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Abstract
In this paper we give several existence results for solutions of equilibrium problems in topo-
logical spaces without linear structure. To this end we introduce a new concept of convexity
for maps and multivalued maps in spaces without linear structure. The discussion on con-
vexity is enriched with some example useful to compare the new conditions with the existing
one in literature. Finally, we apply the existence results obtained to a Nash equilibrium prob-
lem and to a maximization of a binary relation.

Keywords Equilibrium problem · Minimax inequalities · Set valued analysis · Convex-like
maps
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1 Introduction

Multivalued equilibrium problems arise in many areas of science and engineering, including
economics, physics, and optimization. They are of particular interest due to their wide range
of applications in decision-making problems where multiple competing criteria need to be
balanced.

Let α ∈ R, X be a topological space, Y any set and let G : X × Y � R be a multivalued
map (multimap for short), the problem under study is the following

find y0 ∈ Y such that G(x,y0) ∩ [α,∞) �= ∅ ∀x ∈ X.

The equilibrium problems were initially introduced in a non multivalued setting by Fan in
[20] as a generalization of the classical minimax equality, Browder in [12] considered this
problem in the particular case of variational inequalities, then they have been extended in
various directions by many authors. A popular research line focuses on generalization of
convexity (concavity) of the function. It spreads in two different ways: in the first one as the
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domain is embedded in a linear structure, the convexity of the map is surrogated by quasi-
convexity; according to the definition of De Finetti ([14]) and then again largely extended
and readapted, up to the recent definition of α-convexity proposed by Ruiz Galan in [36]. We
refer to the book of Kassay and Radulescu ([28]) for a more complete discussion. The second
line of investigation focuses on generalization of convexity (concavity) when the domains
are embedded in topological spaces without linear structure. One significant starting point
in this framework is the definition of convex-like functions introduced by Ky Fan ([19]): this
concept was generalized by Granas and Liu ([24]) with finitely convex-like functions, and
by Geraghty and Lin ([23]) with the definition of t -convex functions. Alternatively, Horvath
([26]) introduced a suitable substitute of the linear structure the so called H -spaces; his point
of view was adopted thereafter by several authors; we mention, for instance, the works of
Bardaro and Ceppitelli ([3, 4]). Minimax results without linear structure have been proved
by many authors, such as Borwein and Zhuang ([10]), Bukhvalov and Martellotti ([13]),
Martellotti and Salvadori ([32]).

Other authors exploits the generalization of linear spaces, called G-spaces due to Park,
we refer to [33] for the definition of G-spaces and their relations with other extension of
linear structure. For instance, Ding and Park ([15]) prove existence results for generalized
vector equilibrium problems and Kalmoun ([27]) establish KKM-type results in G-spaces.
Another contribution on this topic is given by Ding, Park and Jung ([16]), here constrained
multiobjective games where studied in L-spaces, a generalization of G-spaces introduced in
[6].

Lastly, there are the so-called asymmetric versions of the minimax relationships, where
the specularity of the required properties is no longer requested: these results are particularly
valuable for the study of inequalities systems, see for example Pomerol ([34]), Borwein and
Zhuang ([10]), Ha ([25]), and Fan-Glicksberg-Hoffmann ([21]), or even for theorems in the
field of optimal investment problems, such as the one in Pratelli ([35]).

In this paper we discuss asymmetric set-valued equilibrium problems in topological
spaces without linear structure.

The multivalued problem has been widely investigated under multivalued convexity or
quasi-convexity conditions, as in Alleche and Radulescu ([1, 2]), Benedetti and Martellotti
([7]), Krystali and Varga ([30]), Lin, Ansari and Wu ([31]). On the contrary, the study in
the literature is far more limited for this type of problems when no linear structure is con-
sidered: we mention the above cited results [15, 16, 27], and in addition, ([29]), where the
authors establish topologically-based full characterizations of the existence of solutions to
optimization-related problems without linear structure, replacing it by a KKM-structure.

The paper is organized as follows. In Sect. 2, we introduce some notions of semicontinu-
ity for maps and multimaps and we recall results useful later on: particularly an alternative
version of the Hahn-Banach separation theorem, obtained in [22].

Section 3 is focused on convexity for single valued and multivalued maps in spaces with-
out linear structure. Firstly, we give the definition of convex-like maps introduced by Fan
in [19], then we recall its generalization proposed by Granas and Liu in [24]. Finally, we
generalize this last definition introducing the concept of finitely (λ,μ)-lower complete (re-
spectively finitely (λ,μ)-upper complete) maps, extending the definition also for multivalued
maps. We also provide original and interesting examples useful to understand the relations
among them.

In Sect. 4 we give several existence results for solutions of an equilibrium problem
in topological spaces without linear structure, replacing the usual assumptions of convex-
ity/concavity with the alternative forms of convexity/concavity introduced in Sect. 3. Firstly,
we prove an existence result under the multivalued finitely (λ,μ)-inf completeness assump-
tion in the homogeneous case (α = 0). It is not possible to obtain a non homogeneous version
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of Theorem 4.1 without requiring some additional assumptions on the parameters λ,μ. This
is due to the fact that unlike convex-likeness, finitely (λ,μ)-inf completeness is in general
not preserved through translation unless α > 0 and λ + μ ≤ 1 or α < 0 and λ + μ ≥ 1. In
order to obtain a general result for α ∈ R we replace multivalued finitely (λ,μ)-inf com-
pleteness in the first variable, by the finite-inf convexlikeness in the first variable (see The-
orem 4.2). This theorem can be seen as an asymmetric minimax theorem, for the set of
assumptions holding for F and G are heavily asymmetric, we present a table with possible
alternative forms of this result that can be easily deduced. Furthermore, we consider the non-
homogeneous case for (λ,μ)-inf complete set valued maps. We prove an existence result for
α > 0 and λ + μ ≤ 1 (see Theorem 4.3), from it the specular case α < 0, λ + μ > 1 can be
easily obtained. We will show in Example 4.2 that the theorem does not apply for α > 0 and
λ + μ > 1.

In all the obtained results, we replace the assumption of compactness of the domain of the
involved multimaps with the multivalued version of the so-called coercivity condition (see
(H5) Theorem 4.1) introduced initially by Brezis, Nieremberg and Stampacchia in the mile-
stone paper [11] and then frequently used in literature in the study of this type of problems,
see for instance [1, 2, 7, 17, 30]. While, we assume a generalization of upper semicontinuity
for multivalued maps (see Definition 2.3) introduced in [7]. This concept in a stronger form
and in the single valued setting has been introduced by Tian in [38] and then has been used
to obtain equilibrium existence results by many authors, see e.g. [8] and [37]. A similar type
of semi-continuity for multivalued maps has been introduced in [18] to characterize equilib-
ria of set valued maps. We refer to Sect. 2 for a detailed discussion on the relationships that
exist among these various concepts of semi-continuity.

In Sect. 5, we compare the obtained results with the previous literature on the subject, in
particular with the results obtained in [7] and [10].

Since equilibrium problems are a point of interest for many applications such as non-
cooperative Game Theory, Fixed Point Theorems and Variational Inequalities and so on,
several applications of our results are proposed in Sect. 6. Particularly, applying a single
valued version of Theorem 4.2, we prove a result of existence of Nash equilibrium and
an existence theorem for maximal elements of binary relations defined over a paracompact
topological space.

Finally, in Appendix to complete the discussion on the several concepts of convexity
without linear structure present in the literature, we provide an example showing that finitely
convex-likeness defined in [24] is a genuine extension of Fan’s Definition given in [19].

2 Preliminaries

This section recalls the fundamental notions used in the paper, namely semicontinuity for
maps and multimaps, and we recall results useful later on, in particular an alternative version
of the Hahn-Banach separation theorem obtained in [22].

In this section X denotes a topological space and Y any set.

