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Abstract
Gait recognition has become an important biometric feature for human identifica-
tion, in addition to data such as face, iris, and fingerprint. The goal of human gait 
recognition is to identify people based on walking images. Artificial intelligence 
technologies have revolutionized the field of gait recognition by enabling computers 
to automatically learn and extract intricate patterns. These techniques examine video 
recordings to determine key features in an individual’s gait, and these features are 
used to identify the person. This paper examines the existing appearance-based gait 
recognition methods that have been published in recent years. The primary objective 
of this paper is to provide an informative survey of the state-of-the-art in appear-
ance-based gait recognition techniques, highlighting their applications, strengths, 
and limitations. Through our analysis, we aim to highlight the significant advance 
that has been made in this field, draw attention to the challenges that have been 
faced, and identify areas of prospective future research and advances in technology. 
Furthermore, we comprehensively examine common datasets used in gait recogni-
tion research. By analyzing the latest developments in appearance-based gait recog-
nition, our study aims to be a helpful resource for researchers, providing an exten-
sive overview of current methods and guiding future attempts in this dynamic field.
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1  Introduction

Gait recognition is a sort of biometric technology that identifies people based on 
their distinct walking patterns [1]. It evaluates how a person walks by capturing 
and quantifying numerous gait variables such as step width, stride length and foot 
angle (the angle between the foot and the horizontal) during heel strike and toe-off 
(pre-swing). These metrics are used to derive a gait signature for each person that 

 *	 Pınar Güner Şahan 
	 pinar.guner@kocaeli.edu.tr

1	 Department of Computer Engineering, Kocaeli University, Kocaeli, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06172-z&domain=pdf


	 P. Güner Şahan et al.

1 3

can be compared to a database of recognized signatures to help identify them [2]. 
The most beneficial advantage of gait as a biometric feature is that it can be used 
for identifying people at a distance. Furthermore, it does not necessitate the user’s 
participation unlike other features [3]. These advantages make gait useful for video 
surveillance-based applications. Gait recognition has potential uses in security and 
surveillance, including the identification of people in crowded public places and the 
tracking of criminal suspects [4]. It could also have medical uses, such seeing varia-
tions in gait patterns that might point to illnesses or injuries [5]. Among the above-
mentioned advantages, gait recognition performance can be negatively affected by 
certain factors related to human pose analysis. Human pose analysis in computer 
vision faces several challenges, including occlusions, changing lighting conditions, 
and low image quality.

The following steps are often included in a gait recognition system [6]: (1) Data 
collection. To recognize an individual’s gait, it is necessary to collect data about 
their gait patterns. Many techniques, including video recordings, pressure sensors, 
floor sensors and motion capture systems, can be used to obtain this data. (2) Fea-
ture Extraction. To identify an individual’s gait, it is necessary to extract features 
that are unique to their walking pattern, such as stride length, walking speed and 
foot angle. (3) Dimension Reduction. In general, features extracted from gait data 
cannot be used for classification directly because in the feature representation step, 
the dimensionality of features (the number of features) collected from raw data is 
higher than the number of samples in the training data. Consequently, it is preferred 
to use a dimension reduction approach prior to classification. (4) Classification. To 
identify the individual based on their gait features extracted in the previous step, 
classification is performed using a machine learning or a deep learning algorithm.

Gait recognition problem approaches in computer vision are generally clas-
sified into two categories: model-based and appearance-based (model-free) [7]. 
Model-based gait recognition approaches utilize mathematical models to represent 
the walking motion of a person. In this approach, the kinematics of joint angles are 
modeled when people walk. Appearance-based gait recognition approaches extract 
features from the visual appearance of a person’s walking pattern, such as body 
shape and limb movements. In this approach, silhouettes are analyzed from a gait 
sequence that embed both appearance and movement information, ensuring that the 
analysis encompasses the entire body structure, including key joints, without isolat-
ing them [8].

