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Abstract
We focus on a very general problem in the theory of dynamic systems, namely that of study-
ing measure differential inclusions with varying measures. The multifunction on the right
hand side has compact non-necessarily convex values in a real Euclidean space and satisfies
bounded variation hypotheses with respect to the Pompeiu excess (and not to the Hausdorff-
Pompeiu distance, as usually in literature). This is possible due to the use of interesting
selection principles for excess bounded variation set-valued mappings. Conditions for the
minimization of a generic functional with respect to a family of measures generated by
equiregulated left-continuous, nondecreasing functions and to associated solutions of the
differential inclusion driven by these measures are deduced, under constraints only on the
initial point of the trajectory.
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1 Introduction

In the dynamic of many systems in physics, engineering, biology or chemistry, one has to
face the occurrence of discontinuities in the state, which can be seen as impulses. One way
to mathematically describe such systems is offered by the theory of measure differential
equations. On the other hand, in various situations (e.g. when a control is involved), it is
more convenient to consider multivalued functions, i.e. differential inclusions driven by
Borel measures (thus allowing a unified approach of differential or difference set-valued
problems, of impulsive problems or even of dynamic inclusions on time scales [11, 19]).

Usually in the literature concerning the theory of differential inclusions, the Hausdorff-
Pompeiu distance appears when writing the conditions imposed on the right-hand side.
Relaxing the traditional hypotheses by using the Pompeiu excess (from the right or from the
left) instead of Hausdorff-Pompeiu metric would be a consistent improvement.

In the present work, we study non-convex measure differential inclusions

dx(t) ∈ G(t, x(t))dμg(t),

x(0) = x0 (1.1)

with x0 ∈ R
d , under excess bounded variation assumptions (inspired from [13], see also

[12]) on the velocity set G(t, x(t)) and make use of interesting selection principles provided
in this framework by V.V. Chistyakov and D. Repovš [13].

The map G : [0, 1] × R
d → Pk(R

d) has compact possibly non-convex values and
g : [0, 1] → R is a left-continuous nondecreasing function whose distributional derivative
(i.e. the Stieltjes measure generated by g) is denoted by μg .

Let us remark that it is unnatural to expect the solutions to be absolutely continuous or
even continuous, and so, the considered space in which the theory is developed is the space
of functions of bounded variation.

In Theorem 3 we obtain the existence of solutions defined by integrating in Stieltjes sense
selections of bounded variation which, moreover, have some equiregulatedness property
(by means of [20]). An instance where the hypotheses can be easily verified (Corollary 1),
together with an example highlighting the generality of our assumptions are included.

Moreover, in Theorem 4 we get a compactness feature of the solution set of such a family
of inclusions with varying measures, driven by an equiregulated sequence of functions of
bounded variation.

As an application of the compactness result, we deduce (Theorem 6) a condition for
minimizing a functional

∫ 1

0
k(t, x(t), μg)dt + l(x)

over all μg in a set G of positive Borel measures on [0, 1] for which the inclu-
sion (1.1) has solutions, and over all solutions x driven by μg . The functions
k : [0, 1] × R

d × G → R+ and l : BV ([0, 1],Rd) → R, occurring in the minimization
problem, satisfy lower semicontinuity assumptions.

This is an extension of a classical optimal control problem (which cannot be solved in
the class of absolutely continuous functions for solutions, respectively of L1 controls) to the
space of functions of bounded variation for solutions, respectively of measures for controls
(see [29, 31, 32] treating the single-valued case or [23, 28]). For optimality conditions in the
set-valued setting, but concerning different optimal control problems, we can refer to [39]
(with convex velocity sets) or [14].
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The novelty of our result comes from the completely different approach, based on com-
pactness properties in the space of regulated functions [20] and on selection results for
nonconvex-valued multifunctions of excess-bounded variation [13], this allowing to get
minimality under new conditions comparing to the above mentioned works.

2 Notions and Preliminary Facts

In a traditional manner, for a function u : [0, 1] → R
d with values in a finite dimensional

Banach space (Rd , ‖‖), the total variation will be denoted by

var(u, [0, 1]) =

sup

{
p∑

i=1

‖u(ti) − u(ti−1)‖; π = {ti}pi=0 finite partition of [0, 1], p ∈ N

}

and if it is finite then u will be said to have bounded variation (or to be a BV function);
BV ([0, 1],Rd) stands for the space of functions of bounded variation. The BV-norm is
known as

‖u‖BV = ‖u(0)‖ + var(u, [0, 1]).
We endow this space with the two-norm topology; we recall that a sequence (un)n ⊂
BV ([0, 1],Rd) converges to u in this topology if and only if

un → u uniformly on [0,1] and (‖un‖BV )n is bounded.

As shown by Wiweger ([45]), there is a locally convex linear topology on BV ([0, 1],Rd),
intermediate in strength to the topologies generated by the sup-norm and the ‖ · ‖BV -norm,
for which the convergence of a sequence coincides with the convergence in the two-norm
sense.

Helly’s selection principle will be an important tool in our work.

Theorem 1 Let (un)n be a sequence of functions defined on [0, 1] with values in R
d .

Suppose that it is uniformly bounded in variation by a constant M and that the sequence
(un(0))n is bounded. Then there exists a subsequence pointwise convergent to a function u

with var(u, [0, 1]) ≤ M .

We note (e.g. [4]) that if the functions take values in an infinite dimensional Banach
space, then the boundedness condition on (un(0))n is not enough to ensure the existence of
a pointwise convergent subsequence; it is necessary to impose the relative compactness of
(un(t))n at any point t ∈ [0, 1].

For a real-valued BV -function g, by μg we denote its distributional derivative, which is
in fact the corresponding Stieltjes measure. It is defined for half-open sub-intervals of [0, 1]
by

μg([a, b)) = g(b) − g(a)

and it is then extended to all Borel subsets of the unit interval in the standard way.
Through the whole paper, for simplicity, we shall consider Stieltjes measures on [0, 1]

generated by left-continuous nondecreasing functions which are null at 0 (without losing
the generality, see [15, Remark 2.1]).

Classically (see [5]), a sequence (μgn)n of measures is said to be weakly* convergent to
μg if

∫
[0,1] f (t)dμgn(t) → ∫

[0,1] f (t)dμg(t) for every continuous function f : [0, 1] → R,
where the integrals are the Lebesgue-Stieltjes ones.
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Traditionally (cf. also [20]), a function u : [0, 1] → R
d is regulated if there exist the right

and left limits u(t+) and u(s−) for every points t ∈ [0, 1) and s ∈ (0, 1] (the convention
u(0−) = u(0), u(1+) = u(1) is used). The set of discontinuity points of a regulated
function is known to be at most countable ([33]) and the bounded variation functions (and
also the continuous functions) are obviously regulated. Such functions are also bounded and
the space of regulated functions is a Banach space when endowed with the sup-norm ‖ · ‖C .

