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Abstract The closure of preimages (inverse images) of metric projection mappings to a
given set in a Hilbert space are investigated. In particular, some properties of fibers over
singletons (level sets or preimages of singletons) of the metric projection are provided. One
of them, a sufficient condition for the convergence of minimizing sequence for a giving
point, ensures the convergence of a subsequence of minimizing points, thus the limit of the
subsequence belongs to the image of the metric projection. Several examples preserving
this sufficient condition are provided. It is also shown that the set of points for which the
sufficient condition can be applied is dense in the boundary of the preimage of each set
from a large class of subsets of the Hilbert space. As an application of obtained properties
of preimages we show that if the complement of a nonconvex set is a countable union
of preimages of convex closed sets then there is a point such that the value of the metric
projection mapping is not a singleton. It is also shown that the Klee result, stating that only
convex closed sets can be weakly closed Chebyshev sets, can be obtained for locally weakly
closed sets.
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1 Introduction

Let (X,‖ · ‖) be a real normed vector space. For every nonempty subset S ⊂ X the distance
function from the subset S is denoted by dS(·), that is,

dS(x) = inf
u∈S

‖u − x‖, ∀x ∈ X.

For a given subset S′ ⊂ X we put

DS′(S) := {x ∈ X | dS(x) = dS′(x)} (1)

and define the fiber over s as

Ds(S) := {x ∈ X | dS(x) = ‖x − s‖}. (2)

Of course DS′(S) = Ds(S), whenever S′ = {s}. Moreover, it follows from the continuity of
dS(·) and dS′(·) that DS′ (S) is closed.

The metric projection mapping on S is defined by

PS(x) := {s ∈ cl S | dS(x) = ‖x − s‖}, (3)

where ”cl ” stands for the strong topological closure.
We recall that a set S is said to be Chebyshev if PS(x) reduces to exactly one element for

all x ∈ X.
Let us denote the family of weakly closed subsets of cl weakS as follows

C ∈ W(S) ⇐⇒ C is weakly closed and C ⊂ cl weakS, (4)

where ”cl weak” stands for the weak closure (the closure with respect to the weak topology).
Let us also observe that that for every x ∈ X, s ∈ cl S we have

(x, s) ∈ gph PS(·) ⇐⇒ (s, x) ∈ gph D(·)(S),

where gph PS(·) := {(x, s) ∈ X × cl S | s ∈ PS(x)} and gph D(·)(S) := {(s, x) ∈
cl S × H | x ∈ Ds(S)}, thus we can treat D(·)(S) as the inverse mapping to PS(·), that
is D(·)(S) = P −1

S (·). Let us notice that sets DS′(S) and D(S′)(S) can be different, where
DS′(S) is defined in (1) and D(S′)(S) = {x ∈ X | ∃s ∈ S′ : x ∈ Ds(S)} is related to the
mapping defined in (2). However, if S′ ∈ W(S), S′ ⊂ cl S, and X is a reflexive Banach
space, then DS′(S) = D(S′)(S). Moreover assuming that S′ is a closed subset of cl S such
that cl DS′(S) = cl int DS′(S), we have DS′(S) = cl D(S′)(S), whenever PS′(·) 
= ∅ on a
dense subset of a Banach space (for example in the case of a reflexive locally uniformly con-
vex space, see [28, Theorem 5]). The equalities DS′(S) = D(S′)(S) or DS′(S) = cl D(S′)(S),
which are valid in several important cases, allows us to investigate the preimages of the
metric projection on S using sets DS′ (S) instead of P −1

S (S′) in several important cases. In
particular, if X is a real Hilbert space then DS′ (S) = cl P −1

S (S′) for every closed subset S′
of cl S such that cl DS′ (S) = cl int DS′(S). That is the closure of the preimage of a subset
S′ of cl S for the metric projection mapping to a given set S is the set given in (1), whenever
cl DS′(S) = cl int DS′ (S).

One of the primary questions concerning the best approximation theory is the question
about the convergence of a minimizing sequence. In the language of preimages this ques-
tion can be expressed in the following way: assume that u 
∈ cl S and {si}i∈N is a sequence
of elements of S such that u ∈ D{s1,s2,... }(S) and u 
∈ ⋃

i∈N Dsi (S), under which condi-
tions the sequence contains a convergent subsequence? In Section 3 sufficient conditions
for the convergence of a minimizing sequence are given, whenever u belongs to the bound-
ary of DS′ (S) and S′ has some properties, see Proposition 3.1. It is also checked that desired
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properties of S′ can be guaranteed in several cases (they are listed in remarks in this sec-
tion). As a simple consequence of the sufficient condition it is obtained that any “smooth”
point u from the boundary of Ds(S) has the property that any sequence of “almost” nearest
points from S has to converge to the nearest point to u, whenever the interior of the fiber
is nonempty. In Section 4 results showing the density of “smooth points” in boundaries
of some sets are presented. The nonemptiness of a fiber ensures that if the inverse map-
ping to the projection on S is injective (i.e. the mapping d ⇒ Dd(S), d ∈ S is such that
Dd1(S) ∩ Dd2(S) = ∅, d1 
= d2, d1, d2 ∈ S), then s is a supporting point of S, see Corol-
lary 5.2 in Section 5. It is also observed that if the inverse mapping to the projection on S is
injective then S has no isolated point, see Corollary 5.4 . In Section 7 a result characterizing
those cases whenever a converging subsequece does not exist is provided, see Theorem 7.1.
In Section 2 basic information is gathered. Moreover, some basic properties of fibers can
be found there, for example like: convexity and closedness, see Lemma 2.3; the distance
function is Fréchet differentiable on int Ds(S), this is a direct consequence of Lemma 2.4.

Properties of the metric projection mapping are useful in investigating sets and differ-
ential properties of the distance function from a set. For example, it is known that if the
metric projection of a Chebyshev set is continuous then the set is convex, see [1, Corollary
page 237] for details in Hilbert spaces and to [34, Theorem 4] in smooth reflexive spaces.
The continuity of the metric projection mapping is closely related to the differentiability of
the distance function from a set, see [35, page 56] and also [33, 34] for more on the link
between the differentablity of the distance function and the continuity of the metric projec-
tion mapping. Several aspects of differentiability of the squared distance or the continuity
of the metric projection can be also found in [1–3, 5, 7, 11, 13, 14, 18, 19, 23, 30, 36].
Herein we use the L.P. Vlasov condition given in Section 6, see (22), to preserve the conti-
nuity of the metric projection in the case S is locally weakly closed or the complement of S

is included in a countable union of preimages of convex closed sets, see Theorems 8.7 and
8.10 in Section 8. Thus the convexity of S is preserved in these cases.

Let us recall that the convexity of Chebyshev sets in Hilbert space is regarded as one
of the most important problems of abstract approximation theory: see [24], where it was
posed: “However, even in a Hilbert space it remains unknown whether a Chebyshev set
must be convex, or, equivalently, whether it must be weakly closed”; see [22, Problem 5]
The Possible Convexity of a Chebyshev Set in a Hilbert Space, where a recent review of
some achievements in solving the problem is given.

The author would like to thank Prof. M. Turzański for several stimulating discussions
during writing of this paper.

2 Preliminaries

In this section some properties of subsets of Hilbert space are gathered.
For every real r > 0 and every x ∈ X we denote by BX(x, r) (resp. BX[x, r]) the

open (resp. closed) ball centered at x and of radius r , the unit sphere of X is denoted by
SX[0, 1] := {x ∈ X | ‖x‖ = 1}, the boundary of a subset D ⊂ X is denoted by fr D, where
fr D := cl D \ int D, and ”int ” stands for the interior of D. For given x, y ∈ X we put
[x, y] := {tx + (1 − t)y|t ∈ [0, 1]} and ]x, y[:= {tx + (1 − t)y|t ∈]0, 1[}

The topological dual space of X is denoted by X∗, its dual norm by ‖ ‖∗, that is,

‖x∗‖∗ := sup
‖u‖≤1

|〈x∗, u〉| = sup
‖u‖≤1

〈x∗, u〉,
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where 〈·, ·〉 is the duality pairing between X and X∗. If X is a Hilbert space with a real
inner product (a real Hilbert space), then 〈x, y〉 = 1

4 (‖x + y||2 −‖x − y‖2) see for example
[12, page 25, (1.9)]. When there is no risk of confusion, we will write ‖x∗‖ in place of
‖x∗‖∗. The closed unit ball centered at the origin of X∗ (resp. X) is denoted by BX∗ (resp.
BX).

In the Lemma below it is recalled that the distance function from a set S is a concave
function, whenever the complement of the set is convex, see for example [20, Proposition
1, p. 66] and comments following the Proposition.

Lemma 2.1 Let X be a Banach space, U ⊂ X be a convex open set, S := X \ U , and
z ∈ U . Then for every x, y ∈ U, α > 0, β > 0 such that α + β = 1, z = αx + βy we have

αdS(x) + βdS(y) ≤ dS(z). (5)

Below the convexity of sets Ds(S) is shown, whenever X is a real Hilbert space. Let us
start with a simple property of the norm.

Lemma 2.2 Let H be a Hilbert space, and let s, u, x, y ∈ H, α > 0, β > 0 be given such
that α + β = 1, z = αx + βy. If

‖x − s‖ ≤ ‖x − u‖ and ‖y − s‖ ≤ ‖y − u‖, (6)

then

‖z − s‖ ≤ ‖z − u‖.

Proof For x, y, s, u ∈ H such that the inequalities in (6) are valid we have

−2〈x, s〉 + ‖s‖2 ≤ −2〈x, u〉 + ‖u‖2,

−2〈y, s〉 + ‖s‖2 ≤ −2〈y, u〉 + ‖u‖2,

thus

α(−2〈x, s〉 + ‖s‖2) + β(−2〈y, s〉 + ‖s‖2) ≤ α(−2〈x, u〉 + ‖u‖2) + β(−2〈y,u〉 + ‖u‖2),

which implies

‖z − s‖2 = ‖z‖2 − 2〈z, s〉 + ‖s‖2 ≤ ‖z‖2 − 2〈z, u〉 + ‖u‖2 = ‖z − u‖2.

Lemma 2.3 Let H be a real Hilbert space, S ⊂ H and s ∈ cl S be given. The set Ds(S) is
convex and closed.

Proof of the convexity: Let x, y ∈ Ds(S), α > 0, β > 0, α + β = 1, z = αx + βy,
u ∈ S. If

dS(x) = ‖x − s‖ ≤ ‖x − u‖,
dS(y) = ‖y − s‖ ≤ ‖y − u‖,
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then it follows from Lemma 2.2 that

dS(z) ≤ ‖z − s‖ ≤ ‖z − u‖,
thus

dS(z) ≤ ‖z − s‖ ≤ inf
u∈S

‖z − u‖ = dS(z).

of closedness: Let {di}i∈N be a sequence of elements of subset Ds(S) such, that
limi−→∞ di = d . We have dS(di) = ‖di − s‖ for every i ∈ N, so by the continuity of dS(·)
and ‖ · −s‖ we get dS(d) = ‖d − s‖, which implies d ∈ Ds(S).

Let us assume that s̄ ∈ cl S, u ∈ Ds̄(S) \ {s̄}. It is of interest that each point uρ ∈ Ds̄(S)

has the following property

‖uρ − si‖ −→ dS(uρ) =⇒ si −→ s̄, (7)

where uρ := ρu + (1 − ρ)s̄, ρ ∈ [0, 1[ and {si}i∈N is a sequence of elements from S, this
result was given in [38, Lemma 1.5]. In other words we have the continuity of the metric
projection mapping at each uρ ∈ Ds̄(S), thus we have the Fréchet differentiability of the
distance function at each uρ ∈ Ds̄(S)\(cl S∪{u}), see [13, Theorem 3.1]. This property can
be also found in the proof of [23, Proposition 4.1]. For the sake of the reader’s convenience
we provide the result with a proof.

Lemma 2.4 Let H be a real Hilbert space, and S ⊂ H be a nonempty subset, s̄ ∈ cl S and
u ∈ Ds̄(S) with dS(u) > 0 be given. Then for all ρ ∈ [0, 1[ we have

0 = lim
μ↓0

sup{‖s̄ − s‖ | s ∈ S and ‖uρ − s‖ ≤
√

d2
S(uρ) + μ2},

where uρ := ρu + (1 − ρ)s̄.

Proof Fix ρ ∈ [0, 1[. Suppose

δ := 2−1 lim
μ↓0

sup{‖s̄ − s‖ | s ∈ S and ‖uρ − s‖ ≤
√

d2
S(uρ) + μ2} > 0.