Appearance-based methods do not require extra sensors or subject consent 
because they depend on visual data obtained from security cameras. This makes 
them useful for real-world applications. Although model-based methods have 
benefits like providing detailed motion information and explicitly modeling skel-
etal systems, they also have disadvantages such as resource-intensive processing 
requirements or inaccurate key point estimation. Consequently, when compared to 
appearance-based approaches, they exhibit lower performance in recognition tasks 
[9–11]. Such reasons have led to the widespread research and establishment of 
appearance-based methods in the field. They have a solid foundation in the exist-
ing literature, with many methods and datasets available. Hence, the purpose of this 
paper is to survey appearance-based gait recognition methods that rely mostly on 
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deep learning. Although there are many existing surveys [6, 8, 12–15] conducted on 
gait recognition, it is the first survey paper based only on recent appearance-based 
gait recognition studies as far as we know. By focusing entirely on appearance-based 
methods, the paper gives a full and extensive evaluation of many approaches used 
in gait recognition. This provides for a better understanding of the specific strate-
gies that rely only on visual clues from gait patterns. Detailed information about the 
existing surveys and the number of references and citations from Web of Science are 
shown in Table 1.

The paper aims to provide an extensive overview of the appearance-based gait 
recognition methods. The paper summarizes the important methods and models 
used in this area, allowing readers to get a deep understanding of some of the most 
recent advances. The main contributions of this survey are as follows:

•	 The survey provides a comprehensive and systematic examination of appear-
ance-based gait recognition methods. It analyzes the current literature and pro-
vides a comprehensive assessment of the state-of-the-art in this field of gait rec-
ognition.

•	 The survey evaluates the performance of gait recognition techniques. This evalu-
ation provides useful insights for researchers in determining usability of appear-
ance-based gait recognition methods.

•	 The survey provides a thorough examination of various publicly available data-
sets used in the literature.

•	 The survey highlights challenges in gait recognition. It suggests researchers in 
new and significant directions within this domain by suggesting prospective 
options for future study.

We employed a review methodology in parallel with these purposes. We first 
identified potential papers using search engines (e.g., Google Scholar [16]) and 
online archives (e.g., IEEE Xplore [17], ScienceDirect [18]). Our search string was 
a combination of different keywords such as “gait recognition”, “deep learning”, 
“human identification”, and “gait dataset”. We have included search results after 
2018 because we want to focus on the studies of recent years. We then excluded the 
papers that use model-based gait recognition approaches, do not provide a unique 
solution, use private datasets for performance assessment, or do not evaluate their 
performance in comparison to the state-of-the-art. Finally, we identified a series of 
papers that have applied deep learning to gait recognition.

The reminder of this survey is organized as follows. Section  2 introduces the 
conceptual framework of gait recognition. Gait datasets and evaluation criteria are 
shown in Sect. 3. Section 4 reviews and compares appearance-based gait recogni-
tion approaches published in recent years. Section 5 discusses some challenges and 
future trends in gait recognition. Section 6 concludes and ends the paper.
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2 � Gait recognition

In order to help demonstrate a general structure for understanding gait recognition 
approaches, which will be discussed in the following sections, we present the con-
ceptual framework of gait recognition (Fig. 1). It includes obtaining different types 
of input data, feature extraction and representation, dimension reduction and classi-
fication. Deep pipelines for gait recognition require fewer steps than traditional pipe-
lines, because the deep learning model can perform feature extraction and classifica-
tion in a single step (Fig. 2). This can improve efficiency and reduce the likelihood 
of errors introduced by human-defined feature extraction and selection techniques. 
Deep pipelines, on the other hand, may need additional data and computational 
resources for training and evaluation, as well as deep learning skills. In this sec-
tion, we initially described data collection processes conducted independently of the 
methodologies. Subsequently, we provided an overview of the general framework 
for gait recognition in both machine learning and deep learning, examining in detail 
the deep learning techniques employed in the methods examined within this article.

