psi '\ne \bot \), if \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\) then \(m(\varphi ',\,\psi ')\le Pr(\varphi '|\psi ')\) for all Pr.

                
                  Proof

                  The claim follows by definition in the cases where \(m\in \{d_{1}^{*},\ d_{2}^{*}\}\). Thus, we just need to give a demonstration for when \(m\in \{\lambda ^{*},\ z^{*}\}\). We begin by first proving the conditional holds for \(m=z^{*}\). We prove this by deriving the inequality in the consequent from the following theorem of the probability calculus:
$$\begin{aligned} \begin{array}{c} \begin{array}{cc} 1\ge Pr(\varphi '|\psi ') &{} \ \ (Th\end{array}1)\\ \Updownarrow \\ -Pr(\varphi ')\le -Pr(\varphi ')\cdot Pr(\varphi '|\psi ')\\ \Updownarrow \\ Pr(\varphi '|\psi ')-Pr(\varphi ')\le Pr(\varphi '|\psi ')-Pr(\varphi ')\cdot Pr(\varphi '|\psi ')\\ \Updownarrow \\ \dfrac{Pr(\varphi '|\psi ')-Pr(\varphi ')}{[1-Pr(\varphi ')]}\le Pr(\varphi '|\psi ')\\ \Updownarrow \\ \dfrac{Pr(\varphi '|\psi ')-Pr(\varphi ')}{Pr(\lnot \varphi ')}\le Pr(\varphi '|\psi ') \end{array} \end{aligned}$$

So whenever \(\psi '\) provides some confirmation for \(\varphi '\), \(z^{*}(\varphi ',\ \psi ')\le Pr(\varphi '|\psi ')\). And whenever \(\psi '\) fails to provide confirmation for \(\varphi '\), \(z(\varphi ',\ \psi ')\le 0\le Pr(\varphi '|\psi ')\). Thus, the Lemma holds in the case where \(m=z^{*}\). We follow a similar strategy for our proof in the case where \(m=\lambda ^{*}\). \(\square \)
                           

                
                  Proof

                  
                              $$\begin{aligned} \begin{array}{c} \begin{array}{cc} 1\ge Pr(\varphi '|\psi ') &{} \ \ (Th\end{array}1)\\ \Updownarrow \\ -Pr(\varphi '|\lnot \psi ')\le -Pr(\varphi '|\lnot \psi ')\cdot Pr(\varphi '|\psi ')\\ \Updownarrow \\ Pr(\varphi '|\psi ')-Pr(\varphi '|\lnot \psi ')\le Pr(\varphi '|\psi ')-Pr(\varphi '|\psi ')\cdot Pr(\varphi '|\lnot \psi ')\\ \Updownarrow \\ Pr(\varphi '|\psi ')-Pr(\varphi '|\lnot \psi ')\le Pr(\varphi '|\psi ')\cdot [1-Pr(\varphi '|\lnot \psi ')]\\ \Updownarrow \\ \dfrac{Pr(\varphi '|\psi ')-Pr(\varphi '|\lnot \psi ')}{1-Pr(\varphi '|\lnot \psi ')}\le Pr(\varphi '|\psi ') \end{array} \end{aligned}$$

Thus, whenever \(\psi '\) provides some confirmation for \(\varphi '\), \(\lambda (\varphi ',\ \psi ')\le Pr(\varphi '|\psi ')\). And whenever \(\psi '\) fails to provide confirmation for \(\varphi '\), \(\lambda (\varphi ',\ \psi ')\le 0\le Pr(\varphi '|\psi ')\). Thus, the Lemma holds in the case where \(m=\lambda \). \(\square \)
                           

                
                  Lemma 2

                  For any \(\varphi '\) and \(\psi '\), if \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\), then \(m(\varphi ',\,\psi ')\le a(\varphi ',\ \psi ')\).

                
                  Proof

                  If \(Pr(\varphi '|\psi ')>0\) then it follows that \(\psi '\ne \bot \), so Lemma 1 entails that \(m(\varphi ',\,\psi ')\le Pr(\varphi '|\psi ')=a(\varphi ',\ \psi ')\) for \(m\in \{z,\ \lambda \}\). If \(Pr(\varphi '|\psi ')=0\) or \(\psi '=\bot \), then \(m(\varphi ',\,\psi ')\le 0=a(\varphi ',\ \psi ')\) for all \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\).

                Appendix 2: Proof of Theorem 1
                        

                  Theorem 1

                  If an agent believes all of the members of \(\varDelta \) and the resulting set of judgments satisfies (R), then \(\varDelta \) does not contain any subsets that are logically mostly false.

