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Abstract
We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a num-
ber of results on the existence of solutions, directional differentiability and optimal control
of such QVIs. We give three existence theorems based on an order approach, an iteration
scheme and a sequential regularisation through partial differential equations. We show that
the solution map taking the source term into the set of solutions of the QVI is direction-
ally differentiable for general data and locally Hadamard differentiable obstacle mappings,
thereby extending in particular the results of our previous work which provided the first
differentiability result for QVIs in infinite dimensions. Optimal control problems with QVI
constraints are also considered and we derive various forms of stationarity conditions for
control problems, thus supplying among the first such results in this area.

Keywords Quasi-variational inequality · Obstacle problem · Directional differentiability ·
Sensitivity analysis · Optimal control · Stationarity conditions
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1 Introduction

Quasi-variational inequalities (QVIs) are generalisations of variational inequalities (VIs)
where the constraint set in which the solution is sought depends on the unknown solu-
tion itself. The very nature of the dependency of the constraint set on the solution
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intrinsically leads to a complicated and challenging mathematical structure since it sig-
nificantly amplifies the nonlinear and nonsmooth nature of VIs. Another attribute that
fundamentally distinguishes QVIs from VIs is the lack of uniqueness of solutions (in
general) which then necessitates the consideration of multi-valued or set-valued solution
mappings. QVIs arise in a multitude of models describing phenomena in fields such as biol-
ogy, physics, economics and social sciences amongst others. First introduced by Bensoussan
and Lions [17, 48] in the study of stochastic impulse controls, specific applications involv-
ing QVIs are thermoforming processes [4, 7], the formation and growth of lakes, rivers and
sandpiles [15, 16, 56, 58, 59], games in the context of generalised Nash equilibrium prob-
lems [25, 34, 55], and magnetisation of superconductors [14, 44, 57, 62]. See [5, 12] for
additional details and references.

In this paper, we focus on elliptic QVIs of obstacle type or compliant obstacle problems.
These have the form

find y ∈ K(y) : Ay − f, y − v ≤ 0 ∀v ∈ K(y) where K(y) := {v ∈ V : v ≤ (y)}.
(1)

Here f ∈ V ∗ is data, : V → V is a given obstacle map, and V is a reflexive Banach
space possessing an ordering ≤ which is used in the definition of the constraint set (we
shall be more precise below). Let us define Q to be the solution map associated to the QVI
in (1) so that it reads y ∈ Q(f ). We develop in this paper theory addressing the matters of
existence for (1), directional differentiability of Q and stationarity conditions for optimal
control problems with QVI constraints of the form

min
u∈Uad
y∈Q(u)

1

2
y − yd

2
H + ν

2
u 2

U . (2)

Different methodologies exist for the mathematical treatment of existence for QVIs. There
is an approach based on order that was pioneered by Tartar [67] which relies on the existence
of subsolutions and supersolutions to guarantee existence of solutions (typically, one takes
0 as a subsolution which would hold under sign conditions on the source term). In certain
cases, the QVI can be expressed as a generalized equation and it therefore belongs to a more
general problem class [26, 27, 39–41]. In problems involving constraints on derivatives
(which is not the case under consideration in this paper), special forms of regularisation of
the constraint that modify the partial differential operator may be suitable, see [10, 11, 52,
62]. For more details, we refer the reader to the survey paper [5]. We discuss in Section 2
appropriate conditions on the function spaces and the obstacle map for Q(f ) to be non-
empty. One approach relies on an iteration argument where a contraction-type property of

is used. Another existence result is given for source terms bounded from below by using
the aforementioned Birkhoff–Tartar theory, and we also study a sequential regularisation
approach of the QVI by PDEs where the QVI constraint is handled by a penalty term.

Literature on the differentiability and sensitivity analysis for solution maps associated to
QVIs in infinite dimensions is almost non-existent: our contributions [4, 6] appear to be the
first ones that address these issues. In [4], we give a first directional differentiability result
for the solution map taking the source term into the set of solutions for non-negative sources
and directions whilst in [6] we studied continuity properties related to minimal and maximal
solution mappings of QVIs. In Section 3, we derive directional differentiablity results for Q.
We extend and improve here our previous work [4] which provided differentiability results
for source and direction terms that are non-negative; in this paper we shall remove this
restriction in our Theorem 3.2, which requires minimal (and locally formulated) assump-
tions to apply. We give a characterisations of the QVI that is satisfied by the directional
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derivative of Q as a complementarity system and in Section 3.3 we also prove a continu-
ity result that shows that the derivative depends continuously on the direction under some
assumptions. This gives a comprehensive answer to the question of sensitivity analysis of
QVIs under rather general conditions.

The scarcity of work done on the optimal control of QVIs in infinite dimensions is
unsurprisingly even more pronounced; see [2, 6, 23, 24, 54] for some of the very few con-
tributions. In our work [6], in addition to stability properties we also provided results on the
optimal control of minimal and maximal solutions of QVIs. While this article was under
preparation, we note that [72] has appeared wherein the author considers elliptic QVIs
and their differential sensitivity and strong stationarity conditions for the optimal control
problem but for Frèchet differentiable obstacle maps ; we assume only Hadamard differ-
entiability of for the differentiability result and we furthermore provide other forms of
stationarity as well as existence/approximation results. For QVIs in the finite dimensional
setting, see [53] and the references therein. In sharp contrast, control problems with VI con-
straints have attracted wide attention: see for example [13, 18, 19, 33, 36–38, 43, 51, 65,
69] and the references therein. We shall consider in Section 4 the optimal control prob-
lem (2) where existence of the optimal control will be shown using a standard calculus of
variations argument. Then we turn our attention to the derivation of stationarity conditions
for the optimal control and state. There are a number of concepts of stationarity for these
types of control problems, see [37] for a discussion. We first work on obtaining Bouligand
stationarity in Section 5.1, then a form of weak C-stationarity in Section 5.2, moving on
to E-almost C-stationarity conditions in Section 5.3 by approximating the QVI control-to-
state map through PDEs (as done in Section 2.3) and then passing to the limit. We discuss
in Section 5.4 how to upgrade to C-stationarity from E-almost C-stationarity and finally, in
Section 5.5, we provide a strong stationarity result.

1.1 Contributions of the Paper

We summarise the main results of this work.

• QVI:

– Theorems 2.18 and 2.19: existence for (1) via a penalty approach,
– Theorem 3.2: directional differentiability for QVIs for locally Hadamard maps

under local Lipschitz conditions,
– Proposition 2.1: complementarity characterisations of the QVI in (1),
– Proposition 3.12: continuity properties of the QVI satisfied by directional

derivative,
– Proposition 3.13: complementarity characterisation of the QVI satisfied by the

directional derivative of the solution map.

• Optimal control:

– Theorem 4.1: existence of optimal controls for (2).

• Stationarity conditions for (2):

– Proposition 5.2: Bouligand stationarity,
– Theorem 5.5: weak C-stationarity,
– Theorem 5.11: E-almost C-stationarity,
– Proposition 5.15: C-stationarity,
– Theorem 5.16: strong stationarity.
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1.2 Basic Assumptions and Notations

We make some standing assumptions that are necessary throughout the paper, except where
mentioned otherwise.

We always work with real Banach or Hilbert spaces. Let V be a Banach space and denote
the standard duality pairing on V ∗ × V by ·, · = ·, · V ∗,V .

We will frequently suppose that V is a vector lattice for a partial ordering ≤. This means
that for all u, v ∈ V , the following holds:

(i) u ≤ u (reflexivity),
(ii) u ≤ v and v ≤ u implies u = v (anti-symmetry),

(iii) u ≤ v and v ≤ w implies u ≤ w (transitivity),
(iv) u ≤ v implies that u + w ≤ v + w and λu ≤ λv for λ ≥ 0,
(v) there exists a greatest lower bound inf(u, v) and a least upper bound sup(u, v)

belonging to V .

See for example [3, 49] or [61, §4:5] for more details. It should be emphasised that in the
context of function spaces over a bounded Lipschitz domain , with ≤ chosen as the usual
a.e. ordering, (v) allows for V = Lp( ) and V = W 1,p( ) for 1 ≤ p < ∞ but not
V = W 2,p( ) in general. We write the positive cone of V as

V+ := {v ∈ V : v ≥ 0}
(this is convex but not necessarily closed). If V is a Banach lattice, the projection onto V+
(assuming this is well defined) of an element v ∈ V agrees with v+ := sup(0, v), but this is
not necessarily the case for a general vector lattice. We also define v− := sup(0 − v). Note
that the dual space V ∗ inherits an ordering: we say f ≤ g in V ∗ if and only if g−f, v ≥ 0
for all v ∈ V+.

Take A : V → V ∗ to be a linear operator that satisfies the following properties for all
u, v ∈ V :

Au, v ≤ Cb u V v V , (boundedness)

Au, u ≥ Ca u 2
V , (coercivity)

Au+, u− ≤ 0, (T-monotonicity)

where Ca,Cb > 0 are constants.
Regarding the obstacle map, we take : V → V to be given.
The identity operator will be denoted by I. We denote continuous, dense, and compact

embeddings of spaces by →,
d−→, and

c−→ respectively. The notation BR(u) will be used to
mean the closed ball in V of radius R centred at u.

2 Existence for QVIs

We begin by discussing three existence results for the QVI in (1), reproduced here:

y ≤ (y) : Ay − f, y − v ≤ 0 ∀v ∈ V : v ≤ (y),

involving different approaches. We start by obtaining existence through iteration by solu-
tions of VIs. Then we consider a translation of the theory by Birkhoff–Tartar for source
terms that are bounded from below and we finish by considering a sequential regularisa-
tion approach through PDEs. These existence results entail different assumptions. The third
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approach is useful for purposes of numerical realisation. The second approach requires
to be increasing and bounded below in a certain sense.

Before we proceed, let us give the following characterisation involving (1).

Proposition 2.1 The QVI in (1) is equivalent to the complementarity system

ξ := f − Ay, (3a)

ξ ≥ 0, (3b)

ξ, (y) − y = 0, (3c)

0 ≤ (y) − y. (3d)

Proof The proof is standard. By definition, ξ satisfies ξ, y − v ≥ 0 for all feasible v.
Setting v = (y) and then v = 2y − (y), we obtain the orthogonality condition (3c) for
ξ . Testing with v = y −ϕ for ϕ ∈ V with ϕ ≥ 0 gives the stated non-negativity. The reverse
direction follows from writing Ay −f, y −v = Ay −f, y − (y) + Ay −f, (y)−v

(where v is a feasible test function) and using the second and third lines in the system.

2.1 Iteration Scheme

We need the following assumption for this section (as an example, V = L2( ) or H 1( )

on a bounded Lipschitz domain are valid).

Assumption 2.2 Let V be a Hilbert space and a vector lattice with V+ closed and suppose
that : V → V is increasing.

The lattice and increasing properties are necessary to apply the comparison principle for
VIs [61, §4:5]. This assumption also implies the following useful property (whose proof is
in Appendix A), which can be thought of as a weak monotone convergence theorem (in fact,
it suffices for V to be a reflexive Banach space rather than Hilbert for the result).

Lemma 2.3 If {vn} ⊂ V is a bounded sequence which is either increasing or decreasing
(i.e., either vn ≤ vn+1 for all n, or vn ≥ vn+1 for all n), then there exists a v ∈ V such that
vn v in V (for the full sequence).

Let S : V ∗ × V → V be the solution mapping of the VI associated to the class of QVIs
under consideration, i.e. y = S(f,ψ) solves

y ≤ (ψ) : Ay − f, y − v ≤ 0 ∀v ∈ V : v ≤ (ψ).

Take a source term f ∈ V ∗ and set

y0 := A−1f

to be the solution of the unconstrained problem. The function y1 := S(f, y0) satisfies1

y1 ≤ y0 by the comparison principle [61, §4:5, Theorem 5.1], and defining

yn := S(f, yn−1),

we see that yn ≤ yn−1 by repeated applications of the comparison principle. Hence {yn} is
monotonically decreasing and each yn satisfies

yn ∈ V, yn ≤ (yn−1) : Ayn − f, yn − v ≤ 0 ∀v ∈ V : v ≤ (yn−1). (4)

1Heuristically, y0 is considered as a solution of the VI with source f and obstacle equal to ∞.
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We look for a uniform bound on {yn}. When the obstacle map is such that it always domi-
nates some given function v0 ∈ V , this is easy since we may test with v = v0. Otherwise,
we need the following.

Lemma 2.4 If

(v) V ≤ CX v V ∀v ∈ V where CX <
Ca

Cb

, (5)

then {yn} is bounded in V .

Proof Since yn ≤ yn−1 and is increasing, (yn) ≤ (yn−1) and so (yn) is a valid test
function in (4) and we obtain

Ca yn
2
V ≤ Ayn, (yn) + f, yn − (yn)

≤ Cb yn V (yn) V + f V ∗ yn − (yn) V

≤ CbCX yn
2
V + (1 + CX) f V ∗ yn V .

From this, we deduce that yn is bounded in V under the condition on CX in (5).

Now we pass to the limit and show that Q : V ∗ ⇒ V is such that Q(f ) = ∅ under certain
circumstances.

Theorem 2.5 Let Assumption 2.2 hold and suppose that

either there exists v0 ∈ V such that v0 ≤ (v) for all v ∈ V , or (5), (6)

if {vn} ⊂ V is decreasing with vn v in V and v ≤ (vn), then v ≤ (v). (7)

For any f ∈ V ∗, there exists a solution y ∈ Q(f ) ∩ (−∞, A−1f ] which is the weak limit
of the sequence {yn} defined above.

Proof We obtain, thanks to monotonicity and Lemma 2.3 that yn y in V (for the full
sequence) for some y. Since {yn} is decreasing, ym −yn ∈ V+ where n ≥ m for m fixed. As
V+ is closed and convex, it is weakly sequentially closed, giving ym ≥ y. This implies that
for arbitrary v∗ ∈ V with v∗ ≤ (y), we have v∗ ≤ (ym). We take such a v∗ as the test
function in the VI for ym and then pass to the limit to obtain that y satisfies the inequality
in (1) and it remains to be seen that y ≤ (y). This follows from passing to the limit in
y ≤ ym ≤ (ym−1) by making use of (7).

The assumption (7) is rather weak and it is satisfied if, for example, : V → V is
weakly sequentially continuous.

Remark 2.6 For QVIs with more general or different types of constraints one might need to
assume Mosco convergence (see [61, §4:4]) properties of the underlying constraint sets.

Example 2.7 The prototypical example for to have in mind is a map given by the inverse
of a partial differential operator such as

(w) := L−1w + f0,

for example with L : V → V ∗ a second-order linear elliptic operator on a bounded Lips-
chitz domain and f0 ∈ V . The validity of elliptic regularity and continuous dependence
estimates for L would give compactness properties for (and weak maximum principles
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would also yield the increasing property for ). See [4, §1.2] for more details on this and
on an application to fluid flow.

2.2 Birkhoff–Tartar Order Approach

In this section, we extend Birkhoff–Tartar-type existence results typically used for QVIs
with non-negative source terms to QVIs with source terms that are allowed to be negative.
This leads to different assumptions than those made in Section 2.1. The bedrock of this
technique, as detailed in the introduction, is the result of Tartar [67] that gives existence
of fixed points for increasing maps that possess subsolutions and supersolutions, see also
[9, Chapter 15, §15.2]. We need the following functional setup in this section.

Assumption 2.8 Let V
d−→ H be a continuous and dense embedding of Hilbert spaces and

let C ⊂ H be a closed convex cone satisfying

C = {h ∈ H : (h, g)H ≥ 0 for all g ∈ C}. (8)

This induces an ordering defined by

h1 ≤ h2 if and only if h2 − h1 ∈ H+.

Note that H+ ≡ C. We write h+ = PH+h to denote the orthogonal projection of h ∈ H

onto H+ and define h− := h+ − h. We assume that v ∈ V implies v+ ∈ V and that there
exists a C > 0 with v+

V ≤ C v V for all v ∈ V . Finally, suppose that

: H → V is increasing.