Fig. 1   Conceptual framework of traditional gait recognition

Fig. 2   Deep gait recognition pipeline
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2.1 � Data collection

The first stage in the gait recognition framework involves collecting data to iden-
tify individual’s gait patterns. Gait recognition can be performed using various input 
data such as RGB image, silhouette, GEI (Gait Energy Image), optical flow image, 
body skeleton and human mesh acquired by various sensors. In addition, movement 
data and pressure data from some wearable sensors can also be used for gait recog-
nition. However, since the focus of this study is on vision-based gait recognition, the 
gait datasets mentioned in this study do not include them. Figure 3 contains exam-
ples of different input data types obtained from different gait dataset [19–22].

2.2 � Machine learning techniques

2.2.1 � Feature extraction and representation

This is the process of extracting features from the data that are most useful for iden-
tifying an individual’s gait pattern. Feature extraction requires the ability to describe 
the distinctive characteristics of individuals and be robust to changing conditions. 
There are two main approaches for gait recognition as already mentioned: (1) 
model-based, (2) appearance-based. The key distinction between the two approaches 

Fig. 3   Examples of input data types for gait recognition. a RGB image. b Silhouette. c GEI. d Optical 
flow. e 2D Skeleton. f 3D Skeleton. g 3D Mesh
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is in how the features are extracted and the type of data used for recognition. Model-
based gait recognition extracts features from a physical model of the human body 
that predicts joint angles and trajectories during walking. In appearance-based gait 
recognition, features are extracted by considering the entire movement pattern of 
the walking person’s body. It handles occlusion better and contains more invariant 
features [14]. Feature representation for gait recognition transforming raw gait data 
into a set of features that can be utilized for classification. Appearance-based feature 
representation methods are statistical methods and spatiotemporal methods. Statisti-
cal features include shape (e.g., how high the leg is raised during the walking cycle), 
motion (e.g., speed) and texture (e.g., variations of clothing and carrying condi-
tions). The spatiotemporal methods gather the motion characteristics and maintain 
both the spatial aspects (such as shape, distance, and direction) and the temporal 
aspects (like duration and occurrence time) of gait video sequences [12]. Human 
movement is usually represented through both spatial and temporal information.

2.2.2 � Dimensionality reduction

The major goal of dimensionality reduction is to reduce the dimensionality of the 
feature vector that represents the gait patterns. Typically, the feature vector is high-
dimensional and comprises a huge number of variables. This makes gait recognition 
methods computationally costly and time-consuming to compute. Dimensionality 
reduction aims to address this issue by reducing the dimensionality of the feature 
vector, while preserving essential information. There are different techniques for 
dimensionality reduction, such as principal component analysis (PCA) and linear 
discriminant analysis (LDA). These techniques attempt to transform the high-dimen-
sional feature vector into a lower-dimensional space that still captures the important 
information. The classification algorithm is then fed the resulting lower-dimensional 
feature vector.

•	 PCA [23] transforms the feature vector into a set of orthogonal principal com-
ponents, each of which is a linear combination of the original variables. Most of 
the information is included in the first few primary components, which are kept, 
while the other components are disposed.

•	 LDA [24] seeks to maximize the distance between the means of different classes, 
while minimizing the variance within each class. It aims to project the feature 
vector into a lower-dimensional space with the goal of maximizing the separa-
tion between the different classes.

2.2.3 � Classification

In gait recognition, the classification step refers to the process of giving a label or 
class to a gait sequence. This stage is critical because it allows the system to rec-
ognize and distinguish between different individuals based on their gait patterns. 
The features selected in the previous steps are used to create a feature vector rep-
resenting the gait sequence. In this stage, the feature vector is input to a classifica-
tion algorithm that assigns the gait sequence to a specific class or label. During the 
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classification process, it is learned to recognize patterns in feature vectors associated 
with certain individuals, and the gait sequence is assigned to the appropriate label.

