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Abstract
Themethodof characteristics is extended to set-valuedHamilton-Jacobi equations. This prob-
lem arises from a calculus of variations’ problem with a multicriteria Lagrangian function:
through an embedding into a set-valued framework, a set-valued Hamilton-Jacobi equation
is derived, where the Hamiltonian function is the Fenchel conjugate of the Lagrangian func-
tion. In this paper a method of characteristics is described and some results are given for the
Fenchel conjugate.

Keywords Multicriteria calculus of variations · Multiobjective optimization ·
Hamilton-jacobi equation · Characteristics

Mathematics Subject Classification 49J53

1 Introduction

The method of characteristics converts a nonlinear first-order partial differential equation
into a system of ordinary differential equations, both with suitable boundary conditions. In
some circumstances, the solutions of the latter exist (at least locally in time) and give a
solution of the first one. This happens in particular for the Hamilton-Jacobi equation both for
classical solutions and for viscosity solutions (see [13]). The characteristic curves are called
generalized in the second case.

This method was already suggested by Cauchy and was mentioned in Carathéodory’s
book [4]. In order to have the general theory and some perspective in the research that has
been done, it is possible to consider [3, 7, 16].

Optimization of a multiobjective cost function is often very important and complex: the
components to minimize (for example production cost and holding inventory cost) may
contradict each other, in the sense that trying to minimize one of them leads to the increase
of another one. Naturally, a linearization is a very strong simplification of the problem.
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Nowadays, there aremany approaches to studymultiobjective variational or control problems
(see for example [5, 6, 8, 9, 14]).

In this paper a Hamilton-Jacobi equation for a set-valued Hamiltonian function is pre-
sented. The Hamiltonian function takes values in a complete lattice of sets that are invariant
with respect to the sum of a closed and convex cone. This problem was never studied before,
to the knowledge of the author, and it is not only interesting per se, but also as a natu-
ral completion of a previous paper. In fact, in [12] the authors considered a calculus of
variations’ problem with a multicriteria Lagrangian function. The embedding of it into a
set-valued framework was fundamental to prove a Hopf-Lax formula for the value function.
Subsequently, through the Fenchel conjugate of the Lagrangian function a Hamilton-Jacobi
set-valued equation was derived.

Here, like in the classical theory, we start supposing that a smooth solution of the equation
is known, in order to write the system of ordinary differential equations and the characteristic
curves. In this situation, a family of characteristic curves is obtained, parametrized by the
elements of the dual cone. A posteriori the ordinary differential equations do not depend on
the solution and can be solved independently. Under some assumptions it is so possible to
write a solution of the set-valued Hamilton-Jacobi equation from the solutions of the ordinary
differential equations. The solutions are global under some hypotheses.

Considering the case of theHamiltonian function as the Fenchel conjugate of a Lagrangian
function, some results are obtained. For set-valued optimization an infimizer is a set. It is
proved that an infimizer for the Hopf-Lax formula proved in [12] can be constituted only by
minimizers of the scalarized problem with respect to an element of the dual cone.

Moreover, some properties regarding the derivatives of the Fenchel conjugate are extended
to the set-valued framework. Finally, it is proved that the characteristic curves coincide with
elements of the infimizer.

This study opens a variety of new questions. First of all, it is still not clear what can be
an extension of the concept of viscosity solution for a set-valued Hamilton-Jacobi equation.
Then also the problem of the generalized characteristic curves should be addressed. Recently,
in [15] the author considers a generalized form of characteristics. But also in the previously
cited texts [3] and [16], there are several approaches that have not yet been studied in the
set-valued case.

2 Preliminaries

The Minkowski sum of two non-empty sets A, B ⊆ R
d is A+ B = {a+ b | a ∈ A, b ∈ B}.

It is extended to the whole power set P(Rd) by

∅ + A = A + ∅ = ∅.

We also use A ⊕ B := cl (A + B), the ‘closed sum’ of two sets.
A set C ⊆ R

d is a cone if sC ⊆ C for all s > 0, and it is a convex cone if additionally
C + C ⊆ C . Let C be a closed and convex cone in R

d different from the empty set and the
whole Rd . The dual of a cone C is defined as

C+ = {ζ ∈ R
d | ∀z ∈ C, ζ · z ≥ 0},
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Characteristic curves for Set-Valued Hamilton-Jacobi EquationsC

where ζ · z denotes the usual scalar product. If there is an element ẑ ∈ C such that ζ · ẑ > 0
for all ζ ∈ C+\{0} (in particular, if int C �= ∅), then the set

B+(ẑ) = {ζ ∈ C+ | ζ · ẑ = 1} (1)

is a (closed and convex) base of C+, i.e., for each element ξ ∈ C+\{0} there are unique
ζ ∈ B+(ẑ) and s > 0 such that ξ = sζ .

We consider the following subset of the power set P(Rd) (see for instance [10]):

G(Rd ,C) = {A ∈ P(Rd) | A = cl co (A + C)}
where cl and co are the closure and the convex hull, respectively.

The pair (G(Rd ,C),⊇) is a complete lattice. If A ⊆ G(Rd ,C), then the infimum and the
supremum of A are given by

inf A = cl co
⋃

A∈A
A supA =

⋂

A∈A
A. (2)

An element A0 ∈ A is called minimal for A if

A ∈ A, A ⊇ A0 
⇒ A = A0 .

Let ζ ∈ C+\{0} and let
H+(ζ ) = {z ∈ R

d | ζ · z ≥ 0}.
For two sets A, B ∈ G(Rd ,C), the set

A −ζ B = {z ∈ R
d | z + B ⊆ A ⊕ H+(ζ )}

is called the ζ -difference of A and B. It is either ∅, Rd or a closed (shifted) half-space. It is
possible to see that

A −ζ B = {z ∈ R
d | ζ · z + inf

b∈B ζ · b ≥ inf
a∈A

ζ · a}, (3)

where it is meant that inf y∈∅ ζ · y = +∞ and r + (−∞) = −∞ as well as r + (+∞) = +∞
for r ∈ R. Formore details about this set difference see [10] (where there is a slightly different
definition) and [11].

Let {An}n∈N be a sequence of sets in G(Rd ,C), we denote by limn→∞ An the following
set:

lim
n→∞ An =

{
z ∈ R

d | ∀n ∈ N, ∃zn ∈ An, lim
n→∞ zn = z

}
.

This definition of limit coincideswith the upper limit of Painlevé-Kuratowski (Liminfn→∞An

= {z ∈ Z | limn→∞ d(z, An) = 0}, see [1]).
Let {As}s∈S with S ⊆ R be a family of sets in G(Rd ,C) and s̄ ∈ R. We denote by

lims→s̄ As the set which satisfies that for any sequence {sn}n∈N ⊆ S with sn → s̄ one has

lim
s→s̄

As = lim
n→∞ Asn .

Let f be a function f : Rn → G(Rd ,C). The graph of f is

graph f = {(x, z) ∈ R
n × R

d | z ∈ f (x)} .

The domain of f is
dom f = {x ∈ R

n | f (x) �= ∅}
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The function is convex if and only if graph f is a convex subset ofRn×R
d . This is equivalent

to the following condition: for any λ ∈ (0, 1), x1, x2 ∈ R
n

f (λx1 + (1 − λ)x2) ⊇ λ f (x1) + (1 − λ) f (x2) .

Let (X ,A, μ) be a measure space and let f be a set-valued map from X into the closed
nonempty subsets of Rd .

The set of the integrable selections of f is:

F = {ϕ ∈ L1(X ,Rd) | ϕ(x) ∈ f (x) a.e. in X}
The Aumann integral of f on Rn is the set of integrals of the integrable selections of f :

∫

X
f dμ =

{∫

Rn
ϕ dμ | ϕ ∈ F

}

Let X be a non-empty set, f : X → G(Rd ,C) a function and f [X ] = { f (x) | x ∈ X}.
A family of extended real-valued functions ϕ f ,ζ : X → R with ζ ∈ C+ is defined by

ϕ f ,ζ (x) = inf
z∈ f (x)

ζ · z. (4)

A point x̄ ∈ X is called a ζ -minimizer of f if

∀x ∈ X : ϕ f ,ζ (x̄) ≤ ϕ f ,ζ (x).

(a) A set M ⊂ X is called an infimizer for f if

inf f [M] = inf f [X ] .
(b) An element x0 ∈ X is called a minimizer for f if f (x0) is minimal for f [X ].
(c) A set M ⊂ X is called a solution of the problem minimize f (x) subject to x ∈ X if M

is an infimizer for f and each x0 ∈ M is a minimizer for f . It is called a full solution if
the set f [M] includes all minimal elements of f [X ].

(d) A set M ⊆ X is called a scalarization solution of the problem minimize f (x) subject to
x ∈ X if it is an infimizer and only includes ζ -minimizers.

The solution concept in (d) has been considered first in [11].
Let η ∈ R

n and ζ ∈ C+ be given. We recall the definition of the function S(η,ζ ) : Rn →
G(Rd ,C):

S(η,ζ )(x) = {z ∈ R
d | ζ · z ≥ η · x} .

Such a function is additive and positively homogeneous, i.e., for all x ∈ R
n , λ > 0

S(η,ζ )(λx) = λS(η,ζ )(x)

and for all x1, x2 ∈ R
n

S(η,ζ )(x1 + x2) = S(η,ζ )(x1) + S(η,ζ )(x2) .

Let ẑ ∈ R
d be such that ζ · ẑ = 1. Then for any x ∈ R

n

S(η,ζ )(x) = (η · x)ẑ + H+(ζ ) (5)

(see [10]).
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The derivative concept that will be used in this paper is as follows. The derivatives of a
function f : R×R

n → G(Rd ,C) with respect to an element ζ in the dual cone of C , if they
exist, will be defined in the following way:

Dζ,t f (t, x) = lim
h→0+

1

h
[ f (t + h, x) −ζ f (t, x)],

Dζ,x f (t, x)(q) = lim
h→0+

1

h
[ f (t, x + hq) −ζ f (t, x)].

(6)

See [11] and [12] for a motivation andmany features including a discussion of the ‘improper’
function values Rd and ∅.

The Fenchel conjugate of the function f : Rn → G(Rd ,C) is defined as the function

f ∗ : Rn × C+\{0} → G(Rd ,C)

(η, ζ ) �→ supx∈Rn S(η,ζ )(x) −ζ f (x)
(7)

3 Hamilton-Jacobi Equation and Characteristic Curves

Let C be a closed and convex cone in Rd different from the empty set and the whole Rd and
let ẑ be a given element in the cone such that B+(ẑ) is a base of C+ (see (1)). The cone and
the element ẑ are fixed from now on.

Let us consider

0 < T < +∞, QT = [0, T ] × R
n, (t, x) ∈ R × R

n,

a set-valued Hamiltonian function H : Rn × C+\{0} → G(Rd ,C) and U0 : Rn → R
d a

function of class C2. The Hamiltonian function was chosen in this way due to the fact that
the main example for it is the Fenchel conjugate (7) of a Lagrangian function H(p, ζ ) =
L∗(p, ζ ), where L : Rn → G(Rd ,C) (see [12]).

We suppose that for any ζ ∈ C+\{0} the function Hζ : Rn → R, defined as

Hζ (p) = inf
z∈H(p,ζ )

ζ · z,

is of class C2.
The simplest example can be when there exists H0 : R

n → R
d of class C2 and H

is the inf-extension of H0, H(p, ζ ) = H0(p) + C (see [10]), then Hζ (p) coincide with
H0,ζ (p) = H0(p) · ζ and are automatically of class C2.

Given ζ ∈ B+(ẑ), we say that U : QT → G(Rd ,C) satisfies the ζ -property if the
scalarization along ζ is finite and we define

uζ (t, x) = ϕU ,ζ (t, x), (8)

where ϕU ,ζ is defined in (4). This property is additive and positively homogeneous with
respect to the function U .

Proposition 3.1 Given ζ ∈ B+(ẑ), the functionU : QT → G(Rd ,C) satisfies the ζ -property
if and only if

U (t, x) + H+(ζ ) = uζ (t, x)ẑ + H+(ζ ) , (9)

with uζ : QT → R as in (8).
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Proof It is immediate to see that if (9) holds, then

inf{z · ζ | z ∈ U (t, x)} = inf{z · ζ | z ∈ U (t, x) + H+(ζ )}
= inf{z · ζ | z ∈ uζ (t, x)ẑ + H+(ζ )} = uζ (t, x).

Vice versa, let (8) hold. For every z ∈ U (t, x) the vector hζ = z − uζ (t, x)ẑ is such that

hζ · ζ = z · ζ − uζ (t, x) ≥ 0,

so hζ ∈ H+(ζ ) and U (t, x) ⊂ uζ (t, x)ẑ + H+(ζ ). Finally, we prove that uζ (t, x)ẑ ∈
U (t, x) + H+(ζ ). Let z0 ∈ U (t, x) be such that z0 · ζ = uζ (t, x). As we have already seen
z0 − uζ (t, x)ẑ = hζ ∈ H+(ζ ), but in this case hζ is perpendicular to ζ . Then uζ (t, x)ẑ =
z0 − hζ ∈ U (t, x) + H+(ζ ). ��

It must be stressed that the choice of the point ẑ is arbitrary (for example it can be any
point in the interior of C), but equation (9) holds always for ζ ∈ B+(ẑ).

Proposition 3.2 Given ζ ∈ B+(ẑ), if the function U : QT → G(Rd ,C) satisfies the ζ -
property and the function uζ (t, x) is C1, then

Dζ,tU (t, x) = S( ∂uζ
∂t (t,x),ζ

)(1) ,

Dζ,xU (t, x)(q) = S(Duζ (t,x),ζ)(q) .

Proof Using (6) and (3), we can write for h > 0

1

h

(
U (t + h, x) −ζ U (t, x)

)

= 1

h

{
z ∈ R

d
∣∣∣∣ z · ζ + inf

z1∈U (t,x)
z1 · ζ ≥ inf

z1∈U (t+h,x)
z1 · ζ

}

=
{
z ∈ R

d
∣∣∣∣ z · ζ ≥ 1

h
(uζ (t + h, x) − uζ (t, x))

}

and analogously

1

h

(
U (t, x + hq) −ζ U (t, x)

) =
{
z ∈ R

d
∣∣∣∣ z · ζ ≥ 1

h
(uζ (t, x + hq) − uζ (t, x))

}
.

Taking the limits in the two equations, it is obtained

Dζ,tU (t, x) =
{
z ∈ R

d
∣∣∣∣ z · ζ ≥ ∂uζ

∂t
(t, x)

}
= S( ∂uζ

∂t (t,x),ζ
)(1),

Dζ,xU (t, x)(q) =
{
z ∈ R

d
∣∣∣∣ z · ζ ≥ Duζ (t, z) · q

}
= S(Duζ (t,x),ζ)(q).

��

We define now a family of Hamilton-Jacobi equations. For ζ ∈ B+(ẑ), U : QT →
G(Rd ,C) is a solution of the ζ -Hamilton-Jacobi equation if it satisfies the ζ -property and is
a solution of {

Dζ,tU (t, x) + H (
Duζ (t, x), ζ

) = H+(ζ )

U (0, x) = U0(x) + C
(10)
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where uζ is of class C2. Recalling that the supremum in G(Rd ,C) is defined in (2) and using
the fact that

⋂
ζ∈B+(ẑ) H

+(ζ ) = ⋂
ζ∈C+ = C , if U (t, x) is a solution of (10) for every

ζ ∈ B+(ẑ), then it is also a solution of
{

sup
ζ∈B+(ẑ)

[
Dζ,tU (t, x) + H (

Duζ (t, x), ζ
)] = C

U (0, x) = U0(x) + C
(11)

We say thatU (t, x), satisfying property (9), is of classC2 if all theuζ areC2 for ζ ∈ B+(ẑ).
The first equation in (10) gives

inf
{
ζ · z | z ∈ [

Dζ,tU (t, x) + H (
Duζ (t, x), ζ

)]} = inf{ζ · z | z ∈ H+(ζ )}
that can be written

∂uζ

∂t
(t, x) + Hζ

(
Duζ (t, x)

) = 0 .

So uζ is a solution of {
∂υζ

∂t (t, x) + Hζ

(
Dυζ (t, x)

) = 0
υζ (0, x) = U0,ζ (x)

(12)

where U0,ζ (x) = ζ ·U0(x) is a real-valued function.
We suppose that problem (12) has a solution υζ of class C2. For fixed x ∈ R

n , we denote
by Xζ (t, x) the solution of the ordinary differential equation

Ẋζ = DHζ

(
Dυζ (t, Xζ )

)
, Xζ (0, x) = x . (13)

Such a solution is defined on an interval [0, Tζ,x ). The curve (t, Xζ (t, x)) is the characteristic
curve associated to U with respect to ζ .

We define now

Vζ (t, x) = υζ (t, Xζ (t, x)) , Pζ (t, x) = Dυζ (t, Xζ (t, x)) . (14)

Using equation (12), we obtain

V̇ζ = ∂υζ

∂t
(t, Xζ ) + Dυζ (t, Xζ ) · Ẋζ = −Hζ

(
Pζ

)+ DHζ

(
Pζ

) · Pζ ,

Ṗζ = ∂Dυζ

∂t
(t, Xζ ) + D2υζ (t, Xζ )Ẋζ

= D

(
∂υζ

∂t
(t, Xζ ) + Hζ

(
Dυζ (t, Xζ )

)) = 0 .

As a consequence, Pζ is constant in time:

Pζ (t, x) ≡ DU0,ζ (x) .

Then also Ẋζ is constant in time: Ẋζ = DHζ

(
Pζ

) = DHζ

(
DU0,ζ (x)

)
. The solutions of

the ODEs are then:
⎧
⎨

⎩

Xζ (t, x) = x + t DHζ

(
DU0,ζ (x)

)

Vζ (t, x) = U0,ζ (x) + t
(−Hζ

(
DU0,ζ (x)

)+ DHζ

(
DU0,ζ (x)

) · DU0,ζ (x)
)

Pζ (t, x) = DU0,ζ (x)
(15)

The next step is to consider the system of ODEs
⎧
⎨

⎩

Ẋζ = DHζ

(
Pζ

)

Ṗζ = 0
V̇ζ = −Hζ

(
Pζ

)+ DHζ

(
Pζ

) · Pζ

(16)
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in order to build a solution of the Hamilton-Jacobi equation. The classical result is the
following local existence theorem (see for example [3]):

Let U0 be in C2(Rn;Rd) and DU0,ζ , D2U0,ζ be bounded for any ζ ∈ B+(ẑ). LetHζ be
of class C2 for any ζ ∈ B+(ẑ). Denoting

T ∗
ζ = sup{t > 0 | I + t D2Hζ (DU0,ζ (x))D

2U0,ζ (x)is invertible∀x ∈ R
n}, (17)

problem (12) has a unique solution υζ ∈ C2([0, T ∗
ζ ) × R

n).

By the previous hypotheses, for any T < T ∗
ζ , there exists Zζ : [0, T ]×R

n → R
n of class

C1 such that
Xζ (t, Zζ (t, x)) = x

for any (t, x) ∈ [0, T ] × R
n . The solution of the previous theorem is given by

υζ (t, x) = Vζ (t, Zζ (t, x)) , for any (t, x) ∈ [0, T ] × R
n . (18)

We want now to find set-valued functions U (t, x) that are solutions of the set-valued
Hamilton-Jacobi equations.

Theorem 3.3 Let U0 be in C2(Rn;Rd) and DU0,ζ , D2U0,ζ be bounded for any ζ ∈ B+(ẑ).
Let Hζ be in C2(Rn) for any ζ ∈ B+(ẑ). Denoting

T ∗ = inf
ζ∈B+(ẑ)

T ∗
ζ (19)

where T ∗
ζ is as in (17), let us assume that T ∗ > 0. For T < T ∗ the map Uζ : [0, T ] ×R

n →
G(Rd ,C) defined as

Uζ (t, x) = υζ (t, x)ẑ + H+(ζ )

is a solution of {
Dζ,tU (t, x) + H (

Dυζ (t, x), ζ
) = H+(ζ )

U (0, x) = U0(x) + H+(ζ ).
(20)

Moreover, let U be the map U : [0, T ] × R
n → G(Rd ,C) defined as

U (t, x) = sup
ζ∈B+(ẑ)

Uζ (t, x). (21)

If for any ζ ∈ B+(ẑ) and (t, x) ∈ [0, T ] × R
n, there holds

uζ (t, x) = inf
z∈U (t,x)

ζ · z = inf
z∈Uζ (t,x)

ζ · z = υζ (t, x), (22)

then U is a solution of (11).

Remark 3.4 In the hypotheses of the local existence theorem (that coincide with the hypothe-
ses of the previous theorem) for any ζ ∈ B+(ẑ) there exist Tζ > 0 and Uζ (t, x) defined on
[0, Tζ ) × R

n. In some cases it is possible to deduce that T ∗ > 0. More precisely, we recall
the following results linked to the existence of the characterisics of the scalarized problems
(see Corollary 1.5.5 in [3]):

123

21 Page 8 of 20



Characteristic curves for Set-Valued Hamilton-Jacobi EquationsC

1. Set
M0 = sup

ζ∈B+(ẑ)
sup
x∈Rn

‖DU0,ζ (x)‖,

M1 = sup
ζ∈B+(ẑ)

sup
x∈Rn

‖D2U0,ζ (x)‖,

M2 = sup
ζ∈B+(ẑ)

sup
x∈Rn , ‖x‖≤M0

‖D2Hζ (x)‖.

Then problem (11) has a C2 solution at least for the time t ∈ [0, T ∗), where T ∗ = 1
M1M2

.

2. If U0,ζ andHζ are convex, then problem (11) has a C2 solution for all positive times (so
T ∗ = +∞).

3. If U0(x) = Ax + b with A a matrix of dimension d times n and b ∈ R
d , then problem

(11) has a C2 solution for all positive times (so T ∗ = +∞).

Proof It is easy to see that Uζ (t, x) is a solution of (20).
The map U (t, x) has the property (9) thanks to hypothesis (22).
The function U satisfies the first equation in (11), because Dζ,tU (t, x) = Dζ,tUζ (t, x).

In fact, for any A, B ∈ G(Rd ,C)

A −ζ B = (A + H+(ζ )) −ζ (B + H+(ζ ))

and so also for the derivative

Dζ,tU (t, x) = Dζ,t [U (t, x) + H+(ζ )] = uζ (t, x)ẑ + H+(ζ )

= υζ (t, x)ẑ + H+(ζ ) = Dζ,tUζ (t, x).

For the initial condition, we have that

U (0, x) = sup
ζ∈B+(ẑ)

Uζ (0, x) = sup
ζ∈B+(ẑ)

[U0(x) + H+(ζ )] = U0(x) + C .

��
In the following proposition the solution is written as a set-valued version of the char-

acteristic method. In order to do that, we define a set-valued correspondent to Vζ (t, x) for
ζ ∈ B+(ẑ). More precisely, we denote Vζ : [0, T ] × R

n → G(Rd ,C) the map

Vζ (t, x) =U0(x) + t
[
(H+(ζ ) −ζ H (

DU0,ζ (x), ζ
)
)

+ Dζ,pH
(
DU0,ζ (x), ζ

)
(DU0,ζ (x))

]
,

(23)

where the derivative Dζ denotes the derivative of the set-valued function H.

Proposition 3.5 LetU0 be inC2(Rn;Rd) and DU0,ζ , D2U0,ζ be bounded for any ζ ∈ B+(ẑ).
Let Hζ be in C2(Rn) for any ζ ∈ B+(ẑ). If (22) holds, for T ∗ > 0 as in Theorem 3.3 the
solution U : [0, T ] × R

n → G(Rd ,C) with T < T ∗ defined in (21) can be written

U (t, x) = sup
ζ∈B+(ẑ)

Vζ (t, Zζ (t, x)). (24)

Proof Both Uζ (t, x) and Vζ (t, Zζ (t, x)) are half-spaces in the positive direction of ζ . We
have that

inf
z∈H+(ζ )−ζH(DU0,ζ (x),ζ)

ζ · z = −Hζ

(
DU0,ζ (x)

)
,

inf
z∈Dζ,pH(DU0,ζ (x),ζ)(DU0,ζ (x))

ζ · z = DHζ

(
DU0,ζ (x)

) · DU0,ζ (x).

It is then immediate that Uζ (t, x) = Vζ (t, Zζ (t, x)). ��
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Next corollary presents a special case in which condition (22) in Theorem 3.3 is satisfied.

Corollary 3.6 Let U0 be in C2(Rn;Rd) and DU0,ζ , D2U0,ζ be bounded for any ζ ∈ B+(ẑ).
LetH(·, ζ ) = H0(·)+C for any ζ ∈ B+(ẑ) andH0 be in C2(Rn). For T ∗ > 0 as in Theorem
3.3 and T < T ∗, if for any ζ, ξ ∈ B+(ẑ)

U0,ζ (Zξ ) + t
[−H0,ζ (DU0,ξ (Zξ )) + DH0(DU0,ξ (Zξ ))DU0,ξ (Zξ )

]

≥ U0,ζ (Zζ ) + t
[−H0,ζ (DU0,ζ (Zζ )) + DH0(DU0,ζ (Zζ ))DU0,ζ (Zζ )

]
,

(25)

where Zζ = Zζ (t, x), Zξ = Zξ (t, x) and DH0 denotes the Jacobian matrix, then the
function U (t, x) defined in (24) is a solution of (11).

Proof We observe that

Vζ (t, x) = U0(x) + t
[−H0(DU0,ζ (x)) + DH0(DU0,ζ (x))DU0,ζ (x)

]+ H+(ζ ).

Equation (25) implies that the vectors

U0(Zζ ) + t
[−H0(DU0,ζ (Zζ )) + DH0(DU0,ζ (Zζ ))DU0,ζ (Zζ )

] ∈ U (t, x)

and that hypothesis (22) is satisfied. ��
Example 3.7 We chooseRn = R

d = R
2, C = R

2+ and the following Hamiltonian and initial
condition

H0(p) =
( 1

2‖p‖2
1
4‖p‖4

)
, H(p, ζ ) = H0(p) + C, U0(x) =

(
1 0
0 −1

)
x .

If we consider ẑ = (1
1

)
, B+(ẑ) is given by all ζ = (

ζ1
1−ζ1

)
for 0 ≤ ζ1 ≤ 1. Since

Hζ (p) = ζ1

2
‖p‖2 + 1 − ζ1

4
‖p‖4,

DHζ (p) = ζ1 p + (1 − ζ1)‖p‖2 p,
U0,ζ (x) = ζ · Ax,

DU0,ζ (x) = AT ζ,

where AT denotes the transpose of the matrix A. Solving the system of ODEs (16), we obtain
⎧
⎨

⎩

Xζ (t, x) = x + t
[
ζ1 + (1 − ζ1)‖AT ζ‖2] AT ζ

Vζ (t, x) = ζ · Ax + t
[ 1
2 ζ1‖AT ζ‖2 + 3

4 (1 − ζ1)‖AT ζ‖4]
Pζ (t, x) = AT ζ

We want to calculate Zζ (t, x) such that

Xζ (t, Zζ (t, x)) = x,

which gives

Zζ (t, x) = x − t
[
ζ1 + (1 − ζ1)‖AT ζ‖2

]
AT ζ.

Now we can calculate

Uζ (t, x) = Ax − t[ζ1 + (1 − ζ1)‖AT ζ‖2]AAT ζ + t

( 1
2‖AT ζ‖2
3
4‖AT ζ‖4

)
+ H+(ζ ).
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In particular, for x0 = (1
2

)
and t = 1 the curve γζ (1, x0) = Ax0 − [ζ1 + (1 −

ζ1)‖AT ζ‖2]AAT ζ + ( 1
2 ‖AT ζ‖2
3
4 ‖AT ζ‖4

)
is plotted in the following figure:

while in the next two figures there are some half-spaces (corresponding to ζ = (1
0

)
,

( 3/(3+√
3)√

3/(3+√
3)

)
,
(1/2
1/2

)
,
( 1/(1+√

3)√
3/(1+√

3)

)
,
(0
1

)
) and their intersection, which is an approximation of the

corresponding solution U (1, x0).

It is possible to see that the hypothesis (22) holds andU (t, x) is a solution of theHamilton-
Jacobi equation.

In the following example hypothesis (22) does not hold.

Example 3.8 Like before, we choose Rn = R
d = R

2 and C = R
2+. The Hamiltonian and

the initial condition are

H0(p) =
( 1

2‖p‖2
1
2‖p + p0‖2

)
+ C, H(p, ζ ) = H0(p) + C, U0(x) =

( 1
2‖x‖2
1
2‖x‖2

)
.
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For ζ = (
ζ1

1−ζ1

) ∈ B+(ẑ), where ẑ is the same as in the previous example, we have

Hζ (p) = ζ1

2
‖p‖2 + 1 − ζ1

2
‖p + p0‖2,

DHζ (p) = p + (1 − ζ1)p0,

U0,ζ (x) = 1

2
‖x‖2,

DU0,ζ (x) = x .

The solutions (15) are

⎧
⎨

⎩

Xζ (t, x) = (1 + t)x + t(1 − ζ1)p0
Vζ (t, x) = 1

2 (1 + t)‖x‖2 − 1−ζ1
2 t‖p0‖2

Pζ (t, x) = x

We find that Zζ (t, x) is well defined for any nonnegative t and

Zζ (t, x) = x − t(1 − ζ1)p0
1 + t

.

The solutions uζ (t, x) of (12) are global for any ζ and any x ∈ R
n. Correspondingly, we

obtain

Uζ (t, x) =
(

1
2(1+t)‖x − t(1 − ζ1)p0‖2

1
2(1+t)‖x − t(1 − ζ1)p0‖2 − 1

2 t‖p0‖2
)

+ H+(ζ ).

To check the property (22), the curve that describes Uζ (t, x) is plotted for ζ ∈ B+(ẑ),
x = p0 = (1

0

)
and t = 1:

In the following figures the half-spaces corresponding to ζ = (1
0

)
,
(1/2
1/2

)
and

(0
1

)
are drawn.

It is possible to observe that in the second figure the half-space corresponding to ζ = (1/2
1/2

)

is not on the border of the intersection of the other two half-spaces, so hypothesis (22) is not
fulfilled.
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4 A Scalarization Solution for a Multiobjective Calculus of Variations
Problem

Let us consider the continuous lower bounded functions

L : Rn → R
d , U0 : Rn → R

d

where L is the running cost or Lagrangian and U0 is the initial cost.
For any (t, x) ∈ [0,+∞) × R

n , define the set of admissible arcs:

Y (t, x) = {y ∈ W 1,1([0, t],Rn) | y(t) = x} .

In [12] the problem of ‘minimizing’ the cost functional Jt : W 1,1([0, t],Rn) → R
d

Jt [y] =
∫ t

0
L(s, y(s), ẏ(s)) ds +U0(y(0))

with respect to y ∈ Y (t, x) was considered.
In order to precise the meaning of the previous minimization, we consider the functions:

L : Rn → G(Rd ,C)

J t : W 1,1([0, t],Rn) → G(Rd ,C)

defined by the inf-extension L(s, y, z) = L(s, y, z) + C and

J t [y] =
∫ t

0
L(s, y(s), ẏ(s)) ds +U0(y(0)),

where the integral is in the Aumann sense (see [2] or [1]).
Now the problem can be written:

minimize J t [y] over all arcs y ∈ Y (t, x) . (26)

Since the functional J t maps into the complete lattice G(Rd ,C), the value function is well
defined:

U (t, x) = inf
y∈Y (t,x)

J t [y]. (27)

Let L : Rn → G(Rd ,C) be a convex function. For any ζ ∈ B+(ẑ) let Lζ (p) = L(p) · ζ

be such that

lim‖p‖→+∞
Lζ (p)

‖p‖ = +∞ (28)

and let U0,ζ (x) = U0(x) · ζ be Lipschitz continuous.
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For any ζ ∈ B+(ẑ) there exists wζ such that

inf
w∈Rn

[
t Lζ

(
x − w

t

)
+U0,ζ (w)

]
=
[
t Lζ

(
x − wζ

t

)
+U0,ζ (wζ )

]
. (29)

The element wζ is a ζ -minimizer.
The value functionU (t, x) was proved to be obtained as an infimum over Rn through the

Hopf-Lax formula:

U (t, x) = inf
w∈Rn

[
t L

(
x − w

t

)
+U0(w)

]
. (30)

We prove now that it is sufficient to take the infimum over a smaller set, instead of all Rn .
More precisely, one can consider only the set of the ζ -minimizers, for ζ ∈ B+(ẑ).

Theorem 4.1 Let L : Rn → R
d and U0 : Rn → R

d be continuous functions, L : Rn →
G(Rd ,C) be a convex function and satisfy (28). Then the value function U with values in
G(Rd ,C) is given by the formula

U (t, x) = inf
ζ∈B+(ẑ)

[
t L

(
x − wζ

t

)
+U0(wζ )

]
.

Proof If we denote

V (t, x) = inf
ζ∈B+(ẑ)

[
t L

(
x − wζ

t

)
+U0(wζ )

]
,

it is immediate that V (t, x) ⊆ U (t, x), whereU is defined by (30). Let z0 ∈ U (t, x)\V (t, x).
Since V (t, x) is closed and convex, by the separation theorem there exists a nonzero ξ ∈ R

d

and K ∈ R such that
ξ · z0 < K < ξ · z (31)

for any z ∈ V (t, x). We want to show that ξ ∈ C+. In fact, if not there exists c ∈ C with
ξ · c < 0. Now, if z ∈ V (t, x), also z + λc ∈ V (t, x) for any λ ≥ 0. The following limit
holds

lim
λ→+∞ ξ · (z + λc) = −∞,

but this contradicts inequality (31). It is always possible to consider ξ in B+(ẑ). Now (31)
implies that

ξ · z0 < t Lξ

(
x − wξ

t

)
+U0,ξ (wξ )

and this is not possible. ��
The previous theorem clarifies also that the set of all the linear arcs

yζ (s) = wζ + s

t
(x − wζ )

for ζ ∈ B+(ẑ) forms an infimizer for problem (26) and more precisely a scalarization
solution:

Corollary 4.2 The set
M = {yζ ∈ Y (t, x) | ζ ∈ B+(ẑ)} (32)

is a scalarization solution for problem (26).
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5 Properties of the Set-Valued Fenchel Conjugate

In the following lemma and theorem some properties of the Fenchel conjugate are stated. In
the lemma the link between the set-valued and the scalarized Fenchel conjugate is studied.

Lemma 1 or any ζ ∈ B+(ẑ) the following equalities hold:

L
∗
(p, ζ ) = S(1,ζ )(L

∗
ζ (p)) (33)

inf
z∈L∗

(p,ζ )

ζ · z = L∗
ζ (p). (34)

Proof The Fenchel conjugate L
∗
(p, ζ ) is defined as the supremum over Rn of S(p,ζ )(x) −ζ

L(x). Each of the half-spaces can be written as

S(p,ζ )(x) −ζ L(x) = (p · x − Lζ (x))ẑ + H+(ζ ).

Since the half-spaces are parallel, we have

sup
x∈Rn

[
S(p,ζ )(x) −ζ L(x)

] =
⋂

x∈Rn

[
S(p,ζ )(x) −ζ L(x)

]

=
[
sup
x∈Rn

(p · x − Lζ (x))

]
ẑ + H+(ζ )

= L∗
ζ (p)ẑ + H+(ζ ).

This proves (33) and (34). ��
In the assumption that Lζ is C2, coercive (hypothesis (28)) and strictly convex, some

well-known properties of the Fenchel conjugate (see for example [3]) hold:

DL∗
ζ (p0) = (DLζ )

−1(p0),

D2L∗
ζ (p0) = [

D2Lζ (DL∗
ζ (p0))

]−1
,

L∗
ζ (p0) = p0 · DL∗

ζ (p0) − Lζ (DL∗
ζ (p0)).

(35)

In the next theorem the previous properties are extended to the set-valued case.

Theorem 5.1 Given ζ ∈ B+(ẑ), suppose that L is of class C2, satisfies (28) and Lζ (p) is
strictly convex. Then L

∗
(p, ζ ) is twice differentiable in p with respect to ζ and

Dζ,pL
∗
(p0, ζ )(p) = S((DLζ )−1(p0),ζ )(p), (36)

D2
ζ,pL

∗
(p0, ζ )(p1, p2) = S(

pT1 [D2Lζ (DL∗
ζ (p0))]−1,ζ

)(p2) (37)

L
∗
(p0, ζ ) = S(

DL∗
ζ (p0),ζ

)(p0) −ζ L
(
DL∗

ζ (p0)
)
, (38)

where pT1 is the transpose of the vector p1.

Proof In order to calculate the first derivative of L
∗
(·, ζ ) at p0 ∈ R

n in the direction p ∈ R
n

with respect to ζ , we must study the limit

lim
h→0+

1

h

[
L

∗
(p0 + hp, ζ ) −ζ L

∗
(p0, ζ )

]
.
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Using the previous lemma, we obtain

1

h

[
L

∗
(p0 + hp, ζ ) −ζ L

∗
(p0, ζ )

]

=
{
z ∈ R

d | ζ · z ≥ 1

h

[
inf

z1∈L∗
(p0+hp,ζ )

ζ · z1 − inf
z2∈L∗

(p0,ζ )

ζ · z2
]}

=
{
z ∈ R

d | ζ · z ≥ 1

h

[
L∗

ζ (p0 + hp) − L∗
ζ (p0)

]}

and it is possible to calculate the limit

Dζ,pL
∗
(p0, ζ )(p) =

{
z ∈ R

d | ζ · z ≥ DL∗
ζ (p0) · p

}
.

The first equation in (35) completes the proof of (36).
In order to study the second derivative, we calculate

1

h

[
Dζ,pL

∗
(p0 + hp2, ζ )(p1) −ζ Dζ,pL

∗
(p0, ζ )(p1)

]

= 1

h

[
S((DLζ )−1(p0+hp2),ζ )(p1) −ζ S((DLζ )−1(p0),ζ )(p1)

]
.

Using the first equation in (35), we obtain

1

h

[
S((DLζ )−1(p0+hp2),ζ )(p1) −ζ S((DLζ )−1(p0),ζ )(p1)

]

= 1

h

[
S(DL∗

ζ (p0+hp2),ζ )(p1) −ζ S(DL∗
ζ (p0),ζ )(p1)

]

=
{
z ∈ R

d | ζ · z ≥ 1

h

[
DL∗

ζ (p0 + hp2) − DL∗
ζ (p0)

] · p1
}

and, taking the limit,

D2
ζ,pL(p0)(p1, p2) =

{
z ∈ R

d | ζ · z ≥ pT1 D
2L∗

ζ (p0)p2
}

and this with the second equation in (35) completes the proof of (37).
By (33), we have

L
∗
(p0, ζ ) = S(1,ζ )(L

∗
ζ (p0)).

Using the third property in (35), we may write

L
∗
(p0, ζ ) = S(1,ζ )(p0 · DL∗

ζ (p0) − Lζ (DL∗
ζ (p0)))

= S(DL∗
ζ (p0),ζ )(p0) −ζ L(DL∗

ζ (p0)).

��
Remark 5.2 If we apply the Fenchel conjugate twice

L
∗∗

(p, ζ ) = sup
q∈Rn

[S(p,ζ )(q) −ζ L
∗
(q, ζ )]

for ζ ∈ B+(ẑ) and if L is convex, it is easy to see that
⋂

ζ∈B+(ẑ)

L
∗∗

(p, ζ ) = L(p).

See for example [10] for a generalization of the Fenchel-Moreau theorem.
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6 The Scalarization Solution and The Characteristic Curves

Let L : Rn → R
d and U0 : Rn → R

d be continuous functions, L : Rn → G(Rd ,C) be a
convex function and satisfy (28). The value function (27) of the minimization problem (26)
has the property (9), as it is stated in the following lemma.

Lemma 2 he value function (27) of the minimization problem (26) is such that for any ζ ∈
B+(ẑ)

U (t, x) + H+(ζ ) = uζ (t, x)ẑ + H+(ζ ),

where

uζ (t, x) = t Lζ

(
x − wζ

t

)
+U0,ζ (wζ ),

for wζ as in (29).

Proof Recalling the Hopf-Lax formula, one has that

uζ (t, x) = inf
z∈U (t,x)

ζ · z = inf
w∈Rn

[
t Lζ

(
x − w

t

)
+U0,ζ (w)

]

= t Lζ

(
x − wζ

t

)
+U0,ζ (wζ ).

��
The value function was proved in [12] to satisfy a Hamilton-Jacobi equation and we report

here the result:

Theorem 6.1 Let (t, x) ∈ [0,+∞) × R
n, ζ ∈ C+, ‖ζ‖ = 1. Let L be convex, (28) be

satisfied, U0,ζ be Lipschitz on R
n and L, U0 be of class C2. If wζ is as in (29), let the sum

of the hessian matrices
1

t
HLζ

(
x − wζ

t

)
+ HU0,ζ (wζ )

be non-singular.
Then the value function U (t, x) is a solution of the Hamilton-Jacobi equation

Ut,ζ (t, x) + L
∗
(Duζ (t, x), ζ ) = H+(ζ )

The following proposition shows the link between the scalarization solution of the calculus
of variations problem (26) described in (32) and the characteristic curves for the correspond-
ing Hamilton-Jacobi equation.

Proposition 6.2 For any ζ ∈ B+(ẑ) suppose that L is C2(Rn;Rd), satisfies (28) and Lζ (p)
is strictly convex. Suppose also that the functions U0,ζ are Lipschitz and of class C1. The
elements yζ of the set M defined in (32) are such that

yζ (s) = Xζ (s, wζ ), (39)

with wζ as in (29).

This results shows that there is a scalarization solution which is formed by characteristic
curves.

Finally, in the following theorem it is proved that the value function obtained through
the Hopf-Lax formula in (30) and the solution obtained by the characteristic method of
Theorem 3.3 coincide:
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Theorem 6.3 Let the hypotheses of Theorem 3.3 and Theorem 6.1 be fulfilled. Then the value
function obtained through theHopf-Lax formula (30) and the solution of theHamilton-Jacobi
equation obtained through the characterics method (24) coincide.

Proof First, we apply the characteristic method when H(p, ζ ) = L
∗
(p, ζ ), obtaining, since

Hζ (p) = L∗
ζ (p), that

Xζ (t, x) = x + t DL∗
ζ (DU0,ζ (x))

and that Zζ (t, x) is such that

DL∗
ζ (DU0,ζ (Zζ (t, x))) = x − Zζ (t, x)

t
. (40)

By definition (23) and using (38), we have

Vζ (t, x) =U0(x) + t
[(

H+(ζ ) −ζ L
∗
(DU0,ζ (x), ζ )

)

+ Dζ,pL
∗
(DU0,ζ (x), ζ )(DU0,ζ (x))

]

=U0(x) + t

[(
H+(ζ ) −ζ

(
S(

DL∗
ζ (DU0,ζ (x)),ζ

)(DU0,ζ (x))

−ζ L(DL∗
ζ (DU0,ζ (x)))

))+ Dζ,pL
∗
(DU0,ζ (x), ζ )(DU0,ζ (x))

]
.

Since for any A, B ∈ G(Rd ,C), not both equal to R
d (the infimum in the direction ζ is not

−∞) and not both equal to ∅, the equation H+(ζ )−ζ (A−ζ B) = B−ζ A holds, one obtains,
using (35) and (36),

Vζ (t, x) =U0(x) + t

[(
L(DL∗

ζ (DU0,ζ (x)) −ζ S(
DL∗

ζ (DU0,ζ (x)),ζ
)(DU0,ζ (x))

)

+ Dζ,pL
∗
(DU0,ζ (x), ζ )(DU0,ζ (x))

]

=U0(x) + t
[(

L(DL∗
ζ (DU0,ζ (x)) −ζ Dζ,pL

∗
(DU0,ζ (x), ζ )(DU0,ζ (x))

)

+ Dζ,pL
∗
(DU0,ζ (x), ζ )(DU0,ζ (x))

]
.

For any A, B ∈ G(Rd ,C), with inf z∈B ζ ·z �= ±∞, there holds (A−ζ B)+B = A+H+(ζ ).
This means that

Vζ (t, x) = U0(x) + t
[
L(DL∗

ζ (DU0,ζ (x)) + H+(ζ )
]
.

Using (40), we obtain for the characteristic solution

Uch
ζ (t, x) = Vζ (t, Zζ (t, x))

= U0(Zζ (t, x)) + t
[
L(DL∗

ζ (DU0,ζ (Zζ (t, x))) + H+(ζ )
]

= U0(Zζ (t, x)) + t

[
L

(
x − Zζ (t, x)

t

)
+ H+(ζ )

]

and
Uch(t, x) = sup

ζ∈B+(ẑ)
Uch

ζ (t, x).

Let U (t, x) be as in Theorem 4.1. From (39) it derives that x = Xζ (t, wζ ) and con-
sequently that wζ = Zζ (t, x). Now, if z ∈ U (t, x), for any ζ ∈ B+(ẑ) the inequality
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ζ · z ≥ t Lζ

(
x−wζ

t

)
+ U0,ζ (wζ ) implies that z ∈ Uch(t, x). Using a separation argument

like in Theorem 4.1, it is possible to conclude that Uch(t, x) = U (t, x). ��

7 Conclusions and Open Problems

In this paper the problem of the characteristics for set-valued Hamilton-Jacobi equations is
studied. This problem comes from the minimization of a multiobjective Lagrangian, studied
in [12]. The results that are presented here are in agreement with the solutions found in the
other paper.

The set-valued approach allows to solve the Hamilton-Jacobi equations keeping all its
complexity, while a scalarization approach forgets about the other dimensions. The results
obtained describe very much the set-valued nature of the problem considered, without sim-
plifying it.

In any case, the technique uses the scalarizations and this gives rise to the following
interesting open problems. First, it is still not clear whether there is a different approach that
permits to avoid hypothesis (22) and solve the cases like Example 3.8, where the situation is
very simple in all the scalarizations, but the set-valued approach is not applicable. Secondly,
what is the choice of Hamiltonian function and/or initial data that triggers the failure of
hypothesis (22)? It may be important to use different kinds of scalarizations.
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