Note that H is a vector lattice (induced by C) and that the ordering induces an ordering
for V in the obvious way and also an ordering for V ∗ as elucidated in Section 1.2. Also,
−h− ∈ P−H+h because C satisfies (8).

Let us recall the Birkhoff–Tartar result (see [9, §15.2, Proposition 2]) for increasing maps
under the assumptions on the function spaces in Assumption 2.8.

Theorem 2.9 (Birkhoff–Tartar) Suppose that T : H → H is an increasing map and let h

be a subsolution and h be a supersolution of the map T , i.e.,

h ≤ T (h) and T (h) ≤ h.

If h ≤ h, then the set of fixed points of T in the interval [h, h] is non-empty and has a
minimal and a maximal element.

With this at hand, we can study existence for (1).

Theorem 2.10 Let Assumption 2.8 hold and suppose that

there exists v0 ∈ V such that v0 ≤ (v0). (9)

Given f ∈ V ∗ with Av0 ≤ f ≤ F for some F ∈ V ∗, there exist solutions y ∈ Q(f ) ∩
[v0, A

−1F ]. Furthermore, there exists a minimal and a maximal solution on this interval.

Proof By the comparison principle, S(f, v0) ≥ S(Av0, v0) = v0, hence v0 is a subso-
lution for S(f, ·). Since is increasing, A−1F = S(F, −1(∞))2 ≥ S(F,A−1F) ≥
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S(f,A−1F) so that A−1F is a supersolution.2 We also have v0 = S(Av0, v0) ≤ S(F, v0) ≤
S(F, −1(∞)) = A−1F , i.e., the subsolution lies below the supersolution. Finally, S(f, ·)
is increasing due to being increasing. The result follows from the Birkhoff–Tartar
theorem.

A typical situation in examples is when (0) ≥ 0 and f ∈ V ∗+. While the assumption (9)
of the existence of such a v0 may appear to be restrictive, note that choosing v0 ≡ 0 recovers
the setting of [4] which has been successfully applied to an application in thermoforming.
The next example illustrates the existence of such a function v0 to a map related to
solution maps of elliptic PDEs.

Example 2.11 Let ⊂ R
n be a bounded Lipschitz domain and set H := L2( ). Suppose

(V ,H, V ∗) is a Gelfand triple3 with V a reflexive Banach space. Given a linear, bounded,
coercive and T-monotone operator B : V → V ∗ and a source term g ∈ V ∗, let (u) = ϕ

be defined4 as the solution of
Bϕ = g + u.

Take any v0 ∈ V . We claim that if g is such that

g ≥ Bv0 − v0,

in V ∗, then (9) is satisfied. To see this, set v := (v0) so that Bv = g + v0. Adding the
same term to both sides, we obtain B(v − v0) = g + v0 − Bv0. Test this with the function
(v − v0)

− to obtain

B(v − v0)
−, (v − v0)

− ≤ − g + v0 − Bv0, (v − v0)
− ≤ 0.

2.3 Sequential Regularisation by PDEs

In this section, we obtain existence results for (1) by regularising the QVI by PDEs by
a penalty approach similar to [47, §3.5.2, p. 370]. There has been considerable effort on
various aspects and methods of regularisation of VIs by PDEs; see for example [30, §3.2]
for an approach similar to what we consider here and [46] and [42, §IV] for a penalisation
involving approximations to the Heaviside graph (see also [61, §5:3] on this).

Assumption 2.12 Let V be a reflexive Banach space and a vector lattice such that V+ is
closed.

Recall that an operator T : X → X∗ is hemicontinuous [63, Definition 2.3] if s →
T (x + sy), z X∗,X is continuous for all x, y, z ∈ X. For each ρ > 0, let mρ : V → V ∗ be

a hemicontinuous map such that

mρ(v) = 0 if v ≤ 0 (10)

mρ(u) − mρ(v), u − v ≥ 0 (11)

zρ z in V and mρ(zρ) → 0 in V ∗ (as ρ → 0) =⇒ z ≤ 0 (12)

2By S(F, −1(∞)) we simply mean the solution of the unconstrained problem with source F . No
invertibility of is necessary.
3Recall that V ⊂ H ≡ H ∗ ⊂ V ∗ is called a Gelfand triple if V is a reflexive Banach space continuously and
densely embedded into the Hilbert space H and H has been identified with its dual through the Riesz map.
4The interest in such obstacle mappings is not merely academic, see [4] for some applications.
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Remark 2.13 The last condition precludes the possibility of having ‘bad’ choices of mρ

such as ρ(·)+. It is also worth pointing out that if mρ ≡ m for some map m, then (12)
implies that

m(z) = 0 =⇒ z ≤ 0,

which is the converse of (10), so (12) can be thought of a strengthening of the classical
kernel or penalty condition that one finds in penalty approaches for VIs.

It is always possible to find such a sequence of maps {mρ}, see the next example as well
as Example 2.17 for the Gelfand triple case. For this reason, we will not usually explicitly
refer to (10)–(12) in statements of theorems.

Example 2.14 (Existence of mρ) Let V and V ∗ be strictly convex.5 Indeed, with J : V →
V ∗ denoting the duality mapping6 the choice

mρ(u) := J (u − PV−(u))

furnishes such an example where PV− : V → V− is the metric projection7 onto the set of
non-positive elements V−. Properties (10) and (11) as well as hemicontinuity follow as in
[47, §3.5.2, Theorem 5.1, p. 370]. In fact, note that mρ(u) = 0 implies that u ≤ 0 (because
J is bijective and passes through the origin [73, Proposition 32.22 (a), (b)]). For (12),
denoting mρ ≡ m, by monotonicity, we have for every λ > 0 and v ∈ V that

m(zρ) − m(z + λv), zρ − z − λv ≥ 0

whence passing to the limit ρ → 0, using m(zρ) → 0 in V ∗ (by hypothesis), m(z +
λv), λv ≥ 0 and then dividing through by λ and sending λ → 0, by hemicontinuity, we
obtain that m(z) = 0 in V ∗ and thus z ≤ 0.

We consider the penalisation8

Ayρ + 1

ρ
mρ(yρ − (yρ)) = f (13)

of (1) and study the convergence properties of its solution as ρ → 0. First, we discuss
existence. We recall that a map T : X → X∗ is said to be radially continuous [63, Definition
2.3] if s → T (x + sy), y X∗,X is continuous for all x, y ∈ X, and a map R : X → Y

between Banach spaces is said to be completely continuous [66, §2] if xn x in X implies
that R(xn) → R(x) in Y .

Proposition 2.15 (Existence for the penalised equation) Under Assumption 2.12, assume

there exists v0 ∈ V such that v0 ≤ (v) for all v ∈ V (14)

5All Hilbert spaces (and thus their duals) are strictly convex. In fact, the strict convexity requirement in the
assumption is no issue in the setting of reflexive Banach spaces: by Asplund’s theorem (see e.g., [47, §2.2.2,
Theorem 2.5]), V can be renormed via an equivalent norm making V and V ∗ strictly convex.
6The assumption of strict convexity gives appropriate properties of J (such as single-valuedness), see [47,
§2.2.2, p. 174] and [73, §32.3d] for more details.
7This is well defined since we assumed V+ (and hence V−) is closed and because V is a reflexive and strictly
convex space.
8For the results of this section, it would be sufficient to simply consider the case where each mρ ≡ m, but in
anticipation of the optimal control problem that we shall later study (in particular when we derive optimality
conditions), it becomes useful to consider this generality now.
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and one of the following:

mρ(I − ) : V → V ∗ is completely continuous, (15a)

mρ(I − ) : V → V ∗ is monotone, radially continuous and bounded. (15b)

Given f ∈ V ∗, there exists a solution yρ ∈ V of (13). Furthermore, every solution satisfies

yρ V
≤ C f V ∗ + v0 V ,

where C is independent of ρ.

Proof We have that A + (1/ρ)mρ(I − ) is a bounded operator (under (15a), recall that
completely continuous maps are bounded). Let us show that it is also coercive. First, by
adding and subtracting the same term, observe the formula

mρ(yρ − (yρ)), yρ − v0 = mρ(yρ − (yρ)) − mρ(v0 − (yρ)), yρ − v0

≥ 0

(by monotonicity (11) and because mρ ≡ 0 on (−∞, 0] from (10)). Now, using this, we
have

Ayρ, yρ − v0 + mρ(yρ − (yρ)), yρ − v0 ≥ Ca yρ
2
V

− Cb yρ V
v0 V ,

which yields coercivity of the full elliptic operator.
Suppose that (15a) is available. By [66, §2, Lemma 2.1], A is a type M operator. Since the

sum of a type M operator and a completely continuous operator is type M [66, §2, Example
2.B], we get that the full elliptic operator is of type M. Then [66, §2, Corollary 2.2] yields
existence. Under (15b), the full elliptic operator is pseudomonotone by [63, Lemma 2.9 and
Lemma 2.11] giving existence via [63, Theorem 2.6].

Regarding the estimate on the solution, we test the equation with yρ − v0 and use the
above coercivity estimate to find

Ca yρ
2
V

≤ Cb yρ V
v0 V + f V ∗ yρ V

+ f V ∗ v0 V

≤ Ca

3
yρ

2
V

+ 3C2
b

4Ca

v0
2
V + 3

4Ca

f 2
V ∗ + Ca

3
yρ

2
V

+ 1

2
f 2

V ∗ + 1

2
v0

2
V .

This gives the uniform bound

Ca

3
yρ

2
V

≤ 3C2
b

4Ca

+ 1

2
v0

2
V + 3

4Ca

+ 1

2
f 2

V ∗ .

Remark 2.16 The assumptions of the previous lemma are by no means necessary. One
could, for example, ask for (I − ) : V → V to be invertible and A(I − )−1 : V →
V ∗ to be pseudomonotone and coercive instead of (15a) or (15b) and then apply [63, Theo-
rem 2.6] to obtain the same result.

Let us point out a very common setting.

Example 2.17 (Gelfand triple case) Suppose that

V ⊂ H ≡ H ∗ ⊂ V ∗ is a Gelfand triple with V
c−→ H and H is a vector lattice defined

via (8) with H+ closed, (16)

: V → H is completely continuous. (17)

Set h+ = PH+h to be the orthogonal projection in H . We assume that (·)+ : V → V .
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We can take mρ : V → H ∗ ≡ H defined by

mρ(v) := (v+, ·)H
and this satisfies (10), (11), (12) and (15a). Indeed, (12) follows because PH+ : H → H+
is Lipschitz continuous and the compact embedding and complete continuity imply (15a)
(using the fact that the projection operator is continuous in H ).

We write the possibly multivalued solution mapping associated to the equation under
study as Pρ : V ∗ ⇒ V , so (13) reads yρ ∈ Pρ(f ). Now, thanks to the lemma, for every
source term fρ ∈ V ∗, the following equation has a solution yρ :

Ayρ + 1

ρ
mρ(yρ − (yρ)) = fρ . (18)

The next two theorems show that solutions of the regularised problem (13) converge to
solutions of the QVI under varying assumptions.

Theorem 2.18 (Existence and approximation of solutions to the QVI) Let Assumption 2.12,
(14), either (15a) or (15b) and

: V → V is completely continuous (19)

hold. Take a sequence fρ → f in V ∗. Then there exists a subsequence {ρn}n and elements
yρn ∈ Pρn(fρn) such that yρn → y in V where y ∈ Q(f ).

Proof The proof is in four steps and is similar to the proof of Theorem 2.3 of [36].

Uniform Estimates and Feasibility of Limit For each ρ, let yρ be a solution of (18) (such
a selection is possible due to the axiom of choice). By Proposition 2.15, it satisfies the
estimate

yρ V
≤ C fρ V ∗ + v0 V ,

and this is bounded, hence for a subsequence (which we do not attempt to differentiate for
ease of reading), yρ y in V to some y.

Rearranging the equality (18),

mρ(yρ − (yρ))
V ∗ = ρ fρ − Ayρ V ∗ ≤ Cρ

and therefore mρ(yρ − (yρ)) → 0 in V ∗ as ρ → 0. Then (12) implies that y ≤ (y).

Monotonicity Formula For v ∈ V , we get by adding and subtracting the same term and
using the monotonicity of mρ ,

mρ(yρ − (yρ)), yρ − v = mρ(yρ − (yρ)) − mρ(v − (yρ)), yρ

− (yρ) + (yρ) − v

+ mρ(v − (yρ)), yρ − v

≥ mρ(v − (yρ)), yρ − v . (20)

Passage to the Limit Test the (18) with yρ − v for v ∈ V and use (20) to find

Ayρ, yρ + 1

ρ
mρ(v − (yρ)), yρ − v ≤ fρ, yρ − v + Ayρ, v . (21)
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Now, choose an arbitrary v∗ ∈ V with v∗ ≤ (y) and select the test function to be

vρ = v∗ − (y) + (yρ).

With this choice, the second term on the left-hand side of the above inequality (21) is equal
to zero by (10) and we find

Ayρ, yρ ≤ fρ, yρ − vρ + Ayρ, vρ .

Noting that vρ → v∗ in V (thanks to the complete continuity (19)) and vρ ≤ (yρ), take
the limit inferior as ρ → 0 above and use weak lower semicontinuity to get y ∈ Q(f ).

Strong Convergence Define vρ := y + (yρ) − (y) which has the properties

vρ → y in V ,

vρ ≤ (yρ),

yρ − vρ = (yρ − y) + ( (y) − (yρ)) 0 in V ,

the first holding since we already have yρ y in V .
Testing (18) appropriately, we have

A(yρ − vρ), yρ − vρ = fρ, yρ − vρ − 1

ρ
mρ(yρ − (yρ)), yρ − vρ − Avρ, yρ − vρ

and to this we apply the monotonicity formula and coercivity of A to find

Ca yρ − vρ
2
V

≤ fρ, yρ − vρ − 1

ρ
mρ(vρ − (yρ)), yρ − vρ − Avρ, yρ − vρ

= fρ, yρ − vρ − Avρ, yρ − vρ . (since vρ ≤ (yρ))

The right-hand side converges to zero, hence yρ − vρ → 0 strongly in V , implying
yρ → y.

Theorem 2.18 requires the complete continuity condition (19) on . Let us consider how
this assumption can be weakened or substituted.

Theorem 2.19 Assume the conditions of Theorem 2.18, except replace the assumption (19)
with

A(·), (I − )(·) : V → R is weakly lower semicontinuous (22)

and assume one of the following:

: V → V is weakly sequentially continuous, (23)

(16), (17) and fρ f in H .

Then there exists a subsequence {ρn}n and elements yρn ∈ Pρn(fρn) such that yρn y ∈
Q(f ) in V .

Proof We modify the third step of the proof of Theorem 2.18 (and, like before, we do not
distinguish subsequences of {ρ}). We write the final inequality of step 3 as Ayρ, yρ −vρ ≤
fρ, yρ − vρ , which, recalling vρ = v∗ − (y) + (yρ), is

Ayρ, yρ − (yρ) + Ayρ, (y) − v∗ ≤ fρ, yρ − vρ .

By (22), we can take the limit inferior on the left-hand side. Regarding the right-hand side,
let us consider the two cases separately.
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(1) Under (23), yρ −vρ y −v∗ in V , and since fρ → f in V ∗, we can pass to the limit
on the right-hand side and we obtain y ∈ Q(f ), hence yρ y in V .

(2) In the Gelfand triple case, we write the final term in the inequality above as the inner
product (fρ, yρ − vρ)H and pass to the limit easily.

Remark 2.20 It is not difficult to see that (22) and (23) are weaker assumptions than (19).

The theorem provides only weak convergence but strong convergence can be attained
under additional assumptions as the next remark shows.