In this section, it is useful to mention the two modes of biometrics, identifica-
tion and verification. Person identification involves recognizing an individual from 
a group of known persons, which can be challenging due to the need to distinguish 
between highly similar gait patterns. Person verification compares a gait pattern to a 
single individual’s known patterns to confirm or deny their identity. It is less useful 
in applications, where the identity of the individual is unknown or needs to be deter-
mined from a large number of possibilities.

In traditional machine learning approaches, the classification stage consists of 
applying an algorithm that can distinguish between the different classes (i.e., indi-
viduals) based on the features extracted from their gait. Because the process of 
extracting features is separated from the classification step. The similarity between 
features is measured by a vector similarity metric such as Euclidean distance, Cosine 
similarity, Manhattan distance or dynamic time warping (DTW). Euclidean distance 
measures the straight-line distance between two points in a multi-dimensional space. 
Instead of measuring distance, cosine similarity measures the cosine of the angle 
between two vectors. Manhattan distance sums the absolute differences of their car-
tesian coordinates. DTW defines an optimum path that can transform one signal into 
another [25, 26]. Siamese networks can also be used in gait recognition applications 
to learn how to differentiate between inputs, effectively learning a similarity metric. 
The siamese network can orient the similarity metric to be small for pairs of gait 
from the same individual and large for pairs from different people [27].

Finally, a label is assigned to each image by a classifier. The algorithm used 
depends on the type of feature set and the specific requirements of the recognition 
task (e.g. complexity of the data). Common algorithms used in this context are given 
below.

2.2.3.1  Support vector machine (SVM)  Support vector machine (SVM) is a popular 
supervised machine learning algorithm used for the classification of gait patterns 
[28]. The basic idea behind SVM in gait recognition is to find a hyperplane that 
separates the data points representing the gait patterns of different individuals. The 
hyperplane is selected in such a way as to maximize the margin, which is the distance 
between the hyperplane and the closest data points from each class. After the SVM 
model has been trained, it can be used to classify new gait patterns using the features 
that were extracted. Depending on which side of the hyperplane the new data point 
falls, the SVM model will predict the class of the new gait pattern. In this point, it 
is important to note that SVM is basically a binary classification algorithm, aiming 
to distinguish between two classes by finding the optimal hyperplane that separates 
them in the feature space. However, gait recognition often involves identifying indi-
viduals from a set of multiple classes, requiring a multiclass classification technique. 
The one-vs-the-rest strategy is a popular way for adapting SVM for multiclass classi-
fication. This involves creating multiple, dedicated SVMs, each trained to distinguish 
between one of the classes and the sum of all other classes [29]. The authors cover the 
use of SVMs for automatic recognition of age-related gait changes in [30]. In [31], a 
gait recognition system is presented based on SVMs and acceleration data.
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2.2.3.2  Hidden markov model (HMM)  Hidden markov model (HMM) can be used to 
represent the temporal properties of gait patterns in gait recognition [32]. The main 
concept is to describe the sequence of gait features as several states, each represent-
ing a different gait pattern. The transition probabilities between the states show the 
possibility of transitioning gait patterns. Given the current condition, the observation 
probabilities describe the likelihood of observing a specific gait feature. A training set 
of gait data is used to estimate the model parameters for an HMM. The model param-
eters include the transition and observation probability. The authors in [33] describe 
a potential approach for identifying people by their gait that involves modeling the 
dynamic silhouettes of a human body using a HMM. The research in [34] suggests 
utilizing a HMM  to assess gait phases to examine a patient’s gait for appropriate 
rehabilitation treatment.