There is a notion strongly related to compactness properties in the space of regulated
maps, that of equiregulatedness.

Definition 1 ([20]) A family A of regulated functions on [0, 1] with values in R
d is called

equiregulated if for every t0 ∈ [0, 1] and every ε > 0 one can find δ > 0 such that for any
u ∈ A

‖u(t) − u(t0−)‖ < ε, for every t ∈ (t0 − δ, t0)

and
‖u(t) − u(t0+)‖ < ε, for every t ∈ (t0, t0 + δ)

It was proved that:

Lemma 1 ([20, Corollary 2.4]) A set of Rd -valued regulated functions on [0, 1] is rela-
tively compact in the topology of uniform convergence if and only if it is equiregulated and
pointwise bounded.

The characterization of equiregulatedness, given in [20], will be useful later:

Proposition 1 Let A be a set of regulated functions on [0, 1] with values in R
d . The

following assertions are equivalent:

(i) A is equiregulated and poinwisely relatively compact;
(ii) A(0) is bounded and there is an increasing continuous function η : [0, ∞) → [0, ∞),

η(0) = 0 and an increasing function v : [0, 1] → [0, 1], v(0) = 0, v(1) = 1 such that
for every 0 ≤ t1 < t2 ≤ 1,

‖u(t2) − u(t1)‖ ≤ η(v(t2) − v(t1))

for all u ∈ A.

In the whole paper, we deal with the Lebesgue-Stieltjes integral
∫
[0,t) f (s)dμg(s) (see

[6, 27] or [33]), except for Section 4, where the Kurzweil-Stieltjes integral also appears. For
the Kurzweil-Stieltjes integral, we use the notation

∫ t

0f (s)dg(s).

Definition 2 ([24, 35–37] or [43]) A function f : [0, 1] → R
d is said to be Kurzweil-

Stieltjes integrable with respect to g : [0, 1] → R on [0, 1] (shortly, KS-integrable) if there
exists

∫ 1
0 f (s)dg(s) ∈ R

d such that, for every ε > 0, there is a positive function δε on [0, 1]
with ∥∥∥∥∥

p∑
i=1

f (ξi)(g(ti) − g(ti−1)) −
∫ 1

0
f (s)dg(s)

∥∥∥∥∥ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, ..., p} of [0, 1].

A partition {([ti−1, ti], ξi) : i = 1, ..., p} is δε-fine if for all i = 1, . . . , p, [ti−1, ti] ⊂
]ξi − δε(ξi), ξi + δε(ξi)[. The KS-integrability is preserved on all sub-intervals of [0, 1].
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It is known that regulated functions are KS-integrable with respect to bounded variation
functions and also bounded variation functions are KS-integrable with respect to regulated
functions (see [43]). The properties of the primitive contained in the proposition below are
important in order to establish the properties of our solutions.

Proposition 2 ([43, Proposition 2.3.16]) Let g : [0, 1] → R and f : [0, 1] → R
d be

KS-integrable w.r.t. g. If g is regulated, then so is the primitive h : [0, 1] → R
d , h(t) =∫ t

0f (s)dg(s) and for every t ∈ [0, 1],
h(t+) − h(t) = f (t) [g(t+) − g(t)] and h(t) − h(t−) = f (t) [g(t) − g(t−)] .

It follows that h is left-continuous, respectively right-continuous at the points where g is.
Besides, when g is of bounded variation and f is bounded, h is also of bounded variation.

The following estimates hold.

Proposition 3 i) ([37, Lemma 1.4.16]) Let f : [0, 1] → R
d be regulated and

g : [0, 1] → R be a BV function. Then∥∥∥∥∥
∫ 1

0
f (t)dg(t)

∥∥∥∥∥ ≤ ‖f ‖C · var(g, [0, 1]).

ii) ([43, Theorem 2.3.8]) Let f : [0, 1] → R
d be a BV function and g : [0, 1] → R be

regulated. Then∥∥∥∥∥
∫ 1

0
f (t)dg(t)

∥∥∥∥∥ ≤ [‖f (0)‖ + ‖f (1)‖ + var(f, [0, 1])] ‖g‖C

≤ 2‖f ‖BV ‖g‖C .

Note that the Lebesgue-Stieltjes integrability of a function f implies the
Kurzweil-Stieltjes integrability, but the two integrals do not always have the same value.
More precisely, in the framework of a left-continuous nondecreasing function g, as a
consequence of [27, Theorem 6.11.3] (see also [33, Theorem 8.1]), if t ∈ [0, 1] then

∫ t

0
f (s)dg(s) =

∫
[0,t]

f (s)dμg(s) − f (t)(g(t+) − g(t)) =
∫

[0,t)
f (s)dμg(s). (2.1)

Let us remind at this point that, by [3, Theorem 1], if a sequence (gn)n ⊂ BV ([0, 1],R)

two-norm converges to g, then the sequence of associated measures (μgn)n converges to μg

in a sense which is stronger than the weak* convergence:

Theorem 2 ([3, Theorem 1]) Let (gn)n ⊂ BV ([0, 1],R) two-norm converge to g ∈
BV ([0, 1],R). Then for each regulated f : [0, 1] → R,

∫ 1

0
f (s)dgn(s) →

∫ 1

0
f (s)dg(s).

For all notions of set-valued analysis, we refer the reader to [2] or [8].
Let Pk(R

d) be the space of all nonempty compact subsets of Rd . It becomes a complete
metric space when endowed with the Hausdorff-Pompeiu distance

D(A, A′) = max(e(A,A′), e(A′, A)),
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where the (Pompeiu-) excess of the set A ∈ Pk(R
d) over the set A′ ∈ Pk(R

d) is defined by

e(A,A′) = sup
a∈A

inf
a′∈A′ ‖a − a′‖.

A multifunction � : R
d → Pk(R

d) is upper semicontinuous at a point x0 if for every
ε > 0 there exists ηε,x0 > 0 such that e(�(x), �(x0)) < ε whenever ‖x − x0‖ < ηε,x0 , i.e.:
�(x) ⊂ �(x0) + εB, where B is the closed unit ball of Rd .

For A ∈ Pk(R
d), denote by |A| = D(A, {0}).

One says (see [13]) that a multifunction F : [0, 1] → Pk(R
d) has bounded variation with

respect to (shortly, w.r.t.) the excess function (at the right) or that it is of excess-bounded
variation if

V+ (F, [0, 1]) =

sup

{
p∑

i=1

e(F (ti−1), F (ti));π = {ti}pi=0 partition of [0, 1], p ∈ N

}
< ∞.

