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Received: 9 April 2022 / Accepted: 24 January 2023 /
© The Author(s) 2023

Abstract
In this paper we study the asymptotic behaviour of multivalued processes which are under
the influence of impulsive action. We provide conditions to guarantee the existence of a
pullback attractor and we illustrate the results with several examples.
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1 Introduction

The theory of attractors for nonautonomous dynamical systems has been well-studied in the
last few years (see for example [1–7]). An attractor usually gives us information about the
long-term behaviour of the solutions of the system. Here we will focus on the study of the
multivalued situation, that is, when we may have more than one solution for a given initial
data. These dynamical systems include, for example, some reaction-diffusion equations,
other models of physics or differential inclusions. Some results can be found on [1, 4, 7–11].

Furthermore, solutions can experience discontinuities, that is, continuous trajectories
could have perturbations or changes in their state when they reach a certain set in the phase
space. These changes can be interpreted as jumps or some forced corrections in order to
avoid undesirable situations. The analysis of systems with impulsive perturbations has been
studied during the last 30 years, see for example the monographs [12, 13]. The theory of
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impulsive dynamical systems can be traced back to the 1970’s, see [14, 15]. In [16, 17] it
was studied the evolution of such systems and in [18, 19] some results were obtained related
to the continuity of the impact time map (see (2) for the definition). More recently, there
have been results on the existence of different types of attractors and some properties for
different types of systems, most of them in the autonomous situation, see for example [20–
24]. There are also several results regarding the stability and control theory of these systems,
see for example [25–29]

In this paper we focus on the study of the dynamics of systems in the nonautonomous
and impulsive multivalued situation. For example, in [23, 30, 31] they consider autonomous
multivalued dynamical systems. We study the nonautonomous situation and we give con-
ditions in order to guarantee the existence of the pullback attractor. In order to do that,
we define the notion of impulsive generalized process, we state some properties, and later
we prove the existence of the pullback attractor. In Section 2 we recall some facts about
generalized processes and multivalued processes and we define the notion of impulsive gen-
eralized process (which consists of a generalized process G , an impulsive family of sets M̂

and a collection of multifunctions I ). Then we study some properties of these processes.
In Section 3 we define the notion of pullback attractor for these systems and we give con-
ditions to guarantee its existence. In Section 4 we present some applications of the results.
Finally, in an appendix we include the proofs of some results of Section 3.

2 Impulsive Generalized Processes

Let (X, d) be a complete metric space. The following definitions can be found, for example,
in [6].

Definition 1 A generalized process G = {G (t)}t∈R in X is a family of sets G (t) consisting
of functions ϕ : [t, +∞) −→ X satisfying:

(G1) (Existence) For each t ∈ R and x ∈ X, there exists at least one ϕ ∈ G (t) such that
ϕ(t) = x.

(G2) (Translation) If ϕ ∈ G (t) and s ≥ 0, then the map ϕ+s ∈ G (t + s), with ϕ+s =
ϕ |[t+s,+∞).

(G3) (Upper semicontinuity with respect to initial data) If {ϕn}n ⊂ G (s) and ϕn(s) −→ x,
then there exist a subsequence {ϕnk

}k of {ϕn}n and ϕ ∈ G (s) with ϕ(s) = x such
that ϕnk

(t) −→ ϕ(t) as k → ∞ for each t ≥ s.

In this work we will assume that:

(G4) (Continuity) Every map ϕ : [τ, +∞) −→ X in G (τ ) is continuous.

Definition 2 We say that a generalized process G = {G (t)}t∈R is exact (or strict) if it
satisfies the following condition:

(G5) (Concatenation) If ϕ ∈ G (τ ), ψ ∈ G (r) and ϕ(s) = ψ(s) for some s ≥ r ≥ τ , then
θ ∈ G (τ ), with θ defined as

θ(t) :=
{

ϕ(t), t ∈ [τ, s],
ψ(t), t > s.
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Definition 3 Let G be a generalized process. A multivalued process {U(t, s)}t≥s is a family
of multivalued operators U(t, s) : P(X) −→ P(X) defined as

U(t, s)D := {ϕ(t) : ϕ ∈ G (s), ϕ(s) ∈ D}.

This multivalued process satisfies:

1. U(t, t)x = x for all t ∈ R and x ∈ X

2. U(t, s)x ⊂ U(t, τ ) (U(τ, s)x) for all s ≤ τ ≤ t and x ∈ X.

Furthermore, if we have an exact generalized process, then on the second property we have
an equality, that is,

U(t, s) = U(t, τ )U(τ, s).

We recall for completeness the following result. Its proof can be seen, for example, in [32,
Theorem 2.2], for the autonomous case.

Proposition 1 Let G be an exact generalized process, s ∈ R and {ϕn}n, ϕ elements of G (s)

such that ϕn(t) converges to ϕ(t) for all t > s. Then ϕn(t) converges to ϕ(t) uniformly for
t in compact subsets of (s,∞). In particular, we have the following property:⎧⎪⎨

⎪⎩
If {ϕn}n ⊂ G (s) and ϕn(s) −→ x, then there exist a subsequence

{ϕnk
}k and ϕ ∈ G (s) with ϕ(s) = x and ϕnk

(t) −→ ϕ(t)

uniformly for t in compact subsets of (s,∞).

This result, in general, is not valid for compact subsets of [s, ∞). Examples can be found
in [33] or in [32, Section 6.2].

Definition 4 Let G be a generalized process and D̂ = {D(t)}t∈R a family of sets. We say
that:

• D̂ is positively invariant if U(t, s)D(s) ⊂ D(t) for all t ≥ s.
• D̂ is negatively invariant if D(t) ⊂ U(t, s)D(s) for all t ≥ s.
• D̂ is invariant if D̂ is both positively and negatively invariant.

Definition 5 Let D be a collection of non-empty families of sets. We say that D is
inclusion-closed if for any D̂ = {D(t)}t∈R ∈ D and any D̂1 = {D1(t)}t∈R with ∅ 	=
D1(t) ⊂ D(t) for all t ∈ R, then D̂1 ∈ D. Any collection of non-empty family of sets
which is inclusion-closed is called a universe.

In applications, the two usual examples of universes are the “bounded universe” DB ,
which consists of all the families {D(t)}t∈R such that there exists B a bounded set with
D(t) ⊂ B for all t ∈ R; and the “tempered universe”, consisting of families {D(t)}t∈R such
that the map

t 
−→ sup{‖x‖ : x ∈ D(t)}
grows subexponentially when t → −∞. See for example [3, 34].

From now on, D will denote an arbitrary universe. We need to give some sense to the
word “attraction”. In order to do that, we consider the following definition of pullback
attraction, see [3, Chapter 1] for more information.
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Definition 6 Let Â and B̂ be two families of sets. We say that Â pullback attracts B̂ if

lim
s→−∞ dH (U(t, s)B(s), A(t)) = 0 for each t ∈ R,

where dH denotes the Hausdorff semidistance, which is given by

dH (C,D) := sup
c∈C

inf
d∈D

d(c, d).

We remark that dH (C,D) = 0 only implies that C ⊂ D. We recall here the definition
of upper semicontinuity of multifunctions, as well as a known result in set-valued analysis
which is useful in the study of the upper semicontinuity. The proof of this result can be
found in [35]

Definition 7 Let X and Y be two metric spaces. A multifunction F : X −→ P(Y ) is
upper semicontinuous at x ∈ X if for every open neighborhood V of F(x) there exists an
open neighborhood U of x such that F(U) ⊂ V .

Proposition 2 Let X and Y be two metric spaces. A multifunction F : X −→ P(Y )

is upper semicontinuous and compact valued at x ∈ X if and only if for every sequence
xn −→ x and every sequence yn ∈ F(xn), there exist a subsequence {ynk

}k and y ∈ F(x)

such that {ynk
}k converges to y.

Definition 8 A family of sets D̂ = {D(t)}t∈R will be called collectively closed if for any
tn −→ t and xn ∈ D(tn) with xn −→ x we have x ∈ D(t). It will be called collec-
tively compact if for any tn −→ t and xn ∈ D(tn), the sequence {xn}n has a convergent
subsequence with limit in D(t).

After all these definitions, we are in position to define the notion of impulsive generalized
process. The goal of this paper is to study these type of processes.

Definition 9 An impulsive generalized process (G , M̂, I ) consists of a generalized process
G , a collectively closed family of sets M̂ = {M(t)}t∈R such that for every s ∈ R, x ∈ M(s)

and ϕ ∈ G (s) with ϕ(s) = x,

∃ ε = ε(ϕ, s) > 0 such that
⋃

r∈(0,ε)

{ϕ(s + r)} ∩ M(s + r) = ∅, (1)

and collection of collectively upper semicontinuous multifunctions which are compact-
valued I = {It : M(t) −→ P(X)}t∈R, that is:

for every sequences tn −→ t, xn −→ x and yn ∈ Itn (xn), there exists

a convergent subsequence {yn}n with limit in It (x).

Remark 1 Condition (1) is different from some previous papers (cf. [24, 30]), which also
include a condition on ϕ “backwards” in time, that is, before “touching” the set M̂ . See
also [36, Remark 2].

Let (G , M̂, I ) be an impulsive generalized process. For each s ∈ R and ϕ ∈ G (s), we
define the impact time map by

φ(ϕ, s) := inf{t > 0 : ϕ(s + t) ∈ M(s + t)}, (2)
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and we denote φ(ϕ, s) = ∞ if ϕ(s + t) /∈ M(s + t) for all t > 0.

Proposition 3 The map φ(ϕ, s) > 0 for all s ∈ R and ϕ ∈ G (s).

Proof Fix s ∈ R and ϕ ∈ G (s). If ϕ(s) ∈ M(s), then φ(ϕ, s) ≥ ε, with ε given by (1).
If ϕ(s) /∈ M(s) and φ(ϕ, s) = 0, then there exists a sequence {rn}n of positive numbers
convergent to 0 such that ϕ(s + rn) ∈ M(s + rn). As ϕ is continuous and M̂ is collectively
closed, then ϕ(s) ∈ M(s), a contradiction.

Remark 2 If φ(ϕ, s) 	= ∞, then ϕ(s + φ(ϕ, s)) ∈ M(s + φ(ϕ, s)).

This positive number, if it exists, is the smallest number such that ϕ(s + t) ∈ M(s + t),
meaning that if ϕ(r) ∈ M(r) for some r > s, then s + φ(ϕ, s) ≤ r . We note that this
is a generalization of the impact time map in the single-valued case (see [24]), which was
defined as a function from X ×R. The properties of this map will help us understand better
the evolution of the impulsive trajectories, which will be defined next. This definition of
impulsive trajectories is a generalization from the single-valued case.

Definition 10 Given s ∈ R, a map ϕ̃ : [s, ω) −→ X, with ω ∈ (s,+∞), will be called
an impulsive trajectory of (G , M̂, I ) if there exists a division of [s, ω) into a family of
subintervals

[s, ω) = [t0, t1) ∪ [t1, t2) ∪ · · ·
with t0 = s, tk < tk+1 and the union could be finite or not finite. Furthermore, for each k,
there exists ϕk ∈ G (tk) satisfying:

(i) φ(ϕk, tk) = ∞ or φ(ϕk, tk) = tk+1 − tk ,
(ii) ϕ̃(t) = ϕk(t) for t ∈ [tk, tk+1),

(iii) if φ(ϕk, tk) 	= ∞, then ϕ̃(tk+1) ∈ Itk+1(ϕk(tk+1)).

The times tk will be called jump times of ϕ̃, the family of impulsive trajectories starting
at s will be denoted by G̃ (s), and we will also denote G̃ = {G̃ (s)}s∈R.

From the previous definition, our first result is existence of (local) impulsive impulsive
trajectories. It follows from the existence property (G1) in the definition of generalized
processes (see Definition 1).

Proposition 4 For each s ∈ R and x ∈ X, there exists ϕ̃ ∈ G̃ (s), defined on an interval
[s, ω), with ω > s, such that with ϕ̃(s) = x.

Proof By definition of impulsive trajectory and (G1), there exists ϕ0 ∈ G (s) with ϕ0(s) =
x. If φ(ϕ0, s) = ∞, then ϕ̃(t) = ϕ0(t) for all t ≥ s. On the other hand, if φ(ϕ0, s) 	= ∞,
then φ(ϕ0, s) > 0. Denote t1 := s + φ(ϕ0, s). We have that ϕ0(t1) ∈ M(t1). Take x1 ∈
It1(ϕ0(t1)) and ϕ1 ∈ G (t1) with ϕ1(t1) = x1. If φ(ϕ1, t1) = ∞, then we define

ϕ̃(t) =
{

ϕ0(t), s ≤ t < t1,

ϕ1(t), t1 ≤ t .

If φ(ϕ1, t1) is finite, we denote t2 = t1 + φ(ϕ1, t1), and then ϕ1(t2) ∈ M(t2). Take x2 ∈
It2(ϕ1(t2)) and ϕ2 ∈ G (t2) with ϕ2(t2) = x2. We continue analogously.
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We introduce next a condition which will be used through the paper in order to prove the
main results.

Iτ (M(τ)) ∩ M(τ) = ∅ ∀ τ ∈ R. (I)

With this condition, we are able to prove the following useful result.

Proposition 5 Let (G , M̂, I ) be an impulsive generalized process satisfying Condition (I).
Then, for each s ∈ R, ϕ̃ ∈ G̃ (s) and t ∈ (s, ω), with the interval (s, ω) the domain of
definition of the impulsive trajectory ϕ̃, we have ϕ̃(t) /∈ M(t).

From now on we will assume:

Every impulsive trajectory is defined on [s, +∞). (3)

From the definition of impulsive trajectories we can define a new family of multivalued
maps {Ũ (t, s)}t≥s , given by Ũ (t, s) : P(X) −→ P(X) and defined as

Ũ (t, s)D := {ϕ̃(t) : ϕ̃ ∈ G̃ (s), ϕ̃(s) ∈ D}.

Lemma 6 Let (G , M̂, I ) be an impulsive generalized process. Then

1. G̃ satisfies (G2) and (G5),
2. Ũ (t, s) = Ũ (t, τ )Ũ(τ, s) for any s ≤ τ ≤ t .

The definitions of invariance and pullback attraction for Ũ are analogous, just replace U

by Ũ .

3 Existence of the Pullback Attractor

Definition 11 Let (G , M̂, I ) be an impulsive generalized process. We say that a family
Â ∈ D is a pullback D-semi attractor if:

(a) A(t) is compact for all t ∈ R,
(b) Â pullback attracts each D̂ ∈ D.

When Â satisfies

(c) the family Â \ M̂ = {A(t) \ M(t)}t∈R is invariant

we will say that Â is a pullback D-attractor.

We remark that a pullback D-semi attractor may not satisfy (c). An example on the
autonomous case can be found in [20] or in [30].

The following result tells us that the pullback D-attractor is unique “up to M̂”.

Proposition 7 Let (G , M̂, I ) be an impulsive generalized process. If Â and B̂ are two
pullback D-attractors, then Â \ M̂ = B̂ \ M̂ .

Proof Fix t ∈ R. We know that B̂ ∈ D, which implies that B̂ \M̂ also belongs to D because
D is a universe. Using the invariance of B̂ \ M̂ we have that

dH (B(t) \ M(t), A(t)) = dH (Ũ(t, s)(B(s) \ M(s)), A(t))
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for any s ≤ t . Using that Â is a pullback D-attractor, taking s −→ −∞ we have that

lim
s→−∞ dH (Ũ(t, s)(B(s) \ M(s)), A(t)) = 0

so dH (B(t) \ M(t), A(t)) = 0, which implies B(t) \ M(t) ⊂ A(t). Interchanging Â and B̂

we get the desired result.

We present the definition of impulsive pullback ω-limit and the related concepts of pull-
back D-asymptotically compactness and pullback D-dissipativeness. These definitions will
turn out to be very important on the construction of the pullback D-semi attractors and
pullback D-attractors, and they are a little bit different that the continuous case.

Definition 12 Let D̂ be a family of sets. The impulsive pullback ω-limit set of D̂ at time
t ∈ R, denoted by ω̃(D̂, t), is defined as the set of elements x ∈ X such that there exist
sn −→ −∞, εn −→ 0 and ϕ̃n ∈ G̃ (sn) with ϕ̃n(sn) ∈ D(sn) for each n ∈ N such that
ϕ̃n(t +εn) −→ x. The impulsive pullback ω-limit of D̂ is the family ω̃(D̂) = {ω̃(D̂, t)}t∈R.

Definition 13 We say that G̃ is pullback D-asymptotically compact if for each D ∈ D,
t ∈ R, sn −→ −∞, εn −→ 0 and ϕ̃n ∈ G̃ (sn) with ϕ̃n(sn) ∈ D(sn), then the sequence
{ϕ̃n(t + εn)}n has a convergent subsequence.

Definition 14 We say that G̃ is pullback D-dissipative if there exists B̂0 ∈ D collectively
closed such that for all D̂ ∈ D, t ∈ R, sn −→ −∞ and εn −→ 0, there exists n0 =
n0(D̂, t) ∈ N such that if n ≥ n0, ϕ̃ ∈ G̃ (sn) and ϕ̃(sn) ∈ D(sn), then ϕ̃(t+εn) ∈ B0(t+εn).
The family B̂0 is called pullback D-absorbing family.

The main difference between these three definitions and the related ones in the
continuous case is the presence of the sequence of {εn}n.

3.1 Existence of the Pullback semi Attractor

We present some properties of the impulsive pullback ω-limit in combination with the
previous definitions.

Proposition 8 Let G̃ be a pullback D-asymptotically compact impulsive generalized pro-
cess, D̂ ∈ D and t ∈ R. Then the impulsive pullback ω-limit of D̂, ω̃(D̂), is non-empty,
collectively compact and pullback attracts D̂.

Proof The non-emptiness is trivial. First we prove the collective compactness. Take
tn −→ t and yn ∈ ω̃(D̂, tn). We want to prove that the sequence {yn}n has a convergent
subsequence with limit in ω̃(D̂, t).

For each n ∈ N, we have that yn ∈ ω̃(D̂, tn). Then there exist sn ≤ t −n, |εn| < 1/n and
ϕ̃ ∈ G̃ (sn) with ϕ̃(sn) ∈ D(sn) such that d(ϕ̃n(tn+εn), yn) < 1/n. As δn := tn−t+εn −→
0, we have that {ϕ̃n(t + (tn − t + εn))}n has a convergent subsequence by pullback D-
asymptotical compactness. Thus we may assume that ϕ̃n(t + δn) = ϕ̃n(tn + εn) −→ y for
some y ∈ X. But this implies that y ∈ ω̃(D̂, t). Furthermore,

d(yn, y) ≤ d(yn, ϕ̃n(tn + εn)) + d(ϕ̃(tn + εn), y) −→ 0,

so we can say yn −→ y.
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Finally, we prove that ω̃(D̂) pullback attracts D̂. If ω̃(D̂) does not pullback attract D̂,
there exist t ∈ R, ε > 0, sn −→ −∞ and ϕ̃n ∈ G̃ (sn) with ϕ̃n(sn) ∈ D(sn) for all n ∈ N

such that d(ϕ̃n(t), ω̃(D̂, t)) ≥ ε. But {ϕ̃n(t)}n has a convergent subsequence by the pullback
D-asymptotical compactness, so we may assume that ϕ̃n(t) −→ x for some x ∈ X. But
this implies that x ∈ ω̃(D̂, t), a contradiction with d(ϕ̃n(t), ω̃(D̂, t)) ≥ ε.

Proposition 9 Let G̃ be a pullback D-dissipative impulsive generalized process with B̂0 a
pullbackD-absorbing family. Then for any D̂ ∈ D we have that ω̃(D̂) ⊂ B̂0.

Proof Fix t ∈ R and x ∈ ω̃(D̂, t). Then there exist sn −→ −∞, εn −→ 0 and ϕ̃n ∈ G̃ (sn)

with ϕ̃n(sn) ∈ D(sn) such that ϕ̃n(t + εn) −→ x. The definition of pullback D-dissipative
implies that there exists n0 ∈ N such that if n ≥ n0 we have that

ϕ̃n(t + εn) ∈ B0(t + εn).

As B̂0 is collectively closed, this implies that x ∈ B0(t).

Theorem 10 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
and pullbackD-dissipative. Then there exists a pullback D-semi attractor.

Proof Take Â = ω̃(B̂0), with B̂0 a pullback D-absorbing family. The family Â pullback
D-attracts B̂0 and Â ⊂ B̂0, by Proposition 9. Then Â ∈ D because B̂0 ∈ D and D is a
universe. The family Â is collectively compact by Proposition 8, so A(t) is compact for all
t ∈ R. We have to prove that Â pullback attracts every D̂ ∈ D.

Fix t ∈ R, D̂ ∈ D and ε > 0. We want to prove that there exists r ≤ t such that if s ≤ r

and ϕ̃ ∈ G̃ (s) with ϕ̃(s) ∈ D(s), then d(ϕ̃(t), A(t)) < ε.
We know that Â pullback attracts B̂0, so there exists s0 ≤ t such that if s ≤ s0 and

ϕ̃ ∈ G̃ (s) with ϕ̃(s) ∈ B0(s), then d(ϕ̃(t), A(t)) < ε.
By pullback D-dissipativity, there exists s1 ≤ s0 such that if s ≤ s1 and ϕ̃ ∈ G̃ (s) with

ϕ̃(s) ∈ D(s), then ϕ̃(s) ∈ B0(s).
Finally, take r := s1. If s ≤ r and ϕ̃ ∈ G̃ (s) with ϕ̃(s) ∈ D(s), then we know that

ϕ̃(s0) ∈ B0(s0), so ϕ̃|[s0,∞) ∈ G̃ (s0) and ϕ̃(s0) ∈ B0(s0). This implies that d(ϕ̃(t), A(t)) <

ε because Â pullback attracts B̂0.

3.2 Invariance

In this subsection we find conditions to obtain the invariance of the impulsive pullback ω-
limits. In particular we look for conditions to guarantee the invariance of Â \ M̂ when Â is
a pullback D-semi attractor.

First, we need a condition closely related to (G3) in Definition 1 and to Proposition 1,
but a little stronger.

(G3’) If τn −→ τ , ϕn ∈ G (τn) and ϕn(τn) −→ x, then there is a subsequence {ϕnk
}k of

{ϕn}n and ϕ ∈ G (τ ) with ϕ(τ) = x and satisfying the following condition:

For every {tk}k with tk ≥ τnk
and tk −→ t, we have ϕnk

(tk) −→ ϕ(t).
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Furthermore, we need to add some conditions in order to get the invariance. The first
condition asks about the behavior of the trajectories near the impulsive family M̂ .⎧⎪⎨

⎪⎩
Fix s ∈ R, x ∈ X \ M(s), {ϕn}n a sequence in G (s)

and ϕ ∈ G (s) such that ϕ(s) = x and ϕn(t) −→ ϕ(t)

for each t ≥ s. Then lim inf
n→∞ φ(ϕn, s) ≤ φ(ϕ, s).

(NT)

The second condition implies some restrictions on the jump times.{
There exists ξ > 0 such that φ(ϕ, s) � 2ξ for all s ∈ R

and ϕ ∈ G̃ (s) with ϕ(s) ∈ Is(M(s)).
(H)

Remark 3 Condition (NT) generalizes other conditions in the literature, for example the
tubes conditions in [20–22] or Condition (T) in [30].

This means that if an impulsive generalized process satisfies the tubes conditions or
Condition (T) in [30], then it satisfies Condition (NT).

Remark 4 Condition (H) implies (3), that is, all impulsive trajectories are defined until
+∞. It also implies that if ϕ̃ ∈ G̃ (s) and t1 < t2 are two different jump times of ϕ̃, then
t2 − t1 ≥ 2ξ .

Theorem 11 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
satisfying Conditions (G3’), (H), (I) and (NT). Then ω̃(D̂) \ M̂ is negatively invariant for
any D̂ ∈ D.

The proof of this result is shown in the appendix. The following result tells us that, in the
particular case that ω̃(D̂) is a pullback D-semi attractor, then negative invariance implies
positive invariance.

Theorem 12 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
and pullback D-dissipative, Â a pullback D-semi attractor such that Â \ M̂ is negatively
invariant and G̃ satisfies Condition (I). Then Â \ M̂ is also positively invariant.

Proof Let t > s. The negative invariance of Â \ M̂ implies that

B(s) ⊂ Ũ (s, s − n)B(s − n)

for any n ∈ N, with B(r) = A(r)\M(r). This implies that Ũ (t, s)B(s) ⊂ Ũ (t, s −n)B(s −
n), so we can say

dH

(
Ũ (t, s)B(s), A(t)

)
≤ dH

(
Ũ (t, s − n)B(s − n), A(t)

)
.

We have that Â \ M̂ ∈ D, which implies that

lim
n→∞ dH

(
Ũ (t, s − n)B(s − n),A(t)

)
= 0.

As a consequence we can say that

dH

(
Ũ (t, s) (A(s) \ M(s)) , A(t)

)
= 0,
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that is, Ũ (t, s) (A(s) \ M(s)) ⊂ A(t). Finally, Proposition 5 implies the positive invariance.

Corollary 13 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
and pullback D-dissipative, Â a pullback D-semi attractor such that Â \ M̂ is negatively
invariant and G̃ satisfies Condition (I). Then Â is a pullbackD-attractor.

Positive invariance can also be proved for impulsive pullback ω-limits different from the
pullback D-semi attractor, but it requires more work. However, the idea is similar as the
negative invariance case. The proof of the next result will be given in the Appendix.

Theorem 14 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
satisfying Conditions (G3’), (H), (I) and (NT). Then ω̃(D̂) \ M̂ is positively invariant for
any D̂ ∈ D.

Corollary 15 Let G̃ be a pullbackD-asymptotically compact impulsive generalized process
satisfying Conditions (G3’), (H), (I) and (NT). Then ω̃(D̂) \ M̂ is invariant for any D̂ ∈ D.

4 Examples

In this section we provide some examples and applications of the previous results.

Example 1 Let F : R × R −→ P(R) be given by

F(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−|cos(t)|x, |x| > 1,

x (|cos(t)| − 1/2) − 1/2, −1 < x < 0,

x (|cos(t)| − 1/2) + 1/2, 0 < x < 1,

[−|cos(t)|, |cos(t)|], x ∈ {−1, 1},
[−1/2, 1/2], x = 0;

and consider the ordinary differential inclusion

x ′(t) ∈ F(t, x(t))

The solutions of the differential inclusion are absolutely continuous functions. Given an
initial data (τ, xτ ), we will say that x : [τ, +∞) −→ R is a solution with initial data (τ, xτ )

if x is absolutely continuous, it satisfies the inclusion for almost every t ≥ τ and x(τ) = xτ .
We have uniqueness of solution if xτ 	= 0. If xτ /∈ {−1, 0, 1}, then the solution is given

by the solution of the differential equation until it reaches 1 or −1 (depending on the sign
of the initial condition). When it reaches 1 or −1, the solution of the differential inclusion
stays at that point. If |xτ | = 1, then the unique solution is the constant function x(t) = xτ

for all t ≥ τ .
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If xτ = 0 then we have infinite many solutions. For any T > τ we have the following
solutions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = 0 for all t ≥ τ

x(t) =

⎧⎪⎨
⎪⎩

0, τ ≤ t ≤ T ,

α(t), T ≤ t ≤ T ∗,
1, T ∗ ≤ t .

x(t) =

⎧⎪⎨
⎪⎩

0, τ ≤ t ≤ T ,

β(t), T ≤ t ≤ T ∗,
1, T ∗ ≤ t .

where α denotes the solution of x′ = x(|cos(t)| − 1/2) + 1/2 with initial data x(T ) = 0
and T ∗ is the time that α reaches 1 (respectively for β and the equation defined for values
between −1 and 0 and the time it reaches −1).

We have an exact generalized process. In order to consider an impulsive generalized
process, we can define, for example, for any t ∈ R,

Mt =
{

6 + arctan(t)

4

}
, It (x) = {5 + sin(t), 3},

and we consider the family of sets {M(t)}t∈R and the collection of multifunctions I =
{It }t∈R. We take D the universe of all time-dependent families D̂ such that there exists a
bounded set D with D(t) ⊂ D for all t ∈ R. It is easy to see that all conditions of an
impulsive generalized process are satisfied, it is pullback D-asymptotically compact and
pullback D-dissipative. Furthermore, Conditions (H), (I) and (NT) are also fulfilled, so we
there exists a pullback D-attractor. It is not hard to see that the pullback D-attractor is given
by

A(t) = [−1, 1] ∪
[

6 + arctan(t)

4
, 5 + sin(t)

]
.

Example 2 The following example is a multivalued generalization of [24, Section 3.2]. Let

 be an open and bounded subset of RN with smooth boundary, and consider the problem⎧⎨

⎩
ut − �u = 0, (x, t) ∈ 
 × (s,+∞),

u(x, t) = 0, (x, t) ∈ ∂
 × (s,+∞),

u(x, s) = us(x), x ∈ 
.
(4)

If us ∈ L2(
) we have uniqueness of solution in L2(
) which is defined for all t ≥ s.
Take {λn}n the eigenvalues of −� with Dirichlet boundary conditions and {en}n the eigen-
functions, which are orthonormal. A classical result says that the eigenvalues are different,
positive, λn < λn+1 and λn −→ +∞. Furthermore, any us ∈ L2(
) is

us =
∞∑

n=1

αnen,

and the unique solution of (4) is given by

U(t, s)us =
∞∑

n=1

αne
−λn(t−s)en.
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For each t ∈ R we define

M(t) =
{
v ∈ L2(
) : ‖v‖ = arctan(t)

π
+ 1

}

and for any v ∈ M(t) with v =
∞∑

n=1

βnen,

It (v) = (β1 + 10 + [− sin(t), sin(t)])e1 +
∞∑

n=2

βnen

We take D as the universe consisting of families D̂ such that the union over all t ∈ R

of all D(t) is bounded. It can be checked that we have an impulsive generalized process,
Conditions (H), (I) and (NT) are satisfied and we also have pullback D-asymptotically com-
pactness and pullback D-dissipativeness. See [24, Section 3.2] for the proof of a similar
case. Then we have a pullback D-attractor Â.

Example 3 Consider the nonautonomous differential inclusion⎧⎪⎪⎨
⎪⎪⎩

∂ u

∂t
− ∂2u

∂x2
∈ b(t)H0(u) + ω(t)u, on (τ,+∞) × (0, 1),

u(0, t) = 0 = u(1, t),

u(τ, x) = uτ (x),

(5)

where b : R −→ R
+, ω : R −→ R

+ are continuous functions with

0 < b0 ≤ b(t) ≤ b1, 0 ≤ ω0 ≤ ω(t) ≤ ω1

and H0 is the Heaviside function, that is,

H0(u) =

⎧⎪⎨
⎪⎩

−1, u < 0,

[−1, 1], u = 0,

1, u > 0.

This problem and similar ones have been studied, for example, in [10, 11, 37], where some
results on the structure of the attractor were obtained.

We say that a continuous map u : [τ, +∞) −→ L2(0, 1) is a strong solution of (5) if

1. u(τ) = uτ

2. For any δ > 0 and T > t + δ, u is absolutely continuous on [t + δ, T ] and u(t) ∈
H 2(0, 1) ∩ H 1

0 (0, 1) for almost all t ∈ (τ, T )

3. there exists r : [τ, +∞) −→ L2(0, 1) such that:

• r(t) ∈ L2(0, 1),
• r(t)(x) ∈ b(t)H0(u(t, x)) + ω(t)u(t, x) for almost all x ∈ (0, 1),
• r ∈ L2(τ, T ; L2(0, 1)) for any T > τ

• du

dt
− �u = r(t), for almost all t ∈ (τ,+∞)

Theorem 16 (Theorem 1 in [10]) For any uτ ∈ L2(0, 1), Problem (5) has at least one
strong solution.

It is also proved that we have a continuous and exact generalized process G = {G (t)}t∈R.
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Let M̂ = {M(t)}t∈R a collectively closed family of sets with M(t) ⊂ L2(0, 1) for all
t ∈ R and I = {It : M(t) −→ P(X)}t∈R a collection of collectively upper semicontinuous
multifunctions such that (G , M̂, I ) is an impulsive generalized process. We will assume that
M̂ and I satisfy Conditions (H), (I) and (NT) and that the impulsive generalized process
is pullback D-dissipative and pullback D-asymptotically compact and it satisfies (G3’).
Then we can say that there exists a pullback D-attractor Â. For example, if we assume that
‖It (u)‖2 ≤ C for some C > 0 and for all t ∈ R and u ∈ M(t) we would have the pullback
D-dissipativeness and the pullback D-asymptotically compactness.

Appendix: Proofs of Theorems 11 and 14

Theorem Let G̃ be a pullback D-asymptotically compact impulsive generalized process
satisfying Conditions (G3’), (H), (I) and (NT). Then ω̃(D̂) \ M̂ is negatively invariant for
any D̂ ∈ D.

Proof We restrict ourselves to the case where t > s and t − s ∈ (0, ξ ]. By recursion the
general case follows easily. Take x ∈ ω̃(D̂, t) \ M(t). We want to prove that there exists
ϕ̃ ∈ G̃ (s) with ϕ̃(s) ∈ ω̃(D̂, s), ϕ̃(s) /∈ M(s) and ϕ̃(t) = x.

As x ∈ ω̃(D̂, t), there exist sn −→ −∞, εn −→ 0 and ϕ̃n ∈ G̃ (sn) with ϕ̃n(sn) ∈ D(sn)

such that ϕ̃n(t + εn) −→ x. Each impulsive trajectory ϕ̃n, which is defined on [sn,+∞),
has Nn ≥ 0 jump times. We consider τn the last jump time on the interval [sn, t + ξ/4]. If
there are no jump times in that interval, we take τn = sn. We will split the proof into three
different cases.

CASE 1. Up to a subsequence (denoted the same), there exists ε ∈ (0, ξ/2) such that
τn < s − ε.

We have that there exist ψn ∈ G (s−ε/2) such that ϕ̃n(r) = ψn(r) for r ∈ [s−ε/2, t+ξ/4],
because τn < s − ε and τn was the last jump time of the trajectory ϕ̃n in [sn, t + ξ/4].

The sequence {ϕ̃n(s − ε/2)}n has a convergent subsequence by pullback D-asymptotical
compactness, so we can assume ϕ̃n(s − ε/2) −→ y, or equivalently ψn(s − ε/2) −→ y.
By the definition of generalized process, in particular (G3), there exist a subsequence (still
denoted the same) and ψ ∈ G (s − ε/2) such that ψ(s − ε/2) = y and ψn(r) −→ ψ(r)

for each r ≥ s − ε/2. We claim that ψ(r) /∈ M(r) for r ∈ [s − ε/2, t]. Suppose that
ψ(r) ∈ M(r) for some r ∈ [s − ε/2, t]. This implies that φ(ψ, s − ε/2) ≤ t − (s − ε/2).
But ϕ̃n has no jump times on [s − ε/2, t + ξ/4], so (t + ξ/4)− (s − ε/2) ≤ φ(ψn, s − ε/2).
Then Condition (NT) would imply that

(t + ξ/4) − (s − ε/2) ≤ φ(ψ, s − ε/2) ≤ t − (s − ε/2),

which is a contradiction.
We have that ϕ̃n(t + εn) = ψn(t + εn) for n sufficiently large, so x = ψ(t). Consider

θ̃ ∈ G̃ (t) such that θ̃ (t) = x and define ψ̃ ∈ G̃ (s) as

ϕ̃(r) =
{

ψ(r), s ≤ r ≤ t,

θ̃ (r), t ≤ r .

We have that ϕ̃(s) = ψ(s) /∈ M(s) and ϕ̃(s) ∈ ω̃(D̂, s) because ϕ̃n(s) = ψn(s) and
ψn(s) −→ ψ(s). This implies that ϕ̃ ∈ G̃ (s), ϕ̃(s) ∈ ω̃(D̂, s) \ M(s) and ϕ̃(t) = x.
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CASE 2. Up to a subsequence (denoted the same), there exists ε ∈ (0, ξ/2) such that
s + ε < τn.

We have that τn ∈ (s + ε, t + ξ/4], so we may assume that τn −→ τ̄ ∈ [s + ε, t + ξ/4].
The sequence {ϕ̃n(t − 3ξ/2)}n has a convergent subsequence by pullback D-asymptotical
compactness, so we may assume ϕ̃n(t −3ξ/2) −→ v. Note that t −3ξ/2 < s. We have that
τn is the only jump time in [t−3ξ/2, t+ξ/4], because |(t+ξ/4)−(t−3ξ/2)| = 7ξ/4 < 2ξ

and Condition (H) applies (see Remark 4). This implies that there exist ψn ∈ G (t − 3ξ/2)

and θn ∈ G (τn) such that

ϕ̃n(r) =
{

ψn(r), t − 3ξ/2 ≤ r < τn,

θn(r), τn ≤ r ≤ t + ξ/4.

By definition of generalized process, there exist a subsequence (still denoted the same)
and ψ ∈ G (t − 3ξ/2) such that ψ(t − 3ξ/2) = v and ψn(r) −→ ψ(r) for r ≥ t −
3ξ/2. This implies that ψn(τn) −→ ψ(τ̄ ) by Proposition 1. The fact that M̂ is collectively
closed implies that ψ(τ̄ ) ∈ M(τ̄ ), because ψn(τn) ∈ M(τn). We also have that θn(τn) =
ϕ̃n(τn) ∈ Iτn(ψn(τn)). By the collective upper semicontinuity of I , there exist a subsequence
of {ϕ̃n(τn)}n (denoted the same) and y ∈ Iτ̄ (ψ(τ̄ )) such that θn(τn) = ϕ̃n(τn) converges to
y. In particular this implies that y ∈ ω̃(D̂, τ̄ ), because ϕ̃n(τn) = ϕ̃n(τ̄ + (τn − τ̄ )).

Using Condition (G3’), there exist a subsequence (denoted the same) and θ ∈ G (τ̄ ) such
that θn(rn) converges to θ(r) for any sequence {rn}n with rn ≥ τn and rn converging to r .
In particular, θn(τn) converges to θ(τ̄ ), so θ(τ̄ ) = y.

We claim that ψ(r) /∈ M(r) for r ∈ (t − 3ξ/2, τ̄ ). If there exists r ∈ [t − 3ξ/2, τ̄ ) such
that ψ(r) ∈ M(r), then

φ(ψ, t − 3ξ/2) ≤ r − (t − 3ξ/2) < τ̄ − (t − 3ξ/2).

But τn was the only jump time of ϕ̃n on [t − 3ξ/2, t + ξ/4], so φ(ψn, t − 3ξ/2) = τn −
(t − 3ξ/2). Finally Condition (NT) implies

τ̄ − (t − 3ξ/2) ≤ φ(ψ, t − 3ξ/2) < τ̄ − (t − 3ξ/2),

a contradiction.
First, take z = ψ(s) ∈ ω̃(D̂, s) because ϕ̃n(s) = ψn(s) and ψn(s) converges to ψ(s).

Then z /∈ M(s) by the previous claim. Consider α̃ ∈ G̃ (t+ξ/4) with α̃(t+ξ/4) = θ(t+ξ/4)

and define

ϕ̃(r) =

⎧⎪⎨
⎪⎩

ψ(r), s ≤ r < τ̄ ,

θ(r), τ̄ ≤ r ≤ t + ξ/4,

α̃(r), t + ξ/4 ≤ r .

Then ϕ̃ ∈ G̃ (s) with ϕ̃(s) ∈ ω̃(D̂, s) \ M(s). We want to prove that ϕ̃(t) = x.

Subcase 1. For a subsequence (denoted the same), τn ≤ t + εn.

This implies that τ̄ ≤ t . Then ϕ̃n(t + εn) = θn(t + εn) −→ θ(t), so x = θ(t) = ϕ̃(t).

Subcase 2. For a subsequence (denoted the same), t + εn < τn.

This implies that t ≤ τ̄ . On the one hand, if t = τ̄ , then ϕ̃n(t + εn) = ψn(t + εn), which
converges to ψ(t) = ψ(τ̄ ) ∈ M(τ̄ ) by Proposition 1, so x = ψ(τ̄ ) ∈ M(t), a contradiction.
This implies that t cannot be equal to τ̄ in this Subcase. On the other hand, if t < τ̄ , then
ϕ̃n(t + εn) = ψn(t + εn), which converges to ψ(t) = ϕ̃(t), so x = ϕ̃(t).

CASE 3. τn converges to s.
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We have that τn is the only jump time of ϕ̃n in (t − 3ξ/2, t + ξ/4) for n sufficiently large.
Then there exist ψn ∈ G (t − 3ξ/2) and θn ∈ G (τn) such that

ϕ̃n(r) =
{

ψn(r), t − 3ξ/2 ≤ r < τn,

θn(r), τn ≤ r ≤ t + ξ/4.

The sequence {ϕ̃n(t − 3ξ/2)}n has a convergent subsequence by pullback D-asymptotical
compactness, so we may assume ϕ̃n(t −3ξ/2) −→ v, with v ∈ X. By definition of general-
ized process, there exist a subsequence (still denoted the same) and ψ ∈ G (t − 3ξ/2) such
that ψ(t−3ξ/2) = v and ψn(r) −→ ψ(r) for r ≥ t−3ξ/2. This implies that ψ(s) ∈ M(s),
because ψn(τn) ∈ M(τn), M̂ is collectively closed and Proposition 1 applies. Furthermore,
θn(τn) = ϕ̃n(τn) ∈ Iτn(ψn(τn)). By the collective upper semicontinuity of I , there exist a
subsequence of {ϕ̃n(τn)}n (denoted the same) and y ∈ Is(ψ(s)) such that θn(τn) = ϕ̃n(τn)

converges to y, so y ∈ ω̃(D̂, s).
By Condition (G3’), there exist a subsequence (denoted the same) and θ ∈ G (s) such

that θn(rn) converges to θ(r) for any sequence {rn}n with rn ≥ τn and rn converging to r .
This implies that θn(τn) converges to θ(s) = y ∈ Is(ψ(s)), so y /∈ M(s) by Condition (I).
Furthermore ϕ̃n(τn) = ϕ̃n(s + (τn − s)) converges to y, so y ∈ ω̃(D̂, s).

We have that θ(r) /∈ M(r) for r ∈ [s, t + ξ/4] because θ(s) = y ∈ Is(ψ(s)) and
Condition (H) applies. Take α̃ ∈ G̃ (t + ξ/4) with α̃(t + ξ/4) = θ(t + ξ/4) and define

ϕ̃(r) =
{

θ(r), s ≤ r ≤ t + ξ/4,

α̃(r), t + ξ/4 ≤ r

Then ϕ̃ ∈ G̃ (s) and ϕ̃(s) = y ∈ ω̃(D̂, s) \ M(s). Finally,

ϕ̃n(t + εn) = θn(t + εn) −→ θ(t) = ϕ̃(t),

which implies that x = ϕ̃(t).

Theorem Let G̃ be a pullback D-asymptotically compact impulsive generalized process
satisfying Conditions (G3’), (H), (I) and (NT). Then ω̃(D̂) \ M̂ is positively invariant for
any D̂ ∈ D.

Proof We restrict ourselves to the case where t > s and t − s ∈ (0, ξ ]. By recursion the
general case follows easily. Let x ∈ ω̃(D̂, s) \ M(s). We want to prove that there exists
ϕ̃ ∈ G̃ (s) with ϕ̃(s) = x such that ϕ̃(t) ∈ ω̃(D̂, t) \ M(t).

As x ∈ ω̃(D̂, s), there exist sn −→ −∞, εn −→ 0 and ϕ̃n ∈ G̃ (sn) such that ϕ̃n(sn) ∈
D(sn) and ϕ̃n(s + εn) −→ x. We may assume, without loss of generality, that s + εn < t

for all n ∈ N.
Each impulsive trajectory ϕ̃n, which is defined on [sn,+∞), has Nn ≥ 0 jump times.

We consider τn the last jump time of ϕ̃n on the interval [sn, s + 5ξ/4]. If there are no jump
times we take τn = sn. We will split the proof into three different cases.

CASE 1. Up to a subsequence (denoted the same), there exists ε ∈ (0, ξ/2) such that
τn < s − ε.

We know that there exist ψn ∈ G (s − ε/2) such that ϕ̃n(r) = ψn( r) for r ∈ [s − ε/2, s +
5ξ/4]. By pullback D-asymptotical compactness, we may assume ϕ̃n(s − ε/2) −→ y. We
may assume that there exists ψ ∈ G (s − ε/2) with ψn(r) −→ ψ(r) for r ≥ s − ε/2, by
definition of generalized process. First, ϕ̃n(s + εn) = ψn(s + εn), which converges to ψ(s),
so x = ψ(s). This implies that ϕ̃n(s) converges to x.
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We claim that ψ(r) /∈ M(r) for r ∈ [s − ε/2, s + ξ ]. If ψ(r) ∈ M(r) for some r ∈
[s − ε/2, s + ξ ], then φ(ψ, s − ε/2) ≤ r − (s − ε/2). But ϕ̃n has no jump times on
[s − ε/2, s + 5ξ/4], so φ(ψn, s − ε/2) ≥ (s + 5ξ/4) − (s − ε/2). Then Condition (NT)
would imply that

(s + 5ξ/4) − (s − ε/2) ≤ φ(ψ, s − ε/2) ≤ r − (s − ε/2) < (s + ξ) − (s − ε/2),

a contradiction.
We take α̃ ∈ G̃ (s + ξ) with α̃(s + ξ) = ψ(s + ξ) and define

ϕ̃(r) =
{

ψ(r), s ≤ r ≤ s + ξ,

α̃(r), s + ξ ≤ r .

Then ϕ̃ ∈ G̃ (s), ϕ̃(s) = ψ(s) = x and finally ϕ̃n(t) = ψn(t) −→ ψ(t) = ϕ̃(t), so
ϕ̃(t) ∈ ω̃(D̂, t) \ M(t).

CASE 2. Up to a subsequence (denoted the same), there exists ε ∈ (0, ξ/2) such that
τn > s + ε.

We know that τn is the only jump time of ϕ̃n in [s−ξ/2, s+5ξ/4] because of Condition (H),
and we can assume that τn > s+ε for all n ∈ N. For each n ∈ N there exist ψn ∈ G (s−ξ/2)

and θn ∈ G (τn) such that

ϕ̃n(r) =
{

ψn(r), s − ξ/2 ≤ r < τn,

θn(r), τn ≤ r ≤ s + 5ξ/4.

We may assume that ϕ̃n(s − ξ/2) −→ y by pullback D-asymptotical compactness, and
by definition of generalized process for ψn we may assume that there exist a subsequence
(denoted the same) and ψ ∈ G (s − ξ/2) such that ψn(r) −→ ψ(r) for r ≥ s − ξ/2. Fur-
thermore we have that ϕ̃n(s + εn) = ψn(s + εn), which converges to ψ(s) by Proposition 1,
so x = ψ(s). This implies that ϕ̃n(s) also converges to x.

Subcase 1. Up to a subsequence (denoted the same), there exists δ > 0 such that τn >

t + δ.

We claim that ψ(r) /∈ M(u) for r ∈ [s − ξ/2, t + δ). If ψ(r) ∈ M(r) for some r ∈
[s − ξ/2, t + δ), then φ(ψ, s − ξ/2) ≤ r − (s − ξ/2). But we know that τn > t + δ, so
φ(ψn, s − ξ/2) ≥ (t + δ) − (s − ξ/2) and Condition (NT) implies that

(t + δ) − (s − ξ/2) ≤ φ(ψ, s − ξ/2) ≤ r − (s − ξ/2) < (t + δ) − (s − ξ/2),

a contradiction.
We take α̃ ∈ G̃ (t + δ/2) with α̃(t + δ/2) = ψ(t + δ/2) and define

ϕ̃(r) =
{

ψ(r), s ≤ r ≤ t + δ/2,

α̃(r), t + δ/2 ≤ r .

Then ϕ̃ ∈ G̃ (s), ϕ̃(s) = ψ(s) = x and ϕ̃n(t) = ψn(t), which converges to ψ(t) = ϕ̃(t), so
ϕ̃(t) ∈ ω̃(D̂, t) \ M(t).

Subcase 2. Up to a subsequence (denoted the same), there exists δ > 0 such that τn <

t − δ.

As τn ∈ (s + ε, t − δ), we may assume that τn converges to τ̄ ∈ [s + ε, t − δ]. We
have ψn(τn) ∈ M(τn), so ψ(τ̄ ) ∈ M(τ̄ ) by Proposition 1. We also have that θn(τn) =
ϕ̃(τn) ∈ Iτn(ψn(τn)). By the collective upper semicontinuity of I , there exist a subsequence
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of {ϕ̃n(τn)}n, still denoted the same, and z ∈ Iτ̄ (ψ(τ̄ )) such that θn(τn) = ϕ̃n(τn) converges
to z, so z ∈ ω̃(D̂, τ̄ ).

Once again, we claim that ψ(r) /∈ M(r) for r ∈ (s − ξ/2, τ̄ ). If ψ(r) ∈ M(r) for some
r ∈ (s − ξ/2, τ̄ ), then φ(ψ, s − ξ/2) ≤ r − (s − ξ/2). But we know that φ(ϕn, s − ξ/2) =
τn − (s − ξ/2) and Condition (NT) implies that

τ̄ − (s − ξ/2) ≤ φ(ψ, s − ξ/2) ≤ r − (s − ξ/2) < τ̄ − (s − ξ/2),

a contradiction.
We can assume by Condition (G3’) that there exists θ ∈ G (τ̄ ) such that θn(un) converges

to θ(u) for any sequence {un}n with un ≥ τn and un converging to u. Furthermore, θ(r) /∈
M(r) for r ∈ [τn, s + 5ξ/4] because θ(τ̄ ) ∈ Iτ̄ (M(τ̄ )) and Condition (H) applies.

We take α̃ ∈ G̃ (s + ξ) with α̃(s + ξ) = θ(s + ξ) and define

ϕ̃(r) =

⎧⎪⎨
⎪⎩

ψ(r), s ≤ r < τ̄ ,

θ(r), τ̄ ≤ r < s + ξ,

α̃(r), s + ξ ≤ r .

We have that ϕ̃ ∈ G̃ (s), ϕ̃(s) = x and ϕ̃n(t) = θn(t), which converges to θ(t) = ϕ̃(t), so
ϕ̃(t) ∈ ω̃(D̂, t) \ M(t).

Subcase 3. τn converges to t .

We have that ψn(τn) ∈ M(τn), so ψ(t) ∈ M(t) using Proposition 1 and that M̂ is collec-
tively closed. We also have that θn(τn) = ϕ̃n(τn) ∈ Iτn(ψn(τn)). By the collective upper
semicontinuity of I , there exist a subsequence of {ϕ̃n(τn)}n, still denoted the same, and
z ∈ It (ψ(t)) such that θn(τn) = ϕ̃n(τn) converges to z, so z ∈ ω̃(D̂, t).

We claim that ψ(r) /∈ M(r) for r ∈ [s − ξ/2, t). If ψ(r) ∈ M(r) for some r ∈ [s −
ξ/2, t), then φ(ψ, s−ξ/2) ≤ r−(s−ξ/2). But we know that τn is the only jump time of ϕ̃n

in [s −ξ/2, s +5ξ/4], so φ(ψn, s −ξ/2) = τn − (s −ξ/2), and Condition (NT) implies that

t − (s − ξ/2) ≤ φ(ψ, s − ξ/2) ≤ r − (s − ξ/2) < t − (s − ξ/2),

a contradiction. We take α̃ ∈ G̃ (t) with α̃(t) = z and we define

ϕ̃(r) =
{

ψ(r), s ≤ r < t,

α̃(r), t ≤ r .

Then ϕ̃ ∈ G̃ (s), ϕ̃(s) = x and ϕ̃n(τn) = θn(τn) converges to z = α̃(t) = ϕ̃(t), so ϕ̃(t) ∈
ω̃(D̂, t) \ M(t).

CASE 3. τn converges to s

In this case τn is the only jump time of ϕ̃n in [s − ξ/2, s + 5ξ/4]. Then there exist ψn ∈
G (s − ξ/2) and θn ∈ G (τn) such that

ϕ̃n(r) =
{

ψn(r), s − ξ/2 ≤ r < τn,

θn(r), τn ≤ r ≤ s + 5ξ/4.

By pullback D-asymptotical compactness we may assume ϕ̃n(s − ξ/2) converges to y, and
by definition of generalized process we may assume that there exists ψ ∈ G (s − ξ/2) such
that ψn(r) −→ ψ(r) for r ≥ s − ξ/2.

Subcase 1. Up to a subsequence, still denoted the same, s + εn < τn
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We have that ϕ̃n(s + εn) = ψn(s + εn), which converges to ψ(s) by Proposition 1, so
x = ψ(s). Furthermore, ψn(τn) ∈ M(τn), so ψ(s) ∈ M(s) by Proposition 1 and the
collective closedness of M̂ . This implies that x ∈ M(s), a contradiction. As a consequence,
this case cannot happen.

Subcase 2. Up to a subsequence, still denoted the same, τn ≤ s + εn.

We have ψn(τn) ∈ M(τn), so ψ(s) ∈ M(s) by Proposition 1 and the fact that M̂ is
collectively closed. Furthermore, ϕ̃n(τn) = θn(τn) ∈ Iτn(ψn(τn)). Using the collective
upper semicontinuity of I , there exist a subsequence {ϕ̃n(τn)}n, still denoted the same, and
z ∈ Is(ψ(s)) such that θn(τn) = ϕ̃(τn) converges to z, so z ∈ ω̃(D̂, s).

By Condition (G3’) we assume that there exists θ ∈ G (τ̄ ) such that θn(rn) converges to
θ(r) for any sequence {rn}n with rn ≥ τn and rn converging to r . We have that θ(u) /∈ M(u)

for u ∈ [s, s +ξ ] because of Condition (H). We take α̃ ∈ G̃ (s +ξ) with α̃(s +ξ) = θ(s +ξ)

and define

ϕ̃(r) =
{

θ(r), s ≤ r ≤ s + ξ,

α̃(r), s + ξ ≤ r .

Then ϕ̃ ∈ G̃ (s), ϕ̃n(s + εn) = θn(s + εn) converges to θ(s) = z, so x = z = ϕ̃(s). Finally
ϕ̃n(t) = θn(t) converges to θ(t) = ϕ̃(t), so ϕ̃(t) ∈ ω̃(D̂, t) \ M(t).
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