                Since Easwaran and Fitelson prove a slightly more general claim, we needn’t give the full proof. Instead, we aim to explain why the above follows from their more general theorem. The first step is to recall their notion of a witnessing\(_{2}\) set.

                  Definition 8

                  
                              S is a witnessing
                              \(_{2}\) 
                              set 
                              iff at every world w, at least half of the judgments in S are inaccurate. (Easwaran and Fitelson 2015, p. 86)

                
Easwaran and Fitelson (2015, p. 93) prove that any set of judgments that satisfies (R) does not contain a witnessing
                           \(_{2}\) 
                           set. Thus, all that remains to be shown is that if one were to believe all members of a set of propositions that contains a subset that is logically mostly false, then the resulting judgment set would contain a witnessing\(_{2}\) set.
Let us suppose an agent believes each member of a set of propositions \(\varDelta \) and that \(\varDelta \) contains a subset \(\varGamma \) that is logically mostly false. The set of judgments, call it \(S_{\varGamma }\), such that each of the members of \(\varGamma \) is true will then be a witnessing\(_{2}\) set. To prove this, for the sake of a reductio, let us suppose \(S_{\varGamma }\) is not a witnessing\(_{2}\) set. Then there is a world w where more than half of the members of \(S_{\varGamma }\) are accurate, which holds if and only if more than half of the members of \(\varGamma \) are true at w. Let \( \varGamma _{w}=\{\varphi :\ w\vDash \varphi \ \& \ \varphi \in \varGamma \}\). By hypothesis, \(|\varGamma _{w}|>\dfrac{|\varGamma |}{2}\) and \(\varGamma _{w}\) is satisfiable. Thus, we would then derive that \(\varGamma \) is not logically mostly false contrary to our assumption for the reductio.
What we have thus shown is that if an agent believes all members of a set that contains a subset that is logically mostly false, it follows that the resulting set of judgments contains a witnessing\(_{2}\) set, and, from Easwaran and Fitelson’s proof (2015, p. 93), it follows that the resulting judgment set violates (R). Thus, Theorem 1 follows from their proof.
Appendix 3: Proof of Theorem 2
                        

                  Theorem 2

                  If [image: ].

                The proof proceeds via a few simple observations. First, assuming \(\varDelta \) is inconsistent, any pair, \(\langle \varGamma ,\,\varGamma '\rangle \), that partitions \(\varDelta \) will be such that \(a(\langle \varGamma ,\,\varGamma '\rangle )=0\). Thus, we divide the pairs in \([\varDelta ]\) into those that partition \(\varDelta \) and those that don’t.

                  Definition 9

                  
                              \([\varDelta ]^{P}=_{def}\{\langle \varGamma ,\,\varGamma '\rangle |\,\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]\) and \(\varGamma \cup \varGamma =\varDelta \}\).

                
                  Definition 10

                  
                              \([\varDelta ]^{NP}=_{def}\{\langle \varGamma ,\,\varGamma '\rangle |\,\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]\) and \(\varGamma \cup \varGamma \ne \varDelta \}\).

                Now, \(C_{a}\) is the average of the values assigned to all of the subset pairs in \([\varDelta ]\). Since those that parition \(\varDelta \) are all assigned 0, we have it that:
$$\begin{aligned} C_{a}(\varDelta )=\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}a(\langle \varGamma ,\,\varGamma '\rangle )}{|[\varDelta ]|} \end{aligned}$$

Next, we define a bijection from \([\varDelta ]^{NP}\) to \([\varDelta ]^{NP}\) as follows.

                  Definition 11

                  
                              \(f:[\varDelta ]^{NP}\rightarrow [\varDelta ]^{NP}\) such that \(f(\langle \varGamma ,\,\varGamma '\rangle )=\langle \varDelta -\varGamma \cup \varGamma ',\,\varGamma '\rangle \).

                The key thing to note is that \(\varDelta -\varGamma \cup \varGamma '\) is incompatible with \(\varGamma \) on the assumption that \(\varGamma '\) is satisfied. Thus, f takes each element in \([\varDelta ]^{{ NP}}\) to a unique element in \([\varDelta ]^{NP}\) such that the sum of the values assigned to both by \(a(\cdot )\) is less than or equal to 1. In other words, we chose f so that the following holds:
$$\begin{aligned} a(\langle \varGamma ,\,\varGamma '\rangle )\ +\ a(f(\langle \varGamma ,\,\varGamma '\rangle )\le 1 \end{aligned}$$

Since f is a bijection on \([\varDelta ]^{NP}\), it follows that
$$\begin{aligned} C_{a}(S)=\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}a(\langle \varGamma ,\,\varGamma '\rangle )}{|[\varDelta ]|}=\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}a(f(\langle \varGamma ,\,\varGamma '\rangle ))}{|[\varDelta ]|} \end{aligned}$$