Definition 2.1 Let α ∈ R, a map f : X × X → R is said to be α-upper semicontinuous
(respectively α-lower semicontinuous) in the first variable if for every pair (x0, y0) ∈ X ×X

such that f (x0, y0) < α (f (x0, y0) > α) there exists a neighbourhood U of x0 such that
f (z, y0) < α (f (z, y0) > α) for every z ∈ U .

Tian in [38] proposed the definition of α-transfer semicontinuity for single valued maps
as follows.
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Definition 2.2 ([38], Definition 8) Let α ∈R, a map f : X × X → R is said to be α-transfer
upper semicontinuous (respectively α-transfer lower semicontinuous) in the first variable if
for every pair (x0, y0) ∈ X × X such that f (x0, y0) < α (f (x0, y0) > α) there are a point
y ′ ∈ X and a neighbourhood U of x0 such that f (z, y ′) < α (f (z, y ′) > α) for every z ∈ U .

This concept has been used by several authors (see for instance [8]). Scalzo in [37] de-
fines f to be positively quasi-transfer continuous whenever the above requirement holds
for every α > 0. The same concept in the multivalued setting has been proposed in [7] Re-
mark 5.3. Here we introduce a slight generalization.

Definition 2.3 Let α ∈ R, a multimap F : X × Y � R is said to be α-transfer inclusion
quasi continuous in the first variable if for every pair (x0, y0) such that F(x0, y0) ⊂]α,+∞)

there are a finite set Y0 ⊂ Y and a neighbourhood U of x0 such that for each z ∈ U there is
y ′ ∈ Y0 such that F(z, y ′) ⊂]α,+∞).

Recently, a similar concept, with α = 0, has been used in [18] to characterize the equi-
libria of set valued maps. Namely, in [18] the following definition is introduced.

Definition 2.4 ([18], Definition 2.2) A multimap F : X × Y � R ∪ {+∞} is said to be R+-
strongly-transfer-lower semicontinuous in the first variable if for every pair (x0, y0) such
that F(x0, y0) ⊂ [0,+∞] there are a point y ′ ∈ Y and a neighbourhood U of x0 such that
F(z, y ′) ⊂ [0,+∞], for each z ∈ U .

Notice that Definition 2.3 is an obvious generalization of the upper semicontinuity for
multivalued maps. Moreover, Tian’s assumption Definition 2.2 clearly implies the α-transfer
inclusion quasi-continuity for single valued maps (Definition 2.3), but the converse does not
hold as shown by the following example.

Example 2.1 Let g :R→ R be the Dirichlet map

g(x) =
{−1 if x ∈ Q

1 if x ∈ R \Q
Define f :R×R →R as f (x, y) = g(x − y). Then the map f is 0-transfer inclusion quasi
continuous, but it is not 0-transfer lower semicontinuous in Tian’s sense. In fact, for instance
notice that f (0, e) = 1, but whatever y1 we fix, and whatever neighbourhood U of 0 we fix,
it will contain some interval [−ε, ε] so that U − y1 will contain both rational and irrational
numbers; therefore f will assume the value −1 < 0 infinitely many times.

On the contrary, choosing y1 = 0 and y2 ∈ R \Q we certainly have for every z ∈ [−ε, ε]
that either z ∈ Q so that z − y2 ∈R \Q or z /∈Q and then z − y1 = z ∈ R \Q; in both cases
f = 1 > 0.

On the other side, Definition 2.2 and Definition 2.3 are not comparable to the concept
in Definition 2.4. Indeed, here is an example of a map satisfying Definition 2.2 without
fulfilling Definition 2.4.

Example 2.2 Consider the map f : [0,1] × [0,1] →R defined as

f (x, y) =

⎧⎪⎨
⎪⎩

−1 if x < 1
2

0 if x = 1
2

1 if x > 1
2
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It is evident that f is 0-transfer lower semicontinuous according to Definition 2.2, but for
x0 = 1

2 no neighbourhood of x0 at whatever level y can avoid values where f = −1.

Moreover, the map f in Example 2.1 satisfies Definition 2.3 but not Definition 2.4. Fi-
nally, the following is an example of a map that is R+-strongly-transfer-lower semicontinu-
ous (Definition 2.4), but not 0-transfer inclusion continuous (Definition 2.3), and therefore
automatically not 0-lower semicontinuous (Definition 2.2).

Example 2.3 The map f : [0,1] × [0,1] →R defined as

f (x, y) =
{

1 if x = y

0 if x �= y

is nonnegative for every (x, y) ∈ [0,1] × [0,1] and so it trivially satisfies Definition 2.4. On
the other hand, f (x0, y0) > 0 if and only if x0 = y0. Therefore, given x0 = y0 ∈ [0,1], for
any chosen neighbourhood U of x0, there cannot exist a finite set Y ⊂ [0,1] such that for
every z ∈ U , there exists y ∈ Y such that f (z, y) > 0. In fact, f (z, y) > 0 if and only if
y = z, so only for infinitely many y.

In order to prove one of the main results of this paper we will use the following result
from [22] representing a new version of the Hanh-Banach Theorem.

Theorem 2.1 Let T ⊂ R
l be a nonempty set such that

(1) For every u ∈ T , max
1≤i≤l

ui ≥ 0,

(2) there exists λ,μ > 0 such that for every u,v ∈ T and for every ε = (ε, . . . , ε) ∈ R
l ,

ε > 0, there exists w ∈ T such that

w � λu + μv + ε,

where � is the lexicographic order in R
l .

Then there exist c1, . . . cl ≥ 0 with
l∑

i=1

ci = 1 such that

l∑
i=1

ciui ≥ 0 ∀ u ∈ T .

3 Convexity for Multimaps Without Linear Structure

In this section we introduce some definitions of convexity for multimaps without linear
structure that will be useful in the following section to prove multivalued minimax relation-
ships.

In the whole section X and Y denote two arbitrary sets.
In [19] Ky Fan introduced the following condition extending the concept of convexity

for functions defined on a set without linear structure.
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Definition 3.1 A map f : X × Y → R is said to be convex-like (concave-like) in x if for
every x1, x2 ∈ X and for every t ∈ [0,1] there exists some x ∈ X such that

f (x, y) ≤ tf (x1, y) + (1 − t)f (x2, y) ∀y ∈ Y

(f (x, y) ≥ tf (x1, y) + (1 − t)f (x2, y) ∀y ∈ Y ).

In [24] Granas and Liu proposed the following weaker form of convex-likeness.

Definition 3.2 A map f : X ×Y � R is said to be finitely convex-like (finitely concave-like)
in x if for every {y1, . . . , yn} ⊂ Y , for every x1, x2 ∈ X and for every t ∈ [0,1] there exists
x ∈ X such that

f (x, yi) ≤ tf (x1, yi) + (1 − t)f (x2, yi), i = 1, . . . , n

(f (x, yi) ≥ tf (x1, yi) + (1 − t)f (x2, yi), i = 1, . . . , n) .

Finitely convex-likeness is a genuine extension of Fan’s Definition as we shall show in
Appendix with a suitable example.

We generalize the definition proposed by Granas and Liu ([24]) in the following way.

Definition 3.3 Given λ,μ ∈]0,∞[, a map f : X ×Y →R, is said to be finitely (λ,μ)-lower
complete (respectively finitely (λ,μ)-upper complete) in x if for every x1, x2, for every
{y1, . . . , yn} ⊂ Y and for every ε > 0, there exists x ∈ X such that

f (x, yi) ≤ λf (x1, yi) + μf (x2, yi) + ε, i = 1, . . . , n

(f (x, yi) ≥ λf (x1, yi) + μf (x2, yi) − ε, i = 1, . . . , n.)

It is straightforward that a finitely convex-like function is (λ,μ)-lower complete for λ ∈
[0,1] and μ = 1−λ. However, this new concept strictly extends Granas and Liu’s definition;
let us give a suitable elegant example.

Example 3.1 Let c ∈ Q with c < 1
2 . The set P of all polynomials in c, with degree ≥ 1

and with coefficients in N
+ is countable. Let j : N+ → P be a bijection. Define the map

ϕ : [0,1] → R as follows

ϕ(x) =
{

j (k) if x = 1

k
, k ∈ N

+

0 elsewhere.

Let now Y = {y1, y2} and define f : [0,1] × Y → R as

f (x, y) =
{

ϕ(x) if y = y1

−ϕ(x) if y = y2.

Then, easily, f would be finitely convexlike if and only if for every t ∈ [0,1], and every
x1, x2 ∈ [0,1] the equality

ϕ(x0) = tϕ(x1) + (1 − t)ϕ(x2)
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holds for some x0 ∈ [0,1]. Indeed, once x1, x2 and t are fixed, there should exist x0 such
that f (x0, yi) ≤ tf (x1, yi) + (1 − t)f (x2, yi), i = 1,2, i.e.

ϕ(x0) ≤ tϕ(x1) + (1 − t)ϕ(x2)

and

ϕ(x0) ≥ tϕ(x1) + (1 − t)ϕ(x2).

Then one is immediately convinced that f is not convexlike. Indeed, choose t /∈ Q and

x2 /∈ Q, x1 = 1

k
. It results

tϕ(x1) + (1 − t)ϕ(x2) = t · j (k) /∈Q

while ϕ has only rational values.
However f is (λ,μ)-lower complete with λ = μ = c. In fact, analogously to the previous

reasoning, it is enough to show that, for every x1, x2 ∈ [0.1], there exists x0 ∈ [0,1] such that

ϕ(x0) = c [ϕ(x1) + ϕ(x2)] .

Now ϕ(x1) + ϕ(x2) is either 0, or a polynomial in P because for every polynomial p ∈ P ,
cp ∈ P and p1,p2 ∈ P implies p1 + p2 ∈ P . In the first occurrence one can take x0 = 0,

while in the second case, since c [ϕ(x1) + ϕ(x2)] ∈ P , take x0 = 1

j−1 (c [ϕ(x1) + ϕ(x2)])
.

We shall now propose an extension of the previous definitions to real valued multifunc-
tions. To this aim we have to introduce the concepts of inf-bounded, sup-bounded and inf-
closed, sup-closed values.

Definition 3.4 F : X � R is said to be

1. inf-bounded valued if F(x) is a lower bounded set for every x ∈ X;
2. sup-bounded valued if F(x) is a upper bounded set for every x ∈ X;
3. bounded valued if F(x) is a bounded set for every x ∈ X.

If F has inf-bounded values is possible to define the function f : X →R as

f (x) = infF(x),

and if F has sup-bounded values is possible to define the function g : X →R as

g(x) = supF(x).

Definition 3.5 An inf-bounded valued map F : X → R is said to be inf-closed valued if
f (x) ∈ F(x) for every x ∈ X.

Analogously, a sup-bounded valued map F : X → R is said to be sup-closed valued if
g(x) ∈ F(x) for every x ∈ X.

A multivalued map F : X × Y � R with inf-bounded values is said to be:

- inf convex-like in x if the map (x, y) �→ f (x, y) = infF(x, y) is convex-like in x ∈ X;
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- inf finitely convex-like in x if the map (x, y) �→ f (x, y) = infF(x, y) is finitely convex-
like in x ∈ X;

- multivalued finitely (λ,μ)-inf complete in x if the map (x, y) �→ f (x, y) = infF(x, y) is
finitely (λ,μ)-lower complete in x ∈ X.

Analogously, a multivalued map F : X × Y � R with sup-bounded values is said to be:

- sup concave-like in x if the map (x, y) �→ g(x, y) = supF(x, y) is concave-like in x ∈ X;
- sup finitely concave-like in x if the map (x, y) �→ g(x, y) = supF(x, y) is finitely

concave-like in x ∈ X;
- multivalued finitely (λ,μ)-sup complete in x if the map (x, y) �→ g(x, y) = supF(x, y)

is finitely (λ,μ)-upper complete in x ∈ X.

The following result follows easily.

Lemma 3.1 Given λ,μ ∈]0,∞[, if F : X × Y � R is a multimap with inf-closed values,
then the following two conditions are equivalent.

1. F is multivalued finitely (λ,μ)-inf complete;
2. for each x1, x2 ∈ X, for every {y1, . . . , yn} and for every ε > 0 there exists x ∈ X such

that for each yi , i = 1, . . . , n and each choice ξj ∈ F(xj , yi) one finds

F(x, yi) ∩ (−∞, λξ1 + μξ2 + ε] �= ∅, i = 1, . . . , n.

For all the above definitions, characterizations analogous to Lemma 3.1 can be stated.

4 Existence Results

In this section we give several existence results for solutions of an equilibrium problem in
topological spaces without linear structure. To this end, we substitute the usual assumptions
of convexity/concavity with the types of convexity/concavity introduced in the previous sec-
tion.

First we give the following result in the homogeneous case α = 0.

Theorem 4.1 Let X be a topological space, Y any set and let F,G : X × Y � R multimaps
with bounded values, with G sup-closed valued, such that

(H0) F(x, y) ⊂ G(x,y);
(H1) for every x ∈ X there exists y ∈ Y such that F(x, y) ⊂]0,∞);
(H2) F is 0-transfer inclusion quasi-continuous in the first variable;
(H3) there exists λ,μ > 0 such that F is multivalued finitely (λ,μ)-inf complete in the first

variable;
(H4) G is sup concave-like in the second variable;
(H5) there exist a compact set K ⊂ X and a finite set Y0 such that for every x̄ /∈ K there

exists y ∈ Y0 such that F(x̄, y) ⊂]0,∞).

Then there exists y0 ∈ Y such that

G(x,y0) ∩ [0,∞) �= ∅ ∀x ∈ X.
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Proof Let f = infF , g = supG.
For each y ∈ Y set C(y) = {x ∈ X|F(x, y)∩ (−∞,0] �= ∅}, �(y) = C(y)∩Kc , H(y) =

C(y) ∩ K .
By (H1)

⋂
y∈X

C(y) = ∅. In fact, if we assume that some x̄ ∈ C(y) for each y ∈ Y then we

should find that F(x̄, y) ∩ (−∞,0] �= ∅ for every y ∈ Y thus contradicting (H1).
Set A(y) = [C(y)]c; then {A(y), y ∈ Y } is a cover of X.
Let F(Y ) be the class of finite subsets of Y ; for each E ∈ F(Y ) define

BE =
⋃
y∈E

A(y).

Then {BE,E ∈ F(Y )} is an open cover of X. In fact, for each y0 ∈ Y fixed, and any x0 ∈
A(y0) there is, by (H2), a finite subset E ⊂ Y and a neighbourhood U of x0 such that
U ⊂

⋃
y∈E

A(y); hence x0 is an interior point of this union.

Then, by the compactness of the set K , there are finitely many E1, . . . ,Ek ∈ F(Y ) such
that

K =
k⋃

i=1

BEi
;

a fortiori

K =
k⋃

i=1

⎛
⎝ ⋃

y∈Ei

A(y)

⎞
⎠ =

n⋃
i=1

A(yi).

Then, it follows that
n⋂

i=1

H(yi) = ∅.

On the other side, by (H5)
⋂
y∈Y0

�(y) = ∅, otherwise there should exist x̄ /∈ K such that

x̄ ∈ �(y) for each y ∈ Y0, then F(x̄, y) ∩ (−∞,0] �= ∅ for each y ∈ Y0 thus contradicting
(H5).

Now, setting Ỹ = Y0 ∪ E1 ∪ . . .Ek , obviously we find

⋂
y∈Ỹ

C(y) =
⎛
⎝⋂

y∈Ỹ

�(y)

⎞
⎠ ∪

⎛
⎝⋂

y∈Ỹ

H (y)

⎞
⎠ ⊂

⎛
⎝⋂

y∈Y0

�(y)

⎞
⎠ ∪

⎛
⎝ ⋂

y∈E1∪···∪Ek

H(y)

⎞
⎠ = ∅. (1)

We set now Ỹ = {y1, . . . , yn} and

Hf = {(z, r) ∈R
n ×R| there exists x ∈ X s.t. f (x, yi) ≤ zi + r,∀i = 1, . . . , n}.