2.3 � Deep learning techniques

The key concept of the gait recognition using deep learning is automatically learn-
ing to identify individuals based on their unique gait patterns directly from the data. 
This ability brings the advantages of making them robust to variations in input data 
for the gait recognition task. The layered architecture of deep learning facilitates the 
incremental extraction of complex features from unprocessed data, eliminating the 
necessity for manually identifying important features, a process often demanding 
specialized expertise. This becomes especially significant in the context of analyz-
ing gait patterns, where the automated identification of distinguishing features is 
crucial [35]. The automatic feature extraction concept in deep learning can include 
extracting and learning spatial features from individual frames and temporal features 
across sequences of frames.

When we look at the dimensionality reduction process in the context of deep 
learning, it is crucial to simplify models, increase their efficiency and reduce overfit-
ting. Some prominent dimensionality reduction techniques used in deep learning are 
described below.

•	 Pooling is often applied to a set of values arranged in a grid-like structure, such 
as the feature maps produced by a convolutional neural network (CNN) in com-
puter vision applications [36]. In order to produce a single output value, the 
pooling process divides the grid into non-overlapping or overlapping sub-regions 
and applies an aggregate function to the values within each subregion. The infor-
mation stored within the subregion is then summarized using this output value. 
Maximum pooling and average pooling are the two most often used pooling 
functions. Max pooling includes taking the max value within each subregion, 
and average pooling involves taking the average value [36].

•	 Autoencoders (AEs) are neural networks designed to learn efficient repre-
sentations (encodings) of the input data, typically for the purpose of dimen-
sionality reduction. An autoencoder is composed of an encoder that reduces 
the input dimensions and a decoder that reconstructs the input data from the 
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reduced representation. The middle layer, also known as the code layer, has 
a lower dimensionality and acts as a reduced representation of the input data 
[37].

•	 Variational autoencoders (VAEs) are generative models that learn a latent 
variable model for the input data. They are similar to autoencoders but are 
intended to produce a probabilistic representation of the input data. Compared 
to the input space, the latent space learned by VAEs is generally significantly 
lower dimensionality [38].

Deep learning models offer an end-to-end learning approach, which means 
that the raw input is fed into the deep learning model, which then outputs the 
classification result directly. This smooth process optimizes the pipeline, while 
improving the model’s ability to learn complex patterns. In the classification 
stage, the deep learning model uses the learned features to classify the gait data 
into predetermined classes, with each class representing an individual. This could 
be done through an activation function (e.g., softmax) in the output layer. The 
model is trained using a labeled dataset, where each gait sequence is associated 
with a specific individual. The training involves adjusting the model’s weights via 
back propagation based on the difference between the predicted and actual labels, 
minimizing a loss function to improve classification accuracy over time.

2.3.1 � Convolutional neural networks (CNN)

Convolutional neural network (CNN) [39] is a type of neural network that is com-
monly used in gait recognition. A CNN consists of many layers of interconnected 
nodes, such as convolutional layers, pooling layers, and fully connected layers. 
The convolutional layers are responsible for detecting and extracting features 
from the input data. The pooling layers then decimate the feature maps created by 
the convolutional layers, reducing the dimensionality of the data, while preserv-
ing the most critical information. Eventually, the fully connected layers classify 
the output from the previous layers into different gait patterns or individuals. A 
CNN can be trained to recognize the unique gait patterns of individuals using a 
huge dataset of labeled walking sequences. The network learns to extract relevant 
features from the input data and utilize them to make accurate predictions about 
the identity of the individual during training. Because CNN models are highly 
effective at learning spatial features, they are frequently trained using image data 
for gait recognition tasks. In these tasks, the CNN architecture allows the mod-
els to maintain the spatial or positional connections among the input data points. 
Besides that, CNN can be adapted to extract temporal features effectively by 
employing kernels that move in one direction across the temporal dimension of 
the data. This approach is typically realized through the use of one-dimensional 
(1D) convolutional neural networks (1D-CNNs), where the convolution operation 
is applied along the time axis of the input data [40].