Similarly, one could define the excess variation at the left

V− (F, [0, 1]) =

sup

{
p∑

i=1

e(F (ti), F (ti−1));π = {ti}pi=0 partition of [0, 1], p ∈ N

}

and if both V+(F, [0, 1]) and V−(F, [0, 1]) are finite, then F has bounded variation in the
sense of Hausdorff-Pompeiu distance (see [4]). Example 3.1 in [13] shows that, in an infi-
nite dimensional Banach space, the condition to be of excess-bounded variation is strictly
weaker than to be of bounded variation w.r.t. the Hausdorff-Pompeiu distance, which was
traditionally used while studying measure differential inclusions (e.g. in [17, 18, 34] or
[38]).

As in [13], F : [0, 1] → Pk(R
d) is called excess-Lipschitz continuous to the right with

L ≥ 0 if

e(F (s), F (t)) ≤ L(t − s), whenever 0 ≤ s ≤ t ≤ 1

and the infimum of such numbers L is called the excess-Lipschitz constant of the
multifunction.

Let us finally recall ([13], page 884) that F : [0, 1] → Pk(R
d) is said to be excess-

continuous to the right (shortly, C+) if

lims→t− e(F (s), F (t)) = 0 for all t ∈ (0, 1]
and

lims→t+ e(F (t), F (s)) = 0 for all t ∈ [0, 1).

3 Existence Results for Measure Differential Inclusions

First of all, we notice that when the measure driving the problem is a Stieltjes measure
generated by an absolutely continuous function, then by solution we mean solution in the
classical (Carathéodory) sense which, obviously, coincides with those defined below. In the
more general case, where the measure is generated by a nondecreasing function, in literature
there are various ways to choose the solution concept of a measure differential problem, see
[7, 15, 22, 25, 46] or [38]. For instance, in the single-valued case, in [31, Definition 3.1] the
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following notion of generalized solution, in [46, Definition 5.3.2] the notion of V -solution
and in [1] the notion of simple limit solution have been given.

Definition 3 i) A pair (x, g) is a generalized solution of (1.1) if there exists a sequence
(xn, gn)n ∈ W 1,1([0, 1],Rd)×W 1,1([0, 1],R) satisfying the inclusion such that (xn)n
converges to x in the sense that

xn(0) → x(0) and dxn → dx weakly∗

and (gn)n converges to g in the sense that

gn(0) → g(0) and dgn → dg weakly∗

ii) A function x : [0, 1] → R
d is a V -solution of (1.1) for some nondecreasing func-

tion V : [0, 1] → R if there exists a sequence of absolutely continuous functions
vk : [0, 1] → R such that for each t ∈ vk[0, 1],

vk(t) → g(t) and var(vk, [0, t]) → V (t)

and there exists a sequence of solutions xk of problem (1.1) driven by μvk
pointwise

convergent to x.
iii) A function x : [0, 1] → R

d is a BV simple limit solution of (1.1) if there exists
a sequence of absolutely continuous functions vk : [0, 1] → R with equibounded
variation such that for each t ∈ [0, 1],

vk(t) → g(t) and ‖vk − g‖L1 → 0

and there exists a sequence of solutions xk of problem (1.1) driven by μvk
satisfying

xk(t) → x(t) and ‖xk − x‖L1 → 0.

Note that the concept of BV simple limit solution recalled from [1] has been extended
in [28] to the case of the problem

x′(t) = g(x(t), u(t), v(t)) · u′(t) a.e.t ∈ [0, 1] (3.1)

x(0) = x0, u(0) = u0

which, when v(t) ∈ V , where V is a compact subset of Rd , becomes a set-valued control
problem of type (1.1).

The generalized solution given in i) ([31]) is proved to be equivalent to a notion of
solution defined through an extended graph completion, related to those defined via graph
completion methods in other works, such as [15] or [38]. Likewise, the notion of BV-simple
limit solution been shown in [1, Theorem 4.2] to be equivalent to that of graph completion
solution (see [31, Section 3] or [1] for a more extensive discussion). For alternative type
of solution, via a notion of extended trajectory, for the inclusion (3.1) involved in solving
practical optimal control problems we can also refer the reader to [23].

Let us specify the notion of solution considered in this paper (we shall see later, in
Proposition 4, connections with the above mentioned kinds of solutions).

Definition 4 ([9]) A solution of the problem (1.1) is a function x : [0, 1] → R
d for

which there exists f : [0, 1] → R
d Lebesgue-Stieltjes integrable w.r.t. μg such that

f (t) ∈ G(t, x(t−)) μg-a.e. and

x(t) = x0 +
∫

[0,t)
f (s) dμg(s), ∀ t ∈ [0, 1].
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By basic properties of Lebesgue-Stieltjes integrals, x ∈ BV ([0, 1],Rd) and left-
continuous (since g is left-continuous, by Proposition 2) and so, in the preceding definition,
we may write f (t) ∈ G(t, x(t)) μg-a.e.

This definition has the advantages to be the most natural generalization from the classical
case (where the solutions can be put in integral form) and to be easy to handle, through the
theory of Stieltjes integrals.

In the case of a finite dimensional space, existence results for this kind of solution can
be found for single-valued framework in [19, 26] or [21], while for the set-valued setting,
when the multifunction G has compact convex values, existence results were proved in
[9] under Carathéodory-type assumptions or in [17]. Moreover, well-posedness has been
obtained (e.g. [40]) and continuous dependence results were given (in [34] under bounded
variation assumptions w.r.t. the Hausdorff-Pompeiu distance, in [10] when the sequence of
measures was supposed to converge in some sense strictly related to the set-valued setting,
or in [18] using the notion of uniformly bounded ε-variation introduced in [20]).

Now, we present an existence result for non-convex differential inclusions driven by
measures by imposing only conditions involving the Pompeiu excess (instead of Hausdorff-
Pompeiu distance, as in previously mentioned works).

We shall see later that the family of such solutions (with specific properties, namely
given by equiregulated BV selections) possesses interesting compactness properties.

Before proceeding with the very first step, the existence theorem, we stress that an impor-
tant tool in our study consists in using appropriate selections results. In [13] one can find
several interesting results in this direction.

Thus, [13, Theorem 1] states that a multifunction of excess-bounded variation possesses
bounded variation selections with total variation smaller than the excess variation of the
multifunction.

Notably, [13, Theorem 3] asserts that if moreover the set-valued map is of excess
bounded variation to the right and excess continuous to the right, then it possesses a con-
tinuous selection of bounded variation (with the same property, that its total variation is
majorized by the excess variation of the multifunction).

In fact, taking a look in the proof of [13, Theorem 3], we may see that a deeper result is
hidden therein, and this will be a key point in our proofs.