And, hence, we have it that
$$\begin{aligned} =\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}a(\langle \varGamma ,\,\varGamma '\rangle )+a(f(\langle \varGamma ,\,\varGamma '\rangle ))}{2\cdot |[\varDelta ]|} \end{aligned}$$

From the fact that \(a(\langle \varGamma ,\,\varGamma '\rangle )\ +\ a(f(\langle \varGamma ,\,\varGamma '\rangle )\le 1\), it follows that
[image: ]


                        Appendix 4: Proof of Theorem 3
                        

                  Theorem 3

                  Let \(m\in \{r_{1}^{*},\ r_{2}^{*}\}\). Then for any \(r>0\), there exists an inconsistent set \(\varDelta \) and probability function Pr s.t. \(\mathcal {C}_{m,\, Pr}(\varDelta )>r\).

                
                  Proof

                  The proof is actually quite simple. Consider the probability distribution in Figure 1. Suppose \(m\in \{r_{1}^{*},\ r_{2}^{*}\}\) and \(\varDelta =\{h_{1},\ h_{2},\ e\}\). Then we have it that
$$\begin{aligned} \mathcal {C}_{m}(\varDelta )=\dfrac{\sum \limits _{\langle \varGamma ,\ \varGamma '\rangle }m(\bigwedge \varGamma ,\ \bigwedge \varGamma ')}{12}\ge \dfrac{m(h_{1},\ e)-11}{12} \end{aligned}$$

Since \(m(h_{1},\ e)\) converges to \(\infty \) as x tends to 0 and y tends to 1 on both confirmation measures, the above value converges to \(\infty \). \(\square \)
                           

                Appendix 5: Proof of Theorems 4 and 6
                        

                  Theorem 4

                  For any \(\epsilon >0\), there exists an inconsistent set \(\varDelta \) and probability function Pr s.t. \(C_{F,\, Pr}(\varDelta )>1-\epsilon \).

                
                  Theorem 6

                  Let \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\). Then for any \(\epsilon >0\), there exists an inconsistent set \(\varDelta \) and probability function Pr s.t. [image: ].

                In our proof of Theorems 4 and 6, we are going to consider a particular sort of inconsistent set of propositions. The probability function over the propositions will be structured similarly to that of a standard lottery paradox, except that we shall assume that either all of the propositions are false, or else exactly one of the propositions is false. The probability space will collapse into the probability space of a standard lottery paradox on the assumption that at least one of the lottery propositions is true (One could form each proposition explicitly by conjoining each lottery proposition from an n ticket lottery to some low probability proposition, i.e., we could let \(g_{i} \text{ be } l_{i}\wedge p\) where \(l_{i}\) is a standard lottery proposition and p is some proposition with a very low probability). And, we allow the probability that all of the lottery propositions are false be \(1-r\) (in the explicit formulation, that would be to set \(Pr(g_i)=r\cdot \dfrac{n-1}{n}\)). The important assumptions are that we let \(\varDelta =\{\varphi _{1},...,\ \varphi _{n}\}\) be a minimally inconsistent set of propositions where

                  
                     (A1) \(Pr(\varphi _{i})<r\),

                  


                
                  
                    (A2) For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]\) where \(|\varGamma |=j\) and \(|\varGamma '|=k\),
$$\begin{aligned} Pr(\bigwedge \varGamma |\bigwedge \varGamma ')=\dfrac{n-(j+k)}{n-k} \end{aligned}$$

(On the assumption that exactly one proposition in \(\varDelta \) is false, something that holds if \(\bigwedge \varGamma '\) is true, \(\bigwedge \varGamma \) is true just in case \(\varGamma \) doesn’t contain the one false proposition, and there are \(n-(j+k)\) tickets not in \(\varGamma \) that could be the false proposition out of the \(n-k\) propositions not in \(\varGamma '\)).

                  


                The next step is to note that given our assumptions above, it immediately follows that

                  
                     (A3) For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\), \(Pr(\bigwedge \varGamma |\lnot \bigwedge \varGamma ')=\dfrac{Pr(\bigwedge \varGamma \wedge \lnot \bigwedge \varGamma ')}{Pr(\lnot \bigwedge \varGamma ')}\le \dfrac{r}{1-r}\ge r\)
                              

                  


                And from (A3) and the definition of our confirmation measures, we get that

                  
                     (F1) For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\), \(F^{*}(\varGamma ,\ \varGamma ')=\dfrac{Pr(\bigwedge \varGamma |\bigwedge \varGamma ')-Pr(\bigwedge \varGamma |\lnot \bigwedge \varGamma ')}{Pr(\bigwedge \varGamma |\bigwedge \varGamma ')+Pr(\bigwedge \varGamma |\lnot \bigwedge \varGamma ')}\ge \dfrac{\dfrac{1}{n}-\dfrac{r}{1-r}}{\dfrac{1}{n}+\dfrac{r}{1-r}}\)
                              

                  


                
                  
                    (F2) Let \(m\in \{\lambda ^{*},\ d_{2}^{*}\}\). For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\),
$$\begin{aligned} m(\varGamma ,\ \varGamma ')\ge Pr(\bigwedge \varGamma |\bigwedge \varGamma ')-Pr(\bigwedge \varGamma |\lnot \bigwedge \varGamma ')\ge Pr(\bigwedge \varGamma |\bigwedge \varGamma ')-\dfrac{r}{1-r} \end{aligned}$$


                              
                  


                Next, we must note that \(Pr(\bigwedge \varGamma )\le r\le \dfrac{r}{1-r}\) , and so

                  
                     (F3) Let \(m\in \{z^{*},\ d_{1}^{*}\}\). Then for all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\), \(m(\varGamma ,\ \varGamma ')\ge Pr(\bigwedge \varGamma |\bigwedge \varGamma ')-Pr(\bigwedge \varGamma )\ge Pr(\bigwedge \varGamma |\bigwedge \varGamma ')-\dfrac{r}{1-r}\)
                              

                  


                In all three cases, given that the conditional probabilities are independent of r, the strength of the confirmation that subset pairs in \([\varDelta ]^{NP}\) provide to one another increases as r approaches 0. In fact, in the case of F, each subset pair in \([\varDelta ]^{NP}\) provides near maximal confirmation for one another as r approaches 0. And a nearby result holds for the other two confirmation measures. Consider again our bijection on \([\varDelta ]^{NP}\) that we defined in proof of Theorem 2 above. Given that the conditional probabilities are those of a standard lottery on the assumption that not all of the propositions in \([\varDelta ]\) are false, we get from (A2) that

                  
                     (F4) For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\),
$$\begin{aligned} Pr(\bigwedge \varGamma |\bigwedge \varGamma ')+Pr(\bigwedge \left( \varDelta -(\varGamma \cup \varGamma '\right) |\varGamma ')=1. \end{aligned}$$


                              
                  


                
                  
                     The reason for this is that, assuming \(\bigwedge \varGamma '\) is true, there is exactly one false proposition in \(\varDelta \). It cannot be in both \(\varGamma \) and \(\varDelta -(\varGamma \cup \varGamma ')\), since they are disjoint, but it must be in one of them since \(\varGamma \cup \left( \varDelta -(\varGamma \cup \varGamma ')\right) =\varDelta -\varGamma '\).

                  


                Relying on the bijection, f, on \([\varDelta ]^{NP}\) defined in our proof of Theorem 2 above, (F2–F4) , gives us that

                  
                     (F5) For all \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\) and \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\), \(m(\langle \varGamma ,\ \varGamma '\rangle )+m\left( f\left( \langle \varGamma ,\ \varGamma '\rangle \right) \right) \ge 1-2\cdot \dfrac{r}{1-r}\).

                  


                These are all of the facts that we need about the degree of confirmation provided by the subset pairs of \([\varDelta ]\) to complete the proof. The final steps in the proof relate to the cardinality of the subset pairs in \([\varDelta ]^{NP}\) in relation to \([\varDelta ]\) and to what happens as r approaches 0 and n approaches \(\infty \). So, next notice, given that \(\varDelta \) is inconsistent, that for \(m\in \{F^{*},\ \lambda ^*,\ z^*,\ d^{*}_{1},\ d^{*}_{2}\}\),
$$\begin{aligned} C_{m}(\varDelta )=\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}m(\langle \varGamma ,\,\varGamma '\rangle )}{|[\varDelta ]|}-\dfrac{|[\varDelta ]^{P}|}{|[\varDelta ]|} \end{aligned}$$

By the fact that f is a bijection (similar to the Proof of Theorem 2), this means that for \(m\in \{F^{*},\ \lambda ^*,\ z^*,\ d^{*}_{1},\ d^{*}_{2}\}\)
                           
[image: ]

Thus,
$$\begin{aligned} \underset{r\rightarrow 0}{lim}C_{m}(\varDelta )\ge =\dfrac{|[\varDelta ]^{NP}|-|[\varDelta ]^{P}|}{2\cdot |[\varDelta ]|} \end{aligned}$$

Anagolously, we have it that
$$\begin{aligned} C_{F^{*}}(\varDelta )\ge \dfrac{|[\varDelta ]^{NP}|\cdot \left( \dfrac{\dfrac{1}{n}-\dfrac{r}{1-r}}{\dfrac{1}{n}+\dfrac{r}{1-r}}\right) }{|[\varDelta ]|}-\dfrac{|[\varDelta ]^{P}|}{|[\varDelta ]|} \end{aligned}$$

Since [image: ],
$$\begin{aligned} \underset{r\rightarrow 0}{lim}C_{F^{*}}(\varDelta )\ge \dfrac{|[\varDelta ]^{NP}|-|[\varDelta ]^{P}|}{|[\varDelta ]|}. \end{aligned}$$


Roche (2013) notes that \(|[\varDelta ]|=3^{n}-2^{n+1}+1\), and it is easy to verify that \(|[\varDelta ]^{P}|=2^{n}-2\) (we can choose each member \(\langle \varGamma ,\ \varGamma '\rangle \) of \([\varDelta ]^{P}\) by selecting any non-empty proper subset of \(\varDelta \) to be \(\varGamma \), and then letting \(\varGamma '=\varDelta -\varGamma \)). And thus, \(|[\varDelta ]^{NP}|=3^{n}-3\cdot 2^{n}+3\). Thus, it follows that
$$\begin{aligned} \dfrac{|[\varDelta ]^{NP}|-|[\varDelta ]^{P}|}{|[\varDelta ]|}=\dfrac{3^{n}-2^{n+2}+3}{3^{n}-2^{n+1}+1} \end{aligned}$$

Finally, since
$$\begin{aligned} \underset{n\rightarrow \infty }{lim}\dfrac{3^{n}-2^{n+2}+3}{3^{n}-2^{n+1}+1}=\underset{n\rightarrow \infty }{lim}\dfrac{\left( 3^{n}-2^{n+2}\right) }{3^{n}-2^{n+1}}=\underset{n\rightarrow \infty }{lim}\left( 1-\dfrac{2}{\left( \dfrac{3}{2}\right) ^{n}-2}\right) =1 \end{aligned}$$

It follows that for \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\)
                           
$$\begin{aligned} \underset{(r,\ n)\rightarrow (0,\ \infty )}{lim}C_{m}(\varDelta )\ge \dfrac{1}{2} \end{aligned}$$

And
$$\begin{aligned} \underset{(r,\ n)\rightarrow (0,\ \infty )}{lim}C_{F^{*}}(\varDelta )\ge 1 \end{aligned}$$


                        Appendix 6: Proof of Theorem 5
                        

                  Theorem 5

                  If \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\) and \(\varDelta \) is an inconsistent set of propositions, then [image: ].

                This theorem follows directly from Lemma 2 and Theorem 2. That is to say, we have it that for all \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\)
                           
$$\begin{aligned} C_{m,\, Pr}(\varDelta )\le C_{a,\, Pr}(\varDelta ) \end{aligned}$$

And Theorem 2 says [image: ] when \(\varDelta \) is inconsistent.
Appendix 7: Proof of Theorem 7
                        

                  Theorem 7

                  If \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\) and \(\varphi _{1}\) and \(\varphi _{2}\) are inconsistent, then for any evidential proposition \(\psi \), \(m(\varphi _{1},\,\psi )+m(\varphi _{2},\,\psi )\le 1\).

                From Lemma 1, we have it that if \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\) and \(\varphi _{1}\) and \(\varphi _{2}\) are inconsistent and \(\psi \ne \bot \),
$$\begin{aligned} m(\varphi _{1},\,\psi )+m(\varphi _{2},\,\psi )\le Pr(\varphi _{1}|\psi )+Pr(\varphi _{2}|\psi )\le 1 \end{aligned}$$

The only case that we haven’t covered is when \(\psi =\bot \). In that case, \(m(\varphi _{1},\,\psi )+m(\varphi _{2},\,\psi )=-2\) by our method for extending the confirmation measures, and thus the theorem is true.
Appendix 8: Proof of Theorem 8
                        

                  Theorem 8

                  If \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\) and \(\varDelta \) is an evidentially inconsistent set of propositions, then \(C_{m,\, Pr}(\varDelta )<0\) for all probability functions Pr.

                Let \(\varDelta =\{\varphi _{1},\ \varphi _{2},...,\ \varphi _{n}\}\) be an evidentially inconsistent set of propositions where \(\varDelta _{w}\subseteq \varDelta \) is a witnessing\(_2\) set and \(m\in \{\lambda ^{*},\ z^{*},\, d_{1}^{*},\ d_{2}^{*}\}\). Then the following propositions are true by defintion of m:

                  Proposition 1

                  For any \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]\), if \(|(\varGamma \cup \varGamma ')\cap \varDelta _{w}|>\dfrac{|\varDelta _{w}|}{2}\), then \(m(\langle \varGamma ,\ \varGamma '\rangle )=-1\).

                
                  Definition 12

                  Again, we define a bijection on \([\varDelta ]^{NP}\) that will allow us to make use of Lemma 1.

                
                           \(f:[\varDelta ]^{NP}\rightarrow [\varDelta ]^{NP}\) such that \(f(\langle \varGamma ,\,\varGamma '\rangle )=\langle \varDelta -\varGamma \cup \varGamma ',\,\varGamma '\rangle \).

                  Proposition 2

                  For any \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\),
$$\begin{aligned} if\, |\varGamma \cap \varDelta _{w}|\ne \dfrac{|\varDelta _{w}|}{2}, then m(\langle \varGamma ,\ \varGamma '\rangle ) + m(f(\langle \varGamma ,\ \varGamma '\rangle ))\le 0. \end{aligned}$$


                           
                If the antecent is true, then either \(\langle \varGamma ,\,\varGamma '\rangle \) or \(f(\langle \varGamma ,\,\varGamma '\rangle )\) contains more than half of \(\varDelta _{w}\) (this is easy to verify, so I leave the proof to the interested reader) and by Proposition 1, this means either \(m(\langle \varGamma ,\ \varGamma '\rangle )\) or \(m(f(\langle \varGamma ,\ \varGamma '\rangle ))\) is \(-1\).

                  Proposition 3

                  For any \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}\), if \(\varGamma '\cap \varDelta _{w}\ne \emptyset \), then \(m(\langle \varGamma ,\ \varGamma '\rangle )\) + \(m(f(\langle \varGamma ,\ \varGamma '\rangle ))\le 0\).

                Again, either \(\langle \varGamma ,\,\varGamma '\rangle \) or \(f(\langle \varGamma ,\,\varGamma '\rangle )\) contains more than half of \(\varDelta _{w}\) if the antecedent is true. From Propositions 1–3, it follows that if \(m(\langle \varGamma ,\ \varGamma '\rangle )+m(f(\langle \varGamma ,\ \varGamma '\rangle ))>0\), then \(\langle \varGamma ,\ \varGamma '\rangle \) and \(f(\langle \varGamma ,\ \varGamma '\rangle )\) are both members of the following set:

                  Definition 13

                  
                              \([\varDelta ]^{1}=_{def}\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}:\ |\varGamma \cap \varDelta _{w}|=\dfrac{|\varDelta _{w}|}{2}\ \text{ and } \varGamma '\cap \varDelta _{w}=\emptyset \).

                To avoid having to do any combinatorics, we divide \([\varDelta ]^{NP}\) up further. First, we note that the following Proposition holds.

                  Proposition 4

                  For any \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]\), if \(|\varGamma '\cap \varDelta _{w}|=\dfrac{|\varDelta _{w}|}{2}+1\) and \(\varGamma \cap \varDelta _{w}=\emptyset \), then \(m(\langle \varGamma ,\ \varGamma '\rangle )\) + \(m(f(\langle \varGamma ,\ \varGamma '\rangle ))=-2\).

                Thus, there is a corresponding set:

                  Definition 14

                  
                              \([\varDelta ]^{2}=_{def}\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{NP}:\ |\varGamma '\cap \varDelta _{w}|=\dfrac{|\varDelta _{w}|}{2}+1\ \text{ and } \varGamma \cap \varDelta _{w}\ne \emptyset \}\).

                And, last we define the remainder of \([\varDelta ]^{NP}\) as follows.

                  Definition 15

                  
                    \([\varDelta ]^{3}=_{def}[\varDelta ]^{NP}-\left( [\varDelta ]^{1}\cup [\varDelta ]^{2}\right) \)
                  

                  From Proposition 1 above, it follows that

                
                           $$\begin{aligned} C_{m}(\varDelta )=\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{NP}}m(\langle \varGamma ,\,\varGamma '\rangle )}{|[\varDelta ]|}-\dfrac{|[\varDelta ]^{P}|}{|[\varDelta ]|} \end{aligned}$$

And thus, by Propositions 1–4,
$$\begin{aligned} C_{m}(\varDelta )<\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{1}}m(\langle \varGamma ,\,\varGamma '\rangle )}{|[\varDelta ]|}-\dfrac{\underset{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{2}}{\sum }2}{|[\varDelta ]|} \end{aligned}$$

Applying Lemma 1 and the fact that f is a bijection on \([\varDelta ]^{1},\) we get that
$$\begin{aligned} C_{m}(\varDelta )<\dfrac{\sum \limits _{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{1}}1}{|[\varDelta ]|}-\dfrac{\underset{\langle \varGamma ,\,\varGamma '\rangle \in [\varDelta ]^{2}}{\sum }2}{|[\varDelta ]|} \end{aligned}$$

And, this simplifies to the claim that
$$\begin{aligned} C_{m}(\varDelta )<\dfrac{|[\varDelta ]^{1}|-2\cdot |[\varDelta ]^{2}|}{|[\varDelta ]|} \end{aligned}$$

Thus, we just need to show that \(|[\varDelta ]^{1}|\le 2\cdot |[\varDelta ]^{2}|\). Let \(|\varDelta _{w}|=k\). We shall break up the cases where k is even and odd. In the case where k is odd, \([\varDelta ]^{1}=\emptyset \), and the theorem must hold. Thus, let us assume that k is even. It is a straightforward exercise to show that the following biconditional holds (Just treat the construction of subset pairs as a two step process, where we first choose the relevant subsets of \([\varDelta _{w}]\), and then use those subsets to match up with subset pairs from \([\varDelta -\varDelta _{w}]\) or subsets of \(\varDelta \)).
$$\begin{aligned} \begin{array}{ccc} |[\varDelta ]^{1}|\le 2\cdot |[\varDelta ]^{2}|&\text{ if } \text{ and } \text{ only } \text{ if }&\left. \genfrac(){0.0pt}0{k}{\dfrac{k}{2}}\le \left. 2\cdot \genfrac(){0.0pt}0{k}{\dfrac{k}{2}+1}\right. \right. \end{array} \end{aligned}$$

To complete the proof, we prove the right hand side of the above biconditional. Assuming that k is even, the biconditional is easily simplified as follows:
$$\begin{aligned} \begin{array}{c} \genfrac(){0.0pt}0{k}{\dfrac{k}{2}}\le \left. 2\cdot \genfrac(){0.0pt}0{k}{\dfrac{k}{2}+1}\right. \\ \text{ iff }\\ \dfrac{(k+2)}{k}\le \left. 2\right. \end{array} \end{aligned}$$

And, of course, \(\dfrac{(k+2)}{k}\le \left. 2\right. \) for all \(k\ge 2\). Given that we have already handled the cases where k is odd and hence where \(k=1\), we have thus shown that
$$\begin{aligned} C_{m}(\varDelta )<\dfrac{|[\varDelta ]^{1}|-2\cdot |[\varDelta ]^{2}|}{|[\varDelta ]|}\le 0 \end{aligned}$$


                        Appendix 9: Proof of Theorem 9
                        

                  Theorem 9

                  
                              \(m\in \{F^{*},\ r_{1}^{*},\ r_{2}^{*}\}\). Then there exists a set of propositions \(\varDelta \) and a probability function Pr s.t. \(C_{m,\, Pr}(\varDelta )>0\).

                The cases where \(m\in \{r_{1}^{*},\ r_{2}^{*}\}\) are already covered by our proof of Theorem 3. The probability space we considered included a contradictory pair of propositions, and thus a logically mostly false set of propositions. Thus, we just need to consider the case where \(m=F^{*}\).
Let the probabilities on \(h_{1}\), \(h_{2}\) and e be like those given in Figure 1 (though we shall vary the value of x and y). Any set of propositions containing all three of these propositions will be evidentially inconsistent. But, now, let us consider the set of propositions: \(\{e_{1},\ e_{2},\ e_{3}\}\) s.t. for all \(1\le i\le 3\), \(e_{i}\) is logically equivalent to e. Let us consider the coherence value on \(\mathcal {C}_{F^{*}}\) that the set \(\varDelta =\{e,\ e_{1},\ e_{2},\ e_{3},\ h_{1},\ h_{2}\}\) converges to when x approaches 0 and y approaches 1. First, because of the nature of logical relations between the members of the set \(\varDelta \), any subset pair, \(\langle \varGamma ,\ \varGamma '\rangle \), falls into one of four cases:

                  
                    
                      \(\begin{array}{cclcl} (i) &{} \ &{} \{h_{1},\ h_{2}\}\subseteq \varGamma \cup \varGamma ' &{} \ &{} F^{*}(\varGamma ,\ \varGamma ')=-1\\ (ii) &{} &{} \{h_{1},\ h_{2}\}\not \subseteq \varGamma \cup \varGamma \text{ and } (h_{1}\in \varGamma '\ \text{ or } h_{2}\in \varGamma ') &{} &{} F^{*}(\varGamma ,\ \varGamma ')=1\\ (iii) &{} &{} \{h_{1},\ h_{2}\}\not \subseteq \varGamma \cup \varGamma \text{ and } (h_{1}\in \varGamma \ \text{ or } h_{2}\in \varGamma ) &{} &{} F^{*}(\varGamma ,\ \varGamma ')\thickapprox 1\\ (iv) &{} &{} \{h_{1},\ h_{2}\}\cap (\varGamma \cup \varGamma ')=\emptyset &{} &{} F^{*}(\varGamma ,\ \varGamma ')=1 \end{array}\)
                    

                  


                As the above shows, the only case that varies is (iii) depending on the values of x and y. As x approaches 0 and y approaches 1, the pairs that fall into case (iii) are a assigned a value by \(F^{*}\) that converges on 1. So, then estimating \(C_{F^{*}}(\varDelta )\) is simply a matter of adding up all of the subset pairs falling into cases \((ii)-(iv)\) and substracting the number of subset pairs that fall into case (i) and then dividing by \(|[\varDelta ]|\). To simplify the calculations, we can define:

                  Definition 16

                  
                    \([\varDelta ]^{(i)}=\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]: \{h_{1},\ h_{2}\}\subseteq \varGamma \cup \varGamma '\}\)
                  

                Then the estimate comes to the following
$$\begin{aligned} C_{F^{*}}(\varDelta )\thickapprox \dfrac{|[\varDelta ]|-2\cdot |[\varDelta ]^{(i)}|}{|[\varDelta ]|} \end{aligned}$$


Roche (2013) observes that if we let n be the cardinality of \(\varDelta \), then \(|[\varDelta ]|=3^{n}-2^{n+1}+1\). So, we have it that
$$\begin{aligned} C_{F^{*}}(\varDelta )\thickapprox \dfrac{3^{n}-2^{n+1}+1-2\cdot |[\varDelta ]^{(i)}|}{3^{n}+2^{n+1}-1} \end{aligned}$$

Thus, we just need to calculate \(|[\varDelta ]^{(i)}|\). To simplify our calculation further, note that we can divide \([\varDelta ]^{(i)}\) into four distinct sets

                  Definition 17

                  
                    \([\varDelta ]_{1}^{(i)}=\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{(i)}:\ \{h_{1},\ h_{2}\}\subseteq \varGamma \}\)
                  

                
                  Definition 18

                  
                    \([\varDelta ]_{2}^{(i)}=\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{(i)}:\ \{h_{1},\ h_{2}\}\subseteq \varGamma '\}\)
                  

                
                  Definition 19

                  
                    \([\varDelta ]_{3}^{(i)}=\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{(i)}:\ h_{1}\in \varGamma ' \text{ and } h_{2}\in \varGamma \}\)
                  

                
                  Definition 20

                  
                    \([\varDelta ]_{4}^{(i)}=\{\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]^{(i)}:\ h_{1}\in \varGamma \text{ and } h_{2}\in \varGamma '\}\)
                  

                The next step is to calculate \(|\varDelta ]_{1}^{(i)}|\). A subset pair \(\langle \varGamma ,\ \varGamma '\rangle \in [\varDelta ]_{1}^{(i)}\) if \(\varGamma '\) is a non-empty subset of \(\{e,\ e_{1},\ e_{2},\ e_{3}\}\) and \(\varGamma =\{h_{1},\ h_{2}\}\), or else \(\langle \varGamma -\{h_{1},\ h_{2}\},\ \varGamma '\rangle \in [\{e,\ e_{1},\ e_{2},\ e_{3}\}]\). Thus,
$$\begin{aligned} |[\varDelta ]_{1}^{(i)}|=(3^{n-2}-2^{n-1}+1)+(2^{n-2}-1) \end{aligned}$$

And symmetry considerations give us that
$$\begin{aligned} |[\varDelta ]_{1}^{(i)}|=|[\varDelta ]_{2}^{(i)}|=3^{n-2}-2^{n-2} \end{aligned}$$

Calculating \([\varDelta ]_{3}^{(i)}\) and \([\varDelta ]_{4}^{(i)}\) is even more straightforward. There are \(3^{n-2}\) empty or non-empty subset pairs of \(\{e,\ e_{1},\ e_{2},\ e_{3}\}\) that can be combined with \(\langle \{h_{2}\},\ \{h_{1}\}\rangle \) to form subset pairs in \([\varDelta ]_{3}^{(i)}\) . So, again by symmetry considerations we get that
$$\begin{aligned} |[\varDelta ]_{3}^{(i)}|=|[\varDelta ]_{4}^{(i)}|=3^{n-2} \end{aligned}$$

Putting this altogether, we get that
[image: ]
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