Most of the studies analyzed in this survey (please check Table  3) used these 
properties of Convolutional Neural Networks (CNNs) for gait recognition.
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2.3.2 � Recurrent neural networks (RNN)

Recurrent neural networks (RNNs) perform well at processing sequential data, mak-
ing them an ideal tool for gait recognition tasks that require evaluating the tempo-
ral dynamics of human walking patterns. RNNs are designed to recognize patterns 
in data sequences by storing previous inputs in their internal state (hidden layers), 
which is updated when new data points are processed. An RNN layer typically com-
prises multiple neurons that exhibit recurrent behavior, enabling the layer to accept 
a sequence of inputs and, in turn, output a sequence [41]. Their ability to learn from 
the sequence and duration of movement patterns allows for a detailed classification 
of distinct gait patterns.

However, traditional RNNs often struggle with the vanishing gradient problem 
when learning long sequences, making it hard to capture very long-term depend-
encies [42]. Solutions like long short-term memory (LSTM) [43] and gated recur-
rent units (GRU) [44] have been developed to address this issue. LSTM is a form 
of RNN designed to capture long-term dependencies in sequence data by using a 
set of gates to control the flow of information [43]. GRUs are a simplified version 
of LSTMs that try to capture dependencies in sequential data but use a more com-
pact design that merges the forget and input gates into a single update gate, reducing 
complexity.

2.3.3 � Generative adversarial networks (GAN)

Generative adversarial networks (GANs), offer novel approaches to gait recognition 
among other applications and can be used to generate synthetic gait data, improve 
feature extraction, and enhance the robustness of gait recognition approaches under 
various conditions. A GAN consists of two neural networks, the generator and the 
discriminator, which are trained simultaneously through adversarial processes [45]. 
GANs are especially useful in cross-view gait recognition, where the goal is to rec-
ognize individuals from different viewing angles. GANs can be used to produce gait 
data from unobserved angles, allowing the training of flexible gait recognition mod-
els that perform well from multiple perspectives. Applying GANs to gait recognition 
brings various challenges, including training stability and convergence concerns, 
which might result in low-quality or unrealistic synthetic data [46].

2.3.4 � 3D Convolutional neural networks (3D CNN)

3D convolutional neural networks (3D CNNs) enhance the capabilities of conven-
tional CNNs by directly processing volumetric data, enabling them to collect both 
spatial and temporal information. This makes 3D CNNs ideal for video analy-
sis applications such as gait recognition, which require an in-depth understanding 
of movement dynamics across time. 3D CNNs examine a sequence of frames as 
a single input, in contrast to 2D CNNs which process individual frames and may 
require additional mechanisms to integrate temporal information. This allows them 
to extract features that capture both the shape and the movement of the subject [47]. 
This means that 3D CNNs can recognize distinct patterns in the way a person walks 
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by considering several frames together. Despite its benefits, 3D CNNs have several 
challenges, including the high computational cost of processing 3D data and the 
requirement for huge labeled datasets to adequately train the models [48].

2.3.5 � Hybrid models

Hybrid models in gait recognition use the benefits of a number of neural networks 
to improve the accuracy and robustness of gait recognition systems. Compared to a 
single model employed on its own, these models are more suitable for capturing the 
complex spatial and temporal features of the human gait. Combining CNNs with 
RNNs or LSTM networks is a popular strategy. CNNs are used to extract spatial 
features such as the shape and posture of a walking person from individual frames, 
while RNNs or LSTMs are used to analyze temporal sequences by capturing gait 
dynamics of gait over time [49]. This hybrid strategy integrates the CNN’s ability 
to recognize spatial patterns with the RNN/LSTM’s ability to understand temporal 
associations, resulting in more accurate gait recognition.

3 � Datasets and evaluation criteria

3.1 � Datasets

Datasets are crucial for the gait recognition process because they are used to evalu-
ate methods. Over the years, several gait recognition datasets have been developed 
to aid research and development in this field. Some publicly available gait datasets 
that are commonly used for gait recognition are shown in Table 2. This table pro-
vides an overview of the key features of these gait datasets. These features comprise 
the number of subjects (classes), the number of sequences, the number of cameras, 
resolution of the image, the frame rate captured per second, the number of training 
and testing subjects, the environment conditions, the type of data and variations in 
the appearance of the individual.