Lemma 2 Let F : [0, 1] → Pk(R
d) be of excess-bounded variation. For each t ∈ [0, 1],

denote by v(t) = V+(F, [0, t]). Then there exists a selection f of F such that

‖f (t) − f (s)‖ ≤ v(t) − v(s), ∀ 0 ≤ s ≤ t ≤ 1.

Remark 1 It implies that var(f, [0, 1]) ≤ V+(F, [0, 1]) and not only on the unit interval,
but also on any subinterval of [0, 1]

Proof Let l = V+(F, [0, 1]). Then v([0, 1]) ⊂ [0, l]. Obviously, v is nondecreasing, thus
regulated but not necessarily continuous.

Take s ∈ v([0, 1]) and consider v−1(s) = {t ∈ [0, 1]; v(t) = s} which is a nonempty
subset of the unit interval.

Define the nonempty compact-valued multifunction G : v([0, 1]) → Pk(R
d) by

G(s) =
⋂

t∈v−1(s)

F (t).

We shall prove that G is excess-Lipschitz continuous, with Lipschitz constant ≤ 1.
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Let s1 < s2 ∈ v([0, 1]). Then for each t ∈ v−1(s1),

e(G(s1),G(s2)) ≤ e(F (t),G(s2)).

As shown in [13], for any 0 ≤ t ′ ≤ t ′′ ≤ 1, t ′, t ′′ ∈ v−1(s2) one has

F(t ′) ⊆ F(t ′′),

so, taking into account that any decreasing sequence of compact sets converges in
Hausdorff-Pompeiu distance to their intersection (see e.g. [42], page 7), one can deduce that
for an arbitrary ε > 0 we are able to choose t ′ ∈ v−1(s2) such that

e(F (t ′),G(s2)) ≤ ε.

It follows that

e(G(s1),G(s2)) ≤ e(F (t),G(s2))

≤ e(F (t), F (t ′)) + e(F (t ′),G(s2))

≤ e(F (t), F (t ′)) + ε

≤ v(t ′) − v(t) + ε.

But t ∈ v−1(s1) and t ′ ∈ v−1(s2), therefore

v(t) = s1 and v(t ′) = s2.

As ε was arbitrarily chosen, one gets

e(G(s1),G(s2)) ≤ s2 − s1

and the excess-Lipschitz continuity of G is proved.
Then, by a remark made by the authors themselves at page 875, [13, Theorem 2] holds

more generally on a nonempty set of real numbers (not necessarily interval), and applying
it one gets that G has a Lipschitz-continuous selection g with Lipschitz constant 1. Then
f = g ◦ v is BV, it is a selection of F and, besides, for any 0 ≤ s ≤ t ≤ 1,

‖f (t) − f (s)‖ ≤ v(t) − v(s).

The existence result reads as follows.

Theorem 3 Let G : [0, 1]×R
d → Pk(R

d) satisfy the hypotheses below:

1) For each t ∈ [0, 1], G(t, ·) is upper semicontinuous;
2) For every BV-function x : [0, 1] → R

d , the map G(·, x(·)) has excess-bounded
variation;

3) One can find R0 > 0 and MR0 > 0 such that for every left-continuous BV-function
x : [0, 1] → R

d and every left-continuous nondecreasing function h : [0, 1] → R such
that

var(x, [s, t)) ≤ R0 · (h(t) − h(s)) for all 0 ≤ s < t ≤ 1 (3.2)

one has:

V+(G(·, x(·)), [s, t)) ≤ MR0 · (h(t) − h(s)), for all 0 ≤ s < t ≤ 1.

Let g : [0, 1] → R be a left-continuous nondecreasing function satisfying the inequality

g(1) − g(0) ≤ R0 − |G(0, x0)|
MR0

. (3.3)
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Then there exists at least one solution for the measure differential problem (1.1) driven by
μg such that, for all t ∈ [0, 1], x(t) = x0 + ∫

[0,t) f (s) dμg(s), where f verifies f (t) ∈
G(t, x(t)) for all t ∈ [0, 1] and

‖f (t) − f (s)‖ ≤ MR0 · (g(t) − g(s)) for every 0 ≤ s < t ≤ 1. (3.4)

Remark 2 As a consequence, f is BV and var(f, [0, 1]) ≤ MR0 · (g(1) − g(0)), and by
Proposition 2 also the solution x is BV .

Moreover, we can see from the fact that the existing solution is obtained via a selection
f with

‖f (t) − f (s)‖ ≤ MR0 · (g(t) − g(s)) for every 0 ≤ s < t ≤ 1

that when g is continuous (such as, in a case of an absolutely continuous function g), the
selection f is also continuous.

Proof The idea is to construct a sequence of approximate solutions (which are BV equireg-
ulated functions) and to show that it is possible to extract a convergent subsequence by
Helly’s selection principle.

Thus, let x0(t) = x0 for t ∈ [0, 1]. Suppose that we have already constructed a BV

function xn on [0, 1] with var(xn, [s, t)) ≤ R0 · (g(t) − g(s)) for all 0 ≤ s < t ≤ 1 and
choose xn+1 by the following steps.

Using hypothesis 2), we apply Lemma 2. By 3)

V+(G(·, xn(·)), [s, t)) ≤ MR0 · (g(t) − g(s)) ∀0 ≤ s < t ≤ 1

and we obtain the existence of a selection fn(t) ∈ G(t, xn(t)),∀t ∈ [0, 1] with
‖fn(t) − fn(s)‖ ≤ MR0 · (g(t) − g(s)) ∀0 ≤ s < t ≤ 1

(it will follow that var(fn, [0, 1]) ≤ MR0 · (g(1) − g(0))).
Define now

xn+1(t) = x0 +
∫

[0,t)
fn(s) dμg(s), ∀t ∈ [0, 1].

Since fn is bounded and taking into account equality (2.1), also xn+1 is of bounded variation
by Proposition 2.

We can see, by [27, Theorem 6.3.4], that for any s < t ,

var(xn+1, [s, t)) ≤ (‖fn(0)‖ + var(fn, [0, 1])) · (g(t) − g(s))

≤ (|G(0, x0)| + MR0(g(1) − g(0)) · (g(t) − g(s))

≤ R0 · (g(t) − g(s)),

and so, by (3.3), the process can be continued.
Now, the sequence (fn)n is bounded in variation and fn(0) ∈ G(0, x0). Thus, by Helly’s

selection principle, one can extract a subsequence (fnk
)k pointwise convergent to a BV

function f .
Since by Proposition 1 the sequence (fnk

)k is also equiregulated, Lemma 1 implies that
we can suppose that the subsequence is uniformly convergent to f , thus f satisfies also the
condition

‖f (t) − f (s)‖ ≤ MR0 · (g(t) − g(s)) for every 0 ≤ s < t ≤ 1.

Next, since (fnk
)k converges uniformly to f , it follows (Proposition 3) that∫

[0,t)
fnk

(s)dμg(s) →
∫

[0,t)
f (s)dμg(s)
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and so, if we denote by

x(t) = x0 +
∫

[0,t)
f (s)dμg(s),

obviously xnk
→ x pointwise.

We assert that x is a solution for our measure driven differential inclusion (i.e, f (t) ∈
G(t, x(t)) μg-a.e.). Using hypothesis 1), for each t ∈ [0, 1] and ε > 0, the exists kε,t ∈ N

such that
G(t, xnk

(t)) ⊂ G(t, x(t)) + εB,

for all k greater than kε,t , therefore (sinceG(t, x(t))+εB is closed) f (t) ∈ G(t, x(t)))+εB,
and then the arbitrariness of ε implies f (t) ∈ G(t, x(t)).

Remark 3 We observe that in Theorem 3 it suffices to assume that the condition (3.2) holds
only for the left-continuous nondecreasing function g related to the differential inclusion
(1.1) (and not for all hwith the announced property). However, in order to obtain continuous
dependence on the measures driving the inclusion and relations with other types of solutions
it is preferable to impose the more general assumption (3.2).

Proposition 4 If G and g satisfy the assumptions of Theorem 3 and g is continuous, then:

i) there are generalized solutions (x, g) (by means of Definition 3.i)) of (1.1) such that
x is also a solution of (1.1);

ii) for a suitable V there are V-solutions (by means of Definition 3.ii)) of (1.1) which are
also solutions of (1.1);

iii) there are BV-simple limit solutions of (1.1) which are solutions of (1.1) as well.

Proof Let (vk)k be a sequence of absolutely continuous, nondecreasing functions, uni-
formly convergent to g (e.g. the Bernstein polynomials associated to g [30, Theorem 7.1.2.
and Theorem 7.1.5]).

Without loss of generality vk(0) = g(0) = 0 and vk(1) = g(1), so var(vk, [0, 1]) =
vk(1) − vk(0) = var(g, [0, 1]) = g(1) − g(0) for every k ∈ N.

Our Theorem 3 applies to the measure differential inclusion (1.1) driven by the measure
μvk

and then there exists a solution yk defined by

yk(t) = x0 +
∫

[0,t)
fk(s)dμvk

(s),∀t ∈ [0, 1]
through a selection fk of G(·, yk(·)) satisfying the condition

‖fk(t) − fk(s)‖ ≤ MR0 · (vk(t) − vk(s)) for every 0 ≤ s < t ≤ 1,

whence
var(fk, [0, 1]) ≤ MR0 · g(1).

So, (fk)k is bounded in variation and, besides, fk(0) ∈ G(0, x0), ∀k. An application of
Helly’s selection theorem implies that it has a subsequence (fnk

)k pointwise convergent to
a BV function f with var(f ) ≤ MR0 · g(1).

Let

x(t) = x0 +
∫

[0,t)
f (s)dμg(s), ∀t ∈ [0, 1].

As (vnk
)k uniformly converges to g and (fnk

)k is bounded in variation, by Proposition 3,
for each t ∈ [0, 1], ∫

[0,t)
fnk

(s)dμvnk
(s) −

∫
[0,t)

fnk
(s)dμg(s) → 0.
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Moreover, as (fnk
)k pointwise converges to f and it is dominated by the constant (therefore,

integrable) function |G(0, x0)| + MR0 · g(1),∫
[0,t)

fnk
(s)dμg(s) →

∫
[0,t)

f (s)dμg(s).

Consequently,

ynk
(t) = x0 +

∫
[0,t)

fnk
(s)dμvnk

(s) → x0 +
∫

[0,t)
f (s)dμg(s) = x(t)

pointwise.
Finally, x is a solution in the sense of Definition 4 of our problem since

x(t) = x0 +
∫

[0,t)
f (s)dμg(s), ∀t ∈ [0, 1],

and by the upper semicontinuity condition imposed on G, f (t) ∈ G(t, x(t)) for every
t ∈ [0, 1].
i) Clearly, vk and ynk

, k ∈ N are absolutely continuous and ynk
(0) = x0 → x(0) = x0,

vk(0) = 0 → g(0) = 0.
Since

var(ynk
, [0, 1]) ≤ ‖fnk

‖C · var(vnk
, [0, 1]) ≤ (|G(0, x0)| + MR0 · g(1)) · g(1)

it follows, by Helly’s convergence result, that dynk
→ dx weakly∗ (by the same

reason, dvk → dg weakly∗), thus (x, g) is a generalized solution of (1.1).
ii) Denoting by V (t) = g(t) − g(0), one can see that (vk)k is V -convergent to g, i.e. it

converges pointwise to g and var(vk, [0, t]) → V (t). As ynk
(t) → x(t) pointwise,

one concludes that x is a V -solution of (1.1) as well.
iii) Obviously, the sequence (vk)k has equibounded variation. Besides, by dominated

convergence theorem, ‖vk − g‖L1 → 0 as k → ∞.
Also,

‖ynk
(t)‖ ≤ (|G(0, x0)| + MR0 · g(1)

) · var vk ≤ (|G(0, x0)| + MR0 · g(1)
) · g(1)

and, as before, by dominated convergence result, ‖ynk
− x‖L1 → 0 as k → ∞.

In the same line, of the connections between various types of solutions, we indicate the
following example.

Example 1 Consider the problem

dx(t) = x(t)dg(t), x(0) = x0,

where

g(t) =
{
0, t ∈ [0, 1

2 ]
1, t ∈ ( 12 , 1].

Defining for each k ∈ N, k ≥ 3,

vk(t) =
⎧⎨
⎩

0, t ∈ [0, 1
2 ]

k(t − 1
2 ), t ∈ ( 12 ,

1
2 + 1

k
]

1, t ∈ ( 12 + 1
k
, 1]

one gets an equibounded in variation sequence of absolutely continuous functions, conver-
gent towards g pointwise and also in L1-norm.
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The sequence of solutions of our problem driven by vk given by

xk(t) = x0 · evk(t), t ∈ [0, 1]
converges pointwise and (by dominated convergence theorem) in L1-norm to the function
defined on the unit interval by

x(t) = x0 · eg(t), t ∈ [0, 1]
which makes it a BV simple limit solution for our problem.

On the other hand, x is not a solution in the sense of Definition 4 since

x

(
1

2
+

)
− x

(
1

2

)
= x0(e − 1)

while

�+
(∫

[0,t)
x(s)dg(s)

)(
1

2

)
= x

(
1

2

)
· �+g

(
1

2

)
= x0,

where if l(t) is a function, �+l(t) = l(t+) − l(t). To complete the discussion, we notice
that the function

x(t) =
{

x0, t ∈ [0, 1
2 ]

2x0, t ∈ ( 12 , 1]
is a solution in the sense of Definition 4 to this problem.

In view of the technical appearance of the hypothesis of Theorem 3, we think it is useful
to present a consequence.

Corollary 1 Let G : [0, 1] × R
d → Pk(R

d) verify hypothesis 1) in Theorem 3. Suppose
that there exists L > 0 satisfying the following assumption:

e(G(t1, x),G(t2, y)) ≤ L‖x − y‖, for every t1 < t2, and for every x, y ∈ R
d .

Then for any left-continuous nondecreasing function g : [0, 1] → R with

L · (g(1) − g(0)) < 1,

there exists at least one solution for the measure differential problem (1.1) such that, for
all t ∈ [0, 1], x(t) = x0 + ∫

[0,t) f (s) dμg(s), where f verifies f (t) ∈ G(t, x(t)) for all
t ∈ [0, 1] and

‖f (t) − f (s)‖ ≤ L|G(0, x0)|
1 − L(g(1) − g(0))

· (g(t) − g(s)) for every 0 ≤ s < t ≤ 1.

Proof Let us see that for any left-continuous BV -function x : [0, 1] → R
d and any 0 ≤

s < t ≤ 1,

V+(G(·, x(·)), [s, t)) = sup
π partition of [s,t)

n∑
i=1

e(G(ti−1, x(ti−1)),G(ti , x(ti)))

≤ sup
π partition of [s,t)

n∑
i=1

L‖x(ti−1) − x(ti)‖

≤ Lvar(x, [s, t)),
whence G(·, x(·)) is of excess-bounded variation.
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Moreover, if x and h are such that var(x, [s, t)) ≤ R0 · (h(t) − h(s)) for any 0 ≤ s <

t ≤ 1, then

V+(G(·, x(·)), [s, t)) ≤ L · R0 · (h(t) − h(s))), ∀0 ≤ s < t ≤ 1

and so, we can take MR0 = L · R0 and hypothesis 3) is also satisfied by any R0 and
MR0 = L · R0.

Now if g : [0, 1] → R is left-continuous nondecreasing with L(g(1) − g(0)) < 1, by
choosing R0 = |G(0,x0)|

1−L(g(1)−g(0)) we obtain that

g(1) − g(0) = R0 − |G(0, x0)|
MR0

and so, we can apply Theorem 3 to get the existence of at least one solution for the measure
differential problem (1.1) such that x(t) = x0 + ∫

[0,t) f (s) dμg(s), for all t ∈ [0, 1] and
f (t) ∈ G(t, x(t)) verifies for every 0 ≤ s < t ≤ 1,

‖f (t) − f (s)‖ ≤ MR0 · (g(t) − g(s)) = L|G(0, x0)|
1 − L(g(1) − g(0))

· (g(t) − g(s)).

Remark 4 The assumption of the preceding Corollary is satisfied if

i) If t1 ≤ t2, then G(t1, x) ⊂ G(t2, x) for every x ∈ R
d ;

ii) There exists L > 0 such that D(G(t, x),G(t, y)) ≤ L‖x − y‖ for every t ∈ [0, 1],
x, y ∈ R

d .

since for all t1 < t2 and x, y ∈ R
d ,

e(G(t1, x),G(t2, y)) ≤ e(G(t1, x),G(t1, y)) + e(G(t1, y),G(t2, y))

≤ L‖x − y‖ + 0 = L‖x − y‖.

In [13] it can be found an interesting example showing that, in an infinite dimen-
sional Banach space, the excess bounded variation condition is strictly weaker than the
bounded variation w.r.t. the Hausdorff-Pompeiu metric. We shall see now a simple example
highlighting the same feature in finite dimensional spaces.

Example 2 Let (tn)n ⊂ [0, 1] be an increasing sequence converging to 1 (where t1 = 0)
and let (xn)n be a sequence on the unit circle S = {x ∈ R

2 : ‖x‖ = 1} defined as described
in the sequel.

At the step 1, consider the point x1 = (1, 0).
At the step 2, take the points which divide the circle into 21 equal parts (starting with x1)

and eliminate the point considered at the step 1; denote this point by x2.
Similarly, at the step n + 1 (n ∈ N) take the points dividing the circle into 2n equal

parts (starting with x1) and eliminate the points considered at the previous steps; denote the
remaining points, ordered clockwise, by x2n−1+1, ..., x2n .

Remark that ‖x1 − x2‖ = 2 and that, for each regular polygon with 2n edges inscribed
in the unit circle, the length of its sides satisfies the inequality

l2n ≥
√
2

2n−2
.
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Consider F : [0, 1] → 2R
2
the multifunction given by

F(t) =
⎧⎨
⎩

{xk}nk=1 if t ∈ [
tn, tn+1) , n = 1, 2, . . . ;

∂B if t = 1.

First of all, we observe that the multifunction has compact (nonempty) values. Then, let us
verify that F has excess bounded variation.

For any t ′ ≤ t ′′ ∈ [0, 1], it can be immediately seen that F(t ′) ⊆ F(t ′′), therefore
V+(F, [0, 1]) = 0.

Let us finally check that the total variation of F w.r.t. the Hausdorff-Pompeiu distance is
infinite. We may write, for every n ∈ N, n ≥ 2:

V−(F, [0, 1]) ≥
2n−1∑
k=1

e(F (tk+1), F (tk))

=
2n−1∑
k=1

k

min
i=1

‖xk+1 − xi‖

= ‖x2 − x1‖ + ‖x3 − x1‖ + ‖x4 − x1‖ + ...

= ‖x2 − x1‖ + 2l22 + ... + 2n−1l2n

≥ 2 + 2 · √
2 + 4 ·

√
2

2
+ ... + 2n−1 ·

√
2

2n−2

≥ 2 + 2(n − 1)
√
2

which, obviously, tends to ∞ when n → ∞. Thus, the multifunction has not bounded
variation w.r.t. the Hausdorff-Pompeiu metric.

4 Minimality Conditions

4.1 Compactness Properties of the Solution Set

We study in this section compactness properties of the solutions set of (1.1), essential for
getting the announced minimality result.

For each n ∈ N, let Sgn be the set of solutions for the problem (1.1) driven by the
distributional derivative μgn of a left-continuous nondecreasing function gn, and let fn be
the corresponding selection (see Theorem 3) such that

‖fn(t) − fn(s)‖ ≤ MR0 · (gn(t) − gn(s)) for every 0 ≤ s < t ≤ 1.

Theorem 4 Let G : [0, 1] × R
d → Pk(R

d) satisfy the assumptions of Theorem 3, and
let (gn)n be an equiregulated sequence of left-continuous nondecreasing functions on [0, 1]
with gn(0) = 0 satisfying the following condition:

gn(1) − gn(0) ≤ R0 − |G(0, x0)|
MR0

, ∀n.

Then there exists a left-continuous nondecreasing function g : [0, 1] → R with

g(1) − g(0) ≤ R0 − |G(0, x0)|
MR0
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such that on a subsequence, still denoted by (gn)n,

gn → g uniformly on [0, 1].
Moreover, if Sg is the set of solutions for the problem (1.1) driven by μg with related
selections satisfying

‖f (t) − f (s)‖ ≤ MR0(g(t) − g(s)) for every 0 ≤ s < t ≤ 1,

then for every sequence (xn)n, with xn ∈ Sgn , there exists x ∈ Sg towards which a
subsequence (xnk

)k converges in the two-norm topology.

Proof The hypotheses of Theorem 3 are verified for gn for all n ∈ N, therefore the sets Sgn

are nonempty.
The sequence (gn)n is by hypothesis equiregulated, bounded in variation and moreover

we have gn(0) = 0 for any n. Therefore by Lemma 1 there is a subsequence, still denoted
by (gn)n uniformly convergent to some BV function g whose total variation satisfies

g(1) − g(0) ≤ R0 − |G(0, x0)|
MR0

.

It follows that g is nondecreasing. Besides, the Moore-Osgood Theorem on exchanging lim-
its ([41, page 140]) implies that (since all gn’s are left-continuous), g is also left-continuous
on [0, 1].

The hypotheses of Theorem 3 are satisfied also by g, thus the solutions set S is nonempty.
Let (xn)n be a sequence of solutions for our problem driven by the measures μgn ,

respectively. For each n, there exists fn(t) ∈ G(t, xn(t)) such that

xn(t) = x0 +
∫

[0,t)
fn(s) dμgn(s), ∀ t ∈ [0, 1]

and fn satisfies with ‖fn(t) − fn(s)‖ ≤ MR0 · (gn(t) − gn(s)) for any s < t .
The sequence (fn)n is bounded in variation and (fn(0))n ⊂ G(0, x0) which is compact.
Since (gn)n is equiregulated, the sequence (fn)n is equiregulated as well, thus, by rea-

soning in a similar way as in the proof of Theorem 3, one can find a subsequence (fnk
)k

uniformly convergent to a BV function f : [0, 1] → R
d .

Define

x(t) = x0 +
∫

[0,t)
f (s)dμg(s), for each t ∈ [0, 1].

By the upper semicontinuity assumption, it follows that f (t) ∈ G(t, x(t)) for all t ∈ [0, 1],
therefore x ∈ Sg , where x is given by x(t) = x0 + ∫

[0,t) f (s)dμg(s).
Let us now show that (xnk

)k converges uniformly to x.
One can write

‖xnk
(t) − x(t)‖ =

∥∥∥∫
[0,t) fnk

(s)dμgnk
(s) − ∫

[0,t) f (s)dμg(s)

∥∥∥
≤ ∫

[0,t)
∥∥(fnk

− f )(s)
∥∥ dμgnk

(s) +
∥∥∥∫

[0,t) f (s)d(μgnk
− μg)(s)

∥∥∥ .
The first term tends to 0 uniformly in t ∈ [0, 1] by Proposition 3.i) since (fnk

)k tends
uniformly to f and for each [a, b) ⊂ [0, 1],

gn(b) − gn(a) ≤ R0 − |G(0, x0)|
MR0

,∀n.
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The second term tends uniformly to 0 by Proposition 3.ii) because∫
[0,t)

f (s)d(μgnk
− μg)(s) =

∫ t

0
f (s)d(gnk

− g)(s),

gn → g uniformly, f is BV and f (0) ∈ G(0, x0).
So, the uniform convergence is verified.
Next, by a similar calculus as in the proof of Theorem 3, the sequence (xn)n is bounded

in variation by

R0 · (gn(1) − gn(0)) ≤ R0 · R0 − |G(0, x0)|
MR0

,

so

‖xn‖BV ≤ ‖x0‖ + R0 · R0 − |G(0, x0)|
MR0

, for every n ∈ N.

In conclusion, (xnk
)k converges to x in the two-norm topology.

Remark 5 One can prove that for the sequence (xnk
)k a result similar to [3, Theorem 1]

holds: for each h : [0, 1] → R regulated,∫
[0,1]

h(s)dxnk
(s) →

∫
[0,1]

h(s)dx(s).

Proof Let h : [0, 1] → R be a regulated function, by the Substitution [43, Theorem 2.3.19]:∥∥∥∥∥
∫ 1

0
h(s)dxnk

(s) −
∫ 1

0
h(s)dx(s)

∥∥∥∥∥
=

∥∥∥∥∥
∫ 1

0
h(s)fnk

(s)dgnk
(s) − (KS)

∫ 1

0
h(s)f (s)dg(s)

∥∥∥∥∥
=

∥∥∥∥∥
∫ 1

0
h(s)

(
fnk

− f
)
(s)dgnk

(s) +
∫ 1

0
h(s)f (s)d(gnk

(s) − g(s))

∥∥∥∥∥
≤

∥∥∥∥∥
∫ 1

0
h(s)

(
fnk

− f
)
(s)dgnk

(s)

∥∥∥∥∥ +
∥∥∥∥∥
∫ 1

0
h(s)f (s)d(gnk

(s) − g(s))

∥∥∥∥∥
≤

∫ 1

0
|h(s)| ∥∥fnk

(s) − f (s)
∥∥ dgnk

(s) +
∥∥∥∥∥
∫ 1

0
h(s)f (s)d(gnk

(s) − g(s))

∥∥∥∥∥

which is arbitrarily small when k → ∞. Indeed, the first term is small because h is bounded,
in the second term this is a consequence of [3, Theorem 1] since the product of two regulated
functions is regulated.

4.2 Minimality Result

Consider G : [0, 1]×R
d → Pk(R

d) a compact-valued multifunction satisfying hypotheses
1), 2), 3) of Theorem 3.

We aim to minimize the functional∫ 1

0
k(t, x(t), μg)dt + l(x)
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over a set of pairs (μg, x), where μg is a measure generated by some left-continuous
nondecreasing function g : [0, 1] → R for which the differential inclusion

dx(t) ∈ G(t, x(t))dμg(t), (4.1)

x(0) = x0

driven by the measure μg has solutions and x : [0, 1] → R
d is a solution.

Denote by M the set of of measures generated by left-continuous nondecreasing func-
tions which are null at 0, satisfying the condition (3.3), thus ensuring the existence of
solutions for (1.1).

For the convenience of the reader, let us recall that:

Definition 5 A function h : Y → R ∪ {±∞} is called:
i) sequentially lower semicontinuous at a point y0 ∈ Y if for every sequence yn converg-

ing to y0, h(y0) ≤ lim infh(yn); sequentially lower semicontinuous if it is sequentially
lower semicontinuous at any point y0;

ii) sequentially coercive if for every λ ∈ R, the set Lλ = {y ∈ Y : h(y) ≤ λ} is
sequentially compact in Y .

We shall make use of the following result asserting the existence of a minimum:

Theorem 5 ([16, Theorem 1.3.19]) Let Y be a topological space and
h : Y → R ∪ {±∞} be sequentially coercive and sequentially lower semicontinuous. Then
h has a minimum in Y .

Now suppose that:

H1) the function k : [0, 1] × R
d × M → R+ is sequentially lower semicontinuous w.r.t.

the last two arguments whenM is endowed with the weak* topology and
H2) the map l : BV ([0, 1],Rd) → R is sequentially lower semicontinuous w.r.t. the

two-norm topology.

The main result of this section, on minimality conditions related to measure differential
inclusions, is presented below.

Theorem 6 Let G be a subset ofM generated by an equiregulated family of functions. Let
G : [0, 1] × R

d → Pk(R
d) satisfy hypotheses of Theorem 3, k : [0, 1] × R

d × G → R+
have property H1) and l : BV ([0, 1],Rd) → R verify H2).

Then the set {∫ 1

0
k(t, x(t), μg)dt + l(x) : μg ∈ G, x ∈ Sg

}

has a minimum.

Proof Let us show that the functional h defined on {(x, μg) : g ∈ G, x ∈ Sg} ⊂
BV ([0, 1],Rd) × G by

h(x, μg) =
∫ 1

0
k(t, x(t), μg)dt + l(x)

satisfies the hypotheses of Theorem 5.
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The sequential lower semicontinuity follows from H1) and H2). Indeed, let μgn → μg in
G and a sequence of associated solutions xn → x in the two-norm topology. Then xn(t) →
x(t) for each t ∈ [0, 1], so

k(t, x(t), μg) ≤ lim inf k(t, xn(t), μgn), for every t ∈ [0, 1],

whence
∫ 1

0
k(t, x(t), μg)dt ≤

∫ 1

0
lim inf k(t, xn(t), μgn)dt .

By Fatou Lemma one gets

∫ 1

0
k(t, x(t), μg)dt ≤ lim inf

∫ 1

0
k(t, xn(t), μgn)dt

and so, using also hypothesis H2),

h(x, μg) =
∫ 1

0
k(t, x(t), μg)dt + l(x)

≤ lim inf
∫ 1

0
k(t, xn(t), μgn)dt + lim inf l(xn)

≤ lim inf

(∫ 1

0
k(t, xn(t), μgn)dt + l(xn)

)

= lim infh(xn, μgn).

In order to prove the sequential coercivity, consider λ ∈ R and a sequence (xn, μgn)n ⊂
{(x, μg) ∈ Sg × G : h(x, μg) ≤ λ}. Then

∫ 1

0
k(t, xn(t), μgn)dt + l(xn) ≤ λ, ∀n ∈ N.

By hypothesis,

gn(1) − gn(0) ≤ R0 − |G(0, x0)|
MR0

, ∀n ∈ N.

The sequence (gn)n is equiregulated and gn(0) = 0 for each n, therefore by Lemma 1
it follows that there exists a subsequence (gnk

)k uniformly convergent to a BV function
g : [0, 1] → R. Moreover g is left-continuous and nondecreasing and

g(1) − g(0) ≤ R0 − |G(0, x0)|
MR0

.

Note that [3, Theorem 1] implies that (μgnk
)k weakly* converges to μg as k → ∞.

Now we use Theorem 4 and from the sequence of solutions xnk
we can extract a

subsequence, not relabelled, two-norm convergent to a solution x of (1.1) driven by μg .
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We need to prove that
∫ 1
0 k(t, x(t), μg)dt + l(x) ≤ λ. Again, this follows from the

hypotheses since (xnk
)k two-norm converges to x in BV ([0, 1],Rd) and (μgnk

)k weakly*
converges to μg in G:

∫ 1

0
k(t, x(t), μg)dt + l(x) ≤

∫ 1

0
lim inf k(t, xnk

(t), μgnk
)dt + lim inf l(xnk

)

≤ lim inf
∫ 1

0
k(t, xnk

(t), μgnk
)dt + lim inf l(xnk

)

≤ lim inf

(∫ 1

0
k(t, xnk

(t), μgnk
)dt + l(xnk

)

)
≤ λ

and so, (x, μg) ∈ {(x, μg) ∈ BV ([0, 1],Rd) × G : h(x, μg) ≤ λ} and the sequential
coercitivity is verified.

Remark 6 In fact, from [3, Theorem 1] it is obvious that we could have required only that the
function k is lower semicontinuous w.r.t. the last two arguments when M is endowed with
the following topology: μn → μ if and only if for each regulated function f : [0, 1] → R,

∫
[0,1]

f (s)dμn(s) →
∫

[0,1]
f (s)dμ(s).

Remark 7 Finally, we notice that we are aware of the fact that Theorem 6 provides the
existence of a solution to the minimization problem over a subset of measures and a spe-
cific subset of associated solutions to the measure differential inclusion (1.1), while in
[29, 31, 32] or [28] the minimal pair (control, state) is obtained over all measures and
all associated solutions of differential problem. However, we would like to stress that our
setting is much different: we work in the wider case of multivalued functions and G satis-
fies conditions involving only the bounded variation w.r.t. the Pompeiu excess and not the
Pompeiu-Hausdorff distance (in contrast to [29, 31, 32], where it is a single-valued function
continuous, uniformly Lipschitz w.r.t. x, having linear growth or to [28] where continuity
in all arguments and local Lipschitz assumptions are imposed).

Therefore, it provides a new method to solve a widely encountered minimization prob-
lem ([44]) in situations where previous results do not apply. For instance, even in the
single-valued case, for non-Lipschitz function G we are able to find solutions (while the
theory in [31] does not work). Also, in the set-valued setting, in addition to [28], we cover
the case where G is not necessarily continuous with respect to all arguments and locally
Lipschitz.
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11. Cichoń, M., Satco, B., Sikorska-Nowak, A.: Impulsive nonlocal differential equations through differen-
tial equations on time scales. Appl. Math. Comp. 218, 2449–245 (2011)

12. Chistyakov, V.V.: Asymmetric variations of multifunctions with application to functional inclusions. J.
Math. Anal. Appl. 478(2), 421–444 (2019)
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