Take a sequence {μi}i∈N such that μi ∈]0, 1[ for all i ∈ N and μi ↓ 0, and a sequence
{si}i∈N elements of S satisfying

‖uρ − si‖ ≤
√

d2
S(uρ) + μ2

i and ‖si − s̄‖ ≥ δ

for all i ∈ N. Observe that for each i ∈ N we have
√

‖uρ − s̄‖2 + μ2
i ≥ ‖uρ − si‖

and
‖u − si‖ ≥ ‖u − s̄‖,

so we obtain 2〈u − s̄, s̄ − si〉 + ‖s̄ − si‖2 ≥ 0 and consequently

μ2
i ≥ 2〈uρ − s̄, s̄ − si〉 + ‖s̄ − si‖2 ≥ (1 − ρ)‖s̄ − si‖2 ≥ (1 − ρ)δ2,

hence 0 ≥ 1 − ρ, which is impossible.
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Corollary 2.5 LetH be a real Hilbert space, S ⊂ H be a nonempty subset and S′ ⊂ cl S be
a given closed nonempty subset such that intDS′ (S) 
= ∅; and u ∈ DS′(S)\ intDS′ (S), u 
∈
S′, s ∈ S′ ∩ PS(u) are such that ]s, u[ ∩ intDS′(S) 
= ∅. Then u + t (u − s) 
∈ Ds(S) for
all t ∈]0,∞[.

Proof Let us suppose the contrary, namely u + t (u − s) ∈ Ds(S) for some t ∈]0,∞[. Take
any sequence {ui}i∈N of elements of H \ DS′ (S) such that ui −→ u. There is a sequence
{si}i∈N in S \ {S′} such that

dS′(ui) > ‖ui − si‖
for every i ∈ N. Observe that for ρ := 1

1+t
we have

u = ρ(u + t (u − s)) + (1 − ρ)s

and lim
i−→∞ ‖u − si‖ = lim

i−→∞ ‖ui − si‖ = lim
i−→∞ dS′(ui) = dS′(u) = dS(u),

thus by Lemma 2.4 the sequence {si}i∈N is converging to s. Notice that since S′ is closed, so

dS′(si) > 0, hence si 
∈ cl DS′(S). Take bi ∈
(

cl int DS′(S) \ int DS′(S)
)

∩ [si, si + α(ui −
si)], where αu + (1 − α)s ∈ int DS′(S), α ∈]0, 1[. We have

‖ui − si‖ < dS′(ui) ≤ dS′(bi) + ‖ui − bi‖ = dS(bi) + ‖ui − bi‖
≤ ‖bi − si‖ + ‖ui − bi‖ = ‖ui − si‖

for every i ∈ N, which is impossible.

If a directional derivative of the distance function is equal to 1 for a unit vector at some
point outside the considered set, then any minimizing sequence is converging, this is a sim-
ple consequence of [15, Proposition 2.3]. Below it is shown that the diameter of the set of
minimizing points is related to the value of the directional derivative of the distance function
from the set.

Lemma 2.6 Let H be a real Hilbert space, and S ⊂ H be a nonempty subset, u 
∈ cl S,
h ∈ SH[0, 1] be given. If

lim
t↓0

dS(u + th) − dS(u)

t
= γ,

then for s̄ := u − dS(u)h we have

lim
μ↓0

sup{‖s̄ − s‖ | s ∈ S and ‖u − s‖ ≤
√

d2
S(u) + μ2} ≤ √

2(1 − γ )dS(u). (8)

Proof Suppose that
√

2(1 − γ )dS(u) < lim
μ↓0

sup{‖s̄ − s‖ | s ∈ S and ‖u − s‖ ≤
√

d2
S(u) + μ2}.

Take any

δ ∈]√2(1 − γ )dS(u), lim
μ↓0

sup{‖s̄ − s‖ | s ∈ S and ‖u − s‖ ≤
√

d2
S(u) + μ2}[,

ε > 0, {μi}i∈N in ]0, 1[ with μi ↓ 0, and a sequence {si}i∈N of elements of S satisfying

‖u − si‖ ≤
√

d2
S(u) + μ2

i and ‖si − s̄‖2 ≥ δ2 > dS(u)(2(1 − γ )dS(u) + ε)
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for every i ∈ N. Observe that for every i ∈ N we have

‖u − s̄‖2 + μ2
i ≥ ‖u − si‖2,

and consequently

μ2
i ≥ 2〈u − s̄, s̄ − si〉 + ‖s̄ − si‖2 = 2ds(u)〈h, s̄ − si〉 + ‖s̄ − si‖2.

The condition limt↓0
ds(u+th)−dS (u)

t
= γ ensures that

‖u + μih − si‖2 − ‖u − s̄‖2 ≥ 2μi(γ − ε

2dS(u)
)dS(u)

for i ∈ N large enough. Hence

μi2(γ − ε

2dS(u)
)dS(u) ≤ ‖u+μih− si‖2 −‖u− s̄‖2 = ‖u− si‖2 +2μi〈h, u− si〉+μ2

i

− ‖u − s̄‖2 ≤ ‖u − s̄‖2 + μ2
i + 2μi〈h, u − si〉 + μ2

i − ‖u − s̄‖2 = 2μ2
i

+ 2
μi

dS(u)
(d2

S(u) + 〈u − s̄, s̄ − si〉) = 2μ2
i + 2

μi

dS(u)
(d2

S(u) + 〈u − s̄, s̄ − si〉

+ 1

2
‖s̄ − si‖2 − 1

2
‖s̄ − si‖2) ≤ 2μ2

i + 2
μi

dS(u)
(d2

S(u) + 1

2
μ2

i − 1

2
δ2),

thus

μi2(γ − ε

2dS(u)
)dS(u) ≤ 2μ2

i + 2
μi

dS(u)
(d2

S(u) + 1

2
μ2

i − 1

2
δ2)

for i ∈ N large enough, so

δ2 ≤ 2(1 − γ )d2
S(u) + εdS(u)

which by the choice of δ and ε is impossible, thus (8) is valid.

In fact we have equality in (8). The reverse inequality is obtained in Lemma 8.1. Let us
also mention that we have the strong convergence of any minimizing sequence, whenever
γ = 1.

It is known that norms of elements of a weakly converging sequence can be far from the
norm of its weak limit. This is a drawback of the weak convergence which sometimes can
be overcome, for example whenever the Kadec-Klee property is valid. Below a condition
allowing to estimate from below the norm of the weak limit of a sequence by norms of its
elements is provided.

Lemma 2.7 Let H be a real Hilbert space, X,Y ⊂ H be closed subspaces such that H =
X + Y , X has a finite dimension and 〈x, y〉 = 0 for every x ∈ X, y ∈ Y ; and ε > 0 be

given. Then for all sequences {xi}i∈N in H, {yi}i∈N in H such that xi
weak−→x∗, yi

weak−→y∗ and
lim supi−→∞ ‖PY (xi − yi)‖ ≤ ε, lim supi−→∞ ‖PY (yi)‖ ≤ ε and 2ε < lim supi−→∞ ‖xi‖
we have

‖x∗‖ ≥ lim sup
i−→∞

√

‖xi‖2 − 4ε2,

where “
weak−→” stands for the weak convergence.

Proof Assume that lim supi−→∞ ‖xi‖ = limi−→∞ ‖xi‖, if not then a proper subsequence
can be chosen. Observe that by the local compactness of X we can choose a subsequence
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such that {PX(xik )}k∈N is converging, again, without loss of generality we may assume that
{PX(xi)}i∈N converges. We have

‖x∗‖ ≥ ‖PX(x∗)‖ = lim
i−→∞ ‖PX(xi)‖

=
√

lim
i−→∞(‖PX(xi)‖2 + ‖PY (xi)‖2 − ‖PY (xi)‖2)

=
√

lim
i−→∞(‖xi‖2 − ‖PY (xi)‖2)

≥
√

lim sup
i−→∞

(‖xi‖2 − (‖PY (yi)‖ + ‖PY (xi) − PY (yi)‖)2)

≥
√

lim sup
i−→∞

‖xi‖2 − 4ε2.

We finish this section with an observation, which is intuitively obvious, namely if D is a
set, u ∈ fr D is a ”smooth” boundary point, then moving from u along a tangent direction to
D we are sufficiently close to the set D. For the sake of the reader’s convenience we provide
this property in the Hilbert space setting.

Lemma 2.8 LetH be a real Hilbert space with, D ⊂ H be a subset with nonempty interior.
Assume that for u ∈ cl intD \ intD there is x ∈ intD such that dH\intD(x) = ‖u − x‖.
Then there is u∗ ∈ SH[0, 1] such that

lim
t−→0

|t |−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dD(u + tz) = 0.

Proof Put u∗ := ‖u−x‖−1(u−x). For every z ∈ SH[0, 1] for which 〈z, u∗〉 = 0 and every
t ∈ R we have

dD(u + tz) ≤ dBH[x,‖u−x‖](u + tz)

≤ ‖u + tz −
(

x + ‖u − x‖
‖u + tz − x‖ (u + tz − x)

)

‖

= ‖u + tz − x‖
(

1 − ‖u − x‖
‖u + tz − x‖

)

= ‖u + tz − x‖ − ‖u − x‖

=
√

‖u − x‖2 + t2 −
√

‖u − x‖2 ≤ t2

2‖u − x‖ ,

which implies
lim

t−→0
|t |−1 sup

z∈SH[0,1], 〈z,u−x〉=0
dD(u + tz) = 0.

3 Points from the Set of Points of Approximate Compactness

Let S ⊂ H and u 
∈ S be given. We say that u is a point of approximate compactness
of S if each minimizing sequence, that is si ∈ S and ‖u − si‖ −→ dS(u), contains a
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convergent subsequence to the nearest point to u. The set of the all points of approximate
compactness of S we denote AC(S), we refer to [2, page 1131] for more information on
the notion. Following [2, see page 1131] we say that S is approximately compact whenever
H \ S = AC(S), see [2] for historical references.

It was observed in (7) that for each u ∈ fr Ds(S), ρ ∈ [0, 1[ and each sequence {si}i∈N of
elements of S such that ‖ρu + (1 − ρ)s − si‖ −→ dS(ρu + (1 − ρ)s), the sequence {si}i∈N
has to converge to s, so ρu + (1 − ρ)s ∈ AC(S). It is also interesting that each ”smooth”
point u ∈ fr Ds(S) is an element of AC(S), whenever int Ds(S) 
= ∅, this is a consequence
of the result below. In fact, in Proposition 3.1 a more general characterization of some points
from AC(S) is given. This characterization allows us to preserve the continuity of the metric
projection mapping at those ”smooth” points for which the metric projection is a singleton.
Of course, the question is when the assumptions of Proposition 3.1 are fulfilled. In Remarks
3.2, 3.3, 3.4, 3.5 some results answering the question are presented.

Proposition 3.1 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, S′ ⊂ H,
s̄ ∈ S′ ∩ cl S with Ds̄(S) 
= H be given. Assume that for a given u ∈ (H \ S) ∩ AC(S′) we
have s̄ ∈ PS(u) ∩ S′, PS′(u) = {s̄} and there is u∗ ∈ SH[0, 1] such that

lim
t↓0

t−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = 0.

Assume that for a given sequence {ti}i∈N, ti > 0, ti −→ 0 there is a function o : [0,∞[−→
[0,∞[ such that o(0) = 0, limi−→∞ o(ti )

ti
= 0 with the property such that for every i ∈ N

and z ∈ SH[0, 1] with 〈z, u∗〉 = 0 there exists d ∈ DS′(S) \ {u} such that ‖u + tiz − d‖ ≤
o(ti), and there exists s ′ ∈ S′ such that ‖d − s ′‖ ≤

√
d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥

‖s̄ − u‖. Then each sequence {si}i∈N of elements of S such that ‖si − u‖ −→ ‖s̄ − u‖ has
a convergent subsequence, say sik −→ s ∈ cl S, moreover dS(u) = ‖s − u‖ = ‖s̄ − u‖ and
s − s̄ ∈ [−2‖s̄ − u‖u∗, 2‖s̄ − u‖u∗] .

Proof Put

p(t) := max{1, 4d2
S(u)}

(

max{2o(t), sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz)} + t2

)

,

for every t ≥ 0. Assume that {si}i∈N is a sequence of elements from S such that ‖si−u‖ −→
‖s̄ − u‖. Take M > 0 such that ‖si − s̄‖ < M for all i ∈ N. Let us suppose that

lim sup
i−→∞

d[−Mu∗,Mu∗](si − s̄) > 0.

We may assume that for some δ > 0 and all i ∈ N we have

d[−Mu∗,Mu∗](si − s̄) > δ and t2
i > ‖si − u‖2 − ‖s̄ − u‖2.

If not then we can take a proper subsequence. For each i ∈ N choose zi ∈ SH[0, 1] satisfying
〈zi , u

∗〉 = 0, 〈si − s̄, zi〉 > δ, and take di ∈ DS′ (S) satisfying ‖di − u − tizi‖ ≤ o(ti).

There is a sequence {s̄i}i∈N such that s̄i ∈ S′ and ‖di − s̄i‖ ≤
√

d2
S(di) + 2o(ti), and

‖s̄i − u‖ ≥ ‖s̄ − u‖ for every i ∈ N. For i large enough have also

t2
i + ‖s̄ − u‖2 − 2ti〈si − u, zi〉 + t2

i + 7p(ti) ≥ ‖si − u‖2 − 2ti〈si − u, zi〉 + t2
i

+ 7p(ti) ≥ ‖si − u − ti zi‖2 + 7p(ti) ≥ ‖si − di‖2 + 4p(ti) ≥ ‖di − s̄i‖2 + 3p(ti)

≥ ‖u + ti zi − s̄i‖2 = ‖s̄i − u‖2 + 2ti〈u − s̄i , zi〉 + t2
i ≥ ‖s̄ − u‖2 + 2ti〈u − s̄i , zi〉 + t2

i ,
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consequently

t2
i + 7p(ti)

ti
≥ 〈si − s̄, zi〉 + 〈s̄ − s̄i , zi〉 ≥ δ + 〈si − s̄i , zi〉

for every i ∈ N large enough. We have

lim
i−→∞ ‖u − s̄i‖ = lim

i−→∞ ‖di − s̄i‖ = lim
i−→∞ dS′(di) = dS′(u).

Since u ∈ AC(S′) we are able to find a subsequence of the sequence {s̄i}i∈N which is
convergent, say s̄ik −→ s̄ ′ ∈ cl S′ ∩ PS′(u) (keep in mind the assumption PS′(u) = {s̄}),
which implies s̄ik −→ s̄ and

0 = lim
k−→∞

t2
ik

+ 7p(tik )

tik
≥ δ > 0,

a contradiction, so
lim

i−→∞ d[−Mu∗,Mu∗](si − s̄) = 0.

The compactness of the segment [−Mu∗,Mu∗] ensures the existence of a convergent sub-
sequence {sik }k∈N, say sik −→ s ∈ cl S. Of course we have also ‖u − s‖ = ‖u − s̄‖ and
s− s̄ ∈ [−Mu∗,Mu∗], hence since ‖s− s̄‖ ≤ 2‖u− s̄‖ we get s− s̄ ∈ [−2‖s̄−u‖u∗, 2‖s̄−
u‖u∗].

In order to show that assumptions of Proposition 3.1 are not difficult to verify we present
several examples below. In the first example S′ is assumed to be convex. The convexity of
S′ gives the equality H \ S′ = AC(S′), so S′ is aproximately compact.

Remark 3.2 Let H be a real Hilbert space, S ⊂ H be a nonempty subset and S′ ⊂ cl S be a
nonempty convex closed subset. Assume that for a given u 
∈ S we have

s̄ ∈ PS(u) ∩ S′, (9)

and there is u∗ ∈ SH[0, 1] such that

lim
t↓0

t−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = 0. (10)

Put o(t) := 4(supz∈SH[0,1], 〈z,u∗〉=0 dDS′ (S)(u + tz) + t2) and fix a sequence {ti}i∈N such
that ti > 0, ti −→ 0. Then for every i ∈ N and z ∈ SH such that 〈z, u∗〉 = 0 there
exists d ∈ DS′(S) \ {u} such that ‖u + tiz − d‖ ≤ o(ti), and there exists s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖. Moreover PS′(u) = {s̄}. Thus the

assumptions of Proposition 3.1 are satisfied.

Proof Take any z ∈ SH[0, 1] satisfying 〈z, u∗〉 = 0 and fix i ∈ N. Because of (10) we are
able to choose d ∈ DS′ (S) \ {u} such that ‖u + tiz − d‖ ≤ 2−1o(ti). There is a unique
s ′ ∈ S′, see [16, Lemma 6.2.1, page 205] for example, such that dS(d) = dS′(d) = ‖d− s ′‖.
Additionally PS′(u) = {s̄}, since S′ is closed and convex.

Approximately compact sets have the property that any Chebyshev set which is approx-
imately compact has to be convex, see [2]. In Section 8 a local version of this result is
presented, see (11) and Theorem 8.7 below.
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Remark 3.3 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, u 
∈ S, S′ ⊂ cl S
be given and s̄ ∈ S′. Assume that

PS(u) ∩ cl S′ = {s̄} and
(
‖s ′

i − u‖ −→ dS′(u) and s ′
i

weak−→s ∈ H =⇒ s ∈ cl S′) (11)

for every sequence {s ′
i}i∈N in S′, and that there is u∗ ∈ SH[0, 1] for which

lim
t↓0

t−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = 0. (12)

Put o(t) := 4(supz∈SH[0,1], 〈z,u∗〉=0 dDS′ (S)(u + tz) + t2) and fix a sequence {ti}i∈N such
that ti > 0, ti −→ 0. Then for every i ∈ N and z ∈ SH such that 〈z, u∗〉 = 0 there
exists d ∈ DS′(S) \ {u} such that ‖u + ti z − d‖ ≤ o(ti), and there exists s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖. Moreover PS′(u) = {s̄}. Thus the

assumptions of Proposition 3.1 are satisfied.

Proof In order to show that u ∈ AC(S′) let us take a minimizing sequence {s ′
i}i∈N in S′

such that
‖s ′

i − u‖ −→ dS′(u).

It is known that from each minimizing sequence we are able to choose a weakly convergent

subsequence, see [12, Theorem 3.139] for example, say {s ′
ik
}k∈N such that s ′

ik

weak−→s ∈ H. It
follows from (11) that s ∈ cl S′, so s ∈ PS(u) and ‖s ′

ik
− u‖ −→ dS′(u) = ‖s − u‖, hence

s ′
ik

−→ s (the Kadec-Klee property of the norm in the Hilbert space setting is used to get
the strong convergence). Observe also that we have the inclusion PS′(u) ⊂ PS(u), which
by (11) gives

s̄ ∈ PS′(u) ∩ cl S′ ⊂ PS(u) ∩ cl S′ = {s̄},
hence PS′(u) = {s̄}.

Take any z ∈ SH[0, 1] satisfying 〈z, u∗〉 = 0 and fix i ∈ N. Because of (12) we are able
to choose d ∈ DS′(S) \ {u} such that ‖u + ti z − d‖ ≤ 2−1o(ti). There is s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S′(d) + 2o(ti) =

√
d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖.

It is known that PS(u) is a singleton, whenever the distance function dS(·) is Fréchet
differentiable at u 
∈ cl S, see also [13, Theorem 2.4], a part of the proof of the Remark
below can be also used to get it. We use the idea behind the result to get a local sequen-
tial weak closedness of S, that is we prove that (11) holds true, whenever dS(·) is Fréchet
differentiable at u 
∈ cl S.

Remark 3.4 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, u 
∈ S, S′ ⊂ cl S be
given and s̄ ∈ S′. Suppose that the Fréchet derivative of the distance function dS′(·) exists
at u, that is

∃x∗ ∈ H : lim
t↓0

sup
h∈SH[0,1]

dS′(u + th) − dS′(u) − 〈x∗, th〉
t

= 0,

then PS′(u) 
= ∅. Moreover, if dS(u) = dS′(u) = ‖u − s̄‖ then {s̄} = PS(u) ∩ S′ and

‖si − u‖ −→ dS(u) =⇒ si −→ s̄, (13)

for every sequence {si}i∈N in S′. If additionally there is u∗ ∈ SH[0, 1] such that

lim
t↓0

t−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = 0,
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then for o(t) := 4(supz∈SH[0,1], 〈z,u∗〉=0 dDS′ (S)(u + tz) + t2) and any sequence {ti}i∈N such
that ti > 0, ti −→ 0 we have that for every i ∈ N and z ∈ SH such that 〈z, u∗〉 = 0 there
exists d ∈ DS′(S) \ {u} such that ‖u + tiz − d‖ ≤ o(ti), and there exists s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖. Moreover PS′(u) = {s̄}. Thus the

assumptions of Proposition 3.1 are satisfied.

Proof It follows from Lemma 2.6 that PS′(u) 
= ∅, it is enough to apply Lemma 2.6 for
h := x∗ and observe that ‖h‖ = 1, see [23, Remark 3.1 and Theorem 3.2 or Theorem 4.2]
for example. Moreover, if {si}i∈N is a sequence of elements from S′ such that ‖si − u‖ −→
dS(u) = dS′(u), then the strong convergence si −→ s̄ is again a consequence of Lemma
2,6.

Observe also that we have the inclusion PS′(u) ⊂ PS(u), which implies

s̄ ∈ PS′(u) ∩ cl S′ ⊂ PS(u) ∩ cl S′ = {s̄},
hence PS′(u) = {s̄}.

If additionally there is u∗ ∈ SH[0, 1] such that

sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = o(t),

then take any z ∈ SH[0, 1] satisfying 〈z, u∗〉 = 0. As in the proof of Remark 3.3 we are able
to choose d ∈ DS′(S) \ {u} such that ‖u + tiz − d‖ ≤ 2−1o(ti). There is s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S′(d) + 2o(ti) =

√
d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖.

Remark 3.5 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, s̄ ∈ S, u 
∈ S,
S′ ⊂ cl S be given such that dS(u) = dS′(u) = ‖u − s̄‖ and

∀s ′ ∈ S′, 〈u − s̄, s ′ − s̄〉 ≤ 0. (14)

Then {s̄} = PS(u) ∩ S′ and

‖si − u‖ −→ dS(u) =⇒ si −→ s̄, (15)

for every sequence {si}i∈N in S′. If additionally there is u∗ ∈ SH[0, 1] such that

lim
t↓0

t−1 sup
z∈SH[0,1], 〈z,u∗〉=0

dDS′ (S)(u + tz) = 0,

then for o(t) := 4(supz∈SH[0,1], 〈z,u∗〉=0 dDS′ (S)(u + tz) + t2) and any sequence {ti}i∈N such
that ti > 0, ti −→ 0 we have that for every i ∈ N and z ∈ SH such that 〈z, u∗〉 = 0 there
exists d ∈ DS′(S) \ {u} such that ‖u + tiz − d‖ ≤ o(ti), and there exists s ′ ∈ S′ such that

‖d − s ′‖ ≤
√

d2
S(d) + 2o(ti) and ‖s ′ − u‖ ≥ ‖s̄ − u‖. Moreover PS′(u) = {s̄}. Thus the

assumptions of Proposition 3.1 are satisfied.

Proof Put x∗ := d−1
S′ (u)(u − s̄). If

lim
t↓0

dS′(u + tx∗) − dS′(u)

t
= 1,

then it follows from Lemma 2.6 that condition (15) holds true, hence {s̄} = PS(u) ∩ S′.
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Let us exclude the case

lim
t↓0

dS′(u + tx∗) − dS′(u)

t
< 1 − μ

for some μ > 0. Take sequences {s ′
i}i∈N in S′ and {t ′i}i∈N in ]0, 1[, t ′i ↓ 0 for which

‖u + t ′i x∗ − s ′
i‖2 ≤ t ′i

2 + d2
S′(u + t ′i x∗) and

‖u + t ′ix∗ − s ′
i‖2 − ‖u − s̄‖2 ≤ 2t ′i (1 − μ)dS′(u) + t ′2i

for every i ∈ N. Since ‖u + t ′ix∗ − s̄‖ = dS′(u) + t ′i , using (14) we get

2t ′i (1 − μ)dS′(u) + t ′2i ≥ ‖u + t ′ix∗ − s ′
i‖2 − ‖u − s̄‖2 = ‖u + t ′ix∗ − s̄‖2

+ 2〈u + t ′i x∗ − s̄, s̄ − s ′
i〉 + ‖s̄ − s ′

i‖2 − ‖u − s̄‖2 ≥ ‖u + t ′ix∗ − s̄‖2

+ ‖s̄ − s ′
i‖2 − ‖u − s̄‖2 ≥ (dS′(u) + t ′i )2 − d2

S′(u),

for every i ∈ N. Hence

2(1 − μ)dS′(u) ≥ lim
i−→∞

(dS′(u) + t ′i )2 − d2
S′(u)

t ′i
= 2dS′(u),

a contradiction. In order to finish the proof it is enough to repeat the reasoning from Remark
3.4.

There are two natural examples for S′ to fulfill condition (14), namely if S′ ⊂ a + {h ∈
H | 〈x∗, h〉 = 0} for some a ∈ H, x∗ ∈ SH[0, 1] and u − s̄ = αx∗ for some α > 0, then it
is obvious that (14) is satisfied. Condition (14) is also satisfied, whenever S′ is convex and
dS(u) = dS′(u) = ‖u − s̄‖.

4 Density Properties

Let S, S′ be a subsets of a real Hilbert space. ”Smooth points” of the boundary of DS′(S)

have the ”convergence property” as it is observed in the previous section. Of course the state
of the art in variational analysis allows us to expect that ”smooth points” of the boundary
are dense in the boundary. It seems that using ideas from [27], see also [38], we can get this
kind of density in every Banach space with the norm Fréchet differentiable and having the
Kadec-Klee property. Since we are interested only in the Hilbert space setting we provide
such a result in a Hilbert space. The key tool to get it is the Borwein-Preiss Variational
Principle, we use a form of the Variational Principle from [6, Theorem 2.5.2].

Definition 4.1 Let (X, d) be a complete metric space. We say that a continuous function
ρ : X × X → [0,+∞] is a gauge-type function provided that

(i) ρ(x, x) = 0 for all x ∈ X,
(ii) for any ε > 0 there exists δ > 0 such that

ρ(y, z) ≤ δ implies d(y, z) < ε for all y, z ∈ X.
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Theorem 4.2 Let (X, d) be a complete metric space and let f : X → R ∪ {+∞} be a
lsc function bounded from below. Suppose that ρ is a gauge-type function and (δi)

∞
i=0 is a

sequence of positive numbers, and suppose that ε > 0 and x0 ∈ X satisfy

f (x0) ≤ inf
z∈X

f (z) + ε.

There exist x ∈ X and a sequence (xi)
∞
i=1 ⊂ X such that

(i) ρ(xo, x) ≤ ε
δ0

, ρ(xi, x) ≤ ε
2i δ0

,

(ii) f (x) + ∑∞
i=1 δiρ(x, xi) ≤ f (x0),

(iii) f (y) + ∑∞
i=1 δiρ(y, xi) > f (x) + ∑∞

i=1 δiρ(x, xi) for all y ∈ X \ {x}

Below we present a result which is a consequence of [28, Theorem 4]. It says that for
every given point u 
∈ S there is a point u′ close to the given point such that PS(u′) 
= ∅.
For the sake of the reader’s convenience a proof is provided.

Proposition 4.3 Let H be a real Hilbert space, U ⊂ H be an open nonempty subset such
that H \ U 
= ∅, and w ∈ U be fixed. For every μ > 0 there are x ∈ U ∩ BH[w, μ],
s ∈ fr U such that dH\U(x) = ‖x − s‖ and any sequence {wi}i∈N in H \ U such that
‖wi − x‖ −→ dH\U(x) has a convergent subsequence (with respect to the norm topology),
say {win}n∈N for which s = limn−→∞ win .

Proof Let us fix μ > 0. Take any δ ∈]0,
min{μ,dH\U (w)}

4 ] and put K := H \ U ,

f (z) := dK(z) + 162dK(x0)

δ2
‖z − x0‖2, ρ(z, y) := ‖z − y‖2,

ε := f (x0), δ0 := 1, x0 := w, δi := dK(x0)

4i
for i ≥ 1.

It follows from Theorem 4.2 that there are x ∈ BH[x0,
δ

16 ] (keep in mind that applying (ii)

we have the inequality dK(x) + 162dK(x0)

δ2 ‖x − x0‖2 ≤ dK(xo)), so x ∈ U , and there are
x∗ ∈ H and M > 0 (apply (iii)) such that

∀y ∈ H, dK(y) − dK(x) − 〈x∗, y − x〉 ≥ −M‖y − x‖2, (16)

which forces ‖x∗‖ ≤ 1. Let {si}n∈N be a sequence in K such that ‖si − x‖ −→ dK(x),

si
weak−→s, where ”

weak−→” stands for the weak convergence. By (16) we have

‖x + ti (si − x) − si‖ − ‖x − si‖ − 〈x∗, ti(si − x)〉 ≥ −2Mt2
i ‖x − si‖2, (17)

for a proper choice of ti > 0, ti −→ 0 and i large enough, hence

− ‖x − si‖ − 〈x∗, (si − x)〉 ≥ −2Mti‖x − si‖2. (18)

It follows from (18) and the weak lower-semicontinuity of ‖x − ·‖ that

lim inf
i−→∞ ‖x − si‖ ≥ ‖x − s‖ ≥ −〈x∗, (s − x)〉 = lim

i−→∞ −〈x∗, (si − x)〉
≥ lim sup

i−→∞
‖x − si‖ ≥ ‖x − s‖

thus ‖si −x‖ −→ ‖s−x‖ and si −→ s, since si
weak−→s, in particular s ∈ K, dK(x) = ‖s−x‖

and x∗ = d−1
K (x)(x − s). It is easy to observe that s ∈ K ∩ cl U , so s ∈ cl U \ U .
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Let us recall that x ∈ BH[w, δ
16 ], which implies the first part of statement. The choice

of a convergent subsequence, which is demanded in the second part of the statement, is
guaranteed by the above reasoning. In order to see it, let us fix a sequence {wi}i∈N in K

such that ‖wi − x‖ −→ dK(x). Now take any weakly convergent subsequence {win}n∈N ⊂
{wi}i∈N. Repeating the reasoning, which is presented above to get the strong convergence
of the sequence {si}i∈N, we get the strong convergence of {win}n∈N to s (keep in mind that
x∗ = d−1

K (x)(x − s) = d−1
K (x)(x − limn−→∞ win)).

Corollary 4.4 LetH be a real Hilbert space,U ⊂ H be a convex open set, S := H\U 
= ∅,
and S′ ⊂ S be a closed and convex subset. Then DS′(S) is convex.

Proof It follows from Lemma 2.1 that (5) holds true. If x, y ∈ DS′(S) then the convexity
of S′ yields

dS(z) ≤ dS′(z) ≤ αdS′(x) + βdS′(y) = αdS(x) + βdS(y) ≤ dS(z),

which implies dS′(z) = dS(z), where z = αx + βy.

A convex set has the property that the closure of its interior recovers the closure of the
set, whenever the interior is nonempty. It is interesting that the set of supporting points is
dense in the boundary of a convex set with nonempty interior, this result was due to Bishop-
Phelps and it was an answer to an open problem by V. Klee. Of course the class of sets
having this property is larger than the class of convex sets with nonempty interior. Below it
is shown that the set of points from the boundary of some set, belonging to the boundary of
a ball contained in the set, is dense in the boundary of the set, whenever the considered set
belongs to the class.

Proposition 4.5 Let H be a real Hilbert space, U ⊂ H be an open nonempty subset, and

w ∈ cl U\U be fixed. For everyμ > 0 there are u ∈
(

cl U\U
)
∩BH[w, μ], x ∈ U such that

dH\U(x) = ‖u − x‖ and any sequence {wi}i∈N in H \ U such that ‖wi − x‖ −→ dH\U(x)

has a convergent subsequence (with respect to the norm topology), say {win}n∈N ⊂ {wi}i∈N
for which dH\U(x) = ‖x − limn−→∞ win‖.

Proof Let us fix μ > 0, d ∈ U ∩ BH[w,
μ
4 ]. We have dH\U(d) > 0. Take any δ ∈

]0,
min{μ,dH\U (d)}

4 ] and put K := H \ U . It follows from Proposition 4.3 that there are x ∈
BH[d, δ

16 ], u ∈ cl U \ U such that dK(x) = ‖u − x‖ and if a sequence {wi}i∈N in H \ U

is such that ‖wi − x‖ −→ dK(x) then it has a converging subsequence (with respect to
the norm topology), say {win }n∈N ⊂ {wi}i∈N for which dH\U(x) = ‖x − limn−→∞ win‖ ,
u = limn−→∞ win . It is easy to observe that u ∈ K ∩ cl U , so u ∈ cl U \ U . Let us recall
that x ∈ BH[d, δ

16 ], d ∈ BH[w,
μ
4 ], thus u ∈ BH[w, μ], which implies the statement.

Remark 4.6 In the Hilbert space setting, Proposition 4.5 may be used to retrieve Lau’s
results [28, Theorem 4], [27] or those concerning the differentiability of lower semicontinu-
ous functions which were obtained in J.M. Borwein, S.P. Fitzpatrick and J. R. Giles [5]. For
this purpose it is enough to construct a new Hilbert space H := H×R and for a lower semi-
continuous function such that int dom f 
= ∅ apply Proposition 4.5 together with a result
concerning the differentiability of the Moreau envelope, for example see [23, Theorem 3.5],
to the open set U := {(x, r) ∈ H | f (x) > r}. This is not the aim of this paper, so it is left
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to the interested reader. Let us also notice that int cl U = U , whenever f is a continuous
function, so the set D := cl U has the property cl D = cl int D.

Corollary 4.7 LetH be a real Hilbert space. Let S ⊂ H be a nonempty subset, u 
∈ cl S, s̄ ∈
cl S be given such that ‖u − s̄‖ = dS(u); and ε > 0 be fixed. Then intDBH[s̄,ε]∩S(S) 
= ∅,
u ∈ cl intDBH[s̄,ε]∩S(S) and if there is u′ ∈

(
cl intDBH[s̄,ε]∩S(S) \ intDBH[s̄,ε]∩S(S)

)
such

that dH\intDBH[s̄,ε]∩S(S)(x) = ‖u′ − x‖ and the Fréchet derivative of the distance function
dS(·) exists at u′, then PS(u′) is a singleton and ‖s ′ − s̄‖ = ε, where s ′ ∈ PS(u′).

Proof It follows from Lemma 2.4 that (1 − ρ)u + ρs̄ ∈ int DBH[s̄,ε]∩S(S) for all

ρ ∈]0, 1[. Assume that u′ ∈
(

cl int DBH[s̄,ε]∩S(S) \ int DBH[s̄,ε]∩S(S)
)

is such that

dH\int DBH[s̄,ε]∩S(S)(x) = ‖u′ − x‖ and the Fréchet derivative of the distance function dS(·)
exists at u′. Using Remark 3.4 we get ‖u′ − s ′‖ = dS(u′) for some s ′ ∈ BH[s̄, ε] ∩ S. If
‖s ′ − s̄‖ < ε, then it follows from Remark 3.4 that there is d ∈ (S \ {s ′}) ∩ PS(u′), keep
in mind that u′ 
∈ int DBH[s̄,ε]∩S(S), so there are ui ∈ H and si ∈ S \ BH[s̄, ε] such that
ui −→ u, ‖si − ui‖ −→ dS(u′), si −→ d . However, the differentiability of the distance
function yields that PS(u′) is singleton, so d = s ′ a contradiction.

Below we provide another example of a possibly non-convex set having the following
property

cl D = cl int D.

If a set has the property above, then it follows from Proposition 4.5 that there is a dense
subset of fr D, say F ⊂ fr D, such that for every u ∈ F there is x ∈ int D for which
dH\int D(u) = ‖u − x‖.

Lemma 4.8 Let H be a real Hilbert space. Let S ⊂ H be a nonempty subset, S′ ⊂ H,
s̄ ∈ S′ ∩ cl S. Assume that u ∈ Ds̄(S) and there is ε > 0 for which

BH[s̄, ε] ∩ (S \ S′) = ∅, (19)

then u ∈ cl intDS′ (S).

Proof Let us fix any ρ ∈ [0, 1[. Put uρ := ρu+ (1−ρ)s̄. Let us prove that uρ ∈ int DS′ (S).
If there is a sequence {ui}i∈N in H \ DS′ (S) such that ui −→ uρ , then for every i ∈ N put

Si :=
{

s ∈ S | ‖s − ui‖ <
dS(ui) + dS′(ui)

2

}

.

There is a sequence {si}i∈N in S \ S′ such that ‖ui − si‖ −→ dS(uρ), si ∈ Si for every
i ∈ N. It follows from Lemma 2.4 that si −→ s̄ . Hence by (19) we obtain si ∈ S′ ∩BH[s̄, ε]
for i ∈ N large enough, which contradicts the choice of the sequence {si}i∈N. Thus uρ ∈
int DS′ (S) and consequently u ∈ cl int DS′(S).

5 Sets for which there are Points at which the Metric Projection is not a
Singleton

In this section several results ensuring, for a giving set, the existence of points at which the
metric projection is not a singleton are presented.
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Corollary 5.1 Let H be a real Hilbert space, S ⊂ H be a nonempty subset and S′ ⊂ cl S
be a given closed convex nonempty subset such that intDS′(S) 
= ∅; and u ∈ cl intDS′(S) \
intDS′(S), u 
∈ S′, s ∈ S′ ∩ PS(u), u + t (u − s) 
∈ Ds(S) for every t ∈]0,∞[. If there is
x ∈ intDS′(S) for which dH\intDS′ (S)(x) = ‖u − x‖ and 〈u − s, u − x〉 
= 0, then there
exists d ∈ cl S, d 
= s such that u ∈ Dd(S).

Proof Let us notice that if u+ t0(u− s) ∈ DS′(S) for some t0 ∈]0,∞[, then u+ 2−1t0(u−
s) ∈ Ds(S), since the convexity of S′, but this contradicts to u + t (u − s) 
∈ Ds(S) for
every t ∈]0,∞[. Hence, there are sequences {εi}i∈N in ]0,∞[, {si}i∈N in S \ {S′} such that
limi−→∞ εi = 0, u + εi‖u − s‖−1(u − s) 
∈ Ds(S), and

dS′(u + εi(u − s)) > ‖u + εi(u − s) − si‖
for every i ∈ N. By Proposition 3.1 (see Remark 3.2) and Lemma 2.8 the sequence {si}i∈N
has a convergent subsequence, say to d ∈ cl S, and consequently u ∈ Ds(S) ∩ Dd(S).
We may assume that the sequence {si}i∈N is convergent, otherwise we choose a proper

subsequence. Let us suppose that d = s, then take bi ∈
(

cl int DS′ (S)\int DS′ (S)
)
∩[si, si+

α(u + εi(u − s) − si)], where αu + (1 − α)s ∈ int DS′(S), α ∈]0, 1[, and si 
∈ DS′(S) and
si −→ s. We have

‖u + εi(u − s) − si‖ < dS′(u + εi(u − s)) ≤ dS′(bi) + ‖u + εi(u − s) − bi‖
= dS(bi) + ‖u + εi(u − s) − bi‖ ≤ ‖bi − si‖ + ‖u + εi(u − s) − bi‖

= ‖u + εi(u − s) − si‖
for every i ∈ N, which is impossible, thus d 
= s.

A simple consequence of the Corollary above is

Corollary 5.2 LetH be a real Hilbert space, S ⊂ H be a closed nonempty subset and s̄ ∈ S

be such that
sup

s∈S,u∈Ds̄(S)

〈s − s̄, u − s̄〉 > 0

and intDs̄(S) 
= ∅. Then there exists d ∈ S, d 
= s̄ such that Ds̄(S) ∩ Dd(S) 
= ∅.

Proof Take any z ∈ Ds̄(S) and s ∈ S such that 〈s − s̄, z − s̄〉 > 0 and ]s̄, z[⊂ int Ds̄(S).
Observe that s̄ + t̄ (z − s̄) ∈ fr Ds̄(S) for some t̄ > 0 and s̄ + t (z − s̄) 
∈ fr Ds̄(S) for every
t > t̄ . Otherwise s̄ + cone (z − s̄) = s̄ + [0,∞[(z − s̄) ⊂ Ds̄(S), and consequently

⋃

t>0

BH[s̄ + t (z − s̄), t‖z − s̄‖] ∩ S = {s̄},

which is impossible, since 〈s − s̄, z− s̄〉 > 0. It follows from Proposition 4.5 that there exist
u ∈ fr Ds̄(S) (close to s̄ + t̄ (z − s̄)) and x ∈ int Ds̄(S) such that dH\int Ds̄(S)(x) = ‖u − x‖
and ]s̄, u[⊂ int Ds̄(S) (otherwise s̄ + cone (z − s̄) = s̄ + [0, ∞[(z − s̄) ⊂ Ds̄(S)), hence
〈u − s̄, u − x〉 
= 0, so it follows from Corollary 5.1 that u ∈ Dd(S) for some d ∈ S, d 
=
s̄.

A direct consequence of Corollary 5.2 is that the existence of nonsmooth points in the
boundary of a set S can cause that images of the projection mapping PS(·) are not singletons.
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Corollary 5.3 LetH be a real Hilbert space, S ⊂ H be a closed nonempty subset and s̄ ∈ S

be such that there are ε > 0 and v∗ ∈ SH[0, 1] for which
sup

s∈S∩BH[s̄,ε]
〈s − s̄, v∗〉 + ε‖s − s̄‖ ≤ 0

and
sup
s′∈S

〈s ′ − s̄, v∗〉 > 0.

Then there exists d ∈ S, d 
= s̄ such that Ds̄(S) ∩ Dd(S) 
= ∅.

Proof It is easy to show that ut := s̄ + tv∗ ∈ Ds̄(S) for t > 0 small enough, thus

sup
s∈S,u∈Ds̄(S)

〈s − s̄, u − s̄〉 ≥ sup
s∈S,ut∈Ds̄(S)

〈s − s̄, ut − s̄〉 ≥ t sup
s∈S

〈s − s̄, v∗〉 > 0

for t > 0 small enough. In order to apply Corollary 5.2 let us show that int Ds̄(S) 
= ∅. For
this reason fix δ ∈]0, min{1, ε

4 }[ and take z ∈ BH[v∗, δ]. Observe that if s ∈ S ∩ BH[s̄, ε],
then

‖s̄ + δz − s‖2 = ‖δz‖2 + ‖s̄ − s‖2 + 2δ〈z, s̄ − s〉 = ‖δz‖2 + ‖s̄ − s‖2

+ 2δ〈v∗, s̄ − s〉 + 2δ〈z − v∗, s̄ − s〉 ≥ ‖δz‖2 + ‖s̄ − s‖2

+ 2δε‖s̄ − s‖ − 2δ2‖s̄ − s‖ ≥ ‖s̄ + δz − s̄‖2.

We have also

‖s̄ + δz − s‖2 = ‖δz‖2 + ‖s̄ − s‖2 + 2δ〈z, s̄ − s〉 = ‖δz‖2 + ‖s̄ − s‖2 + 2δ〈v∗, s̄ − s〉
+ 2δ〈z − v∗, s̄ − s〉 ≥ ‖δz‖2 + ‖s̄ − s‖2 − 2δ‖s̄ − s‖ − 2δ2‖s̄ − s‖

≥ ‖δz‖2 + ‖s̄ − s‖(‖s̄ − s‖ − 4δ) ≥ ‖s̄ + δz − s̄‖2,

whenever s ∈ S∩(H \ BH[s̄, ε]), thus s̄+δBH[v∗, δ] ⊂ Ds̄(S), so it follows from Corollary
5.1 that u ∈ Dd(S) for some d ∈ S, d 
= s̄.

Corollary 5.4 Let H be a real Hilbert space, S′ ⊂ S ⊂ H be closed nonempty subsets and
S′ ∈ W(S), see (4), be such that ū ∈ DS′(S), ‖ū− s̄‖ = dS(ū) > 0, s̄ ∈ S′, (S \S′) 
= ∅ and

∃δ > 0 : ∀s ∈ BH[s̄, δ] ∩ S′, ∃ε > 0 : BH[s, ε] ∩ (S \ S′) = ∅. (20)

If Ds1(S) ∩ Ds2 (S) = ∅ for all s1, s2 ∈ S′, s1 
= s2, then there exists d ∈ S, d 
∈ S′ such
that DS′(S) ∩ Dd(S) 
= ∅.

Proof It follows from Lemma 4.8 and Proposition 4.5 that there are u ∈ fr DS′(S), s ∈
S′ ∩ BH[s̄, δ] and x ∈ H \ S such that dH\int DS′ (S)(x) = ‖u − x‖, dS′(u) = ‖u − s‖ > 0.
We recall that z ∈ H \ DS′(S) if and only if dS′(z) > dS(z), since S′ ⊂ S. Take sequences
{ui}i∈N in H \ DS′ (S), ui −→ u, and {si}i∈N in S such that ‖ui − si‖ −→ dS(u) and

dS′(ui) > ‖ui − si‖ (21)

for every i ∈ N. It follows from (21) that si ∈ S\S′ for every i ∈ N. It is easy to observe that
weakly closed subsets are approximately compact, thus using Lemma 2.8 and Proposition
3.1 we infer that the sequence {si}i∈N has a convergent subsequence, say sik −→ d . If
d = s, then using (20) we obtain sik ∈ S′ for k ∈ N large enough, but this is impossible in
view of (21). Of course u ∈ Dd(S), and consequently u ∈ Dd(S) ∩ DS′ (S).
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Corollary 5.5 Let H be a real Hilbert space, S ⊂ H be a closed nonempty subset, and
S′ ⊂ S be a closed convex nonempty subset such that intDS′(S)\S′ 
= ∅ and cl intDS′(S)\
(intDS′(S) ∪ S′) 
= ∅. Then

(H \ S) ∩ (
cl intDS′(S) \ (intDS′(S) ∪ S′))

) ⊂ cl

⎛

⎝
⋃

d∈cl (S\S′)
Dd(S) ∩ DS′(S)

⎞

⎠ \ S.

Proof It follows from Proposition 4.5 that for every w ∈ cl int DS′(S)\int DS′(S) and every

μ > 0 there is u ∈
(

cl int DS′ (S) \ int DS′(S)
)

∩ BH[w, μ] such that dH\int DS′ (S)(x) =
‖u − x‖ for some x ∈ int DS′(S). Fix some u′ ∈ cl int DS′(S) \ (int DS′ (S) ∪ S′) such
that dH\int DS′ (S)(x

′) = ‖u′ − x ′‖ for some x ′ ∈ int DS′(S). If there is t ′ > 0 such that
u′ + t ′(u′ − PS′(u′)) ∈ DPS′ (u′)(S), then u′ + t ′(u′ − PS′(u′)) 
∈ int DPS′ (u′)(S), oth-
erwise u′ ∈ int DPS′ (u′)(S) by the convexity of DS′ (S) which contradicts the choice of
u′ ∈ cl int DS′(S) \ (int DS′(S) ∪ S′). Thus there is a sequence {u′

i}i∈N in H \ DS′(S) such
that u′

i −→ u. There are s ′
i ∈ S \S′ such that ‖u′ − s ′

i‖ −→ dS(u′). It follows from Lemma
2.4 that the sequence {s ′

i}i∈N is convergent, say to d ∈ cl (S \S′), so we are done. Now let us
consider the case u′+t ′(u′−PS′(u′)) 
∈ DPS′ (u′)(S) for every t ′ > 0 and apply Corollary 5.1
to get the statement. For this reason let us observe that if PS′(u′) ∈ cl (S \ S′), then we are
done, however if PS′(u′) 
∈ cl (S \ S′) then 〈u′ − x ′, u′ − PS′(u′)〉 > 0, and all assumptions
of Corollary 5.1 are fulfilled, so the statement is a consequence of Corollary 5.1.

6 The Vlasov Condition

In this section we present some results related to the Vlasov condition, see (6.1) below. In
order to characterize the role of the Vlasov condition let us start with the following result
which was obtained by L. P. Vlasov [34, Theorem 3] in the setting of a Banach space
(X, ‖ · ‖) whose dual norm ‖ · ‖∗ of X∗ was assumed to be strictly convex. It states that
in some Banach spaces the continuity of the metric projection on a set S preserves the
convexity of the set. A new proof of this result for X being a Banach space whose norm
is uniformly Gâteaux differentiable is given in [23, Theorem 4.4]. In the next section the
Vlasov condition is applied to get convexity of Chebyshev sets in some new cases.

Theorem 6.1 Let X be a Banach space whose norm is uniformly Gâteaux differentiable
and S ⊂ X be a Chebyshev set with continuous metric projection. Then S is convex.

The continuity of the metric projection can be also preserved by checking if the Vlasov
condition is satisfied, see [35, page 56] and also [33, 34], i.e.

lim sup
y→0

dS(x + y) − dS(x)

‖y‖ = 1 (22)

for all x 
∈ S.

Corollary 6.2 Let H be a real Hilbert space, S ⊂ H be a nonempty subset. Assume that

x 
∈ cl S is such that there are {w1, w2, . . .} ⊂ cl S, wi
weak−→s∗ ∈ H, and xi ∈ Dwi

(S)

such that
⋃

t∈]0,∞[ B[wi + t (xi − wi), t‖xi − wi‖] ∩ S = {wi} for every i ∈ N, and
x = limi−→∞ xi . Then the Vlasov condition is satisfied at x.
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Proof Since ⋃

t∈]0,∞[
B[wi + t (xi − wi), t‖xi − wi‖] ∩ S = {wi}

for every i ∈ N, so
∀i ∈ N, ∀s ∈ S, 〈xi − wi, s − wi〉 ≤ 0. (23)

Hence

‖x − s∗‖2 ≥ lim inf
i−→∞ ‖xi − s∗‖2 = lim inf

i−→∞ ‖xi − wi‖2 + 2〈xi − wi,wi − s∗〉+ ‖wi − s∗‖2

≥ lim inf
i−→∞ dS(xi)

2 + ‖wi − s∗‖2 ≥ d2
S(x) > 0,

so x 
= s∗. For every t > 0 there is st ∈ S such that d2
S(x + t (x − s∗)) + t2 ≥ ‖x + t (x −

s∗) − st‖2, so

t2 + d2
S(x + t (x − s∗)) ≥ ‖x + t (x − s∗) − st‖2 = ‖x + t (x − s∗) − s∗ + s∗ − st‖2

= ‖x + t (x − s∗) − s∗‖2 + 2〈x + t (x − s∗) − s∗, s∗ − st 〉 + ‖s∗ − st‖2

= (1 + t)2‖x − s∗‖2 + (1 + t)2〈x − s∗, s∗ − st 〉 + ‖s∗ − st‖2

= (1 + t)2(‖x − s∗‖2 + 2〈x − s∗, s∗ − st 〉) + ‖s∗ − st‖2)

− 2t (〈x − s∗, s∗ − st 〉 + ‖s∗ − st‖2) − t2(2〈x − s∗, s∗ − st 〉 + ‖s∗ − st‖2),

we recall that x = limi−→∞ xi , dS(x) = limi−→∞ dS(xi) = limi−→∞ ‖xi − wi‖, which
implies the inequality

lim
t↓0

d2
S(x + t (x − s∗)) − d2

S(x)

t‖x − s∗‖ ≥ 2dS(x), (24)

whenever
lim inf

t↓0
〈x − s∗, s∗ − st 〉 + ‖s∗ − st‖2 ≤ 0, (25)

since ‖x − s∗‖ ≤ dS(x). Observe that (24) implies (22), so it is enough to get inequality
(25) in order to finish the proof. Suppose the contrary, that is

lim inf
t↓0

〈x − s∗, s∗ − st 〉 + ‖s∗ − st‖2 ≥ 2ε, (26)

for some ε > 0. By (23) and (26) we have

〈xi − wi, st − wi〉 ≤ 0 and 〈x − st , s
∗ − st 〉 ≥ 3

2
ε

for t > 0 small enough, so

‖xi − wi‖2 + 〈xi − wi, st − xi〉 ≤ 0 and ‖x − st‖2 + 〈x − st , s
∗ − x〉 ≥ 3

2
ε,

hence

−‖xi − wi‖2 − 〈xi − wi, st − x〉 + ‖x − st‖2 + 〈x − st , s∗ − x〉 ≥ ε,

which implies

ε ≤ lim inf
t↓0

lim inf
i−→∞

(
〈x − st , s

∗ − wi〉 + (‖x − st‖2 − ‖xi − wi‖2) + 〈x − st , xi − x〉
)

= lim inf
t↓0

(
‖x − st‖2 − d2

S(x)
)

= 0,

a contradiction.
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7 Tangent Cones to Preimages of the Metric Projection on a Set of
Isolated Points

Let S ⊂ H be a subset of isolated points, u 
∈ S and {s̄} = PS(u). In this section the tangent
cone to P −1

S (s̄) is calculated, whenever s̄ is not a weak cluster point of S. Let us recall that
for every nonempty subset A ⊂ H and a ∈ cl A by

T (A, a) := {z ∈ H | ∀i ∈ N, a + tizi ∈ A, where ti ↓ 0, zi −→ z}
we denote the tangent cone (Bouligand tangent cone or the contingent cone, see [6, Exercise
5.2.21, page 209]).

Theorem 7.1 Let H be a real Hilbert space, u ∈ H be given, S = {s̄, s1, s2, . . . } ⊂ H be a
closed subset of isolated points (this implies that S is a closed subset) such that:

1. ‖u − si‖ −→ ‖u − s̄‖;

2. ∀i ∈ H, ‖u − si‖ > ‖u − si+1‖ > ‖u − s̄‖;

3. si
weak−→s∗ ∈ BH[u, ‖u − s̄‖];

then T (Ds̄({s̄, s1, s2, . . . }), u) = {z ∈ H : 〈z, s∗ − s̄〉 ≤ 0}.

Proof Observe that it follows from assumptions 1. and 3. that s∗ − s̄ = α(u− s̄)+w, where
α > 0 and 〈w, u − s̄〉 = 0. Let us also notice that

int Ds̄(S) 
= ∅ and u ∈ fr Ds̄(S). (27)

Assumption 2. gives u ∈ Ds̄(S) \ int Ds̄(S). Fix any z ∈ T (fr Ds̄(S), u) and take sequences
{ui}i∈N in fr Ds̄(S) and {xi}i∈N in int Ds̄(S) such that

∀i ∈ N, ‖ui − xi‖ = dH\int Ds̄(S)(xi) and z = lim
i−→∞ ‖ui − u‖−1(ui − u),

u = lim
i−→∞ ui.

The choice of the sequences is preserved by Proposition 4.5 and Lemma 2.8. It follows from
Proposition 3.1 that either there is a converging subsequence of the sequence {si}i∈N (but
this is impossible) or for each i there is k(i) ∈ N such that (keep in mind that ui ∈ fr Ds̄(S)

is a ”smooth” point)
‖ui − sk(i)‖ = ‖ui − s̄‖.

Because of assumption 2, there is a subsequence {in}n∈N such that k(in) < k(in+1). Put
yn := uin and dn := sk(in). For every n ∈ N we have

‖yn − s̄‖2 = ‖yn − dn‖2 (28)

and

‖yn − dn‖2 = ‖yn − u + u − dn‖2 = ‖yn − u‖2 + 2〈yn − u, u − dn〉 + ‖u − dn‖2

≥ ‖yn − u‖2 + 2〈yn − u, u − dn〉 + ‖u − s̄‖2 = ‖yn − u‖2 + 2〈yn − u, u − dn〉
+ ‖u − yn‖2 + 2〈u − yn, yn − s̄〉 + ‖yn − s̄‖2,
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thus by (28) we get

0 ≥ ‖u − yn‖ + 〈‖u − yn‖−1(yn − u), u − dn − yn + s̄〉.
Passing to the limit by assumption 3. we get

0 ≥ 〈z, s̄ − s∗〉. (29)

In the next step we show that T (fr Ds̄(S), u) = {z ∈ H : 〈z, s∗ − s̄〉 = 0}. First let us
establish the inclusion T (fr Ds̄(S), u) ⊂ {z ∈ H : 〈z, s∗ − s̄〉 = 0}. For this reason let us
suppose the contrary, i.e. there is z̄ ∈ T (fr Ds̄(S), u) such that 〈z̄, s∗ − s̄〉 > 0 (keep in mind
(29)). Of course we have

lim
t↓0

t−1dDs̄(S)(u + t z̄) = 0.

If u− t̄ z̄ ∈ int Ds̄(S) for some t̄ > 0, then there are μ̄ > 0, αi > 0, zi ∈ H such that αi ↓ 0,
zi −→ z̄, and

u − t̄BH[z̄, μ̄] ⊂ int Ds̄(S), u + αizi ∈ Ds̄(S).

It follows from the convexity of Ds̄(S) that

u ∈ u + αi t̄

αi + t̄
(zi − z̄ + BH[0, μ̄]) ⊂ int Ds̄(S),

but this is impossible since (27). Thus there are sequences {ti}i∈N in ]0,∞], {δi}i∈N in
[0,∞] such that that ti ↓ 0 and limi−→∞ δi = δ or β := limi−→∞ tiδi ≤ 1, and

∀i ∈ N, u − ti(z̄ − δi (s̄ − u)) ∈ fr Ds̄(S). (30)

So if δ < ∞, then −z̄ + δ(s̄ − u) ∈ T (fr Ds̄(S), u) and using (29) with −z̄ + δ(s̄ − u)

instead of z we get

0 ≤ 〈s∗ − s̄,−z̄ + δ(s̄ − u)〉 = 〈s∗ − s̄,−z̄〉 + 〈α(u − s̄) + w, δ(s̄ − u)〉
= 〈s∗ − s̄,−z̄〉 + 〈α(u − s̄), δ(s̄ − u)〉 = 〈s∗ − s̄,−z̄〉 − αδ‖u − s̄‖2 < 0,

a contradiction, thus the inclusion T (fr Ds̄(S), u) ⊂ {z ∈ H : 〈z, s∗ − s̄〉 = 0} holds true. If
δ = ∞, then by (30) (1 − β)u + βs̄ ∈ fr Ds̄(S), which is possible only for β = 0. Hence,
by (30) we get s̄ − u ∈ T (fr Ds̄(S), u), but this is impossible.

In order to establish the reverse inclusion {z ∈ H : 〈z, s∗ − s̄〉 = 0} ⊂ T (fr Ds̄(S), u), let
us fix any h ∈ {z ∈ H : 〈z, s∗−s̄〉 = 0}. If h 
∈ T (Ds̄(S), u) then there are sequences {γi}i∈N
in ]0,∞] and {θi}i∈N in [0,∞] such that that limi−→∞ θi = θ or ζ := limi−→∞ γiθi ≤ 1,
and

∀i ∈ N, u + γi(h + θi(s̄ − u)) ∈ fr Ds̄(S). (31)

So if θ < ∞ then h + θ(s̄ − u) ∈ T (fr Ds̄(S), u) and

0 = 〈s∗ − s̄, h + θ(s̄ − u)〉 = 〈s∗ − s̄, h〉 + 〈α(u − s̄) + w, θ(s̄ − u)

= 〈s∗ − s̄, h〉 + 〈α(u − s̄), θ(s̄ − u) = 〈s∗ − s̄, h〉 − αθ‖u − s̄‖2 < 0,

a contradiction, thus h ∈ T (Ds̄(S), u). If θ = ∞ then by (31) we get (1 − ζ )u +
ζ s̄ ∈ fr Ds̄(S), which implies ζ = 0, since s̄ ∈ int Ds̄(S). Again using (31) we get
s̄ − u ∈ T (fr Ds̄(S), u), which is impossible. Similarly we have −h ∈ T (Ds̄(S), u). If
h ∈ int T (Ds̄(S), u) (or −h ∈ int T (Ds̄(S), u)) then there is tw > 0 such that u + twh ∈
int Ds̄(S) (or u − twh ∈ int Ds̄(S), respectively), then u ∈ int Ds̄(S), by the convexity of
Ds̄(S), since −h ∈ T (Ds̄(S), u) (or h ∈ T (Ds̄(S), u), respectively) but this is impossible
since (27). Thus h ∈ fr T (Ds̄(S), u) = T (fr Ds̄(S), u), which establishes the equality

{z ∈ H : 〈z, s∗ − s̄〉 = 0} = T (fr Ds̄(S), u). (32)



On Closures of Preimages of Metric Projection Mappings 603

In order to finish the proof let us observe that for all t > 0, z ∈ T (Ds̄(S), u) and i ∈ N

we have

d2
s̄ (u + tz) ≤ (‖u + tz − si‖ + 2dDs̄(S)(u + tz))2 = ‖u − si‖2 + 2t〈z, u − si〉 + t2‖z‖2

+ 2dDs̄(S)(u + t z̄)(2dDs̄(S)(u + t z̄) + 2‖u + tz − si‖).
Thus assumptions from 1. to 3. ensure that

d2
s̄ (u + tz) ≤ d2

s̄ (u) + 2t〈z, u − s∗〉 + t2‖z‖2

+ 2dDs̄(S)(u + t z̄)(2dDs̄(S)(u + t z̄) + 2 sup
i∈N

‖u + tz − si‖),

consequently

〈z, u − s̄〉 ≤ 〈z, u − s∗〉 (33)

for every z ∈ T (Ds̄(S), u), so we have the inclusion

T (Ds̄(S), u) ⊂ {z ∈ H : 〈z, s∗ − s̄〉 ≤ 0}.
Observe that if 〈z, s∗ − s̄〉 < 0, then, by assumption 3., 〈s̄ − u, s̄ − s∗〉 > 0, so using (32)
we get

z + μ(u − s̄) ∈ fr T (Ds̄(S), u) = T (fr Ds̄(S), u)

for some μ > 0. Since μ(s̄ − u) ∈ T (Ds̄(S), u), the convexity of T (Ds̄(S), u) gives
z ∈ T (Ds̄(S), u). Hence

{z ∈ H : 〈z, s∗ − s̄〉 ≤ 0} ⊂ T (Ds̄(S), u)

and the proof is finished.

8 Some Sufficient Conditions for the Convexity of Chebyshev Sets

The problem of convexity of Chebyshev sets of a Hilbert space is old, we refer to [26, K4
Farthest and Nearest Points in Hilbert Space, Comments by Grünbaum] for some histor-
ical aspects. In this section we exhibit some kinds of subsets in Hilbert space which are
convex whenever they are Chebyshev. First let us recall that due to V. Klee we know that
weakly closed Chebyshev sets are convex, see [24, 25]. Another way to get the convexity
of a Chebyshev set is to assume a differentiability of the distance function outside the set.
Namely, if the distance function to a Chebyshev set is Fréchet differentiable at all points
outside the set then the set is convex too, we refer to [13, 14, 18, 19] for details. Due to L. P.
Vlasov we know also that the continuity of the metric projection (which implies the convex-
ity) can be obtained by checking if the Vlasov condition is satisfied, see (22) and [35, page
56], we refer also to [33, 34]. The Vlasov result is also important in the proof of Theorem
8.10. At this moment it seems that this tool is essential in detecting whether a Chebyshev set
is convex or not. In order to shed light on the meaning of the Vlasov condition let us observe
that if it is violated in some special points then the set cannot be a Chebyshev set, namely

Lemma 8.1 Let H be a real Hilbert space with, S ⊂ H be a nonempty subset. Assume that
u ∈ Ds(S), u 
= s is such that

γ := lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s‖ ≤ 1.
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Then for all sequences {si}i∈N in S, {εi}i∈N in ]0,∞[ such that limi−→∞ εi = 0 and

‖u + εi‖u − s‖−1(u − s) − si‖ <

√
d2
S(u + εi‖u − s‖−1(u − s)) + ε2

i .

we have
lim inf
i−→∞ ‖si − s‖ ≥ √

2(1 − γ )dS(u).

Proof If

lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s‖ = 1

then the statement is obvious. Let us suppose that s ∈ S, u ∈ Ds(S), and

lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s‖ < 1.

Take sequences {εi}i∈N in ]0, ∞[, {si}i∈N in S, {αi}i∈N in [0,∞[, {wi}i∈N in H such that
limi−→∞ εi = 0, si − s = αi(u − s) + wi , 〈wi, u − s〉 = 0, and

d2
S(u + εi‖u − s‖−1(u − s)) ≤ r2 + 2rγ εi + ε2

i

and ‖u + εi‖u − s‖−1(u − s) − si‖2 < d2
S(u + εi‖u − s‖−1(u − s)) + ε2

i

for every i ∈ N (we can assume this without loss of generality, otherwise we omit a finite
number of indices), where r := ‖u − s‖ and of course u + εi‖u − s‖−1(u − s) 
∈ Ds(S),
otherwise limt↓0

dS (u+t (u−s))−dS (u)
t‖u−s‖ = 1. We have

γ = lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s‖
≤ lim

i−→∞
‖u + εi‖u − s‖−1(u − s) − si‖ − dS(u)

εi

≤ γ,

as well as

‖u − si‖2 ≥ r2 =⇒ ‖u − s‖2 + 2〈u − s, s − si〉 + ‖s − si‖2 ≥ r2

=⇒ ‖s − si‖2 ≥ 2〈u − s, si − s〉 =⇒ ‖wi‖2 + α2
i r2 ≥ 2〈u − s, si − s〉

=⇒ ‖wi‖2 ≥ r2(2αi − α2
i ) (34)

and by the last inequality in (34) we obtain

2ε2
i + r2 + 2rγ εi ≥ ε2

i + d2
S(u + εi‖u − s‖−1(u − s)) > ‖u + εi‖u − s‖−1(u − s) − si‖2

= ‖u + εi‖u − s‖−1(u − s) − s + s − si‖2 = ‖u + εi‖u − s‖−1(u − s) − s‖2

+ 2〈u + εi‖u − s‖−1(u − s) − s, s − si〉 + ‖s − si‖2 = (r + εi)
2 − 2rαi(r + εi)

+ α2
i r2 + ‖wi‖2 ≥ (r + εi)

2 − 2rαi(r + εi) + α2
i r

2 + r2(2αi − α2
i )

thus
γ + αi ≥ 1 − εi

2r
,

so using (34) we get

‖si − s‖2 ≥ 2〈u − s, si − s〉 = 2r2αi ≥ 2r2(1 − γ − εi

2r
)

for i ∈ N, which implies the statement.
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Remark 8.2 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, ū 
∈ cl S, s̄ ∈ cl S
be given such that dS(ū) = ‖ū − s̄‖. Then we have

∀ε > 0, lim
t↓0

dS∩BH[s̄,ε](ū + t (ū − s̄)) − dS(ū)

t‖ū − s̄‖ ≥ 1 − ε2

2d2
S(ū)

. (35)

Proof It follows from Lemma 8.1 that

∀ε > 0, ε ≥
√

2

(

1 − lim
t↓0

dS∩BH[s̄,ε](ū + t (ū − s̄)) − dS∩BH[s̄,ε](ū)

t‖ū − s̄‖
)

dS∩BH[s̄,ε](ū),

which implies (35).

Remark 8.3 Let H be a real Hilbert space, S ⊂ H be a nonempty subset, ū 
∈ cl S, s̄ ∈ cl S,
β > 0 be given. If {ui}i∈N is a sequence of elements from H such that

lim
i−→∞

dS(ui) − dS(ū)

‖ui − ū‖ = 1, lim
i−→∞ ui = u and dS(ū) = ‖ū − s̄‖,

where u = ū + β(ū − s̄), then we have

dS(u) = ‖u − s̄‖ and lim
t↓0

dS(ū + t‖ū − s̄‖−1(ū − s̄)) − dS(ū)

t
= 1.

Proof Since limi−→∞ dS (ui )−dS (ū)
‖ui−ū‖ = 1, so

dS(u) = lim
i−→∞ dS(ui) = lim

i−→∞ dS(ū) + ‖ui − ū‖ = dS(ū) + ‖u − ū‖
= ‖ū − s̄‖ + ‖u − ū‖ = ‖u − s̄‖.

It follows from Lemmas 2.6 and 8.1 that limt↓0
dS(ū+t‖ū−s̄‖−1(ū−s̄))−dS (ū)

t
= 1.

Corollary 8.4 Let H be a real Hilbert space, S ⊂ H be a nonempty subset. Then if u ∈
frDs(S), u 
= s is such that there is x ∈ intDs(S) for which dH\intDs(S)(x) = ‖u− x‖ then
the implication

lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s‖ < 1 =⇒ u ∈ Dd(S) for some d ∈ cl S, d 
= s

holds true.

Proof It follows from Lemma 8.1 that there is a sequence {si}i∈N in S such that

lim inf
i−→∞ ‖si − s‖ ≥ √

2(1 − γ )dS(u) and dS(u) = lim
i−→∞ ‖si − u‖.

By Proposition 3.1 and Lemma 2.8 the sequence {si}i∈N has a converging subsequence, say
to d ∈ S, d 
= s, and consequently u ∈ Ds(S) ∩ Dd(S).

Definition 8.5 Let H be a real Hilbert space. We say that a set S ⊂ H is locally approxi-
mately weakly compact if for every u 
∈ S and s̄ ∈ cl S there is δ > 0 such that for every
sequence {si}i∈N in BH[s̄, δ] ∩ S we have the following implication

‖si − u‖ −→ dS(u) and si
weak−→s ∈ H =⇒ s ∈ S. (36)
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Corollary 8.6 Let H be a real Hilbert space, S ⊂ H be a nonempty subset and s̄ ∈ S,
u ∈ Ds̄(S) \ S be given such that for every sequence {si}i∈N elements of S we have

‖si − u‖ −→ dS(u) and si
weak−→s ∈ H =⇒ s ∈ S. (37)

Then the implication

lim
t↓0

dS(u + t (u − s)) − dS(u)

t‖u − s̄‖ < 1 =⇒ u ∈ Ds(S) for some s ∈ S, s 
= s̄

holds true.

Proof It follows from Lemma 8.1 that there is a sequence {si}i∈N elements of S such that

lim inf
i−→∞ ‖si − s̄‖ ≥ √

2(1 − γ )dS(u) and dS(u) = lim
i−→∞ ‖si − u‖.

Since the sequence {si}i∈N is bounded we may suppose that si
weak−→s ∈ S (if not we choose

a proper subsequence). Observe that

‖si − u‖2 = ‖s − u‖2 + 2〈si − s, s − u〉 + ‖si − s‖2

=⇒ dS(u) = lim
i−→∞ ‖si − u‖2 ≥ ‖s − u‖2 + lim sup

i−→∞
‖si − s‖2

=⇒ 0 = lim
i−→∞ ‖si − s‖2.

Thus
‖s − s̄‖ = lim inf

i−→∞ ‖si − s‖ ≥ √
2(1 − γ )dS(u) > 0,

and consequently s 
= s̄, u ∈ Ds̄(S) ∩ Ds(S).

Below a generalization of the V. Klee result is provided in the Hilbert space setting,
we refer to [24, Theorem 4.1, page 301] for the Klee result. Namely we show that every
Chebyshev set, which is locally approximately weakly compact, is convex.

Theorem 8.7 Let H be a real Hilbert space, S ⊂ H be a nonempty closed and locally
approximately weakly compact subset. If S is Chebyshev then it is convex.

Proof Let us fix any ū 
∈ S. There are δ > 0, s̄ ∈ S such that (36) holds true and

dBH[s̄,δ]∩S(ū) = dS(ū) = ‖ū − s̄‖ > 2δ.

I. Claim:

∃μ ∈]0, δ[: ∀u ∈ BH[ū, μ] ∩ cl DBH[s̄,δ]∩S(S), ‖PBH[s̄,δ]∩S(u) − s̄‖ < δ. (38)

In fact, if {ui}i∈N in cl DBH[s,δ]∩S(S) is such that ‖PBH[s,δ]∩S (ui) − s̄‖ ≥ δ, for every i ∈ N

and PBH[s,δ]∩S(ui)
weak−→d ∈ S (keep in mind (36)), ui −→ ū, then

‖PBH[s,δ]∩S (ui) − ū‖2 = ‖d − ū‖2 + 2〈PBH[s,δ]∩S(ui) − d, d − ū〉
+ ‖PBH[s,δ]∩S(ui) − d‖2 =⇒ d2

S(ū) = lim
i−→∞ ‖PBH[s,δ]∩S(ui) − ū‖2

≥ ‖d − ū‖2 + lim sup
i−→∞

‖PBH[s,δ]∩S(ui) − d‖2

=⇒ 0 = lim
i−→∞ ‖PBH[s,δ]∩S)(ui) − d‖2,
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so ‖d − s̄‖ ≥ δ, ‖d − ū‖ = ‖s̄ − ū‖, a contradiction (keep in mind that S is a Chebyshev
set). Thus Claim I holds true, and we can choose μ̄ ∈]0, δ[ satisfying (38). Let us observe
that for every u ∈ BH[ū, μ̄] ∩ DBH[s̄,δ]∩S(S) (19) is satisfied with PBH[s̄,δ]∩S(u) instead of
s̄ and BH[s̄, δ] ∩ S instead of S′ and properly chosen ε > 0 (keep in mind that Claim I is
valid), so it follows from Lemma 4.8 that u ∈ cl int DBH[s̄,δ]∩S(S) for every u ∈ BH[ū, μ̄] ∩
DBH[s̄,δ]∩S(S).

Claim II:

lim
t↓0

dS(ū + t (ū − s̄)) − dS(ū)

t‖ū − s̄‖ = 1.

Case I:

ū ∈ int DBH[s̄,δ]∩S(S).

In this case ū + t (ū− s̄) ∈ int DBH[s̄,δ]∩S(S) for t > 0 small enough, so dS(ū+ t (ū − s̄)) =
dBH[s̄,δ]∩S(ū + t (ū − s̄)) for t > 0 small enough. It follows form Corollary 8.6 that

lim
t↓0

dBH[s̄,δ]∩S(ū + t (ū − s̄)) − dBH[s̄,δ]∩S(ū)

t‖ū − s̄‖ = 1,

so Claim II holds true in this case.
Case II:

ū 
∈ int DBH[s̄,δ]∩S(S).

It follows from Proposition 4.5 and Claim I that there are u0 ∈ cl DBH[s̄,δ]∩S(S) \
int DBH[s̄,δ]∩S(S) is such that ‖PBH[s̄,δ]∩S(u0) − s̄‖ < δ and x0 ∈ int DBH[s̄,δ]∩S(S) such
that dH\int DBH[s̄,δ]∩S(S)(x0) = ‖u0 − x0‖. Thus we have

PS(u0) ∩
(
BH[s̄, δ] ∩ S

)
= {PBH[s̄,δ]∩S(u0)}, BH[x0, ‖u0 − x0‖] ⊂ cl DBH[s̄,δ]∩S(S),

lim
t−→0

|t |−1 sup
z∈SH[0,1], 〈z,u0−x0〉=0

dDBH[s̄,δ]∩S(S)(u0 + tz) = 0. (39)

Since u0 
∈ int DBH[s̄,δ]∩S(S), so there are ui 
∈ DBH[s̄,δ]∩S(S) such that ui −→ u. For every
i ∈ N take di ∈ S \ BH[s̄, δ] ∩ S such that ‖ui − di‖ −→ ‖u0 − PS(u0))‖. It follows from
Proposition 3.1 that there is subsequence {dik }k∈N ⊂ {di}i∈N such that dik −→ d∗ ∈ S,
‖u0 −d∗‖ = ‖u0 −PS(u0)‖ and ‖s̄ −d∗‖ ≥ δ, hence d∗ 
= PS(u0) since ‖s̄ −PS(u0)‖ < δ,
and u0 ∈ Dd∗(S) ∩ DPS(u0)(S), thus S is not Chebyshev. This contradiction excludes Case
II and Claim II holds true, which implies that (22) is satisfied, so by The Vlasov result we
get the convexity of S.

It is obvious that (36) is satisfied whenever S is weakly closed. Hence the Klee result
is an immediate consequence of Theorem 8.7. Because of this, it is of interest which sets
are locally approximately weakly compact. Below we indicate some of them in the Hilbert
space setting, of course the interested reader can provide examples of such sets in a more
general setting. First let us note that if S = ⋃

i∈N Si , where Si are weakly closed and S \ Si

is closed for every i ∈ N then (36) is satisfied. In fact, let us fix i ∈ N and s ∈ Si . There
is εi > 0 such that BH[s, εi] ∩ S = BH[s, εi] ∩ Si , hence (36) holds true. It is also easy to
notice that if F : H −→ H is a one-to-one operator weakly continuous and F(S) is locally
weakly closed subset, then S is locally weakly closed too, so it is locally approximately
weakly compact.
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Remark 8.8 Let H be a real Hilbert space, S = {s1, s2, . . . } ⊂ H be a closed subset such

that si
weak−→s∗ ∈ H then

∀s ∈ S, ∃δ > 0 : BH[s, δ] ∩ S = cl weak(BH[s, δ] ∩ S),

consequently (36) is satisfied.

Proof If s∗ ∈ S, then for all y 
∈ S we have

lim
i−→∞〈y − s∗, y − si〉 = ‖y − s∗‖2 > 0,

so y is not in the weak closure of S, hence S is weakly closed and we are done. If s∗ 
∈ S

then
∀s ∈ S, ∃δ > 0 : s∗ 
∈ BH[s, δ],

so BH[s, δ] ∩ S = cl weak(BH[s, δ] ∩ S), since if s ′ ∈ cl weak
BH[s, δ] ∩ S \ S, then s ′ = s∗

but ‖s ′ − s‖ < δ and ‖s∗ − s‖ ≥ δ, a contradiction.

A direct consequence of Lemma 2.6 is

Remark 8.9 Let H be a real Hilbert space, S ⊂ H be a nonempty closed subset such that

∀u 
∈ S, ∀s̄ ∈ PS(u),∃δ > 0 : lim
t↓0

dS∩BH[s̄,δ](u + t (u − s̄)) − dS(u)

t‖u − s̄‖ = 1 (40)

then
∀u 
∈ S, ∀s̄ ∈ PS(u),∃δ > 0 : ‖s̄i − u‖ −→ dS(u) =⇒ s ∈ S,

whenever {s̄i}i∈N is in BH[s̄, δ] ∩ S, and consequently (36) is satisfied.

Below it is stated that if S = ⋃
i∈N Si , where Si are closed convex nonempty subsets,

then S can not be Chebyshev set, whenever it is not convex.

Theorem 8.10 Let H be a real Hilbert space, S be a closed nonempty subset such that
H\S ⊂ ⋃

i∈N DSi
(S), where Si ⊂ S are closed convex nonempty subsets. If S is not convex,

then there are d1, d2 ∈ S, d1 
= d2 such that Dd1 (S) ∩ Dd2 (S) ∩ (H \ S) 
= ∅.

Proof Let us suppose that for every d1, d2 ∈ S, d1 
= d2 we have Dd1 (S) ∩ Dd2(S) ∩
(H \ S) = ∅, otherwise we are done. By by the Baire Category Theorem, see [37, Baire’s
Category Argument, The Baire-Hausdorff Theorem, page 11] there is i1 ∈ N such that

int DSi1
(S) ∩ (H \ S) 
= ∅.

Observe that
(

cl DSi1
(S) \ int DSi1

(S)
)

∩ (H \ S) = ∅. If not then for every u ∈
cl int DSi1

(S) ∩ (H \ S) such that ]PSi1
(u), u[⊂ int DSi1

(S) and BH[x, ‖u − x‖] ⊂ DSi1
(S)

for some x ∈ int DSi1
(S), it follows Corollary 5.1 that there is d ∈ S \ {PSi1

(u)} such that

u ∈ Dd(S), which contradicts our supposition. Hence
(

cl DSi1
(S) \ int DSi1

(S)
)
∩(H\S) =

∅ and consequently

∀x ′ ∈ int DSi1
(S) \ Si1 ,

⋃

t∈]0,∞[
B[PSi1

(x ′) + t (x ′ − PSi1
(x ′)), t‖x ′ − PSi1

(x ′)‖]

∩ S = {PSi1
(x ′)}.
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It is easy to observe that if

int
(
H \ (int DSi1

(S) ∪ S)
)

= ∅,

then (
H \ S

)
⊂ DSi1

(S),

so dS(u) = dSi1
(u) for every u ∈ H\S. Hence it follows from Theorem 6.1 that S is convex,

a contradiction. Suppose that

int
(
H \ (int DSi1

(S) ∪ S)
)


= ∅.

Again by the Baire Theorem choose i2 ∈ N \ {i1} such that

int DSi2
(S) ∩

(
H \ (int DSi1

(S) ∪ S)
)


= ∅.

By a similar reasoning as above we get

∀x ′ ∈ int DSi2
(S) \ Si2 ,

⋃

t∈]0,∞[
B[PSi2

(x ′) + t (x ′ − PSi2
(x ′)), t‖x ′ − PSi2

(x ′)‖]

∩ S = {PSi2
(x ′)}.

If
int

(
H \ (int DSi1

(S) ∪ int DSi2
(S) ∪ S)

)
= ∅,

then (
H \ S

)
⊂ DSi1

(S) ∪ DSi2
(S).

Hence it follows from Theorem 6.1 that S is convex, a contradiction.
By the Kuratowski-Zorn Lemma we find I ⊂ N such that j1 
= j2, whenever j1, j2 ∈ I ;

and int DSj
(S) ∩ (H \ S) 
= ∅ and

∀x ′ ∈ int DSj
(S)\Sj ,

⋃

t∈]0,∞[
B[Psj (x

′)+ t (x ′ −Psj (x
′)), t‖x ′ −Psj (x

′)‖]∩S = {Psj (x
′)}

for every j ∈ N, and int
(
H \

(
S ∪ ⋃

s∈I int DSi
(S)

))
= ∅. It follows from Corollary 6.2

that (22) holds true for all x 
∈ S, and by the L.P. Vlasov results the set S is convex, but this
is impossible.

Theorem 8.10 when compared with [2, Theorem 2.19] has the following differences:
first, it is given in a Hilbert space, while [2, Theorem2.19] is given in a more general space,
namely in the smooth Efimov-Stechkin space; second, it is not assumed that its boundary
is included in a countable union of hyperplanes, as it was done in [2, Theorem]. So, it is
natural to expect a result combining advantages of both theorems, but this is not the aim of
this paper.

Let us recall the following problem raised by K. Goebel and R. Schöneberg: Does there
exist a convex body Y ⊂ H such that the boundary of Y is a Chebyshev set with respect to its
convex closure, in other words is S := H \ intY a Chebyshev set for some convex bounded
set Y ⊂ H having nonempty interior, see [17, Problem 1, page 466]? A. P. Bosznay gave the
answer in the negative the question, whenever the boundary of Y is included in a countable
union of hyperplanes, see [4, Theorem, page 143], see also [2, Theorem 2.19], where a
generalization of this result was given and several results on the convexity of Chebyshev
sets can be also found. In view of Corollary 8.11 it is enough to know that a part of the
boundary is flat in order to answer the question in the negative, the details are presented
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in the Corollaries below. First, is shown that condition (14) can be used to have S in some
halfspace.

Corollary 8.11 Let H be a real Hilbert space, S ⊂ H be a nonempty closed subset, s̄ ∈ S,
u 
∈ S, ε > 0 be given such that dS(u) = ‖u − s̄‖ and BH[s̄, ε] ∩ {h ∈ H | 〈u − s̄, h − s̄〉 =
0} ⊂ S, and

∀s ′ ∈ BH[s̄, ε] ∩ S, 〈u − s̄, s ′ − s̄〉 ≤ 0 and PS(DBH[s̄,ε]∩{h∈H | 〈u−s̄,h−s̄〉=0}(S))

⊂ BH[s̄, ε] ∩ {h ∈ H | 〈u − s̄, h − s̄〉 = 0}. (41)

Then {s̄} = PS(u) ∩ BH[s̄, ε] ∩ S and

‖si − u‖ −→ dS(u) =⇒ si −→ s̄, (42)

for every sequence {si}i∈N in S, and

∀s ∈ S, 〈u − s̄, s − s̄〉 ≤ 0. (43)

Proof Put S′ := BH[s̄, ε] ∩ {h ∈ H | 〈u − s̄, h − s̄〉 = 0}. It follows from Corollary 4.7 that
u ∈ cl int DBH[s̄,ε]∩S(S). If u ∈ int DS′(S) then (42) is a consequence of Lemma 2.4. Let us
consider the case u ∈ cl int DS′(S) \ int DS′(S). It follows from Corollary 5.5 that

u ∈ (H \ S) ∩ (
cl int DS′(S) \ (int DS′(S) ∪ S′))

) ⊂ cl

⎛

⎝
⋃

d∈cl (S\S′)
Dd(S) ∩ DS′ (S)

⎞

⎠ .

However, the inclusion above is not valid, since it contradicts to (41). Indeed, if ui −→ u,
di ∈ cl (S \ S′), ui ∈ Ddi

(S) ∩ DS′(S) for every i ∈ N, then by the inclusion in (41) we
get di ∈ S′ for every i ∈ N. Observe that di ∈ cl (S \ S′) and di ∈ S′ imply ‖di − s̄‖ = ε,
which contradicts the continuity of PS′ , that is we should have had di = PS′(ui) −→ s̄

since ui −→ u. Thus u + t (u − s̄) ∈ int DS′ (S) for every t > 0, otherwise we repeat the
reasoning above to get a contradiction with ut̄ := u + t̄ (u − s̄), where t̄ > 0 is such that
u + t̄ (u− s̄) ∈ cl int DS′ (S) \ int DS′(S). The condition u + t (u − s̄) ∈ int DS′ (S) for every
t > 0, implies (43).

Corollary 8.12 Let H be a real Hilbert space, U ⊂ H be an open nonempty and convex
subset, and S := H \ U be a nonempty Chebyshev subset such that for some s̄ ∈ S, u ∈ U ,
ε > 0 we have dS(u) = ‖u − s̄‖ and BH[s̄, ε] ∩ {h ∈ H | 〈u − s̄, h − s̄〉 = 0} ⊂ S, and

∀s ′ ∈ BH[s̄, ε] ∩ S, 〈u − s̄, s ′ − s̄〉 ≤ 0.

Then U = {h ∈ H | 〈u − s̄, h − s̄〉 > 0}.

Proof Since S is a Chebyshev set we have

PS(DBH[s̄,ε]∩{h∈H | 〈u−s̄,h−s̄〉=0}(S)) ⊂ BH[s̄, ε] ∩ {h ∈ H | 〈u − s̄, h − s̄〉 = 0},
hence by Corollary 8.11 we get

∀s ∈ S, 〈u − s̄, s − s̄〉 ≤ 0, (44)

which implies the inclusion {h ∈ H | 〈u − s̄, h− s̄〉 > 0} ⊂ U . The convexity of U and (44)
ensure the reverse inclusion U ⊂ {h ∈ H | 〈u − s̄, h − s̄〉 > 0}.
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http://www.math.washington.edu/ (1960/2010)
27. Lau, K.-S.: Almost Chebyshev Subspaces. J. Approx. Theory 21, 319–327 (1977)
28. Lau, K.-S.: On almost Chebyshev subsets in reflexive Banach spaces. Indiana Univ. Math. J. 27, 791–795

(1978)
29. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Amer.

Math. Soc. 352, 5231–5249 (2000)

http://www.math.washington.edu/


612 D. Zagrodny

30. Ricceri, B.: A conjecture implying the existence of non-convex Chebyshev sets in infinite-dimensional
Hilbert spaces. Le Matematiche LXV, 193–199 (2010). – Fasc. II

31. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)
32. Westphal, U., Frerking, J.: On a property of metric projections onto closed subsets of Hilbert spaces.

Proc. Amer. Math. Soc. 105, 644–651 (1989)
33. Vlasov, L.P.: Chebyshev sets and approximatively convex sets. Math. Notes 2, 600–605 (1967)
34. Vlasov, L.P.: Almost convexity and Chebyshev sets. Math. Notes 8, 776–779 (1970)
35. Vlasov, L.P.: Approximative properties of sets in normed linear spaces. Russian Math. Surveys 28(174),

3–66 (1973)
36. Wang, X.: On Chebyshev functions and Klee functions. J. Math. Anal. Appl. 368, 293–310 (2010)
37. Yosida, K. Functional Analysis, 6th Edn. Springer, Berlin (1980)
38. Zhivkov, N.V.: Metric projections and antiprojections in strictly convex normed spaces. C.R. Acad.

Bulgare Sci. 31(4), 369–372 (1978)


	On Closures of Preimages of Metric Projection Mappings
	Abstract
	Introduction
	Preliminaries
	Points from the Set of Points of Approximate Compactness
	Density Properties
	Sets for which there are Points at which the Metric Projection is not a Singleton
	The Vlasov Condition
	Tangent Cones to Preimages of the Metric Projection on a Set of Isolated Points
	Some Sufficient Conditions for the Convexity of Chebyshev Sets
	Open Access
	References