The CMU body movement (MoBo) database contains high-quality video record-
ings from multiple angles of subjects walking on a treadmill. This data collection, 
which includes different walking speeds and conditions of 25 subjects, provides 
a solid resource for analyzing and recognizing individual gait patterns [50]. The 
SOTON dataset [51] is a collection of gait videos acquired from a multi-camera sys-
tem that captures people walking along a straight path. The dataset includes vid-
eos from 115 subjects and in indoor and outdoor environments. The CASIA-A [52] 
dataset is another dataset for gait recognition research, containing data from 20 sub-
jects. The USF HumanID dataset [1] includes gait videos from 122 subjects, with 
variations in shoes, carrying briefcase, and with acquisition times. The videos were 
captured using two cameras. The CASIA-B dataset [53] is a large dataset contain-
ing gait cycles from 124 subjects, captured under various conditions such as nor-
mal walking (NM), different clothing (CL), and carrying a bag (BG). The CASIA-
C dataset [54] includes gait videos 153 subjects walking in a cross-view scenario. 
The dataset also includes challenging variations such as three different walking 
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speeds (Normal walking—NM, slow walking—SW, fast walking—FW), and car-
rying a bag (BW). OU-ISIR Treadmill dataset [55] is a gait dataset that was col-
lected at the University of Osaka in Japan. The speed dataset includes gait videos 
of 34 subjects walking on a treadmill at nine different speeds. The clothes dataset 
includes gait videos of 68 subjects with different clothes up to 32 options. OU-LP 
dataset [19] is a large-scale gait database that includes gait sequences of 4,007 sub-
jects (in version 1). The gait sequences were collected using four camera angles. 
The OU-LP dataset includes a large number of participants with a wide range of 
gait patterns, all captured in a controlled environment to minimize external variables 
such as lighting and background variations, and subjects are typically dressed uni-
formly to reduce the impact of clothing variations on gait recognition. The TUM 
GAID dataset [56] incorporates audio, image (video), and depth data, providing a 
comprehensive set of modalities for gait analysis. It consists of 305 subjects and the 
32 subjects in the subset enable study in clothing and time invariant gait recognition. 
The OU-LP Bag dataset [57] includes gait sequences of 62,528 subjects carrying an 
object, while walking. The dataset includes variations in types of carried objects. 
OU-LP Age dataset [58] includes gait sequences of 63,846 subjects at different ages. 
The OU-MVLP (Multi-View Large Population) dataset [20] is another large-scale 
gait database that includes gait sequences of 10,307 subjects captured from 14 dif-
ferent views ranging from 0 to 90, and 180 to 270. CASIA-E dataset [59] includes 
silhouettes from 1,014 subjects and variations in walking style, carrying objects, and 
wearing different clothing. The OU-MVLP Pose dataset [60] was created by tak-
ing the RGB images from the OU-MVLP and extracting pose skeleton sequences 
from them. VersatileGait [61] is a large-scale synthetic gait dataset produced using 
a gaming engine. The dataset includes nearly one million silhouette sequences of 
11,000 participants, each with fine-grained features. This dataset intends to solve 
the shortcomings of existing real-world gait datasets, which frequently have small 
sample sizes and simple scenarios. The ReSGait dataset [62] consists of 172 sub-
jects and 870 video clips that were collected over a period of 15 months. The dataset 
include gender, clothing and carrying conditions, and use of mobile phones. The 
GREW dataset [21] is known as the first extensive dataset for gait recognition in 
the wild. The dataset consists of gait sequences from 26,345 subjects collected from 
882 cameras. Also, the dataset includes some information such as gender, age group, 
carrying and clothing condition. OU-MVLP Mesh [63] dataset was built upon OU-
MVLP and it examines informative 3D human mesh model using parametric pose 
and shape features (i.e., SMPL). The Gait3D dataset [22] is a large-scale gait recog-
nition dataset based on 3D representation. It contains 4,000 subjects taken from 39 
cameras in the wild. The dataset also includes variations such as different walking 
speeds and clothing conditions.

