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Abstract
We provide new characterizations of the ε-subdifferential of the supremum of an arbitrary
family of convex functions. The resulting formulas only involve approximate subdifferen-
tials of adequate convex combinations of the data functions. Families of convex functions
with a concavity-like property are introduced and their relationship with affine models is
studied. The role of the lower semi-continuity of the data functions is also analyzed.

Keywords Fenchel conjugation · Concavity-like · ε-Subdifferential · Supremum function

Mathematics Subject Classification 26B05 · 26J25 · 49H05

1 Introduction

There have been many works that analyze the subdifferential and ε-subdifferential of the
supremum of convex functions in the setting of locally convex spaces. The first ones were
established in the late 1960’s, during the emergence of convex analysis ([1, 15, 21], etc.).
The subject has also known a growing interest during the last decades, where many general
results have been established (see, for instance, [7, 9, 11, 14, 16, 17, 19, 22], and references
therein).

However, there is one useful result in ([2]), but not very well-known, that falls outside the
scope of the previous results and, to our knowledge, has not been adequately studied. This
is our purpose in this paper as well as to extend it. More precisely, in the case of finitely
many proper convex functions f1, . . . , fm : X → R∞ := R ∪ {+∞}, m ≥ 1, defined on a
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locally convex space X, for every x within the effective domain of the maximum function
f := max1≤k≤m fk , and for every ε ≥ 0, the ε-subdifferential of f at x verifies

∂εf (x) = ⋃

λ∈�m

∂(ε+gλ(x)−f (x))gλ(x), (1)

where gλ :=∑1≤k≤mλkfk and �m is the canonical simplex in R
m. When ε = 0 this formula

reduces to

∂f (x) =⋃ {∂gλ(x) : λ ∈ �m, gλ(x) = f (x)} .

This result is obtained in Corollary 15 as a consequence of our general approach. These
two formulas cannot be obtained from the previous works on the supremum because, on the
one hand, the convex functions involved in (1) are not necessarily lower semi-continuous
and, on the other hand, the right-hand side of (1) involves approximate subdifferentials with
parameters that do not exceed ε. These two features are not covered by the works cited be-
fore, for which the lower semi-continuity (or a close lower semi-continuity-like property) is
critical and cannot be removed in general. Moreover, most of the previous characterizations
of ∂εf (x) involve approximate subdifferentials of data functions with parameters greater
than ε.

The main objective of this paper is to develop a theory that extends formula (1) to families
with infinitely many convex functions ft : X → R∞, t ∈ T . For this purpose, we first provide
new formulas for the approximate subdifferential of the supremum of a family of affine
functions (Theorem 4). These formulas are crucial when dealing with families of convex
functions that are concave-like (see Definition 1 and Theorem 7).

The extension from affine to families of convex functions satisfying the proposed
concavity-like property is performed by means of Moreau’s theorem on the representation
of the biconjugate function (e.g., [7]). General counterparts of these formulas for families
not satisfying the concave-like property are derived in Theorem 12 by adding to the original
family those functions which are finite convex combinations of the form

∑
t∈T λtft .

All these results are obtained under a lower semi-continuity-like condition (20), which
has been extensively used in convex subdifferential calculus (e.g., [7, 9, 11], etc). However,
we show in Corollary 15 that such a closedness condition is not necessary in the case of fi-
nite families; in fact, in this case, condition (20) is automatically satisfied by the augmented
family

{
gλ :=∑t∈T λtft , λ ∈ �m,

∑
t∈T λt = 1

}
, where m = |T |, which has the same supre-

mum as the original one.
Some of the results presented here, notably in Theorem 12, improve similar formulas in

[18], by removing lower semi-continuity conditions on data functions and dropping out the
normal cone to the effective domain of the supremum function (or replacing it with smaller
sets). Finally, to illustrate the scope of our results, a general approximate KKT condition for
a convex optimization problem is provided in Corollary 16 without resorting to the Slater
condition or any other standard constraint qualification.

The paper begins with Section 2 which provides the necessary notation and prelimi-
nary results. Section 3 is devoted to affine families, where new characterizations of the
ε-subdifferential of the supremum of these families are given. The results of Section 4, deal-
ing with concave-like families, are at an intermediate level of generality between the affine
framework and the general scenario, which is developed in Section 5 where the main result
is Theorem 12.



Conjugation-Based Approach to the ε-Subdifferential of Convex. . . Page 3 of 19 8

2 Preliminaries

This section contains the background material, including the notation, that will be used
throughout the paper. Given a real locally convex space (lcs, for short) X, its topological
dual X∗ is endowed with the w∗-topology. The zero-vector in any linear space is θ , and the
family of closed convex balanced neighborhoods of θ is denoted NX .

We represente R+ := [0,+∞[, R∞ := R ∪ {+∞}, R := R ∪ {−∞,+∞}, and adopt
the convention (+∞) + (−∞) = (−∞) + (+∞) = +∞ and 0 · (+∞) = +∞. Given a
nonempty set T , we denote the cardinal of T by |T |. The set RT+ is the cone of functions
from T to R+. The support of a function λ ∈R

T+ is suppλ := {t ∈ T : λt 	= 0}, R(T )
+ := {λ ∈

R
T+ : suppλ is finite}, and

�(T ) :=
{

λ ∈R
(T )
+ :∑

t∈T

λt = 1

}

. (2)

In particular, for m ≥ 1 we define

�m :=
{

λ ∈R
m
+ :

∑

1≤i≤m

λi = 1

}

and �∗
m := {λ ∈ �m : λi > 0 ∀i} .

The algebraic sum of two sets A and B in X (or in X∗) is

A + B := {a + b : a ∈ A, b ∈ B}, A + ∅ = ∅ + A = ∅. (3)

The sets coA and coA refer to the convex and the closed convex hulls of A, respectively,
while clA and A are indistinctly representing the closure of A (w∗-closure if A ⊂ X∗).
Given a function f : X −→R, domf := {x ∈ X : f (x) < +∞} and epif := {(x,λ) ∈ X ×
R : f (x) ≤ λ} are, respectively, its (effective) domain and epigraph. Given α ∈R, we denote
[f ≤ α] := {x ∈ X : f (x) ≤ α}; the set [f < α] is defined similarly. We write f ∈ �0(X) if
f is proper, convex and lsc; that is, domf 	= ∅ and f > −∞, epif is convex and closed.
Equivalently, f is lsc at x if it matches its closed hull f̄ at x, where epi(f̄ ) = cl(epif ).
Given ε ∈ R, the ε-subdifferential of f at x ∈ X is the set

∂εf (x) := {x∗ ∈ X∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 − ε, for all y ∈ X},

with ∂εf (x) := ∅ if x /∈ domf or ε < 0. The elements of ∂εf (x) are called ε-subgradients
of f at x, and the subdifferential of f at x is ∂f (x) := ∂0f (x). The ε-normal set to a set
A ⊂ X at x is Nε

A(x) := ∂εIA(x), where IA is the indicator function of A. If f : X → R∞ is
convex, then ∂εf (x) 	= ∅ provided that ε > 0 and f is lsc at x ∈ domf . However, if f is not
lsc at x, then

∂αf (x) = ∅, for all α ∈ [0, f (x) − f (x)[; (4)

otherwise, there would exist x∗
α ∈ X∗ such that

〈
x∗

α, y − x
〉≤ f (y) − f (x) + α, for all y ∈ X;

hence, f (x) ∈ R. By taking the closure on both sides we arrive at the contradiction f (x) −
f (x) ≤ α. The relation in (4) is also true if f (x) = −∞.
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The following relations will also be used in the paper: for every x ∈ X and ε ≥ 0, we
have

∂εf (x) = ⋂

δ>ε

∂δf (x), (5)

∂εf (x) ⊂ ∂ε+f̄ (x)−f (x)f (x) ⊂ ∂εf̄ (x), (6)

and, if g : X →R is another function such that f ≤ g and x ∈ domg, then

∂εf (x) ⊂ ∂ε+g(x)−f (x)g(x). (7)

The following property gives an inner approximation of the ε-subdifferential ([7, Proposition
4.1.9] and [12]).

Lemma 1 Given a convex function f : X → R∞, x ∈ domf and ε > 0, we have that

∂εf (x) = cl

(
⋃

0<δ<ε

∂δf (x)

)

,

provided that the last set is nonempty.

The Fenchel conjugate of the function f : X → R is the function f ∗ : X∗ → R defined
by f ∗(x∗) := supx∈X{〈x∗, x〉 − f (x)}. Hence, x∗ ∈ ∂εf (x) if and only if f (x) + f ∗(x∗) ≤
〈x∗, x〉+ε. An example of conjugate functions is the support function of a set C ⊂ X∗ which
is σC = (IC)∗, where IC is the indicator function; i.e., IC(x) = 0 if x ∈ C, and IC(x) = +∞
otherwise. Then, the Moreau theorem that establishes that the biconjugate of a function
having a continuous affine minorant coincides with its closed convex hull, implies that

(σC)∗ = ((IC)∗)∗ = Ico(C).

Consequently, we obtain the expression of the ε-subdifferential of σC .

Proposition 2 If C ⊂ X∗ is a non-empty set, then

∂εσC(x) = {x∗ ∈ co(C) : 〈x∗, x
〉≥ σC(x) − ε

}
, for all x ∈ X and ε ≥ 0.

3 Supremum of Affine Functions

In this section, we extend Proposition 2 to the larger family of suprema of affine functions.
Given a non-empty set C ⊂ X∗ ×R, Theorem 4 below provides different characterizations
of the ε-subdifferential of the supremum function φ : X →R∞ given by

φ(·) := sup
(x∗,β)∈C

(
〈
x∗, ·〉− β) = σC(·,−1) = σcoC(·,−1). (8)

A finite-dimensional version of Theorem 4 has been given in [9] when ε = 0. We point
out that the following result cannot be derived, at least directly, from subdifferential calculus
rules of the supremum such us those established for example in [5, 6, 11, 16].
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Given x ∈ domφ and ε ≥ 0, we introduce the set

Cε(x) := {(x∗, β) ∈ co(C) : 〈x∗, x
〉− β ≥ φ(x) − ε}, (9)

which corresponds to the set of points in co(C) where the ε-supremum in φ is attained.
Similarly, we have

Lemma 3 Given x ∈ domφ and ε ≥ 0, we have

Cε(x) = {(x∗, β) ∈ co(C) : φ(x) ≥ 〈x∗, x
〉− β ≥ φ(x) − ε}. (10)

Proof The inclusion “⊃” is clear, whereas the inclusion “⊂” is a straightforward conse-
quence of the third equality in (8). �

Theorem 4 Let φ be the function in (8). Then, for every x ∈ domφ and ε ≥ 0, we have

∂εφ(x) = {x∗ ∈ X∗ : (x∗, β) ∈ Cε(x) for some β ∈ R
}

(11)

and, whenever ε > 0,

∂εφ(x) = cl
{
x∗ ∈ X∗ : (x∗, β) ∈ co(C), φ(x) ≥ 〈x∗, x

〉− β ≥ φ(x) − ε
}
. (12)

Proof Fix x ∈ domφ and ε > 0. We introduce the continuous linear mapping A0 : X → X ×
R defined by A0z := (z,0) whose adjoint is the continuous linear mapping A∗

0 : X∗ ×R →
X∗ given by A∗

0(z
∗, β) = z∗. Then, since φ = σC ◦ (A0 + (θ,−1)), we get (e.g., [13])

∂εφ(x) = cl(A∗
0(∂εσC(x,−1))),

and Proposition 2 implies that

∂εφ(x) = cl{x∗ ∈ X∗ : (x∗, β) ∈ Cε(x) for some β ∈ R}.
Hence, to establish (11), we only need to show that the set

Bε := {x∗ ∈ X∗ : (x∗, β) ∈ Cε(x) for some β ∈R
}

is closed. To this aim, we pick a net (x∗
i )i ⊂ Bε that converges to some x∗ ∈ X∗, and choose

another net (βi)i ⊂R such that (x∗
i , βi)i ⊂ Cε(x); that is, taking into account Lemma 3,

(x∗
i , βi) ∈ co(C) and φ(x) ≥ 〈x∗

i , x
〉− βi ≥ φ(x) − ε, for all i. (13)

Hence, as (x∗
i )i converges, we may assume without loss of generality that (βi)i converges

to some β such that (x∗, β) ∈ co(C) and 〈x∗, x〉 − β ≥ φ(x) − ε; in other words, x∗ ∈ Bε

and this set is closed. Then, (11) has been proved for ε > 0.
We consider now ε = 0. From (5) and the paragraph above we obtain

∂φ(x) = ⋂

δ>0
∂δφ(x) = ⋂

δ>0
Bδ.

Thus, given any x∗ ∈ ∂φ(x), for every δ > 0 there exists some βδ ∈ R such that
(x∗, βδ) ∈ co(C) and φ(x) ≥ 〈x∗, x〉 − βδ ≥ φ(x) − δ, according to Lemma 3. In par-
ticular, as δ ↓ 0, we get βδ → β0 := 〈x∗, x〉 − φ(x) and (x∗, β0) ∈ co(C); that is, x∗ ∈
{x∗ ∈ X∗ : (x∗, β) ∈ C0(x) for some β ∈R} and the inclusion “⊂” in (11) follows.
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To prove the converse inclusion we take

x∗ ∈ {x∗ ∈ X∗ : (x∗, β) ∈ C0(x) for some β ∈R.

Then, there exists some β ∈ R such that (x∗, β) ∈ co(C) and 〈x∗, x〉 − β = 〈(x,−1),

(x∗, β)〉 = φ(x). Hence, using Proposition 2, (x∗, β) ∈ ∂σC(x,−1) = ∂σC(A0x + (θ,−1))

and we deduce that

x∗ = A∗
0(x

∗, β) ∈ A∗
0∂σC(A0x + (θ,−1))

⊂ ∂ (σC ◦ (A0 + (θ,−1))) (x) = ∂φ(x).

To establish (12) we first claim that, for all x ∈ domφ and ε > 0,

∂εφ(x) = ⋂

δ>ε

cl (Eδ) , (14)

where

Eδ := {x∗ ∈ X∗ : (x∗, β) ∈ co(C), φ(x) ≥ 〈x∗, x
〉− β ≥ φ(x) − δ, β ∈ R

}
.

Indeed, given δ > δ1 > ε > 0 and x∗ ∈ ∂εφ(x) ⊂ ∂δ1φ(x), (11) gives rise to some β ∈ R

such that (x∗, β) ∈ co(C) and 〈x∗, x〉 − β ≥ φ(x) − δ1; that is,

〈
x∗, x

〉− β > φ(x) − δ.

This yields the existence of a net (x∗
i , βi) ∈ co(C) converging to (x∗, β) such that

〈
x∗

i , x
〉−

βi > φ(x) − δ; that is, x∗
i ∈ Eδ . In other words, x∗ ∈ cl (Eδ) and the arbitrariness of δ > ε

entails the inclusion “⊂” in (14). The claim is proved because the opposite inclusion “⊃” in
(14) easily follows from (11) as a consequence of the following inclusions,

⋂

δ>ε

cl (Eδ) ⊂ ⋂

δ>ε

cl (Bδ) = ⋂

δ>ε

cl (∂δφ(x)) = ⋂

δ>ε

∂δφ(x) = ∂εφ(x).

Now, taking into account Lemma 1 and the fact that φ ∈ �0(X), (14) and (11) give rise to
(12):

∂εφ(x) = cl

(
⋃

0<γ<ε

∂γ φ(x)

)

= cl

(
⋃

0<γ<ε

⋂

δ>γ

cl (Eδ)

)

⊂ cl (Eε) ⊂ cl (Bε) = ∂εφ(x). �

The following example illustrates Theorem 4.

Example 1 Consider the function φ :R→ R∞ defined by

φ(x) := sup
t>0

(tx − 1/t) ,

which is represented as in (8) with C = {(t,1/t) : t > 0}.
Then, φ(0) = 0 and (11) gives rise to

∂φ(0) = {α ∈ R : (α,β) ∈ co(C), β = 0} = {α ∈R : (α,0) ∈ co(C)} ,
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where C = {(t,1/t) : t > 0}. This entails that ∂φ(0) = ∅. Now, when ε > 0, (11) reads

∂εφ(0) = {α > 0 : 1/α ≤ β ≤ ε} = [1/ε,+∞[.
Observe that straightforward calculus give φ(x) = −2

√−x + IR−(x).

The second example shows that (12) cannot be extended to the case ε = 0.

Example 2 Consider the function φ :R→ R∞ defined by

φ(x) := max

{

sup
t>0

(tx − 1/t) ,0

}

.

So, φ(0) = 0 and φ is written in the form φ(x) := σC(x,−1), where

C := {(t,1/t), t > 0; (0,0)}.
In this case, we have

co(C) = {(0,0)} ∪ {(α,β) : α,β > 0} and co(C) = {(α,β) : α,β ≥ 0}.
Consequently, (12) reads

∂εφ(0) = cl {α ∈ R : (α,β) ∈ co(C), 0 ≤ β ≤ ε} = R+, for all ε > 0.

However, this last relation does not hold when ε = 0 because, thanks to formula (11), we
have

∂φ(0) = {α ∈ R : (α,β) ∈ co(C), β = 0} =R+,

while cl {α ∈R : (α,β) ∈ co(C), β = 0} = {0}� ∂φ(0).

The following corollary, which constitutes an improvement of [10, Lemma 1] (see, also,
[20]), is given for the purpose of illustrating the scope of Theorem 4. Then formula (15)
below can be seen as an extension of the well-known result for functions f in �0(X):

∂εf
∗ = (∂εf )−1, for all ε ≥ 0.

Corollary 5 Given a function f : X → R∞, for every x∗ ∈ X∗ and ε > 0 we have

∂εf
∗(x∗) = cl

{
∑

x∈domf

λx(∂εx f )−1(x∗) : λ ∈ �(domf ),
∑

x∈domf

λxεx ≤ ε, εx ≥ 0

}

. (15)

In particular, if f is convex, then

∂εf
∗(x∗) = cl((∂εf )−1(x∗)). (16)

Proof First, we may additionally assume that f ∗ is proper (and so will be f ); otherwise,
(15) would hold trivially since all the sets involved will be empty. Next, we apply Theorem
4 with the set C := {(x, f (x)): x ∈ domf } and the supremum function

φ(·) := sup
(x,β)∈C

(〈·, x〉 − β) = f ∗(·).
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Then, for every given x∗ ∈ X∗ and ε > 0, formula (12) yields

∂εf
∗(x∗) = cl

{
∑

x∈domf

λxx : λ ∈ �(domf ),
∑

x∈suppλ

λx(
〈
x∗, x

〉− f (x)) ≥ f ∗(x∗) − ε

}

.

Next, taking εx := f (x) + f ∗(x∗) − 〈x∗, x〉 (≥ 0), we get
∑

x∈domf λxεx ≤ ε and x ∈
(∂εf )−1(x∗), and the last expression is equivalent to (15).

If f is convex, then every z := ∑x∈domf λxx, λ ∈ �(domf ) and
∑

x∈suppλλxεx ≤ ε,
satisfies: for every y ∈ domf ,

〈
x∗, y − z

〉= ∑

x∈domf

λx

〈
x∗, y − x

〉

≤ ∑

x∈domf

λx(f (y) − f (x) + εx) ≤ f (y) − f (z) + ε;

that is, z ∈ (∂εf )−1(x∗). Therefore
∑

x∈domf λx(∂εx f )−1(x∗) ⊂ (∂εf )−1(x∗), and (15) im-
plies the inclusion “⊂” in (16). Finally, (16) follows because the opposite inclusion “⊃” is
straightforward. �

4 Concave-Like Setting

The concept of concave-like has been recognized as a relaxation of concavity of mappings,
namely in relation to minimax theorems ([8]). Here, abusing the language, we adopt it to
families of functions.

Definition 1 A family of functions {ft : X → R, t ∈ T } is said to be concave-like if each
convex combination of its elements is dominated by a member of the family; that is, for each
λ ∈ �(T ), there exists some s ∈ T such that

∑

t∈suppλ

λtft ≤ fs. (17)

Typical examples of concave-like families are:
(i) {〈a, ·〉 − b, (a, b) ∈ C}, where C is convex.
(ii) {ft : X → R, t ∈ T }, where T is convex and the mappings t �→ ft (x), x ∈ X, are

concave.
(iii) {ft : X → R, t ∈ T }, where (T ,�) is an ordered set and the net (ft )t∈T is non-

decreasing.
(iv) Also, if {ft : X → R, t ∈ T } is concave-like, then the families {f̄t , t ∈ T } and {f̄t :

t ∈ S}, S := {t ∈ T : f̄t > −∞}, are also concave-like. Actually, given any λ ∈ �(T ), there
exists some s ∈ T such that

fλ := ∑

t∈suppλ

λtft ≤ fs.

Then

∑

t∈suppλ

λt f̄t ≤ ∑

t∈suppλ

λtft ≤ fs, (18)
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and we conclude that
∑

t∈suppλλt f̄t ≤ f̄s . If λ ∈ �(S) (⊂ �(T )) and s is as above, then (18)

implies that s ∈ S, and the family {f̄t : t ∈ S} is concave-like too.
Actually, every family of functions can be enlarged to a concave-like family without

changing the associated supremum:

Lemma 6 Given functions ft : X →R, t ∈ T , the family
{

fλ := ∑

t∈suppλ

λtft , λ ∈ �(T )

}

is always concave-like, and we have that supt∈T ft = supλ∈�(T ) fλ.

Proof Given any μ ∈ �(�(T )), it can be easily checked that the function

∑

λ∈suppμ

μλfλ = ∑

λ∈suppμ, t∈suppλ

μλλtft

has the form fλ0 for some λ0 ∈ �(T ). Finally, the equality supt∈T ft = supλ∈�(T ) fλ is
straightforward. �

Theorem 7 below characterizes the ε-subdifferential of the supremum f := supt∈T ft of
concave-like families of convex functions. The formula given there distinguishes between
the role played by proper and improper closures (of the ft ’s). While ∂εf (x) strongly depends
on the functions indexed in

T p := {t ∈ T : f̄t ∈ �0(X)}, (19)

the rest of functions having improper closures, indexed in T i := T \ T p , only intervene
through their effective domains.

Theorem 7 Given convex functions ft : X → R, t ∈ T , and f := supt∈T ft , we suppose that
the family {ft , t ∈ T p} is concave-like and

f̄ = sup
t∈T

f̄t . (20)

Then, for all x ∈ domf and ε > 0, we have

∂εf (x) = cl

{
⋃

t∈T p

∂ε+ft (x)−f (x)(ft + ID)(x)

}

, (21)

where

D := ⋂

t∈T i

cl(domft ) (= X if T i = ∅).

Conversely, (21) also implies (20) provided that f ∗ is proper.

Proof We proceed by steps.
Step 1: The inclusion “⊃” in (21) always holds because, for every x ∈ domf and ε > 0,

⋃

t∈T p

∂ε+ft (x)−f (x)(ft + ID)(x) ⊂ ∂ε(f + Idomf )(x) = ∂εf (x).
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Step 2: In this step, we prove (21) under the additional assumption that {ft , t ∈ T } ⊂
�0(X), so that T p = T and (20) automatically holds. Then, according to Moreau Theorem,
we have

f = sup
t∈T

ft = sup
t∈T

(f ∗
t )∗ = sup

t∈T , x∗∈domf ∗
t

{〈x∗, ·〉− f ∗
t (x∗)}

and Theorem 4 entails, for all x ∈ domf and ε > 0,

∂εf (x) = cl
{
x∗ ∈ X∗ : (x∗, β) ∈ co (C) ,

〈
x∗, x

〉− β ≥ f (x) − ε
}
, (22)

where

C := {(x∗, f ∗
t (x∗)) : x∗ ∈ domf ∗

t , t ∈ T }.
Take (x∗, β) ∈ co (C) such that 〈x∗, x〉 − β ≥ f (x) − ε. Then there are x∗

i ∈ domf ∗
ti

and
ti ∈ T (i = 1, . . . , k, k ≥ 1) together with λ ∈ �∗

k such that

(x∗, β) = ∑

1≤i≤k

λi(x
∗
i , f

∗
ti
(x∗

i ))

and, using the Fenchel inequality,

∑

1≤i≤k

λifti (x) − ε ≤ f (x) − ε ≤ ∑

1≤i≤k

λi

(〈
x∗

i , x
〉− f ∗

ti
(x∗

i )
)≤ ∑

1≤i≤k

λifti (x) ≤ ft0(x), (23)

where t0 ∈ T comes from the concave-like assumption. In other words, for εi := fti (x) +
f ∗

ti
(x∗

i ) − 〈x∗
i , x
〉
(≥ 0) the last inequalities yield

∑

1≤i≤k

λiεi + ft0(x) − ∑

1≤i≤k

λifti (x) = ft0(x) − ∑

1≤i≤k

λi

(〈
x∗

i , x
〉− f ∗

ti
(x∗

i )
)

≤ ft0(x) − ∑

1≤i≤k

λifti (x) + ε ≤ ft0(x) − f (x) + 2ε.

(24)

Thus, since x ∈ domf ⊂ domft0 and λi > 0 for i = 1, . . . , k, we conclude from the defini-
tion of the εi ’s, that

x∗ = ∑

1≤i≤k

λix
∗
i ∈ ∑

1≤i≤k

λi∂εi
fti (x) = ∑

1≤i≤k

∂λiεi
(λifti )(x);

that is, taking into account (7), (24), and denoting ελ := �1≤i≤k λiεi , fλ :=∑1≤i≤kλifti ,

x∗ ∈ ∂ελ
fλ(x) ⊂ ∂ελ+ft0 (x)−fλ(x)ft0(x) ⊂ ∂ft0 (x)−f (x)+εft0(x).

Therefore the inclusion “⊂” in (21) follows from (22), and we are done because the other
inclusion “⊃” is easily checked.

Step 3: We prove in this step that (21) also holds under condition (20). In fact, we only
need to verify the inclusion “⊂” in (21) in the case when ∂εf (x) 	= ∅. This implies f (x) ≤
f (x) + ε ≤ f (x) + ε < +∞ and we may assume, for simplicity, that x = θ , f (θ) = 0 and,
a fortiori, that f and f̄ are proper. More precisely, due to (20), we have that supt∈T f̄t (θ) =
f̄ (θ) ∈ R and some of the f̄t ’s must be proper (T p 	= ∅). Moreover, using (20), we have that

f̄ = sup
t∈T

f̄t = sup
t∈T p

(
f̄t + ID

)
. (25)
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Thus, since the family {f̄t + ID , t ∈ T p} is concave-like (see (18)), by taking into account
(6) and (7) the second step yields

∂εf (θ) ⊂ ∂(ε+f̄ (θ)
)f̄ (θ) = cl

{
⋃

t∈T p

∂ε+f̄ (θ)+f̄t (θ)−f̄ (θ)

(
f̄t + ID

)
(θ)

}

= cl

{
⋃

t∈T p

∂ε+f̄t (θ)(f̄t + ID)(θ)

}

(26)

⊂ cl

{
⋃

t∈T p

∂ε+ft (θ)(ft + ID)(θ)

}

, (27)

and the desired inclusion follows. Hence, in view of the first step, (21) also follows in the
current case.

Step 4: We prove in this step that (21) implies (20), under the additional assumption that
f ∗ is proper. If (21) holds, then for all x ∈ domf and ε > 0 we have

∂εf (x) = cl

{
⋃

t∈T p

∂ε+ft (x)−f (x)(ft + ID)(x)

}

⊂ cl

{
⋃

t∈T p

∂ε+f̄t (x)−f (x)

(
f̄t + ID

)
(x)

}

.

Thus, since

g := sup
t∈T

f̄t = sup
t∈T p

(
f̄t + ID

)≤ f̄ ≤ f,

we conclude, from (7), that

∂εf (x) ⊂ ∂ε+g(x)−f (x)g(x) ⊂ ∂εg(x), for all x ∈ domf and ε > 0. (28)

Therefore there exists some constant c such that f̄ − g = c (see, i.e., [3, Theorem 5.3]); that
is, c ≥ 0. Moreover, since f ∗ is proper, for each ε > 0 there exists some xε ∈ domf such
that ∂εf (xε) 	= ∅. Hence, (28) implies that ∂ε+g(xε)−f (xε)g(xε) 	= ∅, which in turn yields

0 ≤ ε + g(xε) − f (xε) ≤ ε + g(xε) − f̄ (xε) = ε − c;
that is, 0 ≤ c ≤ ε and we deduce that c = 0 as ε ↓ 0. �

The closure condition (20) not only holds for lsc functions but also in other natu-
ral situations as it is shown in [11]. Let us show now that every family of the form{∑

1≤k≤mλkfk, λ ∈ �(T )
}
, where f1, . . . , fk : X → R∞ are proper convex functions, sat-

isfies condition (20).

Lemma 8 Given proper convex functions fk : X → R∞, 1 ≤ k ≤ m, the family {gλ :=∑
1≤k≤mλkfk , λ ∈ �m} satisfies condition (20).

Proof We know by Lemma 6 that max1≤k≤m fk = maxλ∈�m gλ, and so for every z ∈ X we
obtain

f̄ (z) = sup
U∈NX

inf
y∈U

f (z + y) = sup
U∈NX

inf
y∈X

max
λ∈�m

(gλ(z + y) + IU(y)) .

Thus, by the minimax theorem ([23, Theorem 2.10.2])

f̄ (z) = sup
U∈NX

max
λ∈�m

inf
y∈U

gλ(z + y) = max
λ∈�m

sup
U∈N

inf
y∈U

gλ(z + y) = max
λ∈�m

gλ(z),
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and condition (20) is satisfied by {gλ, λ ∈ �m}. �

Some consequences of Theorem 7 come next. First, we give another useful representation
of ∂εf (x) which explicitly involves the approximate subdifferential of the data functions
ft , t ∈ T p .

Corollary 9 With the assumptions of Theorem 7 we have, for all x ∈ domf and ε > f (x) −
f̄ (x),

∂εf (x) = cl

{
⋃

α≥0, t∈T p

∂ε−α+ft (x)−f (x)ft (x) + Nα
D(x)

}

, (29)

where D = ∩t∈T i cl(domft ) (= X if T i = ∅).

Proof Fix x ∈ domf and ε > f (x) − f̄ (x) such that ∂εf (x) 	= ∅; hence, both f and f̄

belong to �0(X). The combination of (26), (27) and (21) leads us to the following charac-
terization of ∂δf (x), for all δ > 0,

∂δf (x) = cl

{
⋃

t∈T p

∂δ+f̄t (x)−f (x)(f̄t + ID)(x)

}

. (30)

Now the condition ε > f (x) − f̄ (x) implies that ∂δf (x) 	= ∅ for some 0 < δ < ε. Indeed,
choosing any δ > 0 such that ε − 2δ > f (x) − f̄ (x) ≥ 0, any element z∗ ∈ ∂δf̄ (x) (this set
is nonempty because f̄ ∈ �0(X), as we observed above) satisfies

f (x) + f ∗(z∗) + 2δ − ε ≤ f̄ (x) + f ∗(z∗) = f̄ (x) + (f̄ )∗(z∗) ≤ 〈z∗, x
〉+ δ.

Thus,

f (x) + f ∗(z∗) ≤ 〈z∗, x
〉+ ε − δ,

and so z∗ ∈ ∂ε−δf (x). Therefore, using Lemma 1, (30) reads

∂εf (x) = cl

(
⋃

0<δ<ε

∂δf (x)

)

= cl

(
⋃

0<δ<ε

cl

{
⋃

t∈T p

∂δ+f̄t (x)−f (x)(f̄t + ID)(x)

})

.

Furthermore, by adjusting the δ involved in the last union (we make it a little larger), we
also write

∂εf (x) ⊂ cl

(
⋃

t∈T p, f (x)−f̄t (x)<δ<ε

∂δ+f̄t (x)−f (x)(f̄t + ID)(x)

)

.

At this moment, applying the subdifferential sum rule from [13] (see, also, [4]), we get

∂εf (x) ⊂ cl

(
⋃

t∈T p, f (x)−f̄t (x)<δ<ε

cl

(
⋃

α≥0
∂δ−α+f̄t (x)−f (x)f̄t (x) + Nα

D(x)

))

⊂ cl

(
⋃

t∈T p, α≥0
∂ε−α+f̄t (x)−f (x)f̄t (x) + Nα

D(x)

)

.
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Hence, the nontrivial inclusion in (29) follows as (see (7))

∂ε−α+f̄t (x)−f (x)f̄t (x) ⊂ ∂ε−α+ft (x)−f (x)ft (x). �

The following results gives an equivalent reformulation of ∂εf (x) that highlights the role
played by the ε-active indices at x,

Tε(x) := {s ∈ T p : fs(x) ≥ f (x) − ε}, ε ≥ 0.

Corollary 10 With the assumptions of Theorem 7 we have, for all x ∈ domf and ε > f (x)−
f̄ (x),

∂εf (x) = cl

⎧
⎪⎨

⎪⎩

⋃

0≤γ≤ε
t∈Tε−γ (x)

∂γ (ft + ID)(x)

⎫
⎪⎬

⎪⎭
(31)

= cl

⎧
⎪⎨

⎪⎩

⋃

0≤α≤γ≤ε
t∈Tε−γ (x)

∂γ−αft (x) + Nα
D(x)

⎫
⎪⎬

⎪⎭
, (32)

where D = ∩t∈T i cl(domft ) (= X if T i = ∅). In particular, we have

∂f (x) = ⋂

δ>0
cl

{
⋃

t∈Tδ(x)

∂δ(ft + ID)(x)

}

(33)

= ⋂

δ>0
cl

{
⋃

t∈Tδ−α(x), α≥0
∂δ−αft (x) + Nα

D(x)

}

. (34)

Proof Relation (31) follows easily from Theorem 7, defining γ := ε +ft (x)−f (x) in (21).
Similarly, (32) comes from (29). In addition, due to (5), (33) is a direct consequence of
(31). Thus, only (34) remains to be checked. More specifically, since it suffices to verify
the nontrivial inclusion “⊂”, we may suppose that ∂f (x) 	= ∅, so that ∂f (x) = ∂f̄ (x) and
f (x) = f̄ (x) ∈R. Therefore, by (29),

∂f (x) = ⋂

ε>0
∂εf (x) = ⋂

ε>f (x)−f̄ (x)

∂εf (x)

= ⋂

ε>0
cl

{
⋃

α≥0, t∈T p

∂ε−α+ft (x)−f (x)ft (x) + Nα
D(x)

}

,

and the desired formula follows by setting γ := ε +ft (x)−f (x) in the last expression. �

The closure can be removed from (21) and subsequent formulas in the compact-
continuous setting.

Corollary 11 In addition to the assumptions of Theorem 7, suppose that T is compact and
lim supt→s ft (z) ≤ fs(z) for all s ∈ T and all z ∈ D := ∩t∈T i cl(domft ) (= X if T i = ∅).
Then, for all x ∈ domf and ε > 0, we have

∂εf (x) = ⋃

t∈T

∂ε+ft (x)−f (x)(ft + ID)(x), (35)
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and, provided that ε > f (x) − f̄ (x),

∂εf (x) = ⋃

α≥0, t∈T

∂ε−α+ft (x)−f (x)ft (x) + Nα
D(x). (36)

Proof We give the proof of the first equality, the second follows as in the previous corollar-
ies. Fix x ∈ domf and ε > 0, and take x∗ ∈ ∂εf (x). Then, according to Theorem 7, there
are nets x∗

j → x∗ and (tj )j ⊂ T p such that

x∗
j ∈ ∂ε+ftj

(x)−f (x)(ftj + ID)(x), for all j ;

hence, ε+ftj (x)−f (x) ≥ 0. By the current compactness condition, we may assume without
loss of generality that tj → t for some t ∈ T . Thus, the upper semicontinuity assumption
implies that ε + ft (x) − f (x) ≥ 0 (as x ∈ domf ⊂ D) and x∗ ∈ ∂ε+ft (x)−f (x)(ft + ID)(x).
This yields the nontrivial inclusion “⊂” in (35). �

We close this section by applying Theorem 7 to derive a characterization of the ε-normal
set to sublevel sets. See [10, Corollary 7] for the case of lsc convex functions.

Example 3 Consider a convex function f : X →R, having a proper conjugate and satisfying

cl ([f ≤ 0]) = [f̄ ≤ 0
] ; (37)

this last property occurs if, for instance, [f < 0] 	= ∅. Then, for every x ∈ [f ≤ 0] and ε > 0,
we have

Nε
[f ≤0](x) = cl

(
⋃

t>0
t∂ ε

t +f (x)f (x)

)

. (38)

In order to prove (38) we define the functions

ft := tf, t ∈ T := ]0,+∞[, and g := sup
t>0

(tf ).

Obviously, T p = T and {ft , t ∈ T } is concave-like. Therefore, because g = I[f ≤0] and (20)
holds (as a consequence of (37)), Theorem 7 (with D = X) entails

Nε
[f ≤0](x) = ∂εg(x) = cl

(
⋃

t>0
∂ε+tf (x) (tf ) (x)

)

= cl

(
⋃

t>0
t∂ ε

t +f (x)f (x)

)

.

5 Epsilon-Subdifferential of Suprema

The results of the previous section are applied here to the extended family of funtions

fλ := ∑

t∈suppλ

λtft , λ ∈ �(T p), (39)

where T p = {t ∈ T : f̄t ∈ �0(X)}. This family, by construction, satisfies the concave-like
property and has the same supremum function. We give next the main theorem.
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Theorem 12 Given convex functions ft : X →R, t ∈ T , and f := supt∈T ft , we suppose that
(20) holds. Then, for any x ∈ domf and ε > 0, we have

∂εf (x) = cl

{
⋃

λ∈�(T p)

∂ε+fλ(x)−f (x) (fλ + ID) (x)

}

, (40)

where D := ∩t∈T�T p cl(domft ).

Proof We fix x ∈ domf and ε > 0 and suppose, without loss of generality, that ∂εf (x) 	= ∅.
Since (see (25) and Lemma 6)

f̄ = sup
t∈T p

(
f̄t + ID

)= sup
λ∈�(T p)

∑

t∈suppλ

λt

(
f̄t + ID

)

and the family, in �0(X),

{

gλ := ∑

t∈suppλ

λt

(
f̄t + ID

)
, λ ∈ �(T p)

}

,

is concave-like, Theorem 7 gives rise to

∂εf (x) ⊂ ∂ε+f̄ (x)−f (x)f̄ (x) = cl

{
⋃

λ∈�(T p)

∂ε+f̄ (x)−f (x)+gλ(x)−f̄ (x)gλ(x)

}

= cl

{
⋃

λ∈�(T p)

∂ε+gλ(x)−f (x)gλ(x)

}

.

Thus, denoting f̃λ :=∑t∈suppλ λt f̄t and using (7), we deduce

∂εf (x) ⊂ cl

{
⋃

λ∈�(T p)

∂ε+f̃λ(x)−f (x)

(
f̃λ + ID

)
(x)

}

⊂ cl

{
⋃

λ∈�(T p)

∂ε+fλ(x)−f (x) (fλ + ID) (x)

}

,

and the nontrivial inclusion “⊂” in (40) holds. �

In order to give a finite-dimensional counterpart of our main theorem in the finite-
dimensional setting we use the following lemma.

Lemma 13 Given convex functions f1, · · · , fm : Rn −→ R∞, m ≥ 1, we denote gλ :=∑
1≤i≤mλifi , λ ∈ �m. Then we have

inf
Rn

max
1≤i≤m

fi = max
λ∈�m, |suppλ|≤n+1

inf
Rn

gλ,

and consequently, for every x ∈ R
n, α ∈ �m and ε ∈ R,

∂ε+gα(x)gα(x) ⊂ ⋃

λ∈�m, |suppλ|≤n+1
∂ε+gλ(x)gλ(x). (41)
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Proof The first conclusion is a consequence of Carathéodory lemma and the minimax theo-
rem. To show the second statement, we fix x ∈ R

n, α ∈ �m and ε ∈ R. If θ ∈ ∂ε+gα(x)gα(x),
then by the first part of the lemma there exists some λ ∈ �m such that |suppλ| ≤ n + 1 and

−ε ≤ inf
Rn

gα ≤ inf
Rn

max
1≤i≤m

fi = inf
X

gλ;

that is, θ ∈ ∂ε+gλ(x)gλ(x).
More generally, if x∗ ∈ ∂ε+gα(x)gα(x) and g̃α(·) := ∑1≤i≤mαi(fi − 〈x∗, ·〉), then θ ∈

∂ε+gα(x)g̃α(x) and the paragraph above yields some λ ∈ �m such that |suppλ| ≤ n + 1 and

θ ∈ ∂ε+gα(x)−g̃α(x)+g̃λ(x)g̃λ(x) = ∂ε+〈x∗,x〉+g̃λ(x)g̃λ(x) = ∂ε+gλ(x)gλ(x) − x∗,

where we also denoted g̃λ(·) :=∑1≤i≤mλi(fi − 〈x∗, ·〉). Hence, x∗ ∈ ∂ε+gλ(x)gλ(x) and the
desired inclusion follows. �

Theorem 14 Under the assumptions of Theorem 12, if X = R
n and ε > 0, then

∂εf (x) = cl

{
⋃

λ∈�(T p), |suppλ|≤n+1
∂ε+fλ(x)−f (x) (fλ + ID) (x)

}

. (42)

If additionally, T is compact and lim sups→t fs(z) ≤ ft (z) for all z ∈ D, for ε ≥ 0 we have

∂εf (x) = ⋃

λ∈�(T ), |suppλ|≤n+1
∂ε+fλ(x)−f (x)

(
fλ + I∩t∈T domft

)
(x). (43)

Proof Formula (42) follows by combining (40) and (41). In order to prove formula (43),
we fix x ∈ domf , ε ≥ 0 and take x∗ ∈ ∂εf (x). Then formula (42) yields some nets εi ↓ ε

(εi ≡ ε if ε > 0), x∗
i → x∗ and (λi)i ⊂ �(T p) such that |suppλi | ≤ n + 1 and

x∗
i ∈ ∂εi+fλi

(x)−f (x)

(
fλi

+ ID
)
(x), for all i,

where fλi
=∑t∈suppλi

λi(t)ft (see (39)); that is,

〈
x∗

i , z − x
〉≤ fλi

(z) − fλi
(x) + (εi + fλi

(x) − f (x)) (44)

= fλi
(z) − f (x) + εi, for all z ∈ D and all i. (45)

We consider the net (ti,1, . . . , ti,n+1)i such that suppλi ⊂ (ti,1, . . . , ti,n+1). Then, taking into
account the current continuity-compactness assumptions, we may assume without loss of
generality that for all 1 ≤ j ≤ n + 1

λi(ti,j ) → λj ≥ 0 and ti,j → tj ∈ T ;
hence, (λ1, . . . , λn+1) ∈ �n+1. Let us define the function λ ∈ �(T ) as λ(tj ) := λj if 1 ≤ j ≤
n + 1, and λ(t) := 0 if t 	= tj . Then, by passing to the limit on i in (44) we obtain

〈
x∗, z − x

〉≤ ∑

1≤j≤n+1
λ(tj )ft (z) − f (x) + ε, for all z ∈ D,

which in turn implies, taking into account the convention 0 · (+∞) = +∞, that for all
z ∈ ∩t∈T domft (⊂ D)

〈
x∗, z − x

〉≤ fλ(z) − f (x) + ε = fλ(z) − fλ(x) + fλ(x) − f (x) + ε.
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Thus, x∗ ∈ ∂ε+fλ(x)−f (x)

(
fλ + I∩t∈T domft

)
(x) and the non-trivial inclusion “⊂” in (43) fol-

lows. �

Remark 1 Theorem 12 covers Theorem 7. In fact, if the family {ft , t ∈ T p} is concave-like,
then for each λ ∈ �(T p) there exists some t ∈ T p such that fλ ≤ ft , and (40) entails, for all
x ∈ domf and ε > 0,

∂εf (x) ⊂ cl

{
⋃

t∈T p

∂ε+ft (x)−f (x) (ft + ID) (x)

}

.

Formula in (21) follows because the opposite of the last inclusion always holds.

The case of the maximum of a finite family comes easily from Theorem 12.

Corollary 15 Given a finite family of proper convex functions fk : X → R∞, k ∈ T :=
{1, · · · ,m}, and f = max1≤k≤m fk , for every x ∈ domf and ε ≥ 0 we have

∂εf (x) = ⋃

λ∈�m

∂ε+gλ(x)−f (x)gλ(x), (46)

where gλ :=∑1≤k≤mλkfk . In particular, we have that

∂f (x) =⋃ {∂gλ(x) : λ ∈ �m, gλ(x) = f (x)} .

Proof According to Lemma 8, the family {gλ, λ ∈ �m} satisfies condition (20). Moreover,
since that

∑

k∈suppμ

μkgλk
∈ {gλ, λ ∈ �m}, for all μ ∈ �m,

and f = maxλ∈�m gλ, by applying Theorem 12 to the family {gλ, λ ∈ �m} we obtain for all
x ∈ domf and ε > 0

∂εf (x) ⊂ cl

{
⋃

λ∈�m

∂ε+gλ(x)−f (x) (gλ + ID) (x)

}

= cl

{
⋃

λ∈�m

∂ε+gλ(x)−f (x)gλ(x)

}

;

the last equality holds because we have (due to convention 0 · (+∞) = +∞, if x /∈ D then
gλ(x) = +∞)

gλ + ID = ∑

1≤k≤m

λkfk + ∑

1≤k≤m, f k improper

Icl(domfk) = gλ.

Therefore, for every x∗ ∈ ∂εf (x), there exist nets x∗
i → x∗ and (λi) ⊂ �m such that x∗

i ∈
∂ε+gλi

(x)−f (x)gλi
(x) for all i; that is,

〈
x∗

i , y − x
〉≤ gλi

(y) − f (x) + ε, for all y ∈ X.

Thus, since may assume without loss of generality that λi → λ ∈ �m, by taking limits on i

in the last inequality we deduce that x∗ ∈ ∂ε+gλ(x)−f (x)gλ(x) and the nontrivial inclusion in
(46) follows. �
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We finish this work by providing a general approximate KKT condition for the convex
optimization problem

(P ) inf
f (x):=sup

t∈T

ft ≤ 0
g(x),

where the functions ft , g : X → R, t ∈ T , are lsc proper and convex. Next, we establish
some KKT ε-optimality conditions without resorting to the Slater condition or any other
constraint qualification.

Corollary 16 Let x̄ ∈ (domg) ∩ [f ≤ 0] and ε > 0. Then, in the setting above, x̄ is ε-
minimum of (P ) if and only if

θ ∈ cl

⎛

⎜
⎝

⋃

α∈R, μ>0
λ∈�(T )

∂ε−αg(x̄) + μ∂ α
μ +fλ(x̄)fλ(x̄)

⎞

⎟
⎠ , (47)

where fλ :=∑t∈suppλλtft .

Proof Assume that x̄ is an ε-minimum of (P ). Then, by [13] and Example 3,

θ ∈ cl

(
⋃

α∈R
∂ε−αg(x̄) + Nα

[f ≤0](x̄)

)

⊂ cl

(
⋃

α∈R, μ>0

{
∂ε−αg(x̄) + μ∂ α

μ +f (x̄)f (x̄)
}
)

.

Therefore, appealing to Theorem 12, we obtain (47). The proof is finished as the sufficiency
of (47) is straightforward. �
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