Remark 2.21 If, in addition to the conditions of Theorem 2.19 under the weak sequential
continuity condition (23), we also have

A (·), (I − )(·) : V → R is weakly lower semicontinuous,9 (24)

then yρn − (yρn) → y − (y) in V . To see this, returning to the fourth step of the proof
of Theorem 2.18 where we recall vρ = y + (yρ) − (y), we start with the calculation

lim inf
ρ→0

Avρ, yρ − vρ = lim inf
ρ→0

A(y − (y)), (I − )(yρ) + (y) − y

+ A (yρ), (I − )(yρ) + A (yρ), (y) − y

≥ A(y − (y)), (I − )(y) + (y) − y

+ A (y), (I − )(y) + A (y), (y) − y

= 0,

where for the inequality we used weak continuity for the first and last terms and (24) for
the middle term. Now, taking the limit superior in the final inequality of the proof of The-
orem 2.18, using the identity lim sup(an) + lim inf(bn) ≤ lim sup(an + bn) and the above
calculation, we get

lim sup
ρ→0

fρ, yρ − vρ ≥ lim sup
ρ→0

Ca yρ − vρ
2
V

+ Avρ, yρ − vρ

≥ lim sup
ρ→0

Ca yρ − vρ
2
V

.

Since the left-hand side is zero (by (23)), we deduce that yρ − vρ → 0 and hence
yρ − (yρ) → y − (y) in V .

We see then that if for example

(I − )−1 : V → V exists and is continuous,

we would also get the strong convergence yρ → y.

Remark 2.22 If Q(f ) is a singleton, then the convergence results of the previous theorems
hold for the entire sequence and not just a subsequence because the limit y = Q(f ) is
unique.

9Note that (23) and (24) imply (22). Indeed, taking the limit inferior of Aun, (I − )(un) = A(I −
)un, (I− )un + A (un), (I− )(un) , using superadditivity and weak sequential continuity on the first

term and (24) on the second term allows us to deduce the claim.
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3 Directional Differentiability

In this section, we extend the results of our previous work [4] which dealt with directional
differentiability of the source-to-solution map Q associated to (1) for non-negative source
terms and directions.

Formally, the goal is to show that the following limit exists:

lim
s→0+

Q(f + sd) − Q(f )

s
.

This is merely a formal limit since Q : V ⇒ V is set valued in general, however in case
Q : V → V is single valued, it is precise. It is important to obtain such a sensitivity result not
only for applications but also for the procurement of certain types of stationarity conditions
for optimal control problems with QVI constraints, a topic that we will address in Section 5.

We will follow closely the approach of our earlier work [4] where we combined an itera-
tion (by VIs) argument with the directional differentiability result for VIs in Dirichlet space
case provided by Mignot [50] but here, we make two refinements: instead of the order
approach for the iterations employed in [4], we shall use a contraction technique similar to
that in Section 2.1, and secondly, we shall use the VI differentiability result in [71] given
under a general vector lattice setting, which generalises the result in [50]. For this, we begin
with the following assumption on the ordering.

Assumption 3.1 Let V be a reflexive Banach space which is a vector lattice induced by
a closed convex cone C satisfying C ∩ −C = {0} and suppose that vn → v in V implies
sup(0, vn) sup(0, v) in V .

As before, we will identify C with V+ and note that the strong-weak convergence part of
the above assumption is satisfied if there exists a constant M > 0 such that sup(0, v) V ≤
C v V for all v ∈ V .

To state the main result, we need to introduce some notation. Recall from (1) the
constraint set mapping K : V ⇒ V defined by

K(w) := {v ∈ V : v ≤ (w)}.
This is convex and closed (since V+ is closed), and associated to this, we define the radial
cone of K(w) at a point u ∈ K(w) by

RK(w)(u) := {h ∈ V : ∃s∗ > 0 such that u + sh ∈ K(w) ∀s ∈ [0, s∗]}
and the corresponding tangent cone TK(w)(u) := RK(w)(u). Finally, recall the notation
BR(y) to stand for the closed ball in V of radius R centred at u.

Theorem 3.2 Let Assumption 3.1 hold and given f ∈ V ∗ and d ∈ V ∗, take y ∈ Q(f )

satisfying the local assumptions

there exists > 0 such that : B (y) → V is Lipschitz with Lipschitz constant

C < Ca/(Ca + Cb), (25)

: V → V is Hadamard directionally differentiable at y. (26)

Then, for s > 0 sufficiently small, there exists ys ∈ Q(f + sd) ∩ BR(y) (where 0 < R ≤ )
and α = α(d) ∈ V such that

ys = y + sα + o(s)
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where s−1o(s) → 0 in V as s → 0+ and α satisfies the QVI

α ∈ Ky(α) : Aα − d, α − v ≤ 0 ∀v ∈ Ky(α),

Ky(α) := (y)(α) + TK(y)(y) ∩ [f − Ay]⊥.
(27)

The directional derivative α = α(d) is positively homogeneous in d.

The proof of this theorem will be given in the next subsections. For now, let us make
some observations.

Remark 3.3 (i) The stated assumptions do not force solutions of the QVI to be unique.
We will construct examples demonstrating this fact in Section 3.5.

(ii) If there exists an such that is Hadamard differentiable on B (y) and

∀z ∈ B (y),∀v ∈ V, (z)(v)
V

≤ C v V where C < Ca/(Ca + Cb),

(28)
then (25) holds. This is immediate: take u, v ∈ B (y) and use the mean value theorem
to find

(u) − (v) V ≤ supλ∈(0,1) (λu + (1 − λ)v)(u − v)
V

≤ C u − v V ,

where we utilised the fact that λu + (1 − λ)v ∈ B (y). It can sometimes be easier to
verify (28) than (25) depending on the problem at hand.

(iii) The derivative α is the unique solution of the QVI (27), see Proposition 3.9.
(iv) All of the required assumptions on are local, i.e., they are based at or around a

neighbourhood of the chosen point y and we do not ask for them to hold globally
on the whole of V . We may introduce more local assumptions in the course of the
paper and one should bear in mind that such conditions are stated in terms of a fixed
element y which, in later sections, need to be modified appropriately (for example in
Section 5 such assumptions should be evaluated at the function that we call y∗). This
should become apparent from the context.

(v) In the theorem, the existence of a particular y ∈ Q(f ) is assumed; conditions under
which Q(f ) is non-empty were given in the existence results of Section 2.

(vi) This theorem generalises and improves the result of Theorem 1.6 in our earlier paper
[4]. In particular, the case f, d ∈ V ∗+ corresponds to the main result of [4] (which
also requires additional assumptions).

(vii) A differentiability result for QVIs also appears in [72, Theorem 5.5]. There, in par-
ticular, the author requires Fréchet differentiability for at y. In contrast, we require
only Hadamard differentiability. In [72], A can be nonlinear of Fréchet type; we
have taken A to be linear in this paper for simplicity but this can be generalised: see
Remark 3.4.

Remark 3.4 We have taken A to be linear for technical simplicity but an examination of
the proofs that follow show that it would be possible for us to consider nonlinear A that are
Hadamard differentiable in this section (a key point would be to generalise [4, Proposition
1], as we shall come to see in the proceeding). For the stationarity results of section Section
5.2, A would need to be continuously Fréchet differentiable. The details and the resulting
changes are left to the reader.

Let us give an example of the functional setup which is typical for many applications.
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Example 3.5 (The case of a Dirichlet space) Suppose that H := L2(X; μ) where X is a
locally compact, separable metric space and μ is a positive Radon measure on X with full
support,10 and let V ⊂ H be a dense subspace. The ordering on these spaces is given by the
usual a.e. ordering of functions.

Assume that there exists a symmetric, positive semidefinite bilinear form ξ : V ×V → R

such that endowing V with
(·, ·)V := (·, ·)H + ξ(·, ·)

makes it a Hilbert space. Furthermore, we assume the Markov property11

if u ∈ V then û := min(u+, 1) ∈ V and ξ(û, û) ≤ ξ(u, u)

and the density

V ∩ Cc(X)
d−→ Cc(X) and V ∩ Cc(X)

d−→ V .

The pair (V , ξ) is known as a regular Dirichlet form and V is the so-called Dirichlet
space. This framework allows us to define the notions of capacity, quasi-continuity and
related concepts, see [28, §2.1] and [32, §3] for more details.

In this setting, Mignot proved12 the polyhedricity of sets of obstacle type in [50, Theorem
3.2] and the differentiability of VI solution maps associated to such constraint sets in [50,
Theorem 3.3]. We also have an explicit expression for the critical cone appearing in (27) via
[50, Lemma 3.2]:

Ky(w) := {ϕ ∈ V : ϕ ≤ (y)(w) q.e. on A(y) and Ay − f, ϕ − (y)(w) = 0}.
Here, ‘q.e.’ stands for quasi-everywhere and a statement holds quasi-everywhere if it holds
everywhere except on a set of capacity zero, and A(y) refers to the active or coincidence
set of the solution y to the QVI related to an obstacle map , i.e.,

A(y) := {x ∈ X : y(x) = (y)(x)} for y ∈ V .

We in fact take the quasi-continuous representatives of the functions appearing in the def-
inition so that A(y) is quasi-closed and defined up to sets of capacity zero. It is important
to note that the set of points defining the active set is taken over X; in the context of some
Sobolev spaces over a domain , this can sometimes be X = and not merely , see
[4, §1.2] for more details.

Before we proceed, let us provide some notation. Define the critical cone

Ky := TK(y)(y) ∩ [f − Ay]⊥, (29)

and observe the relation
Ky(w) = (y)(w) + Ky .

Recall that the polar cone of a set M ⊂ V is defined as

M◦ = {g ∈ V ∗ : g, v ≤ 0 ∀v ∈ M}.

10That is, μ is a non-negative Borel measure which is finite on compact sets and strictly positive on non-
empty open sets.
11This is also known as the unit contraction property.
12In fact, Mignot uses a weaker setting of positivity-preserving forms rather than the Dirichlet form setting
described here with also some other weaker conditions.
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3.1 Iteration Scheme and Expansion Formulae

To prove Theorem 3.2, we employ an iteration and passage to the limit approach like in our
previous work [4]. We fix an arbitrary f ∈ V ∗ and take an arbitrary but fixed y ∈ Q(f ).13

Pick a direction d ∈ V ∗ and construct, similarly to Section 2.1, the sequence

ys
0 := y,

ys
n := S(f + sd, ys

n−1).
(30)

The idea here is to expand each ys
n in terms of y, a directional derivative and a remainder

term (both of these would depend on n) and then to pass to the limit in such an expansion.
The natural way to proceed would be to obtain a uniform bound on {ys

n} which would result
in the existence of a weakly convergent subsequence {ys

nj
}. This is not enough to identify the

limit of {ys
nj

} due to the (n−1) index in the definition of ys
n, so one would need convergence

of the whole sequence which holds true when, for example, one has monotonicity. However,
in contrast to the sequence considered in Section 2.1, we do not obtain any monotonicity of
{ys

n} since we do not assume a sign on d nor do we assume monotonicity of . Therefore,
for convergence of the full sequence, we instead look for a contraction of the map associated
to {ys

n} on some small ball.

Lemma 3.6 Assume the Lipschitz property (25). Then for any 0 < R ≤ , S(f +
sd, ·) : BR(y) → BR(y) is a contraction whenever

s ≤ Ca d −1
V ∗ R(1 − (1 + CbC

−1
a )C ).

Proof Let v ∈ BR(y); we want to show that S(f + sd, v) ∈ BR(y). Observe that, using
y = S(f, y) and continuous dependence (e.g. [4, Equation (21)]),

S(f +sd, v)−y V ≤ (1+CbC
−1
a ) (v)− (y) V +C−1

a s d V ∗

≤ (1+CbC
−1
a )C v−y V +C−1

a s d V ∗ (since v, y ∈ BR(y)⊂B (y))

≤ (1+CbC
−1
a )C R+C−1

a s d V ∗ ,

and, using the fact that (1 +CbC
−1
a )C equals a constant strictly less than 1, the right-hand

side is bounded above by R. This shows that S(f + sd, ·) maps BR(y) into itself.
To see that the map is a contraction, take v,w ∈ BR(y) and observe that

S(f + sd, v) − S(f + sd, w) V ≤ (1 + C−1
a Cb) (v) − (w) V

≤ C (1 + C−1
a Cb) v − w V .

Hence, under (25), we have that each ys
n ∈ BR(y). By applying the Banach fixed point

theorem, we obtain the following existence and convergence result.

Proposition 3.7 Given f, d ∈ V ∗ and y ∈ Q(f ), under (25) and sufficiently small s > 0,
there exists ys ∈ Q(f + sd) ∩ BR(y) such that ys

n → ys in V (where ys
n is defined in (30)).

Since we want to study differentiability of QVIs, we need some differentiability for
the constraint set mapping. We will henceforth assume the Hadamard differentiability

13Again, see Section 2 for existence of such y.
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at y condition (26). Now, making use of [71, Theorems 4.18 and 5.2] we can expand
ys

1 = S(f + sd, y) as follows:

ys
1 = y + sα1 + o1(s),

where s−1o1(s) → 0 as s → 0+ and α1 = ∂S(f, y)(d) is the directional derivative of
S(·, y) in the direction d , and this satisfies the VI (recall Ky from (29))

α1 ∈ Ky : Aα1 − d, α1 − v ≤ 0 ∀v ∈ Ky .

To acquire an expansion formula for a general ys
n, define for n > 1,

αn := (y)(αn−1) + ∂S(f, y)(d − A (y)(αn−1)).

In exactly the same way as in [4, Proposition 2], we obtain the following result.

Proposition 3.8 Under (25) and (26), for n ≥ 1,

ys
n = y + sαn + on(s) (31)

where s−1on(s) → 0 as s → 0+ and αn = αn(d) is positively homogeneous in the direction
d and satisfies the VI

αn ∈ Ky(αn−1) : Aαn − d, αn − ϕ ≤ 0 ∀ϕ ∈ Ky(αn−1),

Ky(αn−1) := Ky + (y)(αn−1).

See (35) for the precise definition of on. The proof of this proposition, which we omit
here, is by induction and makes use of the expansion formula of [4, Proposition 1], which
tells us that

ys
n+1 =S(f +sd, y+sαn+on(s))=y+s( (y)(αn)+∂S(f, y)(d−A (y)(αn)))+on+1(s).

It remains then to pass to the limit in (31) and to identify the corresponding limits.

3.2 Passage to the Limit

Observe that the conditions (25) and (26) imply that

(y) : V → V is Lipschitz with Lipschitz constant CL < Ca/Cb, (32)

which is precisely what is needed for the coming intermediary results. In particular, it allows
for the Banach fixed point theorem to be amenable to show the convergence of {αn} as
the next proposition demonstrates. But first, let us prove that (32) is indeed a consequence.
From the expansion formula (y + sh) = (y) + s (y)(h) + o(s;h) where o(·, h) is a
remainder term, we find

(y)(h) − (y)(d)
V

≤ 1
s

(y + sh) − (y + sd) V + 1
s

o(s; d) − o(s;h) V .

Without loss of generality, we may assume that at least one of h and d is non-zero. We see
that if s ≤ /( h V + d V ), we have y + sh, y + sd ∈ B (y) and therefore, by (25),

(y)(h) − (y)(d)
V

≤ C h − d V + 1
s

o(s; d) − o(s;h) V .

Taking s → 0+ we obtain the statement after noting that C < CL.

Proposition 3.9 Under (26) and (32), αn → α in V where α is the unique solution of the
QVI (27).
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Proof Denote by T : V → V the solution map γ → β of the inequality

β ∈ Ky(γ ) : Aβ − d, β − ϕ ≤ 0 ∀ϕ ∈ Ky(γ ).

This has a unique solution by the Lions–Stampacchia theorem [61, §4:3, Theorem 3.1],
hence T is well defined.

Consider γ1, γ2 ∈ V with β1 := T (γ1) and β2 := T (γ2). Testing the inequality for β1
with the feasible element β2 − (y)(γ2) + (y)(γ1) and vice versa and then combining
both of the resulting inequalities, we find

A(β1 − β2), β1 − β2 + (y)(γ2) − (y)(γ1) ≤ 0,

which implies, using (32),

β1 − β2 V ≤ Cb

Ca
(y)(γ2) − (y)(γ1) V

< γ2 − γ1 V .

This shows that T : V → V is a contraction. Therefore, thanks to the Banach fixed point
theorem, the iterative sequence βn := T (βn−1), β1 := α1, is such that βn ≡ αn (by
uniqueness of solutions) and αn → α strongly in V where α is the fixed point of T .

Thanks to this result, it follows that on(s) → o∗(s) in V for some o∗(s). We can send
n → ∞ in (31) to obtain

ys = y + sα + o∗(s),
and it is left for us to show that o∗ is a remainder term. The idea in [4] was to show that the
convergence s−1on(s) → 0 as s → 0+ is uniform in n, which is sufficient to commute the
limits s → 0+ and n → ∞ for s−1on(s), giving the desired behaviour s−1o∗(s) → 0 as
s → 0+.

This was done in [4, Lemma 14], the proof of which we will now adapt under the context
of our current (more general) setting. For this, we need some more notation.

For v ∈ V and hs ∈ V , we define the remainder term associated to

l̂(s, h, hs; v) := (v + shs) − (v) − s (v)(h), (33)

and since is Hadamard differentiable at y, if hs → h in V as s → 0+, then
s−1 l̂(s, h, hs; y) → 0 as s → 0+. We write l̂(s, h, h; v) = l(s, h; v) when hs ≡ h. Now let
S0 : V ∗ → V be the map f → u of the following VI with zero lower obstacle:

u ∈ V+ : Au − f, u − v ≤ 0 ∀v ∈ V+.

In a similar fashion to l̂, we denote the remainder term associated to the expansion formula
of S0 by ô:

ô(s, h, hs; f ) := S0(f + shs) − S0(f ) − sS0(f )(h).

Proposition 3.10 Under (25) and (26), s−1o∗(s) → 0 as s → 0+.

Proof Since y + sαn + on(s) = ys
n ∈ B (y) and {αn} is bounded, let us say by M , if

s ≤ M−1 , then y + sαn ∈ B (y) too. Hence, from (33) and the Lipschitz property (25),
we have

l̂(s, αn, αn+s−1on(s); y)
V

≤ l̂(s, αn, αn+s−1on(s); y)−l(s, αn; y)
V

+ l(s, αn; y) V

= (y+s(αn+s−1on(s)))− (y + sαn)
V

+ l(s, αn; y) V

≤C on(s) V + l(s, αn; y) V . (34)
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We see from [4, Equation (34) and Proposition 1] that on has the definition

on(s) := l̂(s, αn−1, αn−1 + s−1on−1(s); y)

−ô(s, A (y)(αn−1) − d, A (y)(αn−1) − d

+As−1 l̂(s, αn−1, αn−1 + s−1on−1(s));A (y) − f ). (35)

For ease of reading, let us omit the base point from the expressions for l̂, l, ô and o from
now on. That is, we write l̂(·, ·, ·) instead of l̂(·, ·, ·; y) and likewise for the other terms. In
the above equality, taking norms and, on the right-hand side, using (34) on the first term and
the corresponding estimate

ô(s, h, h + s−1hs)
V

≤ C−1
a hs V ∗ + o(s, h) V

for S0 and its remainder term (see [4, Lemma 1]) on the second term, we find

on(s) V ≤ C on−1(s) V + l(s, αn−1) V +C−1
a Cb l̂(s, αn−1, αn−1+s−1on−1(s))

V

+ o(s, A (y)(αn−1) − d)
V

≤ C (1 + C−1
a Cb) on−1(s) V +(1 + C−1

a Cb) l(s, αn−1) V

+ o(s, A (y)(αn−1)−d)
V

,

where we again used (34) on the penultimate term in the first line to obtain the second
inequality. Defining

an(s) := on(s) V and bn(s) :=(1 +C−1
a Cb) l(s, αn) V + o(s, A (y)(αn) − d)

V
,

the above can be recast as

an(s) ≤ Can−1(s) + bn−1(s)

for some C < 1 by the assumption on C in (25).
Solving this recurrence inequality gives

an(s) ≤ Cn−1a1(s) + Cn−2b1(s) + Cn−3b2(s) + . . . + Cbn−2(s) + bn−1(s). (36)

Now, consider

bn−1(s)

s
= (1 + C−1

a Cb) l(s, αn−1) V

s
+ o(s, A (y)(αn−1) − d)

V

s
.

By Proposition 3.9, αn → α strongly in V , thus {αn−1} and {A (y)(αn−1) − d} are com-
pact sets in V and V ∗ respectively. Since the remainder terms l and o appearing in the
displayed equality above arise from the Hadamard (and hence compact) differentiability
of and the solution map S0 associated to VIs, it follows that l(s, γ )/s and o(s, h)/s

both converge to zero uniformly for γ and h belonging to {αn−1} and {A (y)(αn−1) − d}
respectively. Because {αn−1} ⊂ {αn−1} and {A (y)(αn−1) − d} ⊂ {A (y)(αn−1) − d},
we have that

l(s, γ )

s
→0 uniformly in γ ∈{αn−1} and

o(s, h)

s
→0 uniformly in h∈{A (y)(αn−1)−d},

which then gives
bn−1(s)

s
→ 0 uniformly in n.
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This, along with (36) and the geometric series estimate Cn−2 + Cn−3 + . . . + C + 1 =
(1−Cn−1)/(1−C) ≤ 1/(1−C) implies that for every > 0, there exists an s0 independent
of n such that

on(s) V

s
≤ when s ≤ s0

which means precisely that s−1on(s) → 0 as s → 0+ uniformly in n. Finally, recalling that
on(s) converges in V , taking the limit as n → ∞ in the above inequality, we deduce that
s−1o∗(s) → 0 as s → 0+.

This concludes the proof of Theorem 3.2.

Remark 3.11 It is worth noting that the complete continuity assumption (19) is not needed
for the result (the strong convergence of {ys

n} assured by the application of the Banach fixed
point theorem allowed us to circumvent complete continuity). Furthermore, complete conti-
nuity of (y) is not needed for the characterisation of the directional derivative; continuity
suffices (which is guaranteed since Hadamard derivatives are continuous with respect to the
direction), unlike in §5.1 and §5.2 of [4].

3.3 Continuity Properties of the Directional Derivative

We now study the conditions under which continuity of the map taking the direction d into
the directional derivative α in (27) is assured. We recall (27) for convenience:

α ∈ Ky(α) : Aα − d, α − v ≤ 0 ∀v ∈ Ky(α),

Ky(w) := Ky + (y)(w).

Proposition 3.12 Under (32), d → α(d) is continuous from V ∗ to V . That is, if dj → d in
V ∗, then

αj → α in V

where αj and α are the solutions of (27) with source terms dj and d respectively.

Proof The element αj associated to dj satisfies

αj ∈ Ky(αj ) : Aαj − dj , αj − v ≤ 0 ∀v ∈ Ky(αj ).

Take j, k ∈ N and in the inequality for αj , take the test function v = αk − (y)(αk) +
(y)(αj ) which is clearly feasible, whilst in the inequality for αk , set v = αj − (y)(αj )+
(y)(αk) to obtain

Aαj − dj , αj − αk + (y)(αk) − (y)(αj ) ≤ 0,

Aαk − dk, αk − αn + (y)(αj ) − (y)(αk) ≤ 0.

Adding these, we find

A(αj − αk) − (dj − dk), αj − αk + (y)(αk) − (y)(αn) ≤ 0,

which implies, using (32),

Ca αj −αk
2
V

≤ dj −dk V ∗ αj −αk V
+Cb αk−αj V

(y)(αk)− (y)(αj ) V

+ dk−dj V ∗ (y)(αk)− (y)(αj ) V

≤ dj −dk V ∗ αj −αk V
+CbCL αk−αj

2
V

+CL dk−dj V ∗ αk−αj V
.
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Manipulating, we find that {αj } is a Cauchy sequence and thus there exists an α ∈ V with

αj → α in V .

Now, in the inequality for αj , choose the test function vj := v − (y)(α) + (y)(αj )

where v is such that v ∈ Ky(α). It follows that vj → v in V . This allows us to pass to the
limit and we get

Aα − d, α − v ≤ 0 ∀v ∈ Ky(α)

and it remains to be seen that α ∈ Ky(α), which is evident since the critical cone is closed.

3.4 Complementarity Characterisation of the Directional Derivative

We now look for an analogue of the complementarity characterisation of Proposition 2.1 for
the QVI (27) satisfied by the directional derivative.

Proposition 3.13 The QVI (27) is equivalent to the complementarity system

α − (y)(α) ∈ Ky, (37a)

ξd = d − Aα, (37b)

ξd ∈ (Ky)◦, (37c)

ξd, (y)(α) − α = 0. (37d)

Proof As noted above, α − (y)(α) belongs to the set Ky . Define ξd := d −Aα which by
definition satisfies

α − (y)(α) ∈ Ky : ξd, α − v ≥ 0 ∀v ∈ V : v − (y)(α) ∈ Ky .

Taking v = (y)(α) here and then v = 2α− (y)(α) (which is feasible since v− (y)(α)

is twice a function that belongs to Ky) shows the orthogonality condition (37d).
Let w ∈ Ky and select v = α +w (this is feasible since v − (y)(α) = α − (y)(α)+

w ∈ Ky + Ky and the tangent cone, being a convex cone, is closed under addition). With
this choice, we obtain

ξd, w ≤ 0 ∀w ∈ Ky,

meaning precisely that ξd ∈ (Ky)◦. The reverse direction holds by the same trick as in the
proof of Proposition 2.1.

3.5 Examples of QVIs with Multiple Solutions

In this section, we construct explicit examples of QVIs with non-unique solutions such that
the assumptions of Theorem 3.2 are satisfied, thus verifying that multiplicity of solutions is
not lost under our assumptions.

Example 1 Let ⊂ R
n be a bounded Lipschitz domain and set V := Hk( ) with H =

L2( ) forming a Gelfand triple. Below, all norms and inner products that appear are over
H .

Pick δ > 0 and select a sequence {yn}Nn=1 of smooth functions satisfying yn − ym
2 >

4δ2 for each m, n ∈ {1, . . . , N} with m = n and N ≥ 2 fixed.
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Take a smooth cutoff function ν ∈ C∞(R) with 0 ≤ ν ≤ 1 and

ν(t) = 1 : if t ∈ (−δ2, δ2),

0 : if |t | ≥ 2δ2.

For a parameter y ∈ V , define the map y : V → V by

y(u) := ν( u − y 2)y

and set

(u) :=
N

n=1

yn(u).

Note that : V → V and (yn) = yn (because yn(ym) = ynδnm). Let the elliptic
operator A : V → V ∗ have the property that Ayn ∈ H for each n and define the pointwise
a.e. maximum f := max(Ay1, · · · , AyN) ∈ H . Then the QVI

find u ≤ (u) : Au − f, u − v ≤ 0 ∀v ∈ V : v ≤ (u)

has multiple solutions and indeed each yn ∈ Q(f ) is a solution. To see this, simply observe
that Ayn − f ≤ 0 and yn − v = (yn) − v ≥ 0 for all v ∈ V with v ≤ (yn).

It follows from the expression y(u)(h) = 2yν ( u − y 2)(h, u − y) that

(u)(h) =
N

n=1

2ynν ( u − yn
2)(h, u − yn)

and hence (Bδ(yn)) ≡ 0 and thus (28) is trivially satisfied (hence also (25) and (32) by
Remark 3.3 (ii) and the digression at the start of Section 3.2).

Hence, all the requirements of Theorem 3.2 have been met and we obtain for every
d ∈ V ∗ the existence of of ys

m ∈ Q(f + sd) and αm ∈ V such that

lim
s→0+

ys
m − ym

s
= αm.

Let us also note that in addition, (yn) : V → V is completely continuous.

Example 2 A second example, without the need for the source term f to be defined in
terms of {yn}, can be given under the same initial setting as above. For n = 1, . . . , N , take
ψn ∈ V to be given distinct obstacles such that the associated solutions yn ∈ V of the VIs

yn ≤ ψn : Ayn − f, yn − v ≤ 0 ∀v ∈ V : v ≤ ψn

are distinct too. We suppose that δ is chosen such that yn − ym
2 > 4δ2, which is possible

since the yn are distinct functions. With ν as above, define now n : V → V by

n(u) := ν( u − yn
2)ψn

and set

(u) :=
N

n=1

n(u).
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We have (yn) = ψn and each yn is again a solution of the QVI associated to with source
term f , i.e., yn ∈ Q(f ). Furthermore,

(u)(h) =
N

n=1

2ψnν ( u − yn
2)(h, u − yn)

and we can argue as before to derive the other properties and results.

4 Existence of Optimal Controls

We now address the optimal control problem (2). Regarding the function space context in
this section, we take

(i) V → H to be a continuous embedding of reflexive Banach spaces,

(ii) U to be a reflexive Banach space with U
c−→ V ∗,

(iii) Uad ⊆ U to be a non-empty and weakly sequentially closed14 set.

Given ν > 0 and a desired state yd ∈ H , define J : H × U → R by

J (y, u) := 1

2
y − yd

2
H + ν

2
u 2

U ,

and consider the problem (2) which we recall here:

min
u∈Uad
y∈Q(u)

J (y, u).

Theorem 4.1 Let Assumption 2.12 hold, suppose that Q(u) is non-empty15 for every u ∈
Uad and let the feasbility condition (6) and the complete continuity (19) hold. Then there
exists an optimal control u∗ ∈ Uad and associated state y∗ ∈ Q(u∗) to the problem (2).

Proof Let un ∈ Uad be an infimising sequence with yn ∈ Q(un), i.e.,

J (yn, un) → inf
u∈Uad ,
y∈Q(u)

J (y, u).

Then {un} and {yn} are bounded in U and V respectively (the latter arises from (6)) and
therefore, there exists a subsequence such that

unj
u∗ in U and ynj

y∗ in V .
By assumption, u∗ also belongs to Uad . Since the yn are solutions of QVIs, we have the
following estimate

ynj
− ynk V

≤ C unj
− unk V ∗ + (ynj

) − (ynk
)

V
.

In the limit, the first term on the right-hand side vanishes due to the compact embedding,
and the second term vanishes too because is completely continuous due to (19). Thus
{ynj

} is Cauchy in V and ynj
→ y∗ in V . Taking an arbitrary v ∈ V such that v ≤ (y∗),

we set vnj
:= v− (y∗)+ (ynj

) and use this as a test function in the QVI for ynj
in which

14That is, if un u in U with un ∈ Uad , then u ∈ Uad .
15See Section 2.
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we can pass to the limit to find y∗ ∈ Q(u∗). To see that this pair is optimal, we observe
that (dispensing with the subsequence notation now), using the continuity of the embedding
V → H ,

J (y∗, u∗) ≤ lim infn→∞ J (yn, un) ≤ limn→∞ J (yn, un) = min u∈Uad
y∈Q(u)

J (y, u).

Regarding regularity of the optimal control, see Theorem 5.11. In general there is no
uniqueness for the optimal control and state regardless of whether Q is single valued or not.

4.1 The Penalised Optimal Control Problem

Let us return to the context of Section 2.3 and consider for each ρ > 0 the penalisation of
(2):

min
u∈Uad

J (yρ, u) such that Ayρ + 1

ρ
mρ(yρ − (yρ)) = u. (38)

We remind the reader that mρ is taken to satisfy (10)–(12). Recalling the map Pρ from
Section 2.3, we can write the equation above as yρ ∈ Pρ(u). The reason for considering this
problem is because we will use this to derive stationarity conditions in the next section but
first let us check that this minimisation problem suitably approximates (2).

Proposition 4.2 Let Assumption 2.12, (14), (15a) and (19) hold and suppose that Q is
single valued. Then there exist optimal pairs (y∗

ρ, u∗
ρ) of (38) and an optimal pair (y∗, u∗)

of (2) such that

(y∗
ρ, u∗

ρ) → (y∗, u∗) in V × U .

Proof First, observe that Pρ(u) is non-empty for all u ∈ Uad by Proposition 2.15 (after
possibly renorming V , see Example 2.14). Now, let (y∗

ρ, u∗
ρ) denote an optimal pair of (38),

which exists by standard arguments (like in the proof of Theorem 4.1) making use of (15a)
(to show weak continuity of the solution map). By definition,

J (y∗
ρ, u∗

ρ) ≤ J (wρ, u) ∀u ∈ Uad, ∀wρ ∈ Pρ(u). (39)

Given any ũ ∈ Uad , we pick a subsequence {ỹρn} such that Pρn(ũ) ỹρn → ỹ where
ỹ ∈ Q(ũ); this is possible by Theorem 2.18. The inequality (39) implies that J (y∗

ρn
, u∗

ρn
)

is bounded above by J (ỹρn , ũ) which in turn is bounded uniformly in ρn because ỹρn is
bounded in V by the estimate of Proposition 2.15:

y∗
ρn V

≤ C u∗
ρn V ∗ + v0 V .

Hence for another subsequence (which we shall relabel)

u∗
ρn

u∗ in Uad,

y∗
ρn

y∗ in V ,

for some (u∗, y∗) that we need to show is an optimal pair. By following steps 3 and 4 in the
proof of Theorem 2.18, y∗

ρn
→ y∗ = Q(u∗) in V (since u∗

ρn
→ u∗ in V ∗). Hence (y∗, u∗)

is a feasible point of (2). Then observe that for (ŷ, û) being any optimal point of (2),

J (ŷ, û) ≤ J (y∗, u∗) ≤ lim inf
n→∞ J (y∗

ρn
, u∗

ρn
) ≤ lim sup

n→∞
J (y∗

ρn
, u∗

ρn
)

≤ lim sup
n→∞

J (w∗
ρn

, û) ∀w∗
ρn

∈ Pρn(û)
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with the last inequality by (39). Now it becomes necessary for Q to be single-valued since
then, ŷ = Q(û) and it must be the case that we can select a sequence {w∗

ρn
} such that

w∗
ρn

∈ Pρn(û) and w∗
ρn

→ ŷ in V (by Theorem 2.18), and we find

J (ŷ, û) ≤ J (y∗, u∗) ≤ lim
n→∞ J (y∗

ρn
, u∗

ρn
) ≤ J (ŷ, û).

Because J (ŷ, û) is the minimal value and hence is either independent of (ŷ, û) or uniquely
determined by (ŷ, û), the subsequence principle shows that J (y∗

ρ, u∗
ρ) → J (ŷ, û) (for

the entire sequence). Furthermore, the above inequality shows that (y∗, u∗) is optimal
and we get u∗

ρ → u∗ in H since we have weak convergence and convergence of the norm.

Regarding the assumption in this lemma that Q is single valued, this is the case if, for
example, is (globally) Lipschitz with Lipschitz constant strictly smaller than Ca/(Ca +
Cb), see the discussion around [4, Equation (21)]. An alternative condition for uniqueness
for QVIs in a specific setting is given in [45].

Let us see how the results of this section change if we do not assume complete continuity
of : V → V .

Remark 4.3 (1) We can drop (19) from Theorem 4.1 in favour of the conditions in Theo-
rem 2.19 as long as in the Gelfand triple regime (16) we assume U → H . Examining
the proof of Theorem 4.1, the feasibility of the limit of the infimising sequence fol-
lows exactly as in the proof of Theorem 2.19. The Cauchy estimate is not necessary.
Weak lower semicontinuity of the norm allows us to retain the final line in the proof.

(2) If we drop (19) from Proposition 4.2 in favour of V
c−→ H and the conditions in The-

orem 2.19 as long as in the Gelfand triple regime (16) we assume U → H , we would
get y∗

ρ y∗ in V (i.e., a weak convergence). To see this, we simply need to modify
the proof to use Theorem 2.19 instead of Theorem 2.18. The compact embedding into
H is needed to bound from above the term lim supn→∞ J (w∗

ρn
, û) by J (ŷ, û).

5 Stationarity

In this section, we shall derive various forms of necessary conditions satisfied by optimal
controls and states. Let us first formally define some concepts of stationarity which are
motivated by analogous concepts from the VI case and also by the results that we shall
obtain later.

Let (y, u) ∈ V × H be a solution of the optimal control problem (2) where V → H

with V a reflexive Banach space and H a Hilbert space, Uad ⊂ H is non-empty and weakly
sequentially closed (in the context of the previous section, we have assumed U ≡ H ).

Inspired by the results we obtain in Section 5.2 in a general function space setting, we
say that (y, u) is a weak C-stationarity point of (2) if there exists (p, ξ, λ) ∈ V × V ∗ × V ∗
such that

y + (I − (y))∗λ + A∗p = yd,

Ay − u + ξ = 0,

ξ ≥ 0 in V ∗, y ≤ (y), ξ, y − (y) = 0,

u ∈ Uad : (νu − p, u − v)H ≤ 0 ∀v ∈ Uad,

λ, p ≥ 0.
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The function p is said to be the adjoint state and λ is the Lagrange multiplier associated
to the adjoint state equation (the first equation above).

Let us now restrict the discussion to when H = L2( ) on a domain ⊂ R
n. Certain

sets associated to the lower-level QVI problem in (2) are important in stating the following
stationarity conditions. Denoting ξ := u − Ay (see Proposition 2.1), let us formally define
then the following sets:

A := {y = (y)} is the active (or coincidence) set,

I := {y < (y)} is the inactive set,

As := {ξ > 0} is the strongly active set,

B := {y = (y)} ∩ {ξ = 0} is the biactive set.

These definitions are merely heuristic due to the (in general) low regularity of ξ , see for
example [69, §3 and Appendix A] or [33] for a rigorous approach to define these objects.

We say that (y, u) ∈ V × H is a C-stationarity point of (2) if (y, u) is a solution of (2)
and there exists (p, ξ, λ) ∈ V × V ∗ × V ∗ such that

y + (I − (y))∗λ + A∗p = yd, (40a)

Ay − u + ξ = 0, (40b)

ξ ≥ 0 in V ∗, y ≤ (y), ξ, y − (y) = 0, (40c)

u ∈ Uad : (νu − p, u − v)H ≤ 0 ∀v ∈ Uad, (40d)

ξ, p+ = ξ, p− = 0 (40e)

λ, p ≥ 0, λ, y − (y) = 0, (40f)

λ, v = 0 ∀v ∈ V : v=0 a.e. on \ I . (40g)

Note that we use the condition (40e) in lieu of the more commonly seen condition p =
0 a.e. in {ξ > 0} due to the low regularity of ξ .

Remark 5.1 It is worth remarking that in certain works [65], rather than the inequality
constraint in (40f), the stronger condition

λ, ψp ≥ 0 for all sufficiently smooth and non-negative ψ (41)

is required in order to satisfy C-stationarity; this is a direct analogy of the corresponding
(element-wise) condition in the finite dimensional setting in [64]. We will also consider the
obtainment of (41) in Proposition 5.13.

The condition (40g) is in practice difficult to check due to the fact that in general, λ

possesses only the low V ∗ regularity. Therefore, one looks for a weaker concept. In the first
instance, for an almost C-stationarity point, (40g) is replaced by

λ, v = 0 ∀v ∈ V : v = 0 a.e. on \ I, v|I ∈ H 1
0 (I).

More generally, an E-almost C-stationarity point, the concept of which was introduced by
Hintermüller and Kopacka in [35, 36], satisfies (40a)–(40f) but now (40g) is replaced with

∀τ > 0, ∃Eτ ⊂ I with |I \ Eτ | ≤ τ : λ, v = 0 ∀v ∈ V : v = 0 a.e. on \ Eτ .

This is a condition that arises from an application of Egorov’s theorem as we shall see later.
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Now, in the other direction, a point which satisfies (40a)–(40c) and additionally

p ≥ 0 q.e. on B and p = 0 q.e. on As ,

λ, v ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on B and v = 0 q.e. on As ,

is called a strong stationarity point, which is typically the most stringent notion of station-
arity possible and requires differentiability of the control-to-state map to be obtainable.

In the proceeding sections, we will show that there exist weak C-stationarity, (E-almost)
C-stationarity and strong stationarity points under various assumptions. We will, however,
first start in Section 5.1 with the so-called Bouligand stationarity which is a primal condition
and is defined below. It also requires differentiability of Q.

5.1 Bouligand Stationarity

In the case where Q is directionally differentiable from the results of Section 3, we have the
following Bouligand stationarity (or B-stationarity) characterisation of the optimal control,
see [50, §5] and [51, Lemma 3.1] for the VI case. To start, define the radial cone of Uad at
u∗ and the tangent cone respectively by

RUad
(u∗)={h ∈ H :∃s∗ >0 such that u∗ + sh∈Uad ∀s ∈[0, s∗]} and TUad

(u∗) :=RUad
(u∗).

Proposition 5.2 (Bouligand stationarity) Let Uad be non-empty and (y∗, u∗) be a local
minimiser of (2) and let the assumptions16 of Theorem 3.2 hold. Then

(αh, y
∗ − yd)H + ν(u∗, h)H ≥ 0 ∀h ∈ TUad

(u∗), (42)

where αh is the directional derivative given uniquely through Theorem 3.2 as the solution
of (27) with source h.

Proof Take h in the radial cone of Uad at u∗ so that it is an admissible direction. Using this
direction term, we define ys as given by Theorem 3.2 after having initially selected y∗ ∈
Q(u∗). This satisfies ys = y∗ + sαh + o(s) where αh is the directional derivative (uniquely
determined thanks to Proposition 3.9) and o is a remainder term. It follows that (u∗+sh, ys)

can be made arbitrarily close to (u∗, y∗) if s is sufficiently small (since ys −y∗ = sαh+o(s)

and the right-hand side tends to zero in V ). Hence, by definition of local minimiser, we have
J (ys, u

∗ + sh) ≥ J (y∗, u∗) for s sufficiently small. Writing this inequality out, we get

0 ≤ ys − yd
2
H + ν u∗ + sh

2
H

− y∗ − yd
2
H

− ν u∗ 2
H

= ys
2
H − y∗ 2

H
+ 2(y∗ − ys, yd)H + νs2 h 2

H + 2νs(u∗, h)H .

This leads to

0 ≤ y∗ + sαh + o(s)
2
H

− y∗ 2
H

− 2(sαh + o(s), yd)H + νs2 h 2
H + 2νs(u∗, h)H

= sαh + o(s) 2
H + 2(sαh + o(s), y∗ − yd)H + νs2 h 2

H + 2νs(u∗, h)H

= s2 αh + s−1o(s)
2

H
+ 2(sαh + o(s), y∗ − yd)H + νs2 h 2

H + 2νs(u∗, h)H .

16These assumptions should be evaluated locally at y∗, of course.
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Dividing by s and sending to zero, the above yields

0 ≤ 2(αh, y
∗ − yd)H + 2ν(u∗, h)H ∀h ∈ RUad

(u∗),

and by density and the continuity result of Proposition 3.12, also for h ∈ TUad
(u∗).

5.2 Weak C-stationarity

In this section we will show a type of weak C-stationarity for the optimal pair by passing
to the limit in the stationarity system satisfied by the optimal pair of the PDE regularisation
of the QVI. Recall the notations and framework of Sections 2.3 and 4.1 where we studied
the convergence of solutions of certain PDEs to a solution of the associated QVI and the
associated optimal control problems. In this section, we again take

(y∗, u∗) to be an arbitrary local minimiser of (2).

In addition to the basic setup of Assumption 2.12, we need the following fundamental con-
ditions related to , in which we also recall two assumptions that were stated earlier for the
convenience of the reader.

Assumption 5.3 Assume that

there exists v0 ∈ V such that v0 ≤ (v) for all v ∈ V , (14)

: V → V is completely continuous, (19)

there exists > 0 such that : V → V is continuously

Fréchet differentiable on B (y∗), (43)

Q is single valued.

We also introduce the following invertibility assumptions; these are stated separately
from above since they will come in use later in another section. Note that these types of
conditions are also needed in [72].

Assumption 5.4 Assume that

(I− (z)) : V →V is invertible for z ∈ B (y∗), (44)

A(I− (z))−1: V→V ∗ is uniformly bounded and uniformly coercive in z ∈ B (y∗). (45)

The main result of this section is the following theorem which shows that local
minimisers are weak C-stationarity points.

Theorem 5.5 (Weak C-stationarity) Suppose that

Uad is non-empty, closed and convex and V
c−→ H → V ∗ is a Gelfand triple. (46)

In addition to Assumptions 2.12, 5.3 and 5.4, suppose that mρ satisfies along with (10)–(12)
the conditions

mρ : H → V ∗ is continuous (47)

mρ : V → V ∗ is continuously Fréchet differentiable. (48)
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Then there exist multipliers (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ satisfying the weak C-
stationarity system

y∗ + (I − (y∗))∗λ∗ + A∗p∗ = yd, (49a)

Ay∗ − u∗ + ξ∗ = 0, (49b)

ξ∗ ≥ 0 in V ∗, y∗ ≤ (y∗), ξ∗, y∗ − (y∗) = 0, (49c)

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v)H ≤ 0 ∀v ∈ Uad, (49d)

λ∗, p∗ ≥ 0. (49e)

Here, we have assumed the existence of C1 maps mρ — this will have to be verified on
a case-by-case basis (we leave the possibility of being able to define such maps satisfying
the conditions (10)–(12) and (47)–(48) in the general setting to the interested reader, who
may find [31] useful for this purpose). However, let us note that in the most common case
of interest where the function spaces involve functions over domains in R

n with the usual
ordering, it is usually possible to construct sufficiently smooth mρ , see for example Section
5.3.

Remark 5.6 (i) We assumed the complete continuity (19) to utilise the strong conver-
gence result of Theorem 2.18. It would be interesting to see how the calculations
below can be adapted in the case where (we do not have complete continuity and) we
only have weak convergence from Theorem 2.19.

(ii) Due to the Gelfand triple setup and complete continuity of here, we find from (47)
that the complete continuity of mρ condition (15a) is satisfied.

(iii) The meaning of (45) is that for all z ∈ B (y∗), the operator A(I − (z))−1 has a
boundedness constant Cb and a coercivity constant Ca both of which are independent
of z.

A consequence is that

(I − (z))−1 : V → V is bounded uniformly for all z ∈ B (y∗). (50)

Since is C1, we automatically have that (I − (z))−1 is bounded; (50) clarifies
that the bound is uniform.

Let us proceed with proving this result.

5.2.1 Stationarity for the Penalised Optimal Control Problem

Recall the penalised problem (38) that approximates (2):

min
u∈Uad

J (yρ, u) such that Ayρ + 1

ρ
mρ(yρ − (yρ)) = u. (38)

Under Assumption 5.3 and (15a), Proposition 4.2 is applicable. For the moment and for
purposes of a simpler exposition, let us assume that

(y∗, u∗) is the optimal point of (2) given in Proposition 4.2 (51)

(we will discard this later on). Via the proposition, we obtain the existence of minimisers
(y∗

ρ, u∗
ρ) of (38) such that

(y∗
ρ, u∗

ρ) → (y∗, u∗) in V × H .
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Thus, for any > 0, we can find a ρ0 such that ρ ≤ ρ0 implies

y∗
ρ ∈ B (y∗)

(this is why it has been possible to formulate most assumptions on only locally). To
derive stationarity conditions for the penalised problem (38), we check the Zowe–Kurcyusz
constraint qualification [74] (see also the Robinson condition [60]). To do so, we make the
necessary surjectivity assumption (52) below regarding existence for the linearised equation
— we discuss instances where it holds in Remark 5.8.

Lemma 5.7 Assume (43), (48), and (46) and suppose that

∀ρ ≤ ρ0, ∀f ∈ V ∗, ∃z ∈ V : Az + 1

ρ
mρ(y∗

ρ − (y∗
ρ))(I − (y∗

ρ))(z) = f . (52)

Then, for such ρ and any optimal point (y∗
ρ, u∗

ρ) of (38), there exists p∗
ρ ∈ V such that

A∗p∗
ρ + 1

ρ
(I − (y∗

ρ))∗mρ(y∗
ρ − (y∗

ρ))∗p∗
ρ = yd − y∗

ρ,

(νu∗
ρ − p∗

ρ, u∗
ρ − v)H ≤ 0 ∀v ∈ Uad .