3.2 � Evaluation criteria

To evaluate gait recognition methods using different databases, there are two types 
of evaluation protocols that have been frequently used: subject-dependent and sub-
ject-independent [13]. Subject-dependent protocols involve training and testing the 
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gait recognition method using the same set of subjects. In this scenario, the solution 
is trained on a subset of the gait data and then tested on the remaining data for each 
subject. The goal of this approach is to find out how well the method recognizes the 
gait patterns of an individual in the context of intraclass variations such as different 
walking speeds, clothing, and carrying conditions. Subject-independent protocols, 
on the other hand, involve training the gait recognition method on a set of subjects 
and testing it on a different set of subjects. This approach intended to evaluate how 
well the method generalizes to new individuals who were not included in the train-
ing data. The test data are subdivided into gallery and probe sets, and the learned 
model on the separate training subjects are utilized to extract features from these 
subsets. Overall, a classifier is used to compare the probe and gallery data to deter-
mine the most related gait patterns and categorize them as belonging to the same 
identity.

The gait recognition methods studied in this paper use the cumulative match 
characteristic (CMC) as an evaluation criterion. The CMC curve is a performance 
evaluation metric commonly used in biometrics and computer vision, particularly in 
tasks related to recognition systems such as face recognition, fingerprint identifica-
tion, and gait recognition. It helps to assess the accuracy of identification systems. 
The CMC curve is essentially a rank-based metric and represents the probability that 
a query identity appears within the top K ranks of a sorted list of candidates gener-
ated by the system [64]. The CMC curve, despite being a widely used metric for 
measuring the precision of identification systems, has its limitations. It ignores the 
overall accuracy and confidence of matches as a result of focusing only on rank-
ing performance. It provides limited insights on system performance across different 
circumstances, which might overlook the complex nature of real-world applications 
[65]. However, some studies reviewed in this survey focus solely on reporting rank-1 
recognition accuracy that is the first point on a CMC curve. Consequently, in the 
subsequent sections, we will also use the rank 1 accuracy as our primary evaluation 
criteria.

4 � Appearance‑based gait recognition approaches

In the last decades, numerous approaches to gait recognition have been developed. 
We mentioned that these approaches are divided into model-based and appearance-
based approaches. This section reviews the appearance-based gait recognition 
approaches published in recent years. Appearance-based techniques consider the 
complete human body structure or motion. This approach extracts gait features from 
human walking sequences, focusing on the silhouette shape and dynamic informa-
tion needed for pattern matching.

Numerous methodologies exist in the literature, yet this section cannot cover all 
these methods. It does discuss the details of the state-of-the-art techniques. Table 3 
summarizes the reviewed appearance-based gait recognition approaches arranged 
by the dates of publication. Section  4.1 contains a rigorous comparison of these 
approaches.
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In [66] a new loss function for cross-view gait recognition called angle center loss 
(ACL) and a method for learning spatial-temporal features that combines learned 
horizontal partition and an LSTM attention model are proposed. Gait silhouettes are 
divided into four horizontal parts and each part is fed into a separate CNN. Atten-
tion weights for each part are used to average frame-level features. During train-
ing, various weighted features are fed into various loss functions, but during testing, 
the weighted features for each part are concatenated to form a feature vector. For 
both verification and identification tasks, cosine similarities are determined between 
these feature vectors. For each local part, several independent CNNs are used to 
learn the local gait features, and a simplified spatial transformer network is used to 
localize the informative parts. An LSTM-based temporal attention model is used to 
capture the temporal features. The proposed method is evaluated using silhouettes 
on three gