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Abstract
Existence results for a Cauchy problem driven by a semilinear differential Sturm-Liouville
inclusion are achived by proving, in a preliminary way, an existence theorem for a suitable
integral inclusion. In order to obtain this proposition we use a recent fixed point theorem
that allows us to work with the weak topology and the De Blasi measure of weak noncom-
pactness. So we avoid requests of compactness on the multivalued terms. Then, by requiring
different properties on the map p involved in the Sturm-Liouville inclusion, we are able to
establish the existence of both mild solutions and strong ones for the problem examinated.
Moreover we focus our attention on the study of controllability for a Cauchy problem gov-
erned by a suitable Sturm-Liouville equation. Finally we precise that our results are able to
study problems involving a more general version of a semilinear differential Sturm-Liouville
inclusion.

Keywords Sturm-Liouville differential inclusions · Integral inclusions · Radon-Nikodym
property · Measure of weak noncompactness · Controllability · Fixed point theorem
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1 Introduction

Since 1836 Sturm and Liouville has been publishing some papers on problems involving
suitable second order linear differential equations. In particular the Authors were interested
on founding properties of solutions directly from the equation even when no analytic expres-
sions for solutions were avaible. The influence of these works was so great that this subject
became known as Sturm-Liouville theory. The importance of this theory is also linked to
the fact that other differential equations can be trasformed in the Sturm-Liouville ones, for
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example Bessel, Hermite, Jacobi, Legendre equations. Moreover the study of differential
equations or inclusions involving Sturm-Liouville operators is stimulated by problems re-
lated to various areas of applied sciences. For instance, they describe the vibration of a
particular system, as the vibration of a plucked string of a guitar. Another example is one-
dimensional Schrödinger equation that can represent the motion of a conduction electron
in the crystal structure. Also the Airy equations, which described the change of a solution
from oscillatory to exponential behaviour, are an example of Sturm-Liouville equations. In
particular, these last equations are widely used in quantum mechanics and in the study of
the caustics in light reflections, such as that of the rainbow (see [1]).

The fundamental role that this theory plays in the study of the most disparate phenom-
ena, has recently stimulated a great number of results concerning the Sturm-Liouville equa-
tions/inclusions (see, for example, [2–11]).

In these papers in finite/infinite dimensional spaces the existence of solutions is obtained
through different approaches: by using the theory of monotone operators, the fixed point
theory or variational methods (see, for example, [2, 3, 5, 10, 11]). However, the Authors
often require strong compactness conditions, which are usually not satisfied in a infinite
dimensional framework.

In suitable Banach spaces X we investigate the existence of solutions, both strong and
mild ones, for the following Cauchy problem driven by a semilinear differential Sturm-
Liouville inclusion

(SL)

⎧
⎪⎨

⎪⎩

(p(t)x ′(t))′ ∈ λG(t)x(t) + F(t, x(t)), a.e. t ∈ J = [0, a]
x(0) = x0

x ′(0) = x0,

where p : J → (0,∞) is a map, λ ∈R, x0, x0 ∈ X, G : J → P(R), and F : J × X → P(X)

are suitable multimaps.
Let us recall that the literature related to Sturm-Liouville equations/inclusions in Banach

spaces has been developed by assuming on the map p : J → (0,∞) different properties. In
this paper we precise which properties are necessary on the map p to introduce the definition
of mild solution and strong solution. In particular we note that the Banach spaces having the
Radon-Nikodym property are an appropriate framework to have the equivalence between
the notion of strong solution and the concept of mild solution (see Sect. 3).

In order to obtain our existence results about the problem (SL), we start to establish the
existence of solutions for the following integral inclusion

(SL-I) x(t) ∈ x0 + p(0)x0P (t) +
∫ t

0
(P (t) − P (s))(λG(s)x(s) + F(s, x(s)) ds,

where P : J → [0,∞) is the integral map of 1
p

∈ L1+(J ) (see Theorem 13).
The proof of this theorem, given in the setting of weakly compact generated Banach

spaces, is based on a fixed point result, recently proved in [12]. This theorem allows us to
work with weak topology and the De Blasi measure of weak noncompactness, so we avoid
requests of compactness on the multivalued terms.

This result is central to obtain our objectives:

1. existence of mild solutions for (SL)
2. existence of strong solutions for (SL).

We are able to achive the goal 1. as a consequence of Theorem 13. Indeed, if p ∈ C(J ) and
X is a WCG Banach space, a continuous function x : J → X is a mild solution for (SL) if
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and only if x is a solution for the integral inclusion (SL-I) (see Theorem 14). The idea of
this equivalence follows the approach introduced by Cernea in [6].

Then, in the stronger setting of separable Banach spaces we establish the existence of
mild solutions for (SL) without assumptions about the values of the multimap F (see Theo-
rem 15).

Instead, by using again the relation between strong and mild solutions described in
Sect. 3, the goal 2. is stated adding the Radon-Nikodym property on the Banach spaces
and the absolute continuity on the map p (see Theorems 16 and 17).

Obviously all these results are again obtained in the lack of compactness.
The novelty of our paper about the existence of strong solutions for (SL) is the fact that

we consider a more general setting respect to the ones recently studied. For example in [4]
and [5] the Authors consider X = R

n and p ∈ C1(J ). This last setting is again considered
in [3] for the study of multeplicity positive classical solutions for a boundary value Sturm-
Liouville problem. On the other hand also the study of the existence of mild solutions is
developed in literature for the particular space R

n (see, for example, [11] and [10]) and
assuming Lipschitz type hypotheses on the nonlinear multivalued term (see, for example,
[6–8] and [9]), which are more restrictive than ours.

Let us say that the key-result on the integral inclusion (SL-I) is obtained by assuming
(on p and on the multimaps involved) weaker hypotheses than the ones required in the
mentioned papers.

Therefore, to the best of our knowledge, all our existence theorems are new in literature.
The paper is organized as follows. In Sect. 2 we collect some background material, as

definitions, propositions and theorems known in literature. In Sect. 3 we analyse the relation
between strong solutions and mild solutions for Sturm-Liouville problems. In particular we
state what conditions must be required on the space X and on the map p for these two
concepts to be equivalent. Section 4 is devoted to the existence of continuous solutions for
the integral inclusion (SL-I) (see Theorem 13). The existence of mild solutions and strong
solutions for the Cauchy problem (SL) is analysed in Sect. 5, distinguishing two cases. On
one hand we require the convexity on the values of the multimap F (see Theorems 14 and
16). On the other we leave this assumption, working with different kind of hypotheses on F

(see Theorems 15 and 17). In Sect. 6, by using the obtained multivalued results, we focus
our attention on the study of controllability for Cauchy problems driven by Sturm-Liouville
equations. In the Sect. 7 we precise that our results are able to study problems involving a
more general version of a semilinear differential Sturm-Liouville inclusion

(p(t)x ′(t))′ + q(t)x(t) ∈ λG(t)x(t) + F(t, x(t)), a.e. t ∈ J.

Since the Sturm-Liouville approach offers a valuable tool to study the wave phenomena in
physics and engineering, as mentioned recently in [13] and [14], we conclude by noting that
our multivalued approach to the second order Sturm-Liouville differential equations can be
useful for deeping the controllability of these phenomena and of their practical applications.

2 Preliminaries

We start with the notations used in this article. Let (X,‖ · ‖X) be a Banach space, X∗ be the
dual space of X and τw be the weak topology on X. In the sequel we denote with BX(0, r)

the closed ball of X centered at the origin and of radius r > 0 and the symbol A
w

stands for
the weak closure of a set A ⊂ X. As is well known, a bounded set A of a reflexive space
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X is relatively weakly compact. Moreover we recall that a subset A of a Banach space X

is said to be relatively weakly sequentially compact if any sequence of points in A has a
subsequence weakly convergent to a point in X (see [15]). By virtue of Eberlein-Smulian
Theorem this property is equivalent to the relative weak compactness ([16], Theorem 3.5.3).
In the following, we will use this version of a result of H. Vogt.

Proposition 1 ([17], Theorem 3) Let A be a relatively weakly compact subset of a Banach
space. Then A is weakly closed if and only if A is weakly sequentially closed.

Moreover, if S ⊂ R and A ⊂ X, we use the following notation

SA =
⋃

α∈S

αA. (1)

Now, put J = [0, a] an interval of the real line endowed with the Lebesgue measure μ, we
denote by M(J ) the family of all Lebesgue measurable subsets of J , by C(J ;X) the space
of all continuous functions v : J → X provided with the norm ‖v‖C(J ;X) = maxt∈J ‖v(t)‖X .
Moreover AC(J ;X) = {v : J → X : v absolutely continuous} and we use the notation
AC(J ) if X = R.

Let us note that a sequence (fn)n in C(J ;X) weakly converges to g ∈ C(J ;X) if and
only if (fn −g)n is uniformly bounded and fn(t) ⇀ g(t), for every t ∈ J ([18], Theorem 4).

A function f : C(J ;X) → X is said to be (w-w)sequentially continuous if for every
sequence (xn)n, xn ∈ C(J ;X), xn ⇀ x, then f (xn) ⇀ f (x). A function f : J → X is said to
be (M(J ),B(X))-measurable if, for all A ∈ B(X), f −1(A) ∈ M(J ), where B(X) denotes
the Borel σ -field of X (see [16], Definition 2.1.48). A function f : J → X is said to be
Bochner-measurable (B-measurable, for short) if there is a sequence of simple functions
which converges to f almost everywhere in J (see [16], Definition 3.10.1 (a)) and f :
J → X is said to be weakly measurable if for each l ∈ X∗, the real valued function l(f )

is measurable (see [16], Definition 3.10.1 (b)). If X is a separable Banach space, these
measurability notions are equivalent (see [16], Corollary 3.10.5).