(53)

Proof We introduce the following notation:

X := V × H, g(x) = g(y, u) := Ay + 1

ρ
mρ(y − (y)) − u,

xρ = (y∗
ρ, u∗

ρ), C(xρ) := {k(v − y∗
ρ, h − u∗

ρ) : v ∈ V, h ∈ Uad, k ≥ 0}.
The map g : X → V ∗, being a composition of C1 maps, is continuously Fréchet differen-
tiable at xρ and we must check that g (xρ)C(xρ) = V ∗, but since C̃ := V × {0} ⊂ C(xρ),
it suffices to verify g (xρ)C̃ = V ∗.

Observing that

g (xρ)(y, 0) = Ay + 1

ρ
mρ(y∗

ρ − (y∗
ρ))(y − (y∗

ρ)(y)),

it follows that we need existence for the PDE in (52) and this is guaranteed by assumption
for ρ sufficiently small. Calculating the adjoint g (xρ)∗ : V → X∗ of g via

g (xρ)(y, u), v = Ay, v + 1

ρ
mρ(y∗

ρ − (y∗
ρ))(y − (y∗

ρ)(y)), v − (u, v)

= y, A∗v + 1

ρ
y, (I − (y∗

ρ))∗mρ(y∗
ρ − (y∗

ρ))∗v − (v, u),

we find

g (xρ)∗(v) = A∗v + 1

ρ
(I − (y∗

ρ))∗mρ(y∗
ρ − (y∗

ρ))∗v, −v .

Applying, for example, [68, Theorem 6.3], we get the existence of p∗
ρ ∈ V such that

J (xρ) − g (xρ)∗p∗
ρ ∈ C(xρ)◦, i.e., for all k ≥ 0,

y∗
ρ − yd + 1

ρ
(I − (y∗

ρ))∗mρ(y∗
ρ − (y∗

ρ))∗p∗
ρ +A∗p∗

ρ, k(c1 − y∗
ρ) ≥ 0 ∀c1 ∈ V,

(νu∗
ρ − p∗

ρ, k(c2 − u∗
ρ))H ≥ 0 ∀c2 ∈ Uad .

As c1 ∈ V can be chosen arbitrarily, we find the stated result.
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Remark 5.8 The conditions of Assumption 5.4 are clearly sufficient to guarantee the surjec-
tivity condition (52); and in fact (45) can be replaced with asking for A(I− (z))−1 : V →
V ∗ to be coercive for all z ∈ B (y∗). Indeed, first observe that the bounded inverse theorem
guarantees that A(I − (z))−1 : V → V ∗ is bounded for z ∈ B (y∗). Now, the equation

A(I − (y∗
ρ))−1w + 1

ρ
mρ(y∗

ρ − (y∗
ρ))w = f

has a unique solution w ∈ V by the Lax–Milgram theorem, leading to existence of z :=
(I − (y∗

ρ))−1w ∈ V satisfying the equation in (52).

5.2.2 Passage to the Limit ρ → 0

Now the objective is to pass to the limit in (53) as ρ → 0 for which we shall need some
technical results.

Lemma 5.9 Under Assumption 5.4, if zn → z and qn q in V with zn, z ∈ B (y∗), then
(I − (zn))

−1qn (I − (z))−1q in V , (54)

A(I − (z))−1q, q ≤ lim inf
n→∞ A(I − (zn))

−1qn, qn . (55)

The convergence in (54) is strong if qn → q in V .

In order to not disturb the flow of the paper, the proof of this lemma has been placed in
Appendix A. As an immediate corollary to Lemma 5.9, for sequences wρ → w and qρ q

in V , we have

lim
n→∞(I − (y∗

ρ))−1wρ = (I − (y∗))−1w in V , (56)

(y∗, (I − (y∗))−1q)H ≤ lim inf
n→∞ (y∗

ρ, (I − (y∗
ρ))−1qρ)H , (57)

(yd, (I − (y∗))−1q)H ≥ lim sup
n→∞

(yd, (I − (y∗
ρ))−1qρ)H . (58)

We are now ready to conclude.

Proof of Theorem 5.5 First, note that Proposition 2.1 directly gives (49c). Assumption 5.4
implies the surjectivity condition (52) (see Remark 5.8), therefore the stationarity conditions
in (53) for the penalised problem are available.

Now, the weak form of the equation for p∗
ρ is

A∗p∗
ρ, ϕ + 1

ρ
mρ(y∗

ρ − (y∗
ρ))∗p∗

ρ, (I − (y∗
ρ))ϕ = (yd − y∗

ρ, ϕ)H ∀ϕ ∈ V .

By defining v := (I − (y∗
ρ))ϕ, thanks to the invertibility assumption (44), this can be

transformed to

A(I − (y∗
ρ))−1v, p∗

ρ + 1

ρ
mρ(y∗

ρ − (y∗
ρ))∗p∗

ρ, v

= (yd − y∗
ρ, (I − (y∗

ρ))−1v)H ∀v ∈ V .

Selecting v = p∗
ρ , using the coercivity (45), the monotonicity of mρ (which implies that

mρ(v)(h), h ≥ 0 for all v, h ∈ V ), Young’s inequality with γ > 0 and the uniform
boundedness of (I − (y∗

ρ))−1 assured by (50), we obtain

Ca p∗
ρ

2
V

≤ Cγ yd − y∗
ρ

2
H

+ γ p∗
ρ

2
V

.
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Selecting γ sufficiently small so that the right-most term is absorbed onto the left, we obtain
a bound on {p∗

ρ} independent of ρ. This gives rise to the convergence (for a subsequence
that has been relabelled)

p∗
ρ p∗ in V .

Define

λ∗
ρ := 1

ρ
mρ(y∗

ρ − (y∗
ρ))∗p∗

ρ,

μ∗
ρ := 1

ρ
(I − (y∗

ρ))∗mρ(y∗
ρ − (y∗

ρ))∗p∗
ρ = yd − y∗

ρ − A∗p∗
ρ,

ξ∗
ρ := 1

ρ
mρ(y∗

ρ − (y∗
ρ)) = u∗

ρ − Ay∗
ρ,

the latter two of which, since their right-hand sides converge, satisfy the following conver-
gences both in V ∗:

μ∗
ρ μ∗ := yd − y∗ − A∗p∗ and ξ∗

ρ → ξ∗ := u∗ − Ay∗. (59)

Again using monotonicity of mρ ,

μ∗
ρ, (I − (y∗

ρ))−1p∗
ρ = 1

ρ
mρ(y∗

ρ − (y∗
ρ))∗p∗

ρ, p∗
ρ ≥ 0,

and taking the limit superior of this, recalling the definition of μ∗, we obtain

0 = lim sup
ρ→0

yd , (I − (y∗
ρ))−1p∗

ρ − lim inf
ρ→0

y∗
ρ , (I − (y∗

ρ))−1p∗
ρ − lim inf

ρ→0
A(I − (y∗

ρ))−1p∗
ρ , p∗

ρ

≤ yd − y∗, (I − (y∗))−1p∗ − A(I − (y∗))−1p∗, p∗

(using the weak semicontinuity results (55), (57) and (58))

= μ∗, (I − (y∗))−1p∗ .

Finally, writing the VI relating u∗
ρ and p∗

ρ in (53) as

(νu∗
ρ, u∗

ρ − v)H − u∗
ρ − v, p∗

ρ ≤ 0 ∀v ∈ Uad,

using the strong convergence of u∗
ρ in H (and hence also in V ∗) and the weak convergence

of p∗
ρ in V , we can pass to the limit.

Collecting the results (and recalling that the inverses and adjoints of bounded linear
operators commute), we have shown the satisfaction of (49b)–(49d) and

y∗ + μ∗ + A∗p∗ = yd,

(I − (y∗)∗)−1μ∗, p∗ ≥ 0,

Setting λ∗ := (I − (y∗)∗)−1μ∗ we get the system (49).
Thus far, we have only shown the existence of a stationarity point and not that every local

minimiser is such a point since we assumed (51). Suppose now that (y∗, u∗) is an arbitrary
local minimiser (instead of (51)) as claimed in the statement of the theorem.

Denote by γ the radius such that u∗ is the minimiser on Uad ∩ BH
γ (u∗) (the latter object

is the closed ball in H of radius γ with centre u∗). Consider for J̄ (yρ, u) := J (yρ, u) +
u − u∗ 2

H the problem

min
u∈Uad∩BH

γ (u∗)
J̄ (yρ, u) such that Ayρ + 1

ρ
mρ(yρ − (yρ)) = u. (60)
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Denote by (ȳρ, ūρ) a minimiser of this problem. It follows from J̄ (ȳρ, ūρ) ≤ J̄ (yρ(u∗), u∗)
and Pρ(u∗) yρ(u∗) → y∗ that

lim sup
ρ→0

J̄ (ȳρ, ūρ) ≤ J (y∗, u∗).

On the other hand, from uniform bounds, we obtain the existence of û such that ūρ û

in H and ȳρ → Q(û) =: ŷ in V , giving (by the identity lim sup(an) + lim inf(bn) ≤
lim sup(an + bn) and using weak lower semicontinuity)

lim sup
ρ→0

J̄ (ȳρ, ūρ) ≥ J (ŷ, û) + lim sup
ρ→0

ūρ − u∗ 2
H

≥ J (y∗, u∗) + lim sup
ρ→0

ūρ − u∗ 2
H

,

with the last inequality because (y∗, u∗) is a local minimiser and û ∈ BH
γ (u∗). Combining

these two inequalities shows that û = u∗ and ūρ → u∗ in H . The latter fact implies that
for ρ sufficiently small, ūρ ∈ BH

γ (u∗) automatically and hence the feasible set in (60)
can be taken to be just Uad . For such ρ (assuming of course that the local conditions in
Assumptions 5.3 and 5.4 hold around y∗), the same arguments as above can be used to
derive stationarity conditions for (60) and in passing to the limit in those conditions, we will
find that (y∗, u∗) satisfies the same conditions as above.

The proof reveals that the stationarity point satisfying (51) can be characterised as a limit
of the following subsequences (which we have relabelled):

y∗
ρ → y∗ in V,

u∗
ρ → u∗ in H,

p∗
ρ p∗ in V,

ρ−1mρ(y∗
ρ − (y∗

ρ)) → ξ∗ in V ∗,
ρ−1mρ(y∗

ρ − (y∗
ρ))p∗

ρ λ∗ in V ∗,

where (y∗
ρ, u∗

ρ, p∗
ρ) are as in Lemma 5.7.

5.3 E-almost C-stationarity

We specialise to the case where H is an L2 space on a bounded domain with box constraints,
which allows us to improve the weak C-stationarity system.

Assumption 5.10 Let ⊂ R
n be a bounded Lipschitz domain, set H := L2( ) and take

V ∈ {H 1( ),H 1
0 ( )} and assume the Gelfand triple (V ,H, V ∗) structure. Finally, we take

Uad to be of the box constraint type

Uad = {u ∈ H : ua ≤ u ≤ ub a.e. in } (61)

for given functions ua, ub ∈ H .

The assumption can be generalised, see Remark 5.12.
As before, we denote by

(y∗, u∗) an arbitrary local minimiser of (2).

Theorem 5.11 (E-almost C-stationarity) Let Assumptions 5.3, 4.4 and 5.10 hold.
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Then there exist multipliers (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ satisfying the E-almost C-
stationarity system

y∗ + (I − (y∗))∗λ∗ + A∗p∗ = yd, (62a)

Ay∗ − u∗ + ξ = 0, (62b)

ξ∗ ≥0 in V ∗, y∗≤ (y∗), ξ∗, y∗− (y∗) = 0, (62c)

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad, (62d)

ξ∗, (p∗)+ = ξ∗, (p∗)− = 0 (62e)

λ∗, p∗ ≥ 0, λ∗, y∗ − (y∗) = 0, (62f)

∀τ >0, ∃Eτ ⊂ I with |I \ Eτ |≤τ : λ∗, v = 0 ∀v∈V : v=0 a.e. on \ Eτ . (62g)

In addition, if ua, ub ∈ V then the optimal control has the regularity u∗ ∈ V .

To prove the theorem, we choose a particular mρ (that appeared in the work of Hin-
termüller and Kopacka [36] for VIs), namely the superposition operator defined through the
real-valued function

mρ(r) ≡ max
(ρ)

(0, ·) :=

⎧

⎪⎨

⎪⎩

0 : r ≤ 0
r2

2 : 0 < r <

r − 2 : r ≥ ;
(63)

here, = (ρ) > 0 is chosen such that { (ρ)} is bounded. The parameter is a smoothing
parameter utilised for ensuring differentiability at 0. By [22, Lemmas 2.83, 2.87, 2.88, 2.90]
and the fact that mρ ∈ C1(R) with mρ ∈ [0, 1], we obtain relevant lattice properties for the
spaces involved and differentiability properties for mρ . That mρ satisfies (10), (11) and (47)
is clear. Let us check condition (12). Since { (ρ)} is bounded, we have (for a subsequence
that we relabelled) (ρ) → ¯ for some ¯ ≥ 0 and we get

max¯ (0, z) − max
(ρ)

(0, zρ)
V ∗

≤ C max¯ (0, z) − max¯ (0, zρ)
H

+ max¯ (0, zρ) − max
(ρ)

(0, zρ)
H

≤ C z − zρ H
+ 3

2
| ¯ − (ρ)|

→ 0

with the final inequality due to Lipschitz properties given in [36, Lemma 2.1 (v), (vi)] and

the convergence due to the compact embedding V
c−→ H . Hence we find z ≤ 0. Finally,

by the regularity of mρ (which has a bounded derivative) we have that mρ : H 1( ) → H is
C1 (see, e.g. [21, Proposition 4]), thus we have (48). This shows that mρ is a valid choice.

Remark 5.12 Assumption 5.10 can be generalised as follows. Let ⊂ R
n be a bounded

Lipschitz domain, set H := L2( ) and take V to be a separable Hilbert space with V
c−→ H

and (V ,H, V ∗) a Gelfand triple.
We assume that V is such that (·)+ : V → V is continuous and that the superposition

operator mρ takes V into H with mρ : V → H being C1.
The requirement for the Nemytskii operator to be Fréchet differentiable is in general a

delicate issue.
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Proof of Theorem 5.11 Elements of the proof are similar to that of [36, Theorem 3.4] but
the more complicated problem structure in this paper requires additional work.

1. Weak C-stationarity Observing that Assumption 5.10 implies (46), (47) and (48) (as
discussed above), we have the weak C-stationarity result of Theorem 5.5 immediately at
hand.

2. Regularity of optimal control Owing to the characterisation of the VI relating u∗
ρ and

p∗
ρ given in [42, §II.3], thanks to the strong convergence in H of p∗

ρ and continuity of
(·)+ : H → H , we find that

u∗
ρ = 1

ν
p∗

ρ + ua − p∗
ρ

ν

+
− p∗

ρ

ν
− ub

+
→ 1

ν
p∗+ ua − p∗

ν

+
− p∗

ν
− ub

+
= u∗.

It follows that u∗ ∈ V if ua and ub belong to V .

3. Orthogonality condition For the condition on y∗ − (y∗) in (62f), observe that since
mρ vanishes on (−∞, 0],

μ∗
ρ, (I − (y∗

ρ))−1(y∗
ρ − (y∗

ρ))− = 1

ρ
mρ(y∗

ρ − (y∗
ρ))∗p∗

ρ(y∗
ρ − (y∗

ρ))− = 0,

which, due to the continuity of (·)− : V → V and the joint sequential continuity result of
(56) implies that

μ∗, (I − (y∗))−1(y∗ − (y∗))− = 0,

and since y∗ ≤ (y∗), the negative part above can be dropped.

4. E-almost statement Since y∗
ρ → y∗ in V , y∗

ρ − (y∗
ρ) → y∗ − (y∗) pointwise a.e. in

for a subsequence that we do not relabel. Take x ∈ such that y∗(x) − (y∗)(x) < 0,
then there exists a ρ̂ = ρ̂(x) such that if ρ ≤ ρ̂, then

yρ(x) − (yρ)(x) ≤ 1

2
(y∗(x) − (y∗)(x)) < 0

and hence ρ−1mρ(yρ(x)− (yρ)(x)) = 0 for ρ ≤ ρ̂. That is, ρ−1mρ(yρ(x)− (yρ)(x)) →
0 pointwise a.e. on {y∗ < (y∗)} and by Egorov’s theorem, for every τ > 0, there exists
Bτ ⊂ {y∗ < (y∗)} with |Bτ | < τ such that this convergence also holds uniformly on
{y∗ < (y∗)} \ Bτ .

Take v ∈ V with v = 0 a.e. on {y∗ = (y∗)}∪Bτ . By the uniform convergence, for any
γ > 0, there exists ρ̄ such that if ρ ≤ ρ̄,

μ∗
ρ, (I − (y∗

ρ))−1v =
{y∗< (y∗)}∩(Bτ )c

1

ρ
mρ(yρ − (yρ))p∗

ρv ≤ γ p∗
ρv

L1( )
.

The norm on the right-hand side is bounded uniformly and the left-hand side converges to
| μ∗, (I − (y∗))−1v | (thanks to μ∗

ρ μ∗ in V ∗ from (59) and the strong convergence
of (I − (y∗

ρ))−1v in V given by (56)), thus giving

μ∗, (I − (y∗))−1v ≤ Cγ

for a constant C > 0. Since this holds for every γ , we obtain (62g) (simply set Eτ :=
I \ Bτ ).
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5. Relation between ξ∗ and p∗. In order to show the remaining statement (62e), let us
introduce the sets

M1(ρ) := {0 ≤ y∗
ρ − (y∗

ρ) < } and M2(ρ) := {y∗
ρ − (y∗

ρ) ≥ }.
Since ξ∗

ρ , y∗
ρ − (y∗

ρ) → ξ∗, y − (y) = 0, we find

(ξ∗
ρ , y∗

ρ − (y∗
ρ))

= 1

ρ
mρ(y∗

ρ − (y∗
ρ))(y∗

ρ − (y∗
ρ))

= 1

ρ M1(ρ)

(y∗
ρ − (y∗

ρ))3

2
+ 1

ρ M2(ρ)

y∗
ρ − (y∗

ρ) −
2

(y∗
ρ − (y∗

ρ)) (64)

→ 0,

and as both integrands in (64) are non-negative, each integral must individually converge to
zero too. Hence

χM1(ρ)(y
∗
ρ − (y∗

ρ))
3
2

√
ρ

→ 0 and
χM2(ρ)(y

∗
ρ − (y∗

ρ) − 2 )√
ρ

→ 0, (65)

where for the second convergence we used the fact that y∗
ρ − (y∗

ρ) ≥ y∗
ρ − (y∗

ρ) − /

2 ≥ 0.
We calculate

ξ∗
ρ , p∗

ρ = 1

ρ M1(ρ)

(y∗
ρ − (y∗

ρ))2

2
p∗

ρ + 1

ρ M2(ρ)

y∗
ρ − (y∗

ρ) −
2

p∗
ρ

= 1

2
χM1(ρ)

(y∗
ρ − (y∗

ρ))3/2

√
ρ

(y∗
ρ − (y∗

ρ))1/2

√
ρ

χM1(ρ)p
∗
ρ

+ χM2(ρ) y∗
ρ − (y∗

ρ) − 2√
ρ

χM2(ρ)p
∗
ρ√

ρ

≤ 1

2
χM1(ρ)

(y∗
ρ − (y∗

ρ))3/2

√
ρ

(y∗
ρ − (y∗

ρ))1/2

√
ρ

χM1(ρ)p
∗
ρ

+ χM2(ρ) y∗
ρ − (y∗

ρ) − 2√
ρ

χM2(ρ)p
∗
ρ√

ρ
. (66)

Now, using (65), the first factor in each term above converges to zero and hence the above
right-hand side will converge to zero if we are able to show that the second factor in each
term remains bounded. Since μ∗

ρ and (I − (y∗
ρ))−1p∗

ρ are bounded (the latter due to (50)),
so is their duality product, and therefore

C ≥ | μ∗
ρ, (I − (y∗

ρ))−1p∗
ρ |

= 1

ρ
mρ(y∗

ρ − (y∗
ρ))(p∗

ρ)2

= 1

ρ M1(ρ)

y∗
ρ − (y∗

ρ)
(p∗

ρ)2 +
M2(ρ)

(p∗
ρ)2

= 1

ρ
χM1(ρ)

y∗
ρ − (y∗

ρ)
(p∗

ρ)2 + 1

ρ
χM2(ρ)(p

∗
ρ)2.
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Both of the terms on the right-hand side are individually bounded uniformly in ρ as the
integrands are non-negative. This fact then implies from (66) that

ξ∗, p∗ = 0.

Replacing p∗
ρ by (p∗

ρ)+ in (66) and in the above calculation, we also obtain in the same way
(utilising the fact that vn v in V implies that v+

n v+ in V )

ξ∗, (p∗)+ = 0.

Conclusion. Finally, setting λ∗ := (I − (y∗)∗)−1μ∗, we have shown the desired system
(62).

We conclude this section by showing that the alternative (stronger) condition (41)
occasionally used in literature for defining a C-stationarity point can be achieved under
additional assumptions.

Proposition 5.13 (Satisfaction of alternative criterion in C-stationarity) For qρ q in V ,
under the conditions of Theorem 5.11 and

lim inf
n→∞ A∗qρ, (I − (y∗

ρ))−1(ψqρ)

≥ A∗q, (I − (y∗))−1(ψq) ∀ψ ∈ W 1,∞( ) with ψ ≥ 0, (67)

the inequality condition in (62f) can be strengthened to

λ∗, ψp∗ ≥ 0 ∀ψ ∈ W 1,∞( ) with ψ ≥ 0.

Proof Testing the equation for p∗
ρ with (I − (y∗

ρ))−1(ψp∗
ρ), noticing that ψp∗

ρ ψp∗ in
V and making use again of (57) and (58) in a similar way to the proof of Theorem 5.5,

lim sup
ρ→0

μ∗
ρ, (I − (y∗

ρ))−1(ψp∗
ρ)

= lim sup
ρ→0

yd, (I − (y∗
ρ))−1(ψp∗

ρ) − lim inf
ρ→0

y∗
ρ, (I − (y∗

ρ))−1(ψp∗
ρ)

− lim inf
ρ→0

A∗p∗
ρ, (I − (y∗

ρ))−1(ψp∗
ρ)

≤ yd − y∗, (I − (y∗))−1(ψp∗) − A∗p, (I − (y∗))−1(ψp∗)
(using (67) for the last term)

= μ∗, (I − (y∗))−1(ψp∗)
= λ∗, ψp∗ .

On the other hand, we have

lim sup
ρ→0

μ∗
ρ, (I − (y∗

ρ))−1(ψp∗
ρ)

= lim sup
ρ→0

λ∗
ρ, ψp∗

ρ = lim sup
ρ→0

mρ(y∗
ρ − (y∗

ρ))(p∗
ρ)2ψ ≥ 0

which implies the result.
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Remark 5.14 Let us consider when assumption (67) of the previous proposition holds.
Suppose that A is of the form

Au, v =
n

i,j=1

aij

∂u

∂xi

∂v

∂xj

+
n

i=1

bi

∂u

∂xi

v + c0uv ∀u, v ∈ V, (68)

with aij = aji ∈ C0,1( ¯ ), bi ∈ W 1,∞( ), c0 ∈ L∞( ) and

n

i,j=1

aij ξiξj ≥ C|ξ |2 a.e. (69)

for some C > 0 and c0 ≥ λ > 0 a.e. with λ a constant such that A is coercive.
Taking ψ as in the above proposition, let zρ = (I− (y∗

ρ))−1(ψqρ). By (54), zρ z :=
(I − (y∗))−1(ψq∗) in V . We have, as done in [65, Lemma 3.6] and [70, Lemma 4.5],

A∗qρ, (I − (y∗
ρ))−1(ψqρ) = A∗qρ, zρ

= qρ, Azρ

=
n

i,j=1

aij

∂zρ

∂xi

∂qρ

∂xj

+
n

i=1

bi

∂zρ

∂xi

qρ + c0zρqρ .

Using the convergences qρ q and zρ z in V , the compactness of V
c−→ H and the

regularity of ψ , it is easy to pass to the limit in all but the first term. For that term, we need
a weak lower semicontinuity of the form

lim inf
ρ→0

n

i,j=1

aij

∂((I − (y∗
ρ))−1(ψqρ))

∂xi

∂qρ

∂xj

≥
n

i,j=1

aij

∂((I − (y))−1(ψq))

∂xi

∂q

∂xj

.

A condition ensuring this is the complete continuity of I − (y) : V → V (examining the
proof of Lemma 5.9 shows that this condition would turn the convergence in (54) into a
strong convergence so that zρ → z in V and hence we can directly pass to the limit in that
term).

5.4 From E-almost to C-stationarity

In order to upgrade to C-stationarity, we need an additional condition given in the next
proposition. The assumption preserves generality but is strong, however, we will explore an
example below of a reasonable situation where it holds.

Proposition 5.15 (C-stationarity) Let the assumptions of Theorem 5.11 hold and assume
that

y∗
ρ − (y∗

ρ) → y∗ − (y∗) in L∞( ).

Then (62g) can be strengthened to

λ∗, v = 0 ∀v ∈ V : v = 0 a.e. on {y∗ = (y∗)}.

Proof By assumption, the convergence of y∗
ρ − (y∗

ρ) to y∗ − (y∗) is uniform and hence
ρ−1mρ(yρ(x)− (yρ)(x)) → 0 uniformly a.e. globally on {y∗ < (y∗)}. This means that
the argument in the proof of Theorem 5.11 can be repeated without recourse to Egorov’s
theorem.
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Sobolev embeddings are the most obvious paths to achieve the assumption of the above
proposition. We demonstrate this now with an example. Take the dimension n ≤ 4 and
suppose that the (bounded Lipschitz) domain and operator A are such that

y ∈ H 1
0 ( ) ∩ H 2( ) =⇒ Ay ∈ L2( )

and17

y ∈ H 1
0 ( ), Ay ∈ L2( ) =⇒ y ∈ H 2( ),

y H 2( ) ≤ C( y L2( ) + Ay L2( )).

We take V = H 1
0 ( ) and use the fact that mρ : V → V (recall that mρ has been chosen

in (63); see [22, §2.2.3] for when this type of property could hold for other maps). Suppose
that : V ∗ → V is given by the solution mapping of an elliptic equation, i.e., (y) is
defined as the solution φ of

B(φ) = y

where B is a second-order elliptic operator with sufficient properties guaranteeing well
posedness in H 1

0 ( ) (with a continuous dependence estimate), and when y ∈ L2( ), in the
space H 2( ) ∩ H 1

0 ( ) including a regularity estimate of the form

φ H 2( ) ≤ C y L2( ) .

Due to this, we immediately have that (y∗
ρ) ∈ H 2( ) with a uniform bound:

(y∗
ρ)

H 2( )
≤ C1 y∗

ρ L2( )
≤ C2. (70)

Defining z = y∗
ρ − (y∗

ρ) ∈ H 1
0 ( ), we write the equation for y∗

ρ as

Az + 1

ρ
mρ(z) = u∗

ρ − A (y∗
ρ).

It follows from rearranging this equation that Az ∈ H , thus z ∈ H 2( ) and the equa-
tion holds in a pointwise a.e. sense. Suppose for simplicity that A = − is the Dirichlet
Laplacian. Test with − z and use

mρ(z)(− z) = mρ(z)|∇z|2 ≥ 0

to obtain

− z 2
H ≤ u∗

ρ − A (y∗
ρ)

H
− z H .

Dividing through by − z H , the resulting right-hand side is bounded due to (70), and
using the regularity condition above, we obtain uniform boundedness in H 2( ) of z =
y∗
ρ − (y∗

ρ). By the Sobolev embedding [1, Theorem 6.3] H 2( )
c−→ C0,α( ¯ ) for some

α ∈ (0, 1), we get y∗
ρ − (y∗

ρ) → y∗ − (y∗) in that Hölder space (and thus in L∞( )).

17These are elliptic regularity conditions. When is a C1,1 domain and A is of the form (68) with aij ∈
C0( ¯ ) ∩ W 1,∞( ), bi , c0 ∈ L∞( ), c0 ≥ 0 with the strict ellipticity (69), Theorem 9.15 of [29] can be
applied and it implies the first condition. The second follows from [29, Lemma 9.17].
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5.5 Strong Stationarity

We now give strong stationarity conditions for (2) in the setting of V = H 1
0 ( ), H = L2( )

and Uad of the box constraint form (61).
Let us first of all provide some background and context. Strong stationarity for the VI

obstacle problem in the absence of constraints on the control was the focus of the classical
works by Mignot [50, Theorem 5.2] and Mignot and Puel [51]. The approach in the latter
work is as follows. By using the results on the differentiability of the solution map associated
to VIs of Mignot [50], the Bouligand stationarity condition (for example, see Proposition
5.2) reads

(αh, y
∗ − yd)H + ν(u∗, h)H ≥ 0 ∀h ∈ H

where αh denotes the directional derivative of the solution map with respect to the direction
h. The key idea of Mignot and Puel in [51] is to use the fact that the optimal control u∗
in fact belongs to V (in the unconstrained case, this follows from B-stationarity; otherwise
this is a regularity result in certain situations or one may need to simply assume this) and to
extend, by continuity, the above inequality to

(αh, y
∗ − yd)H + ν u∗, h ≥ 0 ∀h ∈ V ∗ (71)

so that the set of feasible directions has been enlarged to V ∗. Then, by writing the duality
product in (71) as AA−1h, νu∗ and using properties of the projection operator with respect
to the bilinear form generated by A onto the critical cone, it is shown [51, Theorem 3.3] that
this inequality is equivalent to a strong stationarity system.

The presence of control constraints complicates the derivation of strong stationarity con-
ditions. In the VI setting, by using the above-mentioned technique of Mignot and Puel of
enlarging the set of feasible directions onto the dual space in combination with a fine anal-
ysis of the various resulting objects and sets, strong stationarity conditions for VI optimal
control problems subject to box constraints were obtained by Wachsmuth in [69]. The author
also showed that certain restrictions are required on the control bounds in order to obtain a
positive answer for strong stationarity, and counterexamples were given showing that vio-
lating those conditions can lead to a lack of strong stationarity. These necessary conditions
(which are stated in (72)–(74) below) in the context of admissible sets as in (61) are implied
[69, Lemma 5.3] by the condition

ua, ub ∈ H 1( ) with ua < 0 ≤ ub q.e. on ,

(recall Example 3.5 for the meaning of q.e.) which in turn implies that the control space
must allow for negative functions, meaning that one ultimately needs existence and direc-
tional differentiability results for QVIs with source terms and directions that may be strictly
negative18.

Let (y∗, u∗) be a local optimal pair of (2). As in [51], we make the fundamental assump-
tion that u∗ ∈ V and we refer to Theorem 5.11 from the previous section for the satisfaction
of this assumption. Let us take Uad as stated in (61) where we include the possibility of tak-
ing ua = −∞ and ub = ∞, in which case the problem becomes one with no constraints
and we can argue as in [51]. Outside of this case, we proceed as in [69]. Let the assumptions

18Our theory of differentiability for QVIs in the earlier paper [4] (which was for non-negative sources and
directions) could not be immediately used to obtain strong stationarity by arguing in this fashion since the
setting of [4] would have forced Uad to be selected such that Uad ⊂ H+. This is why the development of the
results of Sections 2 and 3 are crucial.
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of Theorem 3.2 hold and denote by j : H → V ∗ the inclusion map through the Riesz iso-
morphism. Then, as done in [69], the Bouligand stationarity condition (42) can be extended
to

(αh, y
∗ − yd) + ν h, u∗ ≥ 0 ∀h ∈ jTUad

(u∗)V
∗
.

This is starting point of the steps leading to the strong stationarity conditions in [69] for the
VI case.

Defining the (quasi-closed) coincidence sets

Ua := {x ∈ : u∗(x) = ua(x)} and Ub := {x ∈ : u∗(x) = ub(x)}
and arguing identically to the proof of [69, Lemma 4.3], we obtain the following sign
conditions on u∗:

u∗ = 0 q.e. on As(y
∗) ∩ ( \ (Ua ∪ Ub)),

u∗ ≤ 0 q.e. on As(y
∗) ∩ Ub,

u∗ ≥ 0 q.e. on (As(y
∗) ∩ Ua) ∪ (B(y∗) ∩ ( \ Ub))

where B(y∗) = A(y∗) \ As(y
∗) is the biactive set.

Let cap(A) denote the capacity of a Borel subset A of with respect to H 1
0 ( ) (see

[20, Definition 6.47]). We have the following strong stationarity characterisation, the proof
of which involves modifications of [69] and is sketched in Appendix B.

Theorem 5.16 (Strong stationarity) Let (y∗, u∗) be a local minimiser of (2) with u∗ ∈ V .
Assume Assumption 3.1, (19), the local assumptions19 (25), and (32) and suppose that

: V → V is Frèchet differentiable at y∗,
cap(Ua ∩ B(y∗)) = 0, (72)

ub ≥ 0 q.e. on B(y∗), (73)

u∗ = 0 q.e. onAs(y
∗). (74)

Then (y∗, u∗) is a strong stationarity point, i.e., there exist multipliers (p∗, ξ∗, λ∗) ∈ V ×
V ∗ × V ∗ such that

y∗ + (I − (y∗)∗)λ∗ + A∗p∗ = yd ,

Ay∗ − u∗ + ξ∗ = 0,

ξ∗ ≥0 in V ∗, y∗ ≤ (y∗), ξ∗, y∗− (y∗) = 0,

u∗ ∈ Uad : (νu∗−p∗, u∗−v) ≤ 0 ∀v ∈ Uad,

p∗ ≥ 0 q.e. on B(y∗) and p∗ = 0 q.e. on As (y
∗),

λ∗, v ≥ 0 ∀v∈V : v≥0 q.e. on B(y∗) and v=0 q.e. on As (y
∗).

Note also that, whilst this work was under preparation, a related result has recently been
obtained in [72] however only in the absence of control constraints (i.e., Uad is taken to be
the whole space).

19These, of course, should be evaluated at y∗.
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Appendix A: Technical Proofs

Proof20 of Lemma 2.3 Take an arbitrary subsequence {vnj
}; this remains uniformly bounded

hence we can extract a weakly convergent subsequence such that vnjk
v in V to some v.

Select an arbitrary f ∈ V ∗+ and set ln := f, vn which is a monotonic sequence (since
f is non-negative) and also bounded. Hence the monotone convergence theorem applies
and we obtain the existence of l such that ln → l. Since also lnjk

→ l, we conclude that
l = f, v .

Take another subsequence of {vn}, say {vnm}, then by the above argument, we have
vnmj

v̂ for some v̂ and l = f, v̂ . That is,

f, v = f, v̂ ∀f ∈ V ∗+,

and from this, we can conclude via the weak-* density of V ∗+−V ∗+ in V ∗ (e.g., see [8, Lemma
2.7]) that v̂ = v. The subsequence principle then yields the result.

Proof of Lemma 5.9 Define Tn = (I − (zn)) and T = (I − (z)). Then

T −1
n qn − T −1q = (T −1

n − T −1)qn + T −1(qn − q)

and we get T −1(qn − q) 0 in V by continuity and linearity of T −1. For the first term on
the right-hand side above, we use the identity T −1

n − T −1 = T −1
n (T − Tn)T

−1 relating the
inverses of operators to see that

(T −1
n −T −1)qn

V
= T −1

n (T −Tn)T
−1qn

V

≤ C1 (T −Tn)T
−1qn

V
(by (50))

≤ C1 T −Tn L(V ,V ) T −1qn
V

≤ C2 (zn)− (z) L(V ,V )
(because T −1 and qn are bounded)

→0

with the convergence because we assumed that is continuously Fréchet differentiable
and hence the derivative is continuous. Therefore, T −1

n qn T −1q in V . The strong
convergence follows because if qn → q then T −1(qn − q) → 0 in V .

For the final claim, we have

AT −1
n qn, qn − AT −1q, q = A(T −1

n qn − T −1qn), qn + AT −1qn, qn − AT −1q, q

and the first term on the right-hand side tends to zero by the calculation above. Since by
(50), AT −1 is bounded and coercive (as well as being linear), we obtain

lim inf
n→∞ AT −1qn, qn − AT −1q, q ≥ 0.

Appendix B: Sketch Proof of Theorem 2.16

Recall the notation αh which stands for the directional derivative in the direction h given
through Theorem 3.2.

20We thank Jochen Glück for the idea of the proof.
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Lemma B.1 Denote by j : H → V ∗ the inclusion map. Then 0 ∈ V ∗ is a minimiser of the
problem

min
h∈jTUad

(u∗)V
∗(αh, y

∗ − yd)H + ν h, u∗ . (75)

Proof Choosing the direction h = 0 in the inequality of Proposition 5.2 implies 0 ≤
(α0, y

∗ −yd)+ ν(u∗, 0) = 0 with the equality because α0 = 0. Hence h = 0 is a minimiser
of

min
h∈TUad

(u∗)
(αh, y

∗ − yd)H + ν(u∗, h).

As in Lemma 4.1 of [69], the feasible set can be enlarged (the continuity in V ∗ of h → αh

assured by Proposition 3.12 is needed here) to obtain the desired result.

The aim now is to rewrite (75) over the space

W := {v ∈ V : v = 0 q.e. in As(y
∗)}.

Using the characterisation of the critical cone from [69, Lemma 3.1], we see that Ky∗ ⊂ W .
Denote by i : W → V the inclusion map and define the closed convex set

Cy∗
W := {v ∈ W : v ≤ 0 q.e. in B(y∗)},

which satisfies Ky∗ = iCy∗
W . Now, note that, using (32), (I − (y∗)) : V → V is invertible.

Define
AW : W → W ∗, AW := i∗A(I − (y∗))−1i

and observe that for any d̃ ∈ W ∗ the inequality

δ ∈ Cy∗
W : AW δ − d̃, δ − w W ∗,W ≤ 0 ∀w ∈ Cy∗

W

has a unique solution by the Lions–Stampacchia theorem since AW is bounded and coercive
due to the Lipschitz condition (32) (see [72, Lemma 3.3]). Now suppose that for d ∈ V ∗, δ

solves
δ ∈ Cy∗

W : AW δ − i∗d, δ − w W ∗,W ≤ 0 ∀w ∈ Cy∗
W .

Consider also

z ∈ Ky∗ : A(I − (y∗))−1z − d, z − v V ∗,V ≤ 0 ∀v ∈ Ky∗
.

Then it is easy to see that that z = iδ.

Lemma B.2 Define the operator
θ : W → V

by
θ := (I − (y∗))−1i.

Then (0, 0) is a solution of

min
(βh,h)∈W×W ∗(θ(βh), y

∗ − yd)H + ν h, u∗
W ∗,W s.t.

⎧

⎪⎨

⎪⎩

βh ∈ Cy∗
W

h = AW βh

h ∈ i∗jTUad
(u∗)W

∗
.

(76)
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Proof By defining γh := αh − (y∗)(αh) = (I − (y∗))αh, the QVI (27) satisfied by αh

can be written as

γh ∈ Ky∗ : A(I − (y∗))−1γh − h, γh − ϕ ≤ 0 ∀ϕ ∈ Ky∗
.

Now if βh satisfies

βh ∈ Cy∗
W : AW βh − i∗h, βh − ϕ ≤ 0 ∀ϕ ∈ Cy∗

W ,

we have (as discussed above) γh = iβh, hence

iβh = (I − (y∗))αh ⇐⇒ αh = θ(βh).

Therefore, (75) can be restated and we get (using the continuity of (y∗)) that 0 is a
solution of

min
h∈i∗jTUad

(u∗)W
∗(θ(βh), y

∗ − yd)H + ν h, u∗
W ∗,W s.t.

βh ∈ Cy∗
W : AW βh − h, βh − ϕ W ∗

y∗ ,W ≤ 0 ∀ϕ ∈ Cy∗
W ;

this is well defined because u∗ ∈ W due to (74). Hence, similarly to Proposition 3.13,
(0, 0, 0) is a solution of

min
(βh,h,ξh)∈W×W ∗×W ∗(θ(βh), y

∗ − yd)H + ν h, u∗
W ∗,W s.t.

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βh ∈ Cy∗
W

ξh = h − AW βh

ξh ∈ (Cy∗
W )◦

ξh, βh = 0

h ∈ i∗jTUad
(u∗)W

∗
.

Setting ξh = 0 leads to the result.

We need to derive stationarity conditions for this problem and then transform the
resulting system back to the original spaces and operators. Let us remark that under the
assumptions of the theorem, we have that θ is linear and bounded.

Lemma B.3 Defining

D := i∗jTUad
(u∗)W

∗
, Y := W ∗ × W × W ∗, C := ({0}, Cy∗

W ,D),

there exists (p̃, λ̃, σ ) ∈ Y∗ ∩ C◦ such that

A∗
W p̃ + θ∗(j (y∗ − yd)) + λ̃ = 0,

νu∗ − p̃ + σ = 0,

λ̃ ∈ (Cy∗
W )◦,

σ ∈ D◦.

Proof In addition to the notation introduced above, let us also define the space X := W ×
W ∗.
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Define the map g : X → Y by g(β, h) := (AW β −h, β, h) and observe that (76) can be
compactly written as

min
g(βh,h)∈C

(θ(βh), y
∗ − yd) + ν h, u∗

W ∗,W . (77)

We now proceed with checking the Zowe–Kurcyusz constraint qualification g ((0, 0))X −
RC(g(0, 0)) = Y to deduce the existence of Lagrange multipliers. First observe that D

is a convex cone which in turn implies that C is a convex cone and then by [20, Example
2.62], RC((0, 0, 0)) = C and TC((0, 0, 0))◦ = C◦. Now, we see that g(0, 0) = (0, 0, 0)

and RC(g(0, 0)) = C. We also have

g (0, 0)(γ, d) = (AW γ − d, γ, d) ∀(γ, d) ∈ W × W ∗.

Therefore, we are required to show that for every (w∗
1, w2, w

∗
3) ∈ Y , there exist

(γ, d, v, h) ∈ X × Cy∗
W × D such that

AW γ − d = w∗
1,

γ − v = w2,

d − h = w∗
3 . (78)

The first equation written in terms of v and h reads AW v − (w∗
1 + w∗

3 − AW w2) = h. In
order to force solutions to belong to the desired sets, we consider the VI

find v ∈ Cy∗
W : AW v − (w∗

1 + w∗
3 − AW w2), v − ϕ ≤ 0 ∀ϕ ∈ Cy∗

W (79)

associated to the above PDE.
As explained above, (79) has a solution and furthermore, the following complementarity

system (which can be derived by the same arguments as before) is satisfied by any solution:
⎧

⎪⎪⎨

⎪⎪⎩

v ∈ Cy∗
W

η := (w∗
1 + w∗

3 − AW w2) − AW v

η ∈ (Cy∗
W )◦

η ⊥ v.

Using this, we see that h := −η ∈ −(Cy∗
W )◦. The manipulations in the paragraph after

Lemma 5.1 of [69] show that (i∗jTUad
(y∗))◦ ⊂ −Cy∗

W which implies that −(Cy∗
W )◦ ⊂

(i∗jTUad
(y∗))◦◦ = D, that is, g ∈ D. Then we simply define γ and d by (78). Thus the

constraint qualification is met for (77).
Writing the objective functional in (77) as Ĵ , we obtain the existence of a Lagrange

multipler (p̃, λ̃, σ ) ∈ Y∗ ∩ C◦ such that

Ĵ (0, 0)(x) + g (0, 0)∗(p̃, λ̃, σ ), x = 0 ∀x ∈ X .

With x = (γ, d), we see that since θ(0) = 0, the first term above is

Ĵ (0, 0)(x) = θ∗(j (y∗ − yd)), γ W ∗,W + ν d, u∗
W ∗,W ,

where θ∗ : V ∗ → W ∗ is the adjoint of θ : W → V (this exists due to the linearity
assumption). We also have, by definition of the adjoint operator,

g (0, 0)∗(p̃, λ̃, σ ), x = (p̃, λ̃, σ ), (AWγ − d, γ, d)

= A∗
W p̃, γ W ∗,W + λ̃, γ W ∗,W + σ − p̃, d W ∗,W .

This implies the result.

We now transform all quantities back to the space V .
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Conclusion of sketch proof of Theorem 5.16 Observe that under the assumptions, Proposi-
tion 5.2, Lemma B.3 and Theorem 3.2 are applicable. To start with, let us define

p∗ := ip̃

and
λ∗ := (I − (y∗)∗)−1(−A∗ip̃ − j (y − yd)),

and for convenience, denote L := (y∗).

• By definition of λ∗ and p∗, we get the first line in the system after etching away the
inclusion map j .

• We see from the definition of λ∗ and elementary manipulations to relate it to λ̃ ∈ (CW )◦
and the usage of the fact that iCW = Ky∗

that λ∗ ∈ (Ky∗
)◦. This implies the final

condition of the system thanks to [69, Lemma 3.1].
• Since p̃ ∈ W , it vanishes q.e. on the strongly active set. As p̃ = νu∗ + σ and since

σ ∈ D◦, Lemma 5.1 of [69] tells us that σ ≥ 0 q.e. on \ Ua . Thus

σ |B(y∗) = σ |Ua∩B(y∗) + σ |( \Ua)∩B(y∗) ≥ σ |Ua∩B(y∗) = 0

with the final equality because of (72). Note also that

u∗|B(y∗) = u∗|B(y∗)∩Ub
+ u∗|B(y∗)∩( \Ub) ≥ u∗|B(y∗)∩( \Ub) ≥ 0 q.e.,

with the first inequality by (73) and the final inequality by the third sign condition on
u∗ stated in Section 5.5. This implies the stated condition on p∗, which is equivalent to
−p∗ ∈ Ky∗

due to the characterisation of the critical cone in [69, Lemma 3.1].
• We obtain σ ∈ NUad

(u∗) exactly as in the proof of Theorem 5.2 in [69]21 (where
NUad

denotes the normal cone to Uad with respect to H ), which is the polar cone of
the tangent cone, see [20, §2.2.4]) and this is precisely the desired inequality constraint
relating the control and the adjoint.
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31. Hájek, P., Johanis, M.: Smooth analysis in Banach spaces, volume 19 of De Gruyter Series in Nonlinear

Analysis and Applications. De Gruyter, Berlin (2014)

920 A. Alphonse et al.

https://doi.org/10.1016/j.na.2021.112728


32. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to
variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)

33. Harder, F., Wachsmuth, G.: Comparison of optimality systems for the optimal control of the obstacle
problem. GAMM-Mitt. 40(4), 312–338 (2018)

34. Harker, P.T.: Generalized nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81–94
(1991)

35. Hintermu̇ller, M., Kopacka, I.: Mathematical programs with complementarity constraints in func-
tion space: C- and strong stationarity and a path-following algorithm. SIAM. J. Optim. 20(2), 868–
902 (2009)

36. Hintermu̇ller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for
elliptic MPECs. Comput. Optim. Appl. 50(1), 111–145 (2011)

37. Hintermu̇ller, M., Mordukhovich, B.S., Surowiec, T.M.: Several approaches for the derivation of station-
arity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1-2, Ser.
A), 555–582 (2014)

38. Hintermu̇ller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with
equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011)
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