We will apply Theorem 2.1 to the set T = Hf . Since
n⋂

i=1

C(yi) = ∅, we have that for every

(z, r) ∈ Hf , max{max
1≤i≤n

zi, r} ≥ 0. In fact, assume by contradiction the existence of (z, r) ∈
Hf such that max{max

1≤i≤n
zi, r} < 0, then

max
1≤i≤n

f (x, yi) ≤ max
1≤i≤n

zi + r ≤ 2 max{max
1≤i≤n

zi, r} < 0.
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So, we have f (x, yi) < 0, for every i = 1, . . . , n or equivalently F(x, yi)∩(−∞,0] �= ∅, i =
1, . . . , n, and that is absurd as it would mean that x ∈

n⋂
i=1

C(yi). Thus, we have assumption

(1) of Theorem 2.1.
Assumption (2) is given by assumption (H3). Indeed, for every pair (z1, r1), (z2, r2) ∈ Hf

let x1, x2 ∈ X be such that

f (x1, yi) ≤ z1,i + r1, f (x2, yi) ≤ z2,i + r2, i = 1, . . . , n.

By assumption (H3) there exists x ∈ X such that

f (x, yi) ≤ λf (x1, yi) + μf (x2, yi) + ε ≤ λz1,i + λr1 + μz2,i + μr2 + ε,

so λ(z1, r1) + μ(z2, r2) + ε ∈ Hf , where ε = (ε, . . . , ε) ∈R
n+1.

By Theorem 2.1 there exist c0, . . . , cn ≥ 0 with
n∑

i=0

ci = 1 such that

n∑
i=1

cizi + c0r ≥ 0 ∀(z, r) ∈ Hf .

Since for every r ∈ R we have that (f (x, y1) + r, . . . , f (x, yn) + r,−r) ∈ Hf , there exist

(c0, c1, . . . , cn) ∈ R
n+1, with ci ≥ 0 for every i,

n∑
i=0

ci = 1 such that

n∑
i=1

cif (x, yi) +
n∑

i=1

cir − c0r ≥ 0,

so

n∑
i=1

cif (x, yi) +
(

n∑
i=1

ci − c0

)
r ≥ 0 ∀r ∈R. (2)

Hence
n∑

i=1

ci − c0 = 0, otherwise we could choose r such that (2) is not satisfied. So

1 =
n∑

i=1

ci + c0 = 2c0,

then c0 = 1

2
> 0. Hence

n∑
i=1

ci

c0
= 1

and since (f (x, y1), . . . , f (x, yn),0) ∈ Hf we get by (2)

n∑
i=1

ci

c0
f (x, yi) >

n∑
i=1

cif (x, yi) ≥ 0.
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Since f ≤ g this implies

n∑
i=1

ci

c0
g(x, yi) ≥ 0 ∀x ∈ X.

Since g is concave-like in y, because of assumption (H4), we obtain that for some y0 ∈ Y ,

g(x, y0) ≥ 0, ∀x ∈ X.

Finally, as G has sup-closed values this implies the claimed result G(x,y0) ∩ [0,∞) �= ∅
for every x ∈ X. �

It is not possible to obtain a non homogeneous version of Theorem 4.1 without requir-
ing some additional assumptions on the parameters λ,μ. This is due to the fact that unlike
convex-likeness, finitely (λ,μ)-inf completeness is in general not preserved through trans-
lation unless α > 0 and λ + μ ≤ 1 or α < 0 and λ + μ ≥ 1.

The following example illustrates this pathology in the case α > 0.

Example 4.1 Let X be an arbitrary set and Y = {y}, consider ϕ : X → [0,+∞). We have
that for every x1, x2 ∈ X and for every ε > 0

ϕ(xj ) ≤ ϕ(x1) + ϕ(x2) + ε, j = 1,2.

Define f : X × Y → R as f (x, y) = ϕ(x), it immediately holds that f is finitely (1,1)-inf
complete.

Choose α > 0 such that

i = inf
x∈X

f (x, y) − α < 0,

we show that g = f − α is not finitely (λ,μ)-inf complete for every choice of λ,μ with
λ + μ > 1, i.e. for every λ,μ > 0 with λ + μ > 1 there exist x1, x2 and ε > 0 such that

λg(x1, y) + μg(x2, y) + ε < i.

Indeed, since i < 0 implies (λ + μ)i < i, we can fix ε > 0 such that

(λ + μ)i + (λ + μ + 1)ε < i

and choose x1, x2 ∈ X such that

g(xj , y) < i + ε, j = 1,2.

Then

λg(x1, y) + μg(x2, y) + ε ≤ λi + λε + μi + με + ε

= (λ + μ)i + (λ + μ + 1)ε < i.

This is not the case, for convex-like multivalued maps. Thus, we replace multivalued
finitely (λ,μ)-inf completeness in the first variable by the finite-inf convexlikeness in the
first variable (see assumption (H3)) getting the following general version of the result for
α ∈R.
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Theorem 4.2 Let X be a topological space, Y any set, α ∈ R and let F,G : X × Y � R

be two multimaps with bounded values, with G sup-closed valued, and suppose that they
satisfy assumptions (H0), (H1), (H2), (H4), (H5) of Theorem 4.1 with the half line ]0,+∞)

replaced by ]α,+∞) and

(H3)′ x � F(x, y) is finitely inf convex-like in x.

Then there exists y0 ∈ Y such that

G(x,y0) ∩ [α,+∞) �= ∅ ∀x ∈ X.

Proof Let f = infF , g = supG and Ỹ = {y1, . . . , yn} as in the proof of Theorem 4.1. The
proof is identical to the one of Theorem 4.1 until

⋂n

i=1 C(yi) = ∅ is proven. We set now

Ef = {(z, r) ∈R
n ×R| there exists x ∈ X s.t. f (x, yi) < zi + r,∀i = 1, . . . , n}.

Since f is finitely convex-like in the first variable, the set Ef is convex. We shall now prove
that (0, α) /∈ Ef .

By contradiction, if (0, α) ∈ Ef then for some x̄ ∈ X we should have that f (x̄, yi) < α

for each i = 1, . . . , n and therefore F(x̄, yi) ∩ (−∞, α[�= ∅ for each i = 1, . . . , n. But then

x̄ ∈
n⋂

i=1

C(yi) which contradicts the choice of y1, . . . , yn.

Since Ef is open and convex, by the Hahn-Banach separation Theorem, we can now
separate Ef and (0, α), in the large sense, namely there exists (v, r̄) �= 0 such that

v · z + r̄ · r ≥ r̄ · α (3)

for (z, r) ∈ Ef . Observe that the set

Hf = {(z, r) ∈R
n ×R| there exists x ∈ X s.t. f (x, yi) ≤ zi + r,∀i = 1, . . . , n}

is contained in Ef .

In fact, if (z, r) ∈ Hf then

(
z + 1

n
u, r + 1

n

)
∈ Ef , with u = (1, . . . ,1), so

lim
n

(
z + 1

n
u, r + 1

n

)
= (z, r),

implying (z, r) ∈ Ef . Hence (v, r̄) separates Hf from (0, α) in the large sense.
Now, following exactly the same argument as in [10] one proves that each component of

v = (v1, . . . , vn) is greater or equal than zero and that r̄ > 0.
In fact, again by the Hahn-Banach separation Theorem, one can find (v1, v2, . . . , vn, r̄) �=

0 with vi ≥ 0, r̄ ≥ 0 because Ef + R
n+1
+ ⊂ Ef . Indeed if y = (z, r) ∈ Ef and y ′ = (z′, r ′)

with z′
i ≥ zi for each i = 1, . . . , n and r ′ ≥ r , we have

f (x, yi) ≤ zi + r ≤ z′
i + r,′

so y ′ ∈ Ef . As (0,1 + max
1≤i≤n

f (x, yi)) ∈ Ef , for z = 0 in (3) one obtains r̄ > 0.

Since for every r ∈ R and every x ∈ X the point (f (x, y1)+r, . . . , f (x, yn)+r,−r) ∈ Ef

then

n∑
i=1

vif (x, yi) +
n∑

i=1

vir − r̄ · r ≥ r̄ · α;
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dividing by r̄ one reaches

n∑
i=1

vi

r̄
f (x, yi) +

(
n∑

i=1

vi

r̄
− 1

)
r ≥ α

that holds for each x ∈ X and each r ∈ R; thus the term between brackets is 0. We then
obtain

n∑
i=1

vi

r̄
f (x, yi) ≥ α (4)

for every x ∈ X. Since immediately f ≤ g this in turn implies

n∑
i=1

vi

r̄
g(x, yi) ≥ α. (5)

Since g is concave-like in the second variable, because of assumption (H4) we obtain that
for some y0 ∈ Y ,

g(x, y0) ≥ α, ∀x ∈ X.

Finally, as G has sup-closed values, this implies the claimed result

G(x,y0) ∩ [α,+∞) �= ∅
for every x ∈ X. �

Remark 4.1 Theorem 4.2 holds also if the intervals appearing in (H1), (H2) and (H5) are
closed, provided the interval defining C(y) is the open halfline (−∞, α[.

Observe that in Theorem 4.2 we borrowed the idea of [7] to weaken the usual compact-
ness assumption appearing in minimax relationships.

Theorem 4.2 is an asymmetric minimax Theorem, for the set of assumptions holding
for F and G are heavily asymmetric. Acting on the proof one can easily deduce alternative
forms of Theorem 4.2, for instance according to Table 1.

Table 1 Alternative versions of
Theorem 4.2 (H1) (H2) (H3) (H4) (H5)

Theorem 4.2 F F F G F

Alternative 1 G G F F or G G

Alternative 2 G G G F G

The first line is Theorem 4.2. To prove the Alternative 1 represented in the second line,
one defines the C(y) via G instead of F and again gets a finite family having empty inter-
section; then one acts on Ef , that is again convex; now simply noticing that infG ≤ f it is
easy to deduce that again (0, α) /∈ Ef and hence the separation argument follows. Finally
one uses either (5) or (directly (4)) depending upon whether assumption (H4) holds for G

or F .
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Analogous reasonings would apply to Alternative 2.
We turn now to the non-homogeneous case for (λ,μ)-inf complete set valued maps. It is

clear that for α > 0 and λ + μ ≤ 1, if f is finitely lower (λ,μ)-complete with respect to x,
so is f − α. Therefore we have the following non homogeneous version of Theorem 4.1.

Theorem 4.3 Let X be a topological space, Y any set, let α > 0 and let F,G : X × Y � R

multimaps with bounded values, with G sup-closed valued and suppose that they satisfy as-
sumptions (H0), (H1), (H2), (H4), (H5) of Theorem 4.1 with the half line ]0,+∞) replaced
by ]α,+∞) and

(H3)′′ there exists λ,μ > 0 with λ + μ ≤ 1 such that F is multivalued finitely (λ,μ)-inf
complete in the first variable.

Then there exists y0 ∈ Y such that

G(x,y0) ∩ [α,∞) �= ∅ ∀x ∈ X.

The specular case α < 0, λ + μ > 1 can be equivalently treated.
On the other side, the following example shows that the result does not hold when α > 0

and λ + μ > 1, even in the single valued case.

Example 4.2 Let X = Y = [0,1] and consider f : X × Y → R defined as

f (x, y) = (1 − y)
√

x + y

√
1 − x2

2
.

Since f is continuous in x and X is compact, assumptions (H2) and (H5) for F ≡ f are

trivially satisfied. For α =
√√

5 − 2, assumption (H1) is easily satisfied: it is enough to
choose y = 1 for x ≤ α2 and y = 0 for x > α2.

The function f is finitely (λ,μ)-inf complete in x for λ = μ = 1, since f (x, y) ≥ 0 for
every (x, y).

We need to verify assumption (H4), i.e. for every pair y1, y2 ∈ Y and for every t ∈ [0,1]
there exists y0 ∈ Y such that

f (x, y0) ≥ tf (x, y1) + (1 − t)f (x, y2), ∀x ∈ X.

Define f1(x) = √
x and f2(x) =

√
1 − x2

2
, one gets

tf (x, y1) + (1 − t)f (x, y2) = t (1 − y1)f1(x) + ty1f2(x) + (1 − t)(1 − y2)f1(x)

+(1 − t)y2f2(x) = [t (1 − y1) + (1 − t)(1 − y2)]f1(x)

+ [ty1 + (1 − t)y2]f2(x)

= [1 − ty1 − (1 − t)y2]f1(x) + [ty1 + (1 − t)y2]f2(x).

For yt = ty1 + (1 − t)y2 ∈ [0,1] one has

tf (x, y1) + (1 − t)f (x, y2) = (1 − yt )f1(x) + ytf2(x) = f (x, yt ), ∀x ∈ X,

so one has to choose y0 = yt .
Nevertheless, the thesis does not hold, i.e. there are no y0 ∈ [0,1] such that f (x, y0) ≥ α,

for every x ∈ X.
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Indeed, assume by contradiction that there exists such y0, we would have

f (0, y0) ≥ α and f (1, y0) ≥ α,

or, equivalently,

y0

2
≥ α and 1 − y0 ≥ α,

then

2α ≤ y0 ≤ 1 − α,

so α ≤ 1

3
. But α ∼= 0,4795 > 0,3, a contradiction.

5 Comparison with Previous Results

Theorem 4.1 in the case of one multifunction can be compared with [7] Theorem 5.3, where
diagonally multivalued quasi-convexity is assumed in place of multivalued finitely (λ, ν)-inf
completeness. In this section X is a convex subset of a Hausdorff topological vector space.

Definition 5.1 ([7], Definition 4.5) A multimap F : X ×X � R is said to be diagonal multi-
valued transfer quasi-convex (diagonal multivalued transfer quasi-concave) in the first vari-
able if for every finite set {x1, . . . , xn} ⊂ X there exists {y1, . . . , yn} ⊂ X such that for every
Y ⊂ {y1, . . . , yn}, say Y = {yj1, . . . , yjs}, for every y ∈ coY , and for every tj	 ∈ F(xj	, y),
there exists t ∈ F(y, y) such that

t ≤ max
1≤	≤s

tj	

(
t ≥ min

1≤	≤s
tj	

)
.

The previous definition can be charactherized in terms of the single valued map f :
X × X → R, defined as f (x, y) = infF(x, y), (x, y) ∈ X × X.

Definition 5.2 ([5], Definition 2) A map f : X × X � R is said to be diagonal transfer
quasi-convex (diagonal transfer quasi-concave) in the first variable if for every finite set
{x1, . . . , xn} ⊂ X there exists {y1, . . . , yn} ⊂ X such that for every Y ⊂ {y1, . . . , yn}, say
Y = {yj1, . . . , yjs}, and for every y ∈ coY , it follows

f (y, y) ≤ max
1≤	≤s

f (xj	, y)

(
f (y, y) ≥ min

1≤	≤s
f (xj	, y)

)
.

Proposition 5.1 Let F : X × X � R have bounded and closed values; then F is diago-
nal multivalued transfer quasi-convex if and only if the map f : X × X → R, f (x, y) =
infF(x, y), (x, y) ∈ X × X is diagonal transfer quasi-convex.

For the reader’s convenience, we remind the statement of [7] Theorem 5.3 in the same
inequality direction as in Theorem 4.1.

Theorem 5.1 Let F : X × X � R be a multimap with bounded and sup-closed values, sat-
isfying
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(H1) for each x ∈ X, F(x, x) ⊂ [0,+∞);
(H2) for every pair (x0, y0) such that F(x0, y0) ⊂ (−∞,0[, there exists a neighbourhood

U of y0 such that, for each z ∈ U , F(x0, z) ⊂ (−∞,0[;
(H3) x � F(x, y) is diagonally transfer multivalued quasi-convex in x;
(H4) there exist a relatively compact subset K ⊂ X and a finite set X0 ⊂ X such that for

each ȳ /∈ K there is some x̄ ∈ X0 and a neighbourhood U of ȳ with F(x̄, z) ⊂ (−∞,0[
for each z ∈ U .

Then there exists y0 ∈ X such that

F(x, y0) ∩ [0,+∞) �= ∅ ∀ x ∈ X.

We shall provide an example of a multivalued map to which one can apply Theorem 4.1
but not Theorem 5.1.

Example 5.1 Let g be the map in Example 2.1, X = [0,1], f : X × X → R defined as

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0, y �= 0
g(x − y) if x �= 0, y �= 0, x �= y,

1 if x �= 0, y = 0
2 if x = y

and F : X × X � R defined as F(x, y) = [f (x, y),3]. Since F(x, x) ⊂]0,+∞), as-
sumption (H1) in Theorem 4.1 and in Theorem 5.1 is satisfied. As for assumption (H2)
we have the following situation: (H2) in Theorem 5.1 is automatically satisfied since
F(x, y) ⊂ [0,+∞) for every (x, y) ∈ X × X; as for Theorem 4.1 F(x0, y0) ⊂]0,+∞) if
f (x0, y0) = 1 or f (x0, y0) = 2. This in turn happens in the following three cases:

(1) x0 �= 0 and y0 = 0
(2) x0 �= 0, y0 �= 0 and x0 − y0 ∈ R \Q
(3) x0 = y0

Choose Y0 = {0} for all the above cases. So, for every z ∈ [0,1] we have

f (z,0) =
{

1 if z �= 0
2 if z = 0

Hence, either F(z,0) = [1,3] ⊂]0,+∞) for every z ∈]0,1], or F(0,0) = [2,3] ⊂]0,+∞).
Hence in the whole [0,1] one has F(z,0) ⊂]0,+∞), i.e. F is 0-transfer inclusion quasi
continuous in the first variable, thus, assumption (H2) in Theorem 4.1 is satisfied as well. X

being compact, assumption (H4) in Theorem 5.1 and assumption (H5) in Theorem 4.1 are
trivially satisfied. It remains to discuss the convexity assumptions. Since supF(x, y) = 3
for every (x, y) ∈ X × X, (H4) in Theorem 4.1 is immediate. Let us prove that (H3) in
Theorem 4.1 is satisfied. To this aim we prove that f is (2,2)-lower complete, i.e. for any
choice of x ′, x ′′, there exists x ∈ X such that

f (x, y) ≤ 2f (x ′, y) + 2f (x ′′, y) ∀ y ∈ X. (6)

Let x = 0. We have two cases:

(I) for y �= 0, f (0, y) = 0 and so (6) is automatically verified;
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(II) for y = 0, f (0,0) = 2, f (x ′,0) = f (x ′′,0) = 1 if x ′ �= 0 and x ′′ �= 0, f (x ′,0) =
f (x ′′,0) = 2 if x ′ = x ′′ = 0, so

2f (x ′,0) + 2f (x ′′,0) ≥ 4 > f (0,0)

and (6) is satisfied also in this case.

On the other side, (H3) in Theorem 5.1 fails to be true, namely there exists {x1, . . . , xn} ⊂ X

such that for each {y1, . . . , yn} ⊂ X with n > 1 there exist J ⊂ {1, . . . , n} and y ∈ co{yi, i ∈
J } with

f (y, y) > max
j∈J

f (xj , y). (7)

Indeed, let {x1, x2} ⊂ X ∩Q, with x1 �= x2. Let {y1, y2} ⊂ X,

(a) assume y1 �= y2, take J = {1,2}, so that co{y1, y2} ∩ Q �= ∅. Then there exists y ∈
co{y1, y2}∩Q, with y �= x1 and y �= x2, where f (y, y) = 2 and f (xi, y) = g(xi −y) = 0
for i = 1,2.

(b) suppose y1 = y2, so co{y1, y2} = {y} with y = y1 = y2. Thus, f (y, y) = 2. For y �= x1

and y �= x2, we have f (xi, y) ≤ 1 and (7) is satisfied. For y = x1 we consider J = {2}
obtaining

max
j∈J

f (xj , y) = f (x2, x1) ≤ 1.

For y = x2 we consider J = {1} getting

max
j∈J

f (xj , y) = f (x1, x2) ≤ 1;

thus, (7) follows also in this case. So applying Proposition 5.1 we get that F it is not
multivalued transfer quasi-convex.

In order to deduce minimax equalities of the classical form

sup
y∈Y

inf
x∈X

f (x, y) = inf
x∈X

sup
y∈Y

f (x, y)

one usually needs to make use of a translation of the function f . Since, finitely (λ,μ)-lower
completeness, as already observed, is not inherited by translation, the suitable equilibrium
result to consider is the one contained in Theorem 4.2.

So, Theorem 4.2 specializes in the following form for single valued maps.

Theorem 5.2 Let X be a topological space, Y any set, α ∈ R and let ϕ,γ : X × Y → R

satisfy

(H0) ϕ(x, y) ≤ γ (x, y) for every (x, y) ∈ X × Y ;
(H1) for each x ∈ X there exists y ∈ Y such that ϕ(x, y) > α;
(H2) for every pair (x0, y0) such that ϕ(x0, y0) > α there are a finite set Y0 ⊂ Y and a

neighbourhood U of x0 such that for each z ∈ U there is y ′ ∈ Y0 such that ϕ(z, y ′) >

α;
(H3) x �→ ϕ(x, y) is finitely convex-like in x;
(H4) y �→ γ (x, y) is concave-like in y;
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(H5) there exist a compact set K ⊂ X and a finite set Y0 ⊂ Y such that for every x̄ /∈ K

there exists y ∈ Y0 such that ϕ(x̄, y) > α.

Then there exists y0 ∈ Y such that

γ (x, y0) ≥ α ∀x ∈ X.

Proof Considering two multimaps F : X ×Y � R and G : X ×Y � R defined respectively
as

F(x, y) = {ϕ(x, y)}, G(x, y) = [ϕ(x, y), γ (x, y)],
the result trivially follows from Theorem 4.2. �

Remark 5.1 In the case of one single valued map Theorem 5.2 is a strict generalization of
the minimax result in [10]. In particular, we weaken the assumptions of convex likeness, of
lower semicontinuity in the first variable, and of compactness of the domain, requiring finite
convex likeness and conditions (H2) and (H5) instead.

6 Applications

Since to prove the next result we will use a single valued version of Theorem 4.2 with x and
y swapped, we state here this result for the reader’s convenience.

Theorem 6.1 Let X be a topological space, α ∈ R and let ϕ : X × X →R satisfy

(H1) for each x ∈ X ϕ(x, x) > α;
(H2) for every pair (x0, y0) such that ϕ(x0, y0) > α there are a finite set X0 ⊂ X and a

neighbourhood U of y0 such that for each z ∈ U there is x ′ ∈ X0 such that ϕ(x ′, z) >

α;
(H3) y �→ ϕ(x, y) is finitely convex-like in y;
(H4) x �→ ϕ(x, y) is concave-like in x;
(H5) there exists a compact set K ⊂ X and a finite set X0 ⊂ X such that for every ȳ /∈ K

there exists x ∈ X0 with ϕ(x, ȳ) > α.

Then there exists x0 ∈ X such that

ϕ(x0, y) ≥ α ∀y ∈ X.

6.1 Nash Equilibria

A noncooperative game is defined by a finite set of players I = 1, . . . , n; each player has a
set of strategies Xi , which is a nonempty subset of a topological space Ei , and ui : X →R is
the payoff function of player i, where X = X1 ×· · ·×Xn. So we can define a noncooperative
game in the normal form as

G = (Xi, ui)i∈I .

When the player i chooses a strategy xi ∈ Xi , the situation of the game is described by the
vector x = (x1, . . . , xn) ∈ X. For each player i ∈ I denote by X−i =

∏
j �=i

Xj the cartesian

product of the sets of strategies of players j �= i and x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Note
that x = (xi, x−i ), i = 1, . . . , n.
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Definition 6.1 (Nash equilibrium of a game) A strategy profile x∗ ∈ X is a pure strategy
Nash equilibrium of a game G if

ui(yi, x
∗
−i ) ≤ ui(x

∗) ∀yi ∈ Xi.

Definition 6.2 The function � : X × X → R is said to be the aggregator function defined at
each (x, y) ∈ X × X by

�(x,y) =
n∑

i=1

ui(x1, . . . , yi, . . . , xn) =
n∑

i=1

ui(yi, x−i ).

Moreover we define f : X × X →R as

f (x, y) = �(x,x) − �(x,y) =
n∑

i=1

(ui(x) − ui(yi, x−i )), x, y ∈ X × X. (8)

Theorem 6.2 Let X be a topological space, K a compact subset of X and let f : X×X →R

satisfy

(N1) for every pair (x0, y0) such that f (x0, y0) > 0 there are a finite set X0 ⊂ X and a
neighbourhood U of y0 such that for each z ∈ U there is x ′ ∈ X0 such that f (x ′, z) >

0;
(N2) y �→ f (x, y) is finitely convex-like in y;
(N3) x �→ f (x, y) is concave-like in x;
(N4) there exists a finite set X0 ⊂ X such that for each ȳ /∈ K there is some x ∈ X0 with

f (x, ȳ) > 0.

Then the game G has a Nash equilibrium.

Proof. To get the claimed result we will apply Theorem 6.1. By the definition of f :
X × X → R we have that

f (x, x) ≥ 0 ∀x ∈ X. (9)

By Remark 4.1 we can substitute condition (H1) in Theorem 6.1 by (9). All the other as-
sumptions are trivially satisfied and so exists x∗ ∈ X such that

f (x∗, y) ≥ 0 ∀y ∈ X,

i.e. the game G has a Nash equilibrium.

6.2 Maximization of Binary Relation

A binary relation U on a set K is a multimap, U : K � K , from K into itself with possibly
empty values. We can write y ∈ U(x) to mean that y stands in the relation U to x. A maximal
element of the binary relation U is a point x such that no point y satisfies y ∈ U(x), i.e.
U(x) = ∅. Thus, denoting with K0 = {x : U(x) �= ∅}, the set of maximal elements of U is
equal to K \ K0. (see e.g. [9]).

In [7] the authors proved an existence theorem of maximal elements for a convex set
K . In the sequel we shall extend the existence result to binary relations U defined on a
paracompact topological space K which is not assumed to be neither metric nor convex.
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Theorem 6.3 Let K be a paracompact topological space and U : K � K be a multimap
satisfying

(a) x /∈ U(x), ∀ x ∈ K ;
(b) for every x ′, x ′′ ∈ K0, there exists x̄ ∈ K0 such that U(x̄) ⊂ U(x ′) ∩ U(x ′′);
(c) for every x ∈ K there exists x ′ ∈ K such that x ∈ [

Uc(x ′)
]o

;
(d) there exist a relatively compact set A ⊂ K and a finite set X0 such that for every ȳ /∈ A

there exist x ∈ X0 such that ȳ /∈ U(x).

Then K \ K0 �= ∅.

Proof We shall apply Theorem 6.1 with α = −ε with 0 < ε < 1 to ϕ(x, y) = −χU(x)(y). By
(a) ϕ(x, x) = 0 > −ε.

Assumption (c) ensures that (H2) is fulfilled. Indeed, from (c) for every y ∈ K there
exists x ∈ K such that y ∈ [Uc(x)]o; therefore

A = {[Uc(y)
]o

, y ∈ K}

is an open cover of K . Being K paracompact by assumption, A has a locally finite open
refinement B, i.e. for every y ∈ K there exists a neighbourhood of y, W(y), that intersects
only finitely many sets in the cover B, say B1, . . . ,Bk . From the fact that B is a refinement
of the cover A we have that for every Bi, i = 1, . . . , k there exists xi ∈ K such that Bi ⊂
[Uc(xi)]

o. Now,

W(y) =
k⋃

j=1

(W(y) ∩ Bj) ⊂
k⋃

j=1

[
Uc(xj )

]o ⊆
k⋃

j=1

Uc(xj ).

We have proven that for every y ∈ K there are a neighbourhood, W(y), of y and a finite
set {x1, . . . , xk} ⊂ K such that for every z ∈ W(y), z /∈ U(xi) for some i = 1, . . . , k, i.e.
ϕ(xi, z) = 0 > −ε.

Requirement (H5) follows directly from (d).
Let us prove (H3). For {x1, . . . , xn} ⊂ K fixed, for each y ′, y ′′ ∈ K and t ∈ [0,1] we

have

tϕ(xi, y
′) + (1 − t)ϕ(xi, y

′′) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y ′, y ′′ /∈ U(xi),

−t if y ′ ∈ U(xi), y
′′ /∈ U(xi),

t − 1 if y ′ /∈ U(xi), y
′′ ∈ U(xi),

−1 if y ′, y ′′ ∈ U(xi).

If {x1, . . . , xn} ∩ K0 �= ∅, note that from (b) it follows that
n⋂

i=1

U(xi) �= ∅. Pick y ∈
⋂

i:xi∈K0

U(xi), then

ϕ(xi, y) = −1 ≤ tϕ(xi, y
′) + (1 − t)ϕ(xi, y

′′), for xi ∈ K0

and

ϕ(xi, y) = 0 = tϕ(xi, y
′) + (1 − t)ϕ(xi, y

′′), for xi /∈ K0.
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Otherwise, when {x1, . . . , xn} ∩ K0 = ∅, U(xi) = ∅ for every i = 1, . . . , n, so that

ϕ(xi, y) = 0 = tϕ(xi, y
′) + (1 − t)ϕ(xi, y

′′)

for every y ∈ K .
It only remains to prove assumption (H4), i.e. for each x ′, x ′′ ∈ K and t ∈ [0,1] there

exists x ∈ K such that

ϕ(x, y) ≥ tϕ(x ′, y) + (1 − t)ϕ(x ′′, y), ∀ y ∈ K.

We shall consider two cases

(i) x ′ /∈ K0 or x ′′ /∈ K0

(ii) x ′ ∈ K0 and x ′′ ∈ K0

In case (i) let for instance x ′ /∈ K0, i.e. U(x ′) = ∅, let x = x ′. So ϕ(x, y) = 0 for every
y ∈ K .

In case (ii) choose x according with assumption (b). For y ∈ K only two cases occur,
either y ∈ U(x), or y /∈ U(x). If y ∈ U(x), then y ∈ U(x ′) ∩ U(x ′′), hence

−1 = ϕ(x, y) = tϕ(x ′, y) + (1 − t)ϕ(x ′′, y).

When y /∈ U(x), then

0 = ϕ(x, y) ≥ tϕ(x ′, y) + (1 − t)ϕ(x ′′, y).

whichever values ϕ(x ′, y), ϕ(x ′′, y) are.
Therefore, from Theorem 6.1, x0 ∈ K exists such that ϕ(x0, y) ≥ −ε for every y ∈ K ,

that is χU(x0)(y) = 0 for every y ∈ K , since 0 < ε < 1, i.e. U(x0) = ∅. �

Remark 6.1 We consider the particular case of a binary relation U induced by a utility func-
tion u : K → R, i.e.

U(x) = {y ∈ K : u(y) > u(x)}.

1. If u : K →R is upper semicontinuous, assumption (c) is satisfied.
2. Observe that in this situation assumption (b) is automatically satisfied and the following

alternative holds:

x ∈ U(y) =⇒ y /∈ U(x).

Under this implication condition (c) and (d) in Theorem 6.2 of [7] respectively imply (c)
and (d) in Theorem 6.3. Hence for this kind of binary relation Theorem 6.3 extends the
above mentioned result.

Appendix

As anticipated in Sect. 3, we show now an example of a map that is finitely convex-like, but
fails to be convex-like. In order to provide the example we need the following lemmata.

Lemma 7.1 Given γ ∈ (R\Q)∩[0,1], there exists β ∈R\Q such that γβ /∈ Q and γβ2 /∈Q.
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Proof Let γ be in (R \ Q) ∩ [0,1] be fixed. By contradiction, we assume that for every
β ∈ R \ Q either γβ ∈ Q or γβ2 ∈ Q. Surely both γβ and γβ2 can not be both rationals,

because then we would have β = γβ2

γβ
∈ Q, while we are assuming β ∈ R\Q. Hence, for

every β ∈ R\Q only one between γβ and γβ2 has to be rational. Thus γβ2 − γβ /∈ Q, so
every equation

γβ2 − γβ − λ = 0

with λ ∈ Q
+ has no solution β /∈Q. Equivalently

γ

(
β2 − β − λ

γ

)
= 0

has no irrational solutions. Now

β1, β2 = 1

2
±

√
1

4
+ λ

γ
,

so it necessarily has to be

√
1

4
+ λ

γ
∈ Q, for every λ ∈ Q, which is clearly false. Indeed it

would imply that
1

4
+ λ

γ
∈ Q and so

λ

γ
∈ Q for every λ ∈ Q. Then we would have

γ

λ
∈ Q,

hence γ = λ
γ

λ
∈Q, which is absurd as we assume γ /∈Q. �

Lemma 7.2 Given k irrational numbers z1, . . . , zk ∈ [0,1] there exists an irrational z0 such
that ziz0 /∈Q, i = 1, . . . , k.

Proof We prove first that the claim is true for k = 2.

Case A. If z1z2 ∈ R\Q, we have that, since zi /∈ Q, then
1

zi

/∈ Q. Even
1

z1z2
/∈ Q so, for

z0 = 1

z1z2
we find z1z0 = 1

z2
/∈Q and z2z0 = 1

z1
/∈Q. In order to have z0 ∈ [0,1] it is enough

to choose n such that
1

nz1z2
≤ 1.

Case B. z1z2 ∈Q and z2
1 ∈Q; we choose β ∈ (R\Q) ∩ [0,1] such that βz1 ∈ Q. Then, if

z0 = βz1, since z2
1 ∈ Q and β ∈ R\Q, we obtain that z1z0 = βz2

1 /∈ Q and z2z0 = β(z1z2) /∈
Q.

Case C. z1z2 ∈ Q and z2
1 /∈ Q. Applying Lemma 7.1 with γ = z2

1 we can obtain β such
that βz2

1 /∈ Q and β2z2
1 /∈ Q, so βz1 /∈ Q. Now, if we pick z0 = βz1 we have z1z0 = βz2

1 /∈ Q

and z2z0 = β(z1z2) /∈ Q.
Let us prove now that the claim is true for k > 2.
We consider J = {i ∈ {1, . . . , k} such that z2

i ∈ Q}.
Case A. Assume we have J = {1, . . . , k}, so all the square numbers are rational. Then

zi =
√

pi

qi

with pi, qi ∈N, i = 1, . . . , k. Let s be a prime number greater of all the pi and the

qi ’s. z0 = √
s /∈ Q then z0z1 =

√
spi

qi

/∈Q, because otherwise we would have that
spi

qi

= σ 2

τ 2

with σ, τ ∈ N, where the ratio is already reduced to the lowest terms. Hence spiτ
2 = qiσ

2.
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In this equality only σ 2 could contain the factor s, with an even exponent as it is a square

number, i.e. σ 2 = αs2n with α ∈ N. Then
spi

qi

= αs2n

τ 2
, hence

pi

qi

= αs2n−1

τ 2
, i.e. τ 2pi =

αqis
2n−1. This time it is τ 2 that can contain the factor s, with an even exponent again, so

τ 2 = s2k . So we proved that the ratio
σ 2

τ 2
are not reduced to the lowest terms.

Case B. Assume J = ∅, so all the square numbers are irrational. Thus, we have two
subcases. Fix an index, let k be it, then consider all the products zizk , i = 1, . . . , k − 1.

Subcase I. If zizk /∈Q for every i = 1, . . . , k − 1 it is enough to consider z0 = zk .
Subcase II. If there are zizk ∈ Q, necessarily the number of products z2

i z
2
k /∈ Q with

i �= k is smaller than k − 1. By induction, choose β /∈ Q such that βz2
i z

2
k /∈ Q for those

irrational products, with βz2
k /∈ Q. Obviously for the rational products we have βz2

i z
2
k /∈ Q.

Then consider z0 = √
βzk : it has to be z0 /∈ Q otherwise z2

0 = βz2
k ∈ Q. Similarly for z0zi =√

βzkzi , as its square is irrational too.
Case C. J � {1, . . . , k}, but J �= ∅. In this case z2

i /∈ Q just for a number of indices
smaller than k. Then, by induction, there exists β ∈ R\Q such that βz2

i /∈ Q with i /∈ J and,
a fortiori, βz2

i /∈ Q, i = 1, . . . , k. So, z0 = √
β /∈ Q and z0zi /∈ Q as if

√
βzi ∈ Q it would

imply βz2
i ∈ Q, a contradiction. �

Example 7.1 Let X = Y = [0,1] and consider f : X × Y → R where

f (x, y) =
{

1 for xy ∈ Q

−1 for xy ∈ R\Q
For {y1, . . . yn} fixed, we have three possible cases.

First case. yi ∈Q, ∀i = 1, . . . , n. In this case

f (x, yi) =
⎧⎨
⎩

1 for x ∈Q

, i = 1, . . . , n

−1 for x ∈R\Q

Therefore, whatever x ′, x ′′ it is enough to pick x0 ∈R\Q to obtain

f (x0, yi) = −1 ≤ tf (x ′, yi) + (1 − t)f (x ′′, yi) =

⎧⎪⎪⎨
⎪⎪⎩

1
2t − 1
1 − 2t

−1

for every t ∈ [0,1].
Second case. yi ∈R\Q, ∀i = 1, . . . , n.
Similarly to the first case, since

tf (x ′, yi) + (1 − t)f (x ′′, yi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2t − 1

1 − 2t

−1

it is enough to pick x0 such that f (x0, yi) = −1, so we consider x0 ∈Q.
Third case. {y1, . . . , yn} ∩Q �= ∅ and {y1, . . . , yn} ∩R\Q �= ∅.
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Since for x ′, x ′′ ∈ R\Q we obtain tf (x ′, yi) + (1 − t)f (x ′′, yi) = −1 whenever yi ∈ Q,
also in this case we need f (x0, yi) = −1 for every i = 1, . . . , n. For yi ∈ Q, we have neces-
sarily to choose x0 ∈R\Q, for yi /∈Q, we can choose x0 ∈ R\Q according to Lemma 2.2.

On the contrary, let us prove that f is not convex-like. By contradiction, assume that for
every x1, x2 ∈ [0,1] and for every t ∈ [0,1] there exists x0 ∈ [0,1] such that

f (x0, y) ≤ tf (x1, y) + (1 − t)f (x2, y) ∀y ∈ Y.

Fixed x1 ∈ Q, x2 /∈ Q and t = 1

2
we have

tf (x1, y) + (1 − t)f (x2, y) ≥ −1 ∀y ∈ Y.

Hence there should exist x0 such that f (x0, y) = −1 for every y ∈ [0,1]. That would imply
that x0y /∈ Q for every y ∈ [0,1], and this is impossible, since for x0 ∈ Q and y ∈ Q we

have f (x0, y) = 1 and for x0 ∈ R\Q there exists λ ∈ Q such that y = λ

x0
∈ [0,1]. Then

x0y = λ ∈Q, so f (x0, y) = 1, a contradiction.
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