Now, we denote with L1(J ;X) the space of all X-valued Bochner integrable functions
on J with norm ‖u‖L1(J ;X) = ∫ a

0 ‖u(t)‖X dt . For short, if X = R we name B-measurability
as L-measurability and we put ‖ · ‖1 = ‖ · ‖L1(J ;R). For the set L1+(J ) = {f ∈ L1(J ;R) :
f (t) ≥ 0, a.e. t ∈ J } the following result holds

Proposition 2 ([19] Lemma 3.1) For every k > 0, ν ∈ L1+(J ), there exists n := n(k, ν) ∈ N

such that

sup
t∈J

∫ t

0
kν(ξ)e−n(t−ξ) dξ < 1.

Then, a set A ⊂ L1(J ;X) has the property of equi-absolute continuity of the integral if
for every ε > 0 there exists δε > 0 such that, for every E ∈ M(J ), μ(E) < δε , we have∫

E
‖f (t)‖X dt < ε, whenever f ∈ A, while A ⊂ L1(J ;X) is integrably bounded if there

exists ν ∈ L1+(J ) such that ‖f (t)‖X ≤ ν(t), a.e. t ∈ J , for every f ∈ A.
Clearly every integrably bounded set has the property of equi-absolute continuity of the

integral. We recall that the equi-absolute continuity of the integral is important to character-
ize the relative weak compactness of bounded sets in L1(J ;X).
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Proposition 3 ([20] Corollary 9) Let A be a bounded subset of L1(J ;X) such that it has the
property of equi-absolute continuity of the integral and, for a.e. t ∈ J , the set A(t) = {f (t) :
f ∈ A} is relatively weakly compact.

Then A is relatively weakly compact.

For sake of completeness we report the proof of the following version of Fundamental
Theorem of Calculus in Banach spaces.

Proposition 4 Let X be a Banach space and f : J → X be a function such that
i) f ∈ AC(J,X);
ii) there exists f ′ a.e. in J ;
iii) f ′ ∈ L1(J ;X).
Then

∫ t

0 f ′(s) ds = f (t) − f (0), t ∈ J .

Proof First of all, being f ′ B-integrable, we can consider y : J → X so defined

y(t) =
∫ t

0
f ′(s) ds. (2)

We note that, from [21], y is differentiable a.e. on J and the following equality holds

y ′(t) = f ′(t), a.e. t ∈ J. (3)

Then, if H : J → X,

H(t) = y(t) − f (t), t ∈ J, (4)

we have that H is absolutely continuous (see i) and (2)) and such that H ′(t) = 0 a.e. t ∈ J

(see (3)).
Now, we want to prove that H is constant on J . To this aim, let us fix b ∈]0, a] and we

consider the set E = {t ∈ [0, b] : H ′(t) = 0} having measure equal to b. Fixed ε > 0, from
the absolute continuity of H there exists δε ∈]0, ε[, such that

∑n

i=1 ‖H(bi) − H(ai)‖X < ε

for every finite collection {]ai, bi[}i=0,...,n of disjoint intervals with
∑n

i=1(bi −ai) < δε . Next,
fixed t ∈ E, there exists γt,ε > 0 such that

‖H(t) − H(t)‖X

|t − t | < ε, t ∈ E : |t − t | < γt,ε. (5)

Now, put 0 < γ̂ < γt,ε , let us fix sγ̂ ∈]t, t + γ̂ [∩[0, b]. Clearly {[t, sγ̂ ]}t∈E, γ̂<γt,ε
is a Vitali

cover of E (see [22], p. 80). So from Lemma 5.1 of [22] we can find a finite collection
{I ε

i = [ti , sγ̂i
]}i=1,...,qε , sγ̂0 = 0 < t1 < sγ̂1 < t2... < sγ̂qε

< tqε+1 = b, such that

qε∑

i=0

|sγ̂i
− ti+1| = μ(E \ ∪qε

i=1I
ε
i ) < δε.

Hence we have

qε∑

i=0

‖H(sγ̂i
) − H(ti+1)‖X < ε. (6)
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On the other hand, recalling that |sγ̂i
− ti | < γt,ε , i = 1, . . . , qε , we can also write (see (5))

qε∑

i=1

‖H(ti) − H(sγ̂i
)‖X < ε

qε∑

i=1

|sγ̂i
− ti | ≤ εb. (7)

Thus, from (6) and (7) we can write

‖H(b) − H(0)‖X ≤
qε∑

i=0

‖H(sγ̂i
) − H(ti+1)‖X +

qε∑

i=1

‖H(ti) − H(sγ̂i
)‖X < ε + εb.

Since ε is an arbitrary positive number we deduce H(b) = H(0), for every b ∈]0, a]. Then,
put k ∈ X such that H(t) = k, for every t ∈ J , from (4), y(t) = f (t) + k, for every t ∈ J .
Finally, by using (2) we can write

∫ t

0
f ′(s) ds = y(t) − y(0) = f (t) − f (0), t ∈ J,

so the thesis holds. �

Further, we recall that a Banach space X is said to be weakly compactly generated (WCG,
for short) if there exists a weakly compact subset K of X such that X = span(K) (see [23]).
Let us note that every separable space is weakly compact generated as well as the reflex-
ive ones (see again [23]). On the other hand a Banach space X has the Radon-Nikodym
property (RNP, for short) if for every finite measure space (�,,μ) and every vector mea-
sure m :  → X of bounded variation and μ-continuous, there exists f ∈ L1(�,X) such
that m(A) = ∫

A
f dμ, for all A ∈  (see [24], Definition III.1.3 and Definitions I.1.1, I.1.4,

I.2.3). For the sake of completeness we list some spaces that have RNP and do not (see
[24], pg. 218). Among the RNP spaces we have l1, the reflexive ones and separable duals,
while L∞[0,1], L1([0,1]) and C(�), with � infinite compact Hausdorff do not have the
Radon-Nikodym property.

The following characterization of RNP-Banach spaces holds

Proposition 5 ([16], Theorem 3.10.36) A Banach space X is RNP if and only if every abso-
lutely continuous function f : J → X is differentiable a.e. in J and

f (t) − f (s) =
∫ t

s

f ′(τ ) dτ, t, s ∈ J.

Now, if P(X) is the family of all nonempty subsets of the Banach space X, we denote
Pb(X) = {H ∈ P(X) : H bounded}, Pf (X) = {H ∈ P(X) : H closed},

Pc(X) = {H ∈ P(X) : H convex} and Pwk(X) = {H ∈ P(X) : H weakly compact}.
Next for a multimap F : J → P(X), put S1

F(·) = {f ∈ L1(J ;X) : f (t) ∈ F(t) a.e. t ∈ J },
we call Aumann integral of F (see [25], pg. 377) the following subset of X

∫

J

F (t) dt =
{∫

J

f (t) dt : f ∈ S1
F(·)

}

.

Clearly if S1
F(·) = ∅ then

∫

J
F (t) dt =∅.

Then, for every sequence (An)n, An ∈ X, the weak-Kuratowski limit superior of (An)n is
defined as (see [26], Definition 7.1.3)

w − lim sup
n→∞

An = {x ∈ X : xnk
⇀ x, xnk

∈ Ank
, n1 < n2 < · · · < nk < · · · }. (8)
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Proposition 6 ([26], Proposition 7.3.9) Let X be a Banach space, 1 ≤ p < ∞ and F : J →
Pwk(X). If (fn)n, fn ∈ Lp(J ;X), is a sequence such that

i) there exists f ∈ Lp(J ;X) with fn ⇀ f ;
ii) fn(t) ∈ F(t) a.e. t ∈ J , n ∈ N,
then

f (t) ∈ co w − lim sup
n→∞

{fn(t)}, a.e. t ∈ J,

where co denotes the closure of the convex hull of a set.

Furthermore a multimap F : J → P(X) is said to be measurable if for every open set
V ⊂ X one has F−(V ) = {t ∈ J : F(t) ∩ V = ∅} ∈ M(J ) (see [27], Definition 1.3.1). We
recall that if a measurable multimap F takes closed values in a separable Banach space X,
then F has a (M(J ),B(X))-measurable selection ([16], Theorem 4.3.1), where the selection
property holds for every t ∈ J .

Now, if M is a metric space, we say that F : M → P(X) has (s-w)sequentially closed
graph if for every (xn)n, xn ∈ M , xn → x and for every (yn)n, yn ∈ F(xn), yn ⇀ y, we have
y ∈ F(x). Moreover if M is equal to the Banach space X and, in the previous definition, we
consider (xn)n weakly convergent to x, we say that the multimap F has “weakly sequentially
closed graph”. Analogously the "(w-w) sequential continuity” is named “weak sequential
continuity”.

A multimap F : J → P(X) is said to have a B-measurable selection if there exists a
B-measurable function f : J → X such that f (t) ∈ F(t), a.e. t ∈ J . While a multimap
F : J × X → P(X) has a Carathèodory selection if there exists a function f : J × X → X

such that
i) for every t ∈ J , f (t, ·) is continuous on X;
ii) for every x ∈ X, f (·, x) is (M(J ),B(X))-measurable;
iii) for a.e. t ∈ J and every x ∈ X, f (t, x) ∈ F(t, x).
In the sequel we will use the following selection results.

Proposition 7 ([12], Theorem 4.2) Let M be a metric space, X be a Banach space and
F : J × M → P(X) be a multimap such that

a) for a.e. t ∈ J , for every x ∈ M , the set F(t, x) is convex;
b) for every x ∈ M , F(·, x) : J → P(X) has a B-measurable selection;
c) for a.e. t ∈ J , F(t, ·) : M → P(X) has (s-w)sequentially closed graph in M × X;
d) for a.e. t ∈ J and every convergent sequence (xn)n in M , the set

⋃
n F (t, xn) is rela-

tively weakly compact;
e) there exists ϕ : J → [0,∞), ϕ ∈ L1+(J ), such that

sup
z∈F(t,M)

‖ z ‖≤ ϕ(t), a.e. t ∈ J.

Then, for every B-measurable v : J → M , there is a B-measurable selection for F(·, v(·)).
Moreover F : T × X → P(Y ), where T , X, Y are topological spaces, is said to be lower

semicontinuous if for every open set A ⊂ Y the set F−(A) = {(t, x) ∈ T ×X : F(t, x)∩A =
∅} is open (see [27], Definition 1.1.2 and Theorem 1.1.2).

Proposition 8 ([28], Theorem 3.1) Let T, X and Y be Hausdorff topological spaces, μ be
a Radon measure on T and F : T × X → P(Y ) be a multimap satisfying the following
properties
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(l-SD) for every ε > 0 there exists a compact set Kε ⊂ T such that μ(T \ Kε) < ε and
F|Kε×X is lower semicontinuous;

(M) for every closed set Z ⊂ T × X such that F|Z is lower semicontinuous, there exists
a continuous selection of F|Z , i.e. there exists a continuous function f : Z → Y such that
f (t, x) ∈ F(t, x), (t, x) ∈ Z.

Then F has a Carathèodory selection.

Next if K is a subset of X, x0 ∈ K and F : K → P(X) is a multimap, a closed convex
set M0 ⊂ K is said to be (x0,F )-fundamental, if x0 ∈ M0 and F(M0) ⊂ M0 (see [29], p.
620). In this setting we recall the following result which allows to characterize the smallest
(x0,F )-fundamental set.

Proposition 9 ([29], Theorem 3.1) Let X be a locally convex Hausdorff space, K ⊂ X, x0 ∈
K . Let F : K → P(X) be a multimap such that co(F (K) ∪ {x0}) ⊂ K . Then

1) F = {H : H is a (x0,F ) − fundamental set} =∅;
2) put M0 =⋂H∈F H , we have M0 ∈ F and M0 = co(F (M0) ∪ {x0}).

Now we present a fixed point result which will play a key role in our existence theorems.

Proposition 10 Let X be a Banach space, K ⊂ X, x0 ∈ K and F : K → P(X) be a multimap
such that

i) co(F (K) ∪ {x0}) ⊂ K ;
ii) F(x) convex, for every x ∈ M0;
iii) M0 is weakly compact;
iv) F|M0 has weakly sequentially closed graph,
where M0 is the smallest (x0,F )-fundamental set.
Then there exists at least one fixed point for F|M0 .

Now, a function ω : Pb(X) → R
+
0 is said to be a measure of weak noncompactness

(MwNC, for short) if the following properties are satisfied (see [30], Definition 4.1):
ω1) ω is a Sadowskii functional, i.e. ω(co(H)) = ω(H), for every H ∈ Pb(X);
ω2) ω is regular, i.e. ω(H) = 0 if and only if H

w
is weakly compact.

Further, a MwNC ω : Pb(X) → R
+
0 is said to be:

semi-homogeneous if ω(λ�) = |λ|ω(�), for every λ ∈R, � ∈ Pb(X);
monotone if �1,�2 ∈ Pb(X) : �1 ⊂ �2 implies ω(�1) ≤ ω(�2);
nonsingular if ω({x} ∪ �) = ω(�), for every x ∈ X, � ∈ Pb(X);
x0-stable if, fixed x0 ∈ X, ω({x0} ∪ �) = ω(�), � ∈ Pb(X);
invariant under closure if ω(�) = ω(�), � ∈ Pb(X);
invariant with respect to the union with a compact set if ω(� ∪ C) = ω(�), for every

relatively compact set C ⊂ X and � ∈ Pb(X).
In particular in [31] De Blasi introduces the MwNC function β : Pb(X) → R

+
0 so defined

β(H) = inf{ε ∈ [0,∞[: there exists C ⊂ X weakly compact : H ⊆ C + BX(0, ε)},

(named in literature De Blasi-MwNC) and he proves that β has all the properties mentioned
above and it is also algebrically subadditive, i.e. β

(∑n

k=1 Hk

)≤∑n

k=1 β(Hk), where Hk ∈
Pb(X), k = 1, . . . , n.

We recall the following interesting result for the De Blasi- MwNC β : Pb(X) →R
+
0 .
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Proposition 11 ([29], Theorem 2.7) Let (�,,μ) be a finite positive measure space and
X be a weakly compactly generated Banach space. Then for every countable bounded set
C ⊂ L1(J ;X) having the property of equi-absolute continuity of the integral, the function
β(C(·)) is (M(J ),M(R))-measurable and

β

({∫

�

x(s) ds : x ∈ C

})

≤
∫

�

β(C(s)) ds.

In the sequel, fixed α ∈ R, we use the following Sadowskii functional βα : Pb(C(J ;
X)) →R

+
0 , so defined (see [29], Definition 3.9)

βα(M) = sup
C⊂M

countable

sup
t∈J

β(C(t))e−αt , M ∈ Pb(C(J ;X)), (9)

where β is the De Blasi-MwNC and, for every t ∈ J , C(t) = {x(t) : x ∈ C}. We recall that
the Sadowskii functional βα is x0-stable and monotone (see [29], Proposition 3.10) and βα

has the two following properties (see [12], Remark 2.11)
(J) βα is algebrically subadditive;
(JJ) if M ⊂ C(J ;X) is relatively weakly compact, then βα(M) = 0.

3 Strong and Mild Solutions for Sturm-Liouville Problems

In this section we want to underline the role of the absolute continuity of the function p :
J → (0,∞) and of the Radon-Nikodym property of the Banach space X in order to have
the equivalence between the concept of strong solution and mild solution for the following
Sturm-Liouville initial problem

⎧
⎪⎨

⎪⎩

(p(t)x ′(t))′ = f (t), a.e. t ∈ J = [0, a]
x(0) = x0

x ′(0) = x0

(10)

where f ∈ L1(J ;X), x0, x0 ∈ X.
Let X be a Banach space and p : J → (0,∞) be absolutely continuous on J . For strong

solution of problem (10) we mean a C1-function y : J → X such that y ′ ∈ AC(J ;X), y ′
differentiable almost everywhere on J , y ′′ ∈ L1(J ;X) and

(p(t)y ′(t))′ = f (t), a.e. t ∈ J

y(0) = x0, y ′(0) = x0. (11)

Clearly, to say that every strong solution of (10) is also a mild solution of (10), i.e. y : J → X

satisfies

y(t) = x0 + p(0)x0

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0
f (τ) dτds, t ∈ J, (12)

it is not necessary the Radon-Nikodym property on X.
Indeed, if y : J → X is a strong solution, then by integrating the first equality in (11) we

obtain
∫ s

0
(p(τ)y ′(τ ))′ dτ =

∫ s

0
f (τ) ds, s ∈ J.
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Since p ∈ AC(J ), we have py ′ ∈ AC(J ;X), there exists (py ′)′ a.e. on J , and (py ′)′ = f ∈
L1(J ;X). So, by using Proposition 4 we can write

(py ′)(s) − (py ′)(0) =
∫ s

0
f (τ) dτ, s ∈ J,

hence, recalling that y ′(0) = x0 and p(t) > 0, t ∈ J , we deduce

y ′(s) = p(0)x0

p(s)
+ 1

p(s)

∫ s

0
f (τ) dτ, s ∈ J.

Since 1
p

∈ L1(J ), we can integrate again and, being y(0) = x0, we have (see Proposition 4)

y(t) − x0 = p(0)x0

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0
f (τ) dτds, t ∈ J,

i.e. y : J → X satisfies (12). Therefore a strong solution y : J → X of the Sturm-Liouville
initial problem (10) is a mild solution for (10).

On the other hand, if we assume that X is a RNP-Banach space, we have also that every
mild solution of (10) is a strong solution.

Indeed, if y : J → X is a mild solution for (10), recalling the continuity of the function
1
p

, we have that y ∈ C1(J ;X). Hence we can derive (12) in J obtaining

y ′(t) = p(0)x0
1

p(t)
+ 1

p(t)

∫ t

0
f (τ) dτ, t ∈ J. (13)

Now, taking into account that the functions 1
p

and
∫ ·

0 f (τ) dτ are absolutely continuous, we
have that y ′ ∈ AC(J ;X). Thanks to the Radon-Nikodym of X, property there exists y ′′ a.e.
on J (see Proposition 5) and y ′′ ∈ L1(J ;X). Obviously we can write

y(0) = x0 y ′(0) = x0. (14)

Next, multiplying both sides of (13) by p(t), for every t ∈ J , we have

p(t)y ′(t) = p(0)x0 +
∫ t

0
f (τ) dτ, t ∈ J

and, being py ′ ∈ AC(J ;X) and using again Proposition 5, we deduce

(p(t)y ′(t))′ = f (t), a.e. t ∈ J. (15)

Finally, thanks to (14), (15) and the above considerations we can conclude that y is a strong
solution for (10).

Remark 1 Let us say that if the positive function p is such that 1
p

∈ L1+(J ) and X is only a
Banach space, the integral equation (12) is well posed, so the notion of mild solution can be
introduced.

On the other hand, in order to give the concept of strong solution we have assumed
p ∈ AC(J ) instead of p only differentiable a.e. on J (sufficient to introduce the definition).
We did that because if the positive function p satisfies the mentioned weaker property it
is not possible to say that a strong solution is a mild solution. Indeed, even if X = R, we
can not repeat the reasoning above presented since the product between an a.e. differentiable
map p : J → (0,∞) and a function w, even in C∞(J ;R), can be such that pw′ /∈ AC(J ;R).
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Example Let us consider the following Sturm-Liouville Cauchy problem

⎧
⎪⎨

⎪⎩

(p(t)w′(t))′ = f (t), a.e. t ∈ J = [0,1]
w(0) = 0

w′(0) = 1,

(16)

where p : J → (0,∞) is the Vitali function and f : J → R is the null function. Now, we
have that the C∞ function w : J →R so defined

w(t) = t, t ∈ J

is such that (p(t)w′(t))′ = p′(t) = 0 = f (t) a.e. t ∈ J and w(0) = 0, w′(0) = 1.
Hence w is a strong solution of (16). However, being p(t)w′(t) = p(t), t ∈ J , pw′ is not

absolutely continuous on J .

What has been precised above in Remark 1 lead us to define, in the setting of Banach
spaces and assuming only 1

p
∈ L1+(J ), the concept of mild solution for the following Cauchy

problem driven by a Sturm-Liouville inclusion

(SL)�

⎧
⎪⎨

⎪⎩

(p(t)x ′(t))′ ∈ �(t, x(t)), a.e. t ∈ J = [0, a]
x(0) = x0

x ′(0) = x0,

where � : J × X → P(X) and x0, x0 ∈ X.

Definition 1 A continuous function x : J → X is a mild solution for (SL)� if

x(t) = x0 + p(0)x0

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0
γ (τ) dτds, t ∈ J,

where γ ∈ S1
�(·,x(·)) = {γ ∈ L1(J ;X) : γ (t) ∈ �(t, x(t)), a.e. t ∈ J }.

While, if the positive function p ∈ AC(J ) and X is a Banach space, we can introduce
the following

Definition 2 A C1-function x : J → X is a strong solution for (SL)� if x ′ ∈ AC(J ;X), x ′
differentiable almost everywhere on J , y ′′ ∈ L1(J ;X), (p(t)x ′(t))′ ∈ �(t, x(t)), a.e. t ∈ J ,
and x(0) = x0, x ′(0) = x0.

Clearly, if X is a RNP-Banach space the above arguments allow us to claim that Defini-
tions 1 and 2 are equivalent.

4 An Existence Result for Integral Inclusions

To the aim to obtain existence results for the Sturm-Liouville Cauchy problem (SL), in this
section we first study the existence of solutions for the integral inclusion (SL-I).

Here we require p : J → (0,∞) such that
p1) 1

p
∈ L1(J )



3 Page 12 of 30 T. Cardinali, G. Duricchi

and so the integral map P : J → [0,∞)

P (t) =
∫ t

0

1

p(s)
ds, t ∈ J (17)

is well defined.
Now we can introduce, as in [6], the following operator HP : L1(J ;X) → C(J ;X),

which will play a key role in our existence results

HP γ (t) =
∫ t

0
(P (t) − P (s))γ (s) ds, t ∈ J, γ ∈ L1(J ;X). (18)

Remark 2 We observe that the operator HP is well posed. First of all, put

L :=
∥
∥
∥
∥

1

p

∥
∥
∥
∥

1

, (19)

fixed γ ∈ L1(J ;X) and t ∈ J , we have

‖(P (t) − P (s))γ (s)‖X ≤ 2L‖γ (s)‖X, s ∈ J, (20)

hence, since 2L‖γ (·)‖X ∈ L1(J ), the B-measurable map (P (t) − P (·))γ (·) is also B-
integrable on J .

Next we prove that, for every γ ∈ L1(J ;X), the function HP γ ∈ C(J ;X). It is obvious
if ‖γ ‖L1(J ;X) = 0. On the other hand, fixed t ∈ J , if t ∈ J is such that t ≤ t , by using (20),
the following chain of inequalities holds

‖HP γ (t) − HP γ (t)‖X

=
∥
∥
∥
∥
∥

∫ t

0
(P (t) − P (s))γ (s) ds −

∫ t

0
(P (t) − P (s))γ (s) ds

∥
∥
∥
∥
∥

X

=
∥
∥
∥
∥
∥

∫ t

0
(P (t) − P (s))γ (s) ds +

∫ t

t

(P (t) − P (s))γ (s) ds −
∫ t

0
(P (t) − P (s))γ (s) ds

∥
∥
∥
∥
∥

X

≤ |P (t) − P (t)|
∥
∥
∥
∥

∫ t

0
γ (s) ds

∥
∥
∥
∥

X

+
∫ t

t

|P (t) − P (s)| ‖γ (s)‖X ds

≤ |P (t) − P (t)|‖γ ‖L1(J ;X) + 2L

∫ t

t

‖γ (s)‖X ds

Analogously if t ≥ t . Hence, for every t ∈ J , we conclude

‖HP γ (t) − HP γ (t)‖X ≤ |P (t) − P (t)|‖γ ‖L1(J ;X) + 2L

∫

[min {t,t},max {t,t}]
‖γ (s)‖X ds. (21)

Now, the absolute continuity of the integral and the uniform continuity of P on J imply that
for every ε > 0 there exists δ(ε) > 0 such that (see (21))

‖HP γ (t) − HP γ (t)‖X < ε, t, t ∈ J : |t − t | < δ(ε).

So HP γ ∈ C(J ;X).
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Moreover, about the operator HP we have the following

Proposition 12
The operator HP : L1(J ;X) → C(J ;X) is linear, bounded, weakly continuous (and so
weakly sequentially continuous).

Proof Clearly HP is linear. Moreover, taking into account of (20) we have that

‖HP γ ‖C(J ;X) ≤ 2L‖γ ‖L1(J ;X), γ ∈ L1(J ;X),

i.e. HP is bounded. Hence we can conclude that HP is weakly continuous (see [32], Theorem
3.10) and so it is also weakly sequentially continuous (see [33], Definition 1.1). �

Now we present the following existence result of solutions for the integral inclusion (SL-
I), where to write some hypotheses we use (1).

Theorem 13
Let X be a weakly compactly generated Banach space, J = [0, a], λ ∈ R and x0, x0 ∈ X.
Let p : J → R be a function satisfying p1), F : J × X → P(X) and G : J → P(R) be two
multimaps such that

F1) F(t, x) is convex, for every (t, x) ∈ J × X;
F2) for every x ∈ X, F(·, x) : J → P(X) has a B-measurable selection;
F3) for a.e. t ∈ J , F(t, ·) : X → X has weakly sequentially closed graph;
FG1) ∃(ϕn)n, ϕn ∈ L1+(J ) such that

lim sup
n→∞

2L‖ϕn‖1

n
< 1, (22)

where L is presented in (19) and

‖F(t,BX(0, n)) + λG(t)BX(0, n)‖ ≤ ϕn(t), a.e. t ∈ J, n ∈N; (23)

FG2) there exists A ⊂ J , μ(A) = 0, such that, for all n ∈ N, there exists νn ∈ L1+(J ) with
the property

β(C1) ≤ νn(t)β(C0), t ∈ J \ A

for all countable C0, C1, with C0 ⊆ BX(0, n), C1 ⊆ F(t,C0) + λG(t)C0, where β is the De
Blasi measure of weak noncompactness;

G1) G(t) is closed, for every t ∈ J ;
G2) G is measurable.
Then there exists at least one solution for (SL-I), i.e. there exists a continuous function

x : J → X such that

x(t) ∈ x0 + p(0)x0P (t) +
∫ t

0
(P (t) − P (s))(λG(s)x(s) + F(s, x(s)) ds, t ∈ J.

Proof First of all, since R is obviously a separable Banach space and G1) and G2) hold, we
have that there exists a L-measurable map gλ : J → R such that

gλ(t) ∈ λG(t), t ∈ J. (24)
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Now we consider the multimap �λ : J × X → P(X) defined as

�λ(t, x) = F(t, x) + {gλ(t)x}, t ∈ J, x ∈ X. (25)

In a preliminary way we show that �λ satisfies the following properties:
(I) �λ(t, ·) has weakly sequentially closed graph, for a.e. t ∈ J ;
(II) �λ(t, x) is closed, for a.e. t ∈ J , for every x ∈ X.
In order to prove (I), put N ⊂ J the null measure set for which hypothesis F3) holds, we

fix t ∈ J \ N . Let (xn)n, (yn)n be two sequences in X such that yn ∈ �λ(t, xn), n ∈ N and

xn ⇀ x, yn ⇀ y (26)

with x, y ∈ X.
Now, for every n ∈N, since yn ∈ �λ(t, xn), by (25) there exists zn ∈ F(t, xn) such that

yn = zn + gλ(t)xn. (27)

Clearly, by using (27), (26) and F3) we can write

zn = yn − gλ(t)xn ⇀ y − gλ(t)x := z ∈ F(t, x).

So, y = z + gλ(t)x ∈ �λ(t, x) (see (25)). Then (I) is true.
Now we establish (II).
Let x ∈ X and t ∈ J \ N , where N , μ(N) = 0, is such that (I) and FG2) hold in J \ N .

First we prove that the set �λ(t, x) is relatively w-compact. To this aim we fix (yn)n, yn ∈
�λ(t, x). From FG2) we have β(C1) ≤ νp(t)β(C0) = 0, being C0 = {x} and C1 = {yn : n ∈
N} such that C0 ⊂ BX(0,p), for a suitable p ∈ N, and C1 ⊂ �λ(t,C0) ⊂ F(t,C0)+λG(t)C0

(see (1)). Hence, being C1 relatively w-(sequentially)compact, there exist (ynk
)k ⊂ (yn)n and

y ∈ X such that ynk
⇀ y. Then by the arbitrariness of the sequence (yn)n we have the relative

weak compactness of �λ(t, x). Since �λ(t, x) is also weakly sequentially closed (see (I)), by
using Proposition 1 we deduce that �λ(t, x) is w-closed. Therefore the convex set �λ(t, x)

is closed too (see F1) and (25)).
Now we consider the following integral inclusion

(SL-I)�λ
x(t) ∈ x0 + p(0)x0P (t) +

∫ t

0
(P (t) − P (s))�λ(s, x(s)) ds, t ∈ J.

First of all we show that, fixed u ∈ C(J ;X), the multimap �λ(·, u(·)) is Aumann integrable,
i.e.

S1
�λ(·,u(·)) = {γ ∈ L1(J ;X) : γ (t) ∈ �λ(t, u(t)) a.e. t ∈ J } = ∅. (28)

To this purpose, let us put Mu = BX(0, nu), where nu ∈N such that ‖u(t)‖X ≤ nu, for every
t ∈ J .

We will prove that the multimap �λ|J×Mu
: J × Mu → P(X) satisfies all the assumptions

of Proposition 7 by considering on Mu the metric induced by that on X.
Clearly the multimap �λ|J×Mu

satisfies hypothesis a) of Proposition 7 since its values are
traslated of convex sets (see F1) and (25)).

Now, in order to prove b) of Proposition 7, we fix x ∈ Mu. Next we consider the B-
measurable map γx : J → X, defined γx(t) = fx(t) + gλ(t)x, t ∈ J , where fx : J → X is a



Strong Solutions and Mild Solutions for Sturm-Liouville Differential. . . Page 15 of 30 3

B-measurable map such that fx(t) ∈ F(t, x), a.e. t ∈ J (see F2)) and gλ(·)x : J → X is B-
measurable, being gλ of (24) L-measurable. Then γx is a B-measurable selection of �λ|J×Mu

(see (25)). Hence b) of Proposition 7 holds for �λ|J×Mu
.

In particular, as a consequence of (I), we have that, for a.e. t ∈ J , �λ|J×Mu
(t, ·) has (s-w)

sequentially closed graph, i.e. c) of Proposition 7 holds for the multimap �λ|J×Mu
.

Next we demostrate that �λ|J×Mu
satisfies d) of Proposition 7.

To this aim, fixed t ∈ J \ A, where A is the null measure set presented in FG2), we
consider a convergent sequence (un)n in Mu and we fix (yp)p , yp ∈⋃n �λ|J×Mu

(t, un).
By hypothesis FG2) there exists νnu ∈ L1+(J ) such that

β(C1) ≤ νnu(t)β(C0), (29)

where C0 = {un, n ∈ N} ⊂ BX(0, nu) = Mu and C1 = {yp, p ∈ N} ⊂ �λ|J×Mu
(t,C0) ⊂

F(t,C0) + λG(t)C0 (see (25), (24) and (1)).
Clearly, being C0 relatively weakly sequentially compact and so relatively weakly com-

pact, β(C0) = 0. Hence (29) implies that C1 is relatively weakly compact too. Then there
exists a subsequence (ypk

)k of (yp)p weakly convergent in X. By the arbitrariness of (yp)p

in
⋃

n �λ|J×Mu
(t, un), we can conclude

⋃

n

�λ|J×Mu
(t, un) is relatively weakly compact. (30)

So, �λ|J×Mu
has property d) of Proposition 7.

Finally also e) of Proposition 7 is true, since in correspondence of BX(0, nu) = Mu, there
exists ϕnu ∈ L1+(J ) such that (see FG1), (25) and (24))

sup
z∈�λ(t,Mu)

‖z‖X ≤ ‖F(t,Mu) + λG(t)Mu‖ ≤ ϕnu(t), a.e. t ∈ J.

Therefore, by virtue of Proposition 7, in correspondence of the B-measurable map u, there
exists γu : J → X B-measurable such that

γu(t) ∈ �λ(t, u(t)), a.e. t ∈ J. (31)

Since u(t) ∈ Mu = BX(0, nu), t ∈ J , by FG1) γu is B-integrable on J .
Then by (31) we can conclude that γu ∈ S1

�λ(·,u(·)), hence (28) holds.
Now we prove the existence of a solution for (SL-I)�λ

, showing that the multioperator
ϒλ : C(J ;X) → Pc(C(J ;X)), so defined (see (17), (18) and (28))

ϒλu = {y ∈ C(J ;X) : y(t) = x0 + p(0)x0P (t) + HP γ (t), γ ∈ S1
�λ(·,u(·))}, u ∈ C(J ;X),

(32)
has at least one fixed point.

Clearly ϒλ is well defined (see (28) and F1)).
Now prove that ϒλ satisfies all the hypotheses of Proposition 10 through the following

steps.
Step 1. The multioperator ϒλ has weakly sequentially closed graph.
Let us fix two sequences (un)n, (xn)n in C(J ;X) such that xn ∈ ϒλun, n ∈ N, and

un ⇀ u, xn ⇀ x, (33)

where u,x ∈ C(J ;X). We have to prove that x ∈ ϒλu.
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First of all, the weak convergence of (un)n implies

un(t) ⇀ u(t), t ∈ J (34)

and the existence of n ∈ N such that

‖un‖C(J ;X) ≤ n, n ∈ N. (35)

Then, since xn ∈ ϒλun, n ∈N, there exists γn ∈ S1
�λ(·,un(·)) such that (see (18))

xn(t) = x0 + p(0)x0P (t) + HP γn(t), t ∈ J. (36)

Now we show that the sequence (γn)n has a subsequence weakly convergent in L1(J ;X).
To this aim we prove that B = {γn : n ∈ N} ⊂ L1(J ;X) is relatively weakly compact by
using Proposition 3. First, we note that (see (35))

γn(t) ∈ �λ(t, un(t)) ⊂ �λ(t,BX(0, n)), a.e. t ∈ J, (37)

so, by (23) there exists ϕn ∈ L1+(J ) such that (see (37), (25), and (24))

‖γn(t)‖X ≤ ϕn(t), a.e. t ∈ J.

Therefore B is bounded in L1(J ;X) and it has the property of equi-absolute continuity of
the integral. Then, to show that B(t) is relatively weakly compact for a.e. t ∈ J , let us fix
t ∈ J \N , where N is the null measure set for which FG2) and (37) hold. Since the countable
sets C0 = {un(t), n ∈N} and C1 = B(t) satisfy the inclusions (see (35) and (37))

C0 ⊂ BX(0, n), C1 ⊂ �λ(t,C0) ⊂ F(t,C0) + λG(t)C0, (38)

by FG2) there exists νn ∈ L1+(J ) such that

β(C1) ≤ νn(t)β(C0) = 0,

being C0 relatively weakly compact (see (34)). Therefore, C1 is relatively weakly compact
too.

Hence

B(t) is relatively weakly compact, for a.e. t ∈ J. (39)

Thanks to Proposition 3 we have that B is relatively weakly compact in L1(J ;X). So there
exist a subsequence (γnk

)k of (γn)n and γ ∈ L1(J ;X) such that

γnk
⇀ γ. (40)

Now we show that the map γ is a selection of �λ(·, u(·)). We obtain that by applying Propo-
sition 6 to the sequence (γnk

)k and to the multimap �λ : J → P(X), defined as

�λ(t) =
{⋃

k �λ(t, unk
(t))

w
, t ∈ J \ N̂

{0}, t ∈ N̂
(41)

where N̂ is the null measure set for which FG2) and (37) hold.
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First we note that �λ assumes weakly compact values. Indeed fixed t ∈ J \ N̂ and (yp)p ,
yp ∈⋃k �λ(t, unk

(t)), put C0 = {unk
(t) : k ∈ N} ⊂ BX(0, n) (see (35)) and C1 = {yp : p ∈

N}, thanks to FG2) and analogous arguments to the ones above presented in (29)-(30), we
deduce that

⋃
k �λ(t, unk

(t))
w

is weakly compact. Hence �λ(t) ∈ Pwk(X), t ∈ J . Moreover
hypotheses i) and ii) of Proposition 6 are obviously satified by (γnk

)k and �λ (see (40) and
(37), (41) respectively). Therefore, applying Proposition 6 we conclude

γ (t) ∈ co w − lim sup
k→∞

{γnk
(t)}, a.e. t ∈ J. (42)

Next, if Ñ ⊂ J is a null measure set such that, for every t ∈ J \ Ñ , (37), (42), (I) and (II)
hold, we claim (see (37))

co w − lim sup
k→∞

{γnk
(t)} ⊂ co w − lim sup

k→∞
�λ(t, unk

(t)), t ∈ J \ Ñ . (43)

Now, we note that (see (8), (34), and (I))

w − lim sup
k→∞

�λ(t, unk
(t)) ⊂ �λ(t, u(t)), t ∈ J \ Ñ .

Then in virtue of F1) and (II), we can write

co w − lim sup
k→∞

�λ(t, unk
(t)) ⊂ �λ(t, u(t)), t ∈ J \ Ñ . (44)

Finally, thanks to (42), (43), (44), γ (t) ∈ �λ(t, u(t)) a.e. t ∈ J . So we can conclude

γ ∈ S1
�λ(·,u(·)). (45)

Now, being HP γnk
⇀ HP γ (see (40) and Proposition 12) we have HP γnk

(t) ⇀ HP γ (t), for
every t ∈ J . Then by (36) we deduce

xnk
(t) ⇀ x0 + p(0)x0P (t) + HP γ (t) =: x̃(t), t ∈ J. (46)

From the uniqueness of the limit we can conclude that the functions x, x̃ : J → X, respec-
tively defined in (33) and in (46), are the same. Recalling the definition of ϒλ (see (32)),
from (45) and (46) we obtain that x ∈ ϒλu. Therefore ϒλ has a weakly sequentially closed
graph.

Step 2. There exists p ∈ N such that the ball BC(J ;X)(0C,p), where 0C denote the null
function on J , is invariant under the action of the multioperator ϒλ.

Assume by contradiction that, for every n ∈ N, there exists un ∈ C(J ;X), with
‖un‖C(J ;X) ≤ n, such that there exists xun ∈ ϒλun, ‖xun‖C(J ;X) > n.

Now, by the fact that, for every n ∈ N, ‖xun‖C(J ;X) > n, there exists tn ∈ J such that
‖xun(tn)‖X > n. Taking into account (20) we can write

n < ‖xun(tn)‖X ≤ ‖x0‖X + ‖p(0)x0P (tn)‖X +
∫ tn

0
‖(P (tn) − P (s))γun(s)‖X ds

≤ ‖x0‖X + L|p(0)|‖x0‖X + 2L

∫ a

0
‖γun(s)‖X ds,
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where γun ∈ S1
�λ(·,un(·)). Next, since ‖un‖C(J ;X) ≤ n, by FG1) there exists ϕn ∈ L1+(J ) such

that (see (28), (25), (24) and (23))

‖γun(t)‖X ≤ ϕn(t), a.e. t ∈ J.

Then we have

n < ‖xun(tn)‖X ≤ ‖x0‖X + L|p(0)|‖x0‖X + 2L‖ϕn‖1.

Hence, passing to the superior limit, remembering (22) we obtain the following contradic-
tion

1 ≤ lim sup
n→∞

(‖x0‖X + L|p(0)|‖x0‖X

n
+ 2L‖ϕn‖1

n

)

< 1.

Therefore the existence of p ∈ N such that BC(J ;X)(0C,p) is invariant under the action of
the operator ϒλ is proved.

Step 3. There exists the smallest (0C,ϒλ)-fundamental set which is weakly compact.
First of all, considering p fixed in Step 2, we have that ϒλ(K) ⊂ K , where K =

BC(J ;X)(0C,p) is a subset of the locally convex Hausdorff space C(J ;X) equipped with
the weak topology. Since co(ϒλ(K)∪ {0C}) ⊂ K , by Proposition 9 we have that there exists
M0 the smallest (0C,ϒλ)-fundamental set such that

M0 ⊂ BC(J ;X)(0C,p) = K (47)

M0 = co(ϒ(M0) ∪ {0C}) (48)

Now, we will prove that M0 is weakly compact.
To this aim, we establish the relative weak sequential compactness of S1

�λ(·,M0(·)). At first
we show that the set M0(t) is relatively weakly compact, for every t ∈ J .

Let us consider the Sadovskij functional βα , α ∈ R
+, defined in (9). Since βα is 0-stable

and it satisfies (J) and (JJ), from (48), (32) and (18) we have

βα(M0) = βα(ϒλ(M0))

= βα

({x0 + p(0)x0P (·) + HP γ : γ ∈ S1
�λ(·,u(·)), u ∈ M0}

)

≤ βα({x0}) + βα({p(0)x0P (·)}) + βα({HP γ : γ ∈ S1
�λ(·,u(·)), u ∈ M0})

= βα({HP γ : γ ∈ S1
�λ(·,u(·)), u ∈ M0})

= sup
C⊂S1

�λ(·,M0(·))
C countable

sup
t∈J

β

({∫ t

0
(P (t) − P (s))γ (s) ds : γ ∈ C

})

e−αt , (49)

where the last equality is deduced by the definition of the set {HP γ : γ ∈ S1
�λ(·,u(·)), u ∈ M0}.

Now, fixed t ∈ J and a countable set C ⊂ S1
�λ(·,M0(·)), since X is a weakly compactly

generated Banach space, we can apply Proposition 11 to the countable set

CC
t = {(P (t) − P (·))γ (·), γ ∈ C}, (50)
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being CC
t bounded in L1(J ;X) and having the property of equi-absolute continuity of the

integral (see FG1) and (20)), and so we have

β

({∫ t

0
(P (t) − P (s))γ (s) ds : γ ∈ C

})

≤
∫ t

0
β(CC

t (s)) ds. (51)

Next, by the Axiom of Choice, for every γ ∈ C, we can consider a continuous function
uγ ∈ M0 such that γ (s) ∈ �λ(s,uγ (s)) a.e. s ∈ J . So we construct the countable subset of
M0

CC
0 = {uγ ∈ M0 : γ ∈ C} (52)

Obviously, since C is countable, there exists a null measure subset V ⊂ J , containing the
set A defined in FG2), such that

γ (s) ∈ �λ(s,uγ (s)), s ∈ J \ V, γ ∈ C,

where uγ ∈ CC
0 . Hence, fixed s ∈ J \ V , by (52) we deduce (see (47) and (25))

CC
0 (s) ⊂ M0(s) ⊂ BX(0,p)

C(s) ⊂ F(s,CC
0 (s)) + λG(s)CC

0 (s).

Hence, by hypothesis FG2), there exists νp ∈ L1+(J ) such that

β(C(s)) ≤ νp(s)β(CC
0 (s)). (53)

Since (53) holds for a.e. s ∈ J , for the fixed t we deduce the following inequalities

∫ t

0
β(C(s)) dξ ≤

∫ t

0
νp(s)β(CC

0 (s)) dξ ≤
∫ t

0
νp(s) sup

C0⊂M0
C0 countable

β(C0(s)) ds. (54)

Now, recalling (50) and the semi-homogeneity of β , we have

β(CC
t (s)) = β((P (t) − P (s))C(s)) = |P (t) − P (s)|β(C(s)), a.e. s ∈ [0, t],

and so we can write
∫ t

0
β(CC

t (s)) ds =
∫ t

0
|P (t) − P (s)|β(C(s)) ds. (55)

The above considerations allow us to claim that for every countable set C ⊂ S1
�λ(·,M0(·)) there

exists a countable subset CC
0 ⊂ M0 such that (51), (54) and (55) are true.

Now from (49), by using (51), (55), (19) and (54) we deduce

βα(M0) ≤ sup
C⊂S1

�λ(·,M0(·))
C countable

sup
t∈J

(∫ t

0
β(CC

t (s)) ds

)

e−αt

= sup
C⊂S1

�λ(·,M0(·))
C countable

sup
t∈J

(∫ t

0
|P (t) − P (s)|β(C(s)) ds

)

e−αt
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≤ sup
C⊂S1

�λ(·,M0(·))
C countable

sup
t∈J

(

2L

∫ t

0
β(C(s)) ds

)

e−αt

≤ sup
C⊂S1

�λ(·,M0(·))
C countable

sup
t∈J

⎛

⎜
⎝2L

∫ t

0
νp(s) sup

C0⊂M0
C0 countable

β(C0(s)) ds

⎞

⎟
⎠ e−αt

≤ sup
t∈J

⎛

⎜
⎝2L

∫ t

0
e−α(t−s)νp(s) sup

C0⊂M0
C0 countable

sup
s∈J

e−αsβ(C0(s)) ds

⎞

⎟
⎠

= βα(M0) sup
t∈J

∫ t

0
2Le−α(t−s)νp(s) ds. (56)

By virtue of Proposition 2 we can say that there exists m ∈N such that

sup
t∈J

∫ t

0
2Le−m(t−s)νp(s) ds < 1. (57)

By considering (56) for α = m, taking into account (57), we deduce

βm(M0) = 0. (58)

Then, for every t ∈ J , by definition of βm(M0), we have that the set M0(t) is relatively
weakly sequentially compact. Indeed, fixed a sequence (zn)n, zn ∈ M0(t), n ∈ N, we con-
sider the countable set C̃t = {zn : n ∈N}. By (58) we have β(C̃t ) = 0 and, since β is regular
the set C̃t is relatively weakly compact. Hence there exists a subsequence (znk

)k of (zn)n

such that znk
⇀ z ∈ X. Therefore, by the arbitrariness of the sequence (zn)n, we can claim

the relative weak sequential compactness of M0(t).
Finally, we are in a position to show that the set S1

�λ(·,M0(·)) is relatively weakly compact
in L1(J ;X).

First of all, since (47) holds, by FG1) there exist ϕp ∈ L1+(J ) and a null measure set
N ⊂ J such that

‖γ (t)‖X ≤ ϕp(t), t ∈ J \ N, γ ∈ S1
�λ(·,M0(·)). (59)

Therefore S1
�λ(·,M0(·)) has the property of equi-absolute continuity of the integral and it is

bounded in L1(J ;X).
Then we note that, for a.e. t ∈ J , the set S1

�λ(t,M0(t)) is relatively weakly compact in X.
Let us consider the null measure set N∗ ⊃ A ∪ N , where A and N are presented in FG2)

and (59) respectively. Now, fixed t ∈ J \ N∗ we note that S1
�λ(t,M0(t)) is norm bounded in X

by the constant ϕp(t).
Next, we consider a sequence (yn)n, yn ∈ S1

�λ(t,M0(t)), n ∈N. Then there exists a sequence
(gn)n, where gn is the representative of an element in S1

�λ(·,M0(·)), satisfying yn = gn(t) ∈
�λ(t,M0(t)), n ∈N. So, for every n ∈N, there exists un ∈ M0 such that yn ∈ �λ(t, un(t)).

Now, by considering the two countable sets C0 = {un(t) : n ∈ N} ⊂ BX(0,p) (see (47))
and C1 = {yn : n ∈N} and reasoning as in Step 1 (see from (38) to (39)) we have that C1 is
relatively weakly compact, hence there exists a subsequence (ynk

)k of (yn)n such that (ynk
)k

is weakly convergent.
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By the arbitrariness of (yn)n in S1
�λ(t,M0(t)), we can conclude that S1

�λ(t,M0(t)) is relatively
weakly sequentially compact. So, by using Eberlein Smulian Theorem the set S1

�λ(t,M0(t)) is
relatively weakly compact.

Therefore, since S1
�λ(·,M0(·)) is bounded in L1(J ;X) and it has the equi-absolute continuity

of the integral property, we have that S1
�λ(·,M0(·)) is relatively weakly compact in L1(J ;X)

(see Proposition 3) and so S1
�λ(·,M0(·)) is relatively weakly sequentially compact too.

Now, in order to obtain the weak compactness of M0, by (48) it is sufficient to show that
ϒλ(M0) is relatively weakly compact in C(J ;X).

To this aim we fix a sequence (xn)n, xn ∈ ϒλ(M0). Then there exists (un)n, un ∈ M0, such
that, for every n ∈ N, xn ∈ ϒλun, hence

xn(t) = x0 + p(0)x0P (t) +
∫ t

0
(P (t) − P (s))γn(s) ds, t ∈ J, n ∈N (60)

where γn ∈ S1
�λ(·,un(·)) ⊂ S1

�λ(·,M0(·)).
By the relative weak sequential compactness of S1

�λ(·,M0(·)) in L1(J ;X) we can find a
subsequence (γnk

)k of (γn)n and γ ∈ L1(J ;X), such that γnk
⇀ γ . Then, being HP γnk

⇀

HP γ (see Proposition 12), we have

HP γnk
(t) ⇀ HP γ (t), t ∈ J. (61)

Now, let us consider the subsequence (xnk
)k of (xn)n defined in (60). By using (61) we can

write

xnk
(t) ⇀ x0 + p(0)x0P (t) + HP γ (t) := x(t), t ∈ J,

where x : J → X is a continuous map. Next, recalling that xnk
∈ ϒλ(M0), for every nk , we

have (see (48) and (47))

‖xnk
− x‖C(J ;X) ≤ p + ‖x‖C(J ;X),

i.e. the sequence (xnk
− x)k is uniformly bounded on J . Then we can say that xnk

⇀ x.
Hence, by the arbitrariness of (xn)n in ϒλ(M0), we can claim that ϒλ(M0) is relatively

weakly sequentially compact and so, the Eberlein Smulian Theorem allows us to state that
ϒλ(M0) is relatively weakly compact.

Finally, since M0 = co(ϒλ(M0)∪ {0}), we are able to conclude the weak compactness of
M0.

From the above considerations we are in a position to apply Proposition 10 to the multi-
operator ϒλ : M0 → Pc(M0). Hence there exists x ∈ M0 such that

x(t) = x0 + p(0)x0P (t) +
∫ t

0
(P (t) − P (s))γ (s) ds, t ∈ J

where γ ∈ S1
�λ(·,x(·)). Of course, x is a solution for the integral inclusion (SL-I)�λ

. Now,
since γ ∈ L1(J ;X) and γ (t) ∈ �λ(t, x(t)), a.e. t ∈ J , by (25) and (24) we deduce γ ∈
S1

F(·,x(·))+λG(·)x(·). Therefore we have that x is a solution for (SL-I). �

5 Existence Results for a Sturm-Liouville Problem

In this section we achive the existence of mild solutions and strong solutions for the Cauchy
problem (SL). We start with results on the existence of mild ones.
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Theorem 14
Let X be a weakly compactly generated Banach space, λ ∈ R and x0, x0 ∈ X. Let p : J →
(0,∞) be a function satisfying

p2) p ∈ C(J ),
F : J × X → P(X) and G : J → P(R) be two multimaps having the properties F1),

F2), F3), G1), G2), FG1), and FG2) of Theorem 13.
Then there exists at least one mild solution for problem (SL).

Proof First of all, we note that a mild solution x : J → X for problem (SL) satisfying

x(t) = x0 + p(0)x0

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0
γλ(τ ) dτds, t ∈ J,

where γλ ∈ S1
λG(·)x(·)+F(·,x(·)), can be rewritten as

x(t) = x0 + p(0)x0P (t) + HP γλ(t), t ∈ J, (62)

where P : J → [0,∞) and HP : L1(J ;X) → C(J ;X) are defined as in (17) and in (18)
respectively.

To prove that, we have only to show
∫ t

0

1

p(s)

∫ s

0
γλ(τ ) dτds = HP γλ(t), t ∈ J, (63)

where Hpγλ(t) = ∫ t

0 (P (t)−P (s))γλ(s) ds, t ∈ J . First of all, from (17), since p is a positive
and continuous function, we have

P ′(t) = 1

p(t)
, t ∈ J.

Hence, the request of continuity on p allows us to apply the formula of integration by parts
(see [34], Theorem 3.3) and so we can write (see (18))

∫ t

0

1

p(s)

∫ s

0
γλ(τ ) dτds =

∫ t

0
P ′(s)

∫ s

0
γλ(τ ) dτds

= P (t)

∫ t

0
γλ(s) ds −

∫ t

0
P (s)γλ(s) ds

=
∫ t

0
(P (t) − P (s))γλ(s) ds = HP γλ(t), t ∈ J,

therefore (63) is true.
By the above consideration we can claim that the existence of a mild solution for the

Cauchy problem (SL) is equivalent to prove the existence of a solution for the integral
inclusion (SL-I).

Observing now that the continuity and positivity of the map p allow us to say that 1
p

∈
L1(J ), we have that all the hypotheses of Theorem 13 are satisfied. Then the existence of a
mild solution for the Sturm-Liouville Cauchy problem (SL) follows from Theorem 13. �

Now we present, in the setting of separable Banach spaces, the following result in which
we establish the existence of mild solutions for the Cauchy problem (SL) without assump-
tions about the values of the multimap F .
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Theorem 15
Let X be a separable Banach space, λ ∈R and x0, x0 ∈ X. Let p : J → (0,∞) be a function
satisfying p2), F : J × X → P(X), G : J → P(R) be two multimaps having the properties

(l-SD)F ∀ε > 0 there exists a compact Kε ⊂ J such that μ(J \ Kε) < ε and F|Kε×X is
weakly lower semicontinuous;

(M)F for every weakly closed set Z ⊂ J × X such that F|Z is weakly lower semicon-
tinuous, there exists a weakly continuous selection of F on Z, i.e. there exists a weakly
continuous function f : Z → X such that f (t, x) ∈ F(t, x), (t, x) ∈ Z;

and G1), G2), FG1) and FG2) of Theorem 13.
Then there exists at least one mild solution for the Cauchy problem (SL).

Proof First we consider (X, τw) the topological Hausdorff space, where τw is the weak
topology relatively to the Banach space X. Hence, taking into account of (l-SD)F and (M)F ,
in virtue of Proposition 8 we have that there exists f : J × X → X such that

for every t ∈ J, f (t, ·) is weakly continuous; (64)

for every x ∈ X, f (·, x) is weakly measurable; (65)

f (t, x) ∈ F(t, x), a.e. t ∈ J, ∀x ∈ X. (66)

Now, put F̃ : J × X → P(X) so defined

F̃ (t, x) = {f (t, x)}, (t, x) ∈ J × X, (67)

we show that Theorem 14 allows us to prove the existence of a mild solution for the follow-
ing Cauchy problem

⎧
⎪⎨

⎪⎩

(p(t)x ′(t))′ ∈ λG(t)x(t) + F̃ (t, x(t)), t ∈ J

x(0) = x0

x ′(0) = x0.

(68)

For the sake of clarity, let us denote with F̃1), F̃2) and so on the hypotheses of Theorem 14
referring to the multimap F̃ .

First we say that the multimap F̃ obviously satisfies F̃1) of Theorem 14. Then, by using
the separability of X and (65) we have that, for every x ∈ X, the function f (·, x) : J → X

is B-measurable. So F̃2) of Theorem 14 holds.
Now we prove that F̃ has property F̃3) of Theorem 14.
To this aim, fixed t ∈ J , we consider (xn)n and (yn)n, yn ∈ F̃ (t, xn), two arbitrary se-

quences in X such that

xn ⇀ x (69)

and

yn ⇀ y (70)

where x, y ∈ X. We want to show that y ∈ F̃ (t, x).
Now, from (64) we deduce that f (t, ·) is weakly sequentially continuous. So, from (69)

we have that

yn = f (t, xn) ⇀ f (t, x). (71)
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Because of the uniqueness of the weak limit, from (70) and (71) we infer that y = f (t, x) ∈
F̃ (t, x) (see (67)). Thus also F̃3) of Theorem 14 is true.

Now, in order to prove F̃G1) of Theorem 14, let us fix t ∈ J \ H ∗, where H ∗ is the null
measure set for which (66) and FG1) hold. Thanks to FG1) we know that there exists (ϕn)n,
ϕn ∈ L1+(J ), satisfying (22) and such that (see (67) and (66))

‖F̃ (t,BX(0, n)) + λG(t)BX(0, n)‖ ≤ ‖F(t,BX(0, n)) + λG(t)BX(0, n)‖ ≤ ϕn(t), n ∈ N.

Therefore F̃ and G have the property F̃G1) of Theorem 14.
Finally we will show that also property F̃G2) of Theorem 14 holds. Indeed, put A the set

presented in FG2), let H̃ be the null measure set for which (66) is true and A ⊂ H̃ .
Fixed t ∈ J \ H̃ and n ∈ N, let C̃0 be a countable subset of BX(0, n) and C̃1 a countable

subset of F̃ (t, C̃0) + λG(t)C̃0. Now, by virtue of (66) and (67) we have

C̃1 ⊂ f (t, C̃0) + λG(t)C̃0 ⊂ F(t, C̃0) + λG(t)C̃0

and so, thanks to FG2), there exists νn ∈ L1+(J ) such that

β(C̃1) ≤ νn(t)β(C̃0).

This proves that F̃G2) of Theorem 14 is true too.
In conclusion, recalling that the separable Banach space X is WCG, all the hypotheses

of Theorem 14 are fulfilled. So there exists at least one mild solution for (68), which also is
a mild solution for the problem (SL). �

Finally, in the setting on RNP-Banach spaces, taking into account of the relations be-
tween strong and mild solutions described in Sect. 3, thanks to Theorem 14 and Theorem
15 we are in a position to enunciate the following two results that ensure the existence of
strong solutions for the problem (SL).

Theorem 16
Let X be a weakly compactly generated RNP-Banach space, λ ∈ R and x0, x0 ∈ X. Let
p : J → (0,∞) be a function satisfying

p3) p ∈ AC(J ),
and F : J × X → P(X), G : J → P(R) be two multimaps having the properties F1),

F2), F3), G1), G2), FG1) and FG2) of Theorem 13.
Then there exists at least one function x : J → X defined

x(t) = x0 + p(0)x0

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0
γ (τ) dτds, t ∈ J, (72)

where γ ∈ S1
F(·,x(·))+λG(·)x(·), strong solution for problem (SL).

Theorem 17
Let X be a separable RNP-Banach space, λ ∈ R and x0, x0 ∈ X. Let p : J → (0,∞) be a
function satisfying p3), F : J × X → P(X), G : J → P(R) be two multimaps having the
properties (l-SD)F and (M)F of Theorem 15, G1), G2), FG1) and FG2) of Theorem 13.

Then there exists at least one strong solution of the type (72) for the Cauchy problem
(SL).
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6 Application: Study of Controllability

Now we turn our attention to establish the controllability for the following Cauchy problem
driven by a Sturm-Liouville equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((t2 + 1)x ′(t))′ = λ sin(t) x(t) + h(t) + u(t), a.e. t ∈ J = [0,
√

3
3 ]

x(0) = x0

x ′(0) = x0

u(t) ∈ U(t, x(t)), a.e. t ∈ J

(73)

where x0, x0 ∈ L2(J ), λ ∈ [0,1], h : J → L2(J ) is a function such that

h1) h is B-measurable;
h2) ‖h(·)‖2 ∈ L1+(J ),

and U : J × L2(J ) → P(L2(J )) is the multimap so defined

U(t, x) = {y ∈ L2(J ) : ∃b ∈ L2(J ), ‖b‖2 ≤ r(t), such that y = x + b}, (74)

with r : J →R
+ a fixed map.

The approach that we shall follow is to rewrite problem (73) in the form of problem (SL),
which we study using our Theorem 16.

First of all, we recall that the reflexive space X = L2(J ) is a weakly compactly generated
and RNP-Banach space.

Now, we rewrite problem (73) in the form

⎧
⎪⎨

⎪⎩

((t2 + 1)x ′(t))′ ∈ λG(t)x(t) + F(t, x(t)), a.e. t ∈ J

x(0) = x0

x ′(0) = x0,

(75)

where G : J → P(R) and F : J × L2(J ) → P(L2(J )) are so defined

G(t) = {sin(t)}, t ∈ J

F(t, x) = U(t, x) + {h(t)} (76)

and we prove that G and F satisfy all the hypotheses of Theorem 16.
Obviously F assumes nonempty values since, fixed (t, x) ∈ J × L2(J ), we have that

x + h(t) ∈ F(t, x), being x + 0L2(J ) ∈ U(t, x).
Moreover, for every (t, x) ∈ J × L2(J ), F(t, x) is convex, being F(t, x) = {h(t) + x} +

BL2(J )(0, r(t)). So F1) of Theorem 16 is true.
On the other hand, fixed x ∈ L2(J ) and f : J → L2(J ) as

f (t) = h(t) + x, t ∈ J,

by (76), since x ∈ U(t, x), we can say

f (t) ∈ F(t, x).

Moreover f is B-measurable (see h1)), so F2) of Theorem 16 holds.
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To prove F3), let us fix t ∈ J , (xn)n, xn ∈ L2(J ), such that xn ⇀ x ∈ L2(J ) and (yn)n,
yn ∈ F(t, xn), such that yn ⇀ y ∈ L2(J ).

Since, for every n ∈N, yn ∈ F(t, xn), from (76) there exists vn ∈ U(t, xn) such that

yn = vn + h(t).

Then, by yn ⇀ y we have

vn = yn − h(t) ⇀ y − h(t) := v,

and so we can write y = v + h(t). Now, we note that v ∈ U(t, x). Indeed, for every n ∈ N,
being vn ∈ U(t, xn), there exists bn ∈ L2(J ), ‖bn‖2 ≤ r(t), such that (see (74))

vn = xn + bn.

Then, thanks to the weak convergences xn ⇀ x and vn ⇀ v, we have

bn = vn − xn ⇀ v − x := b. (77)

Clearly b ∈ L2(J ). Moreover, as a consequence of (77), we say (see [32], Proposition 3.5)

‖b‖2 ≤ lim inf
n→∞ ‖bn‖2 ≤ r(t).

Hence v = x + b ∈ U(t, x) (see (74)) and so y = v + h(t) ∈ F(t, x) (see (76)).
Therefore also F3) of Theorem 16 is satisfied.
About the multimap G we immediately note that G(t) is closed, for every t ∈ J . More-

over G is obviously measurable.
So G has the properties G1) and G2) of Theorem 16.
Now, in order to establish FG1) and FG2) of Theorem 16 we recall that, being p(t) =

t2 + 1, t ∈ J = [0,
√

3
3 ], L = π

6 (see (19)). Then we can consider the sequence (ϕn)n, where
ϕn : J →R

+
0 is defined as

ϕn(t) = n(1 + sin(t)) + ‖b‖2 + ‖h(t)‖2, t ∈ J, n ∈ N. (78)

Clearly, from h2), ϕn ∈ L1+(J ), n ∈N. To show that (23) is true by using this sequence (ϕn)n,
let us fix n ∈N, t ∈ J and x, x∗ ∈ BL2(J )(0, n). Now, for every y ∈ F(t, x) + λG(t)x∗ there
exists b ∈ L2(J ): ‖b‖2 ≤ r(t), such that (see (74) and (76))

y = x + b + h(t) + λx∗ sin(t).

Since λ ∈ [0,1], we have (see (78))

‖y‖2 ≤ ‖x‖2 + ‖b‖2 + ‖h(t)‖2 + λ sin(t)‖x∗‖2 ≤ ϕn(t).

By the arbitrariness of y ∈ F(t, x) + λG(t)x∗ and x, x∗ ∈ BL2(J )(0, n), we deduce that

‖F(t,BL2(J )(0, n)) + λG(t)BL2(J )(0, n)‖ ≤ ϕn(t), t ∈ J, n ∈ N, (79)

i.e. (23) holds.
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Moreover we note that

lim sup
n→∞

2L
∫

√
3

3
0 ϕn(s) ds

n
= π

3

(√
3

3
+ 1 − cos

(√
3

3

))

< 1,

and so we can conclude that FG1) is true.
Finally to claim that FG2) holds we recall the reflexivity of the Banach space L2(J ).
Now, fixed n ∈N, for every countable C0 ⊂ BL2(J )(0, n) we have β(C0) = 0, being β the

De Blasi measure of weak noncompactness. Moreover, for every t ∈ J and every countable
C1 ⊂ F(t,C0) + λG(t)C0, taking into account (79) we deduce the relative weak compact-
ness of the set C1 in L2(J ) and so β(C1) = 0. Hence being β(C1) = β(C0) = 0, we have
FG2) of Theorem 16 true too (even assuming A = ∅ and (νn)n, νn = 0L1+(J ), n ∈N).

By means the arguments above presented, we are in a position to apply Theorem 16 to
problem (75). Then there exists a C1-function x : J → L2(J ) such that (see (62), (18) and
(17))

x(t) = x0 + x0 arctan(t) +
∫ t

0
(arctan(t) − arctan(s))γ (s) ds, t ∈ J,

where γ ∈ S1
F(·,x(·))+λG(·)x(·), which is a strong solution for (75).

Next we consider ux : J → L2(J ) so defined

ux(t) = γ (t) − λ sin(t)x(t) − h(t), t ∈ J, (80)

which is obviously B-measurable being the difference of B-measurable maps (see h1)).
Now, to show that ux is a selection of U(·, x(·)), let us fix t ∈ J \ N such that γ (t) ∈

F(t, x(t)) + λG(t)x(t), where N is a null measure subset of J . Then by (76) there exists
vt ∈ U(t, x(t)) such that

γ (t) = vt + h(t) + λ sin(t)x(t).

On the other hand, from (80) we have γ (t) = ux(t)+h(t)+λ sin(t)x(t) and so ux(t) = vt ∈
U(t, x(t)). Hence ux(t) ∈ U(t, x(t)) for a.e. t ∈ J .

For the above considerations we conclude that {x,ux} is an admissible strong-pair for
problem (73), where x : J → L2(J ) is a C1-function such that x ′ ∈ AC(J ;L2(J )), x ′ dif-
ferentiable a.e. on J , x ′′ ∈ L1(J ;L2(J )), and ux : J → L2(J ) is a B-measurable map.

Remark 3
Let us note that if we study the controllability of (73) in the WCG Banach space X = C(J ),
which is not RNP, the controllability could be given by the multimap V : J ×X → P(X) so
defined V (t, x) = {y ∈ C(J ) : ∃b ∈ C(J ),‖b‖∞ ≤ q(t), y = x + b}, (t, x) ∈ J × C(J ). We
observe that, by considering the same function r , fixed (t, x) ∈ J × C(J ), V (t, x) is strictly
included in the control set U(t, x) (see (74)). Indeed, we have that if y ∈ V (t, x) we deduce
that y ∈ L2(J ) and there exists b ∈ C(J ) ⊂ L2(J ) such that y = x + b satisfying

‖b‖2 ≤
⎧
⎨

⎩

∫
√

3
3

0
‖b‖2

∞ ds

⎫
⎬

⎭

1
2

= ‖b‖∞

√√
3

3
≤ q(t).

So we can say that y ∈ U(t, x).
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Therefore, in the setting C(J ) we analyse a different situation respect to the one in L2(J ),
in which we are more constrained in controlling the system. In this case we are no longer
able to use Theorem 16, but we can only establish the existence of an admissible mild-pair
for problem (73), by applying Theorem 14.

7 Conclusions

In this paper, the existence of mild solutions and strong solutions to the Cauchy problem
governed by a semilinear differential Sturm-Liouville inclusion (SL) is studied. Let us note
that the existence results obtained in Sect. 5 for (SL) allow us to deduce analogous existence
theorems for the more general problem

(SL-q)

⎧
⎪⎨

⎪⎩

(p(t)x ′(t))′ + q(t)x(t) ∈ λG(t)x(t) + F(t, x(t)), a.e. t ∈ J

x(0) = x0

x ′(0) = x0,

where q : J →R is a nonnegative L-measurable function.
Indeed we can rewrite problem (SL-q) in the form of (SL) introducing the multimap

Gq : J → P(R) so defined

Gq(t) = {−q(t)} + λG(t)

By doing so we are able to obtain the analogous of Theorems 14-17 for (SL-q) assuming,
instead of FG1) and FG2), the following

FGq1) there exists (ϕn)n, ϕn ∈ L1+(J ) such that

lim sup
n→∞

2L‖ϕn‖1

n
< 1,

where L is the positive costant presented in (19), and

‖F(t,BX(0, n)) + ({−q(t)} + λG(t))BX(0, n)‖ ≤ ϕn(t), a.e. t ∈ J, n ∈N;
FGq2) there exists A ⊂ J , μ(A) = 0, such that, for all n ∈ N, there exists νn ∈ L1+(J ) with
the property

β(C1) ≤ νn(t)β(C0), t ∈ J \ A

for all countable C0, C1, with C0 ⊆ BX(0, n), C1 ⊆ F(t,C0) + ({−q(t)} + λG(t))C0.
Indeed, in this setting the multimap Gq clearly assumes closed values and it is measurable

(see [26], Proposition 2.2.57).
Finally, we hope that our study can be used to investigate physically important problems

that can be modeled using Sturm-Liouville second order differential equations.
With the aim of examining controllability of these phenomena can be advantageous our

approach: the multimap involved in the Sturm-Liouville inclusion can be used to describe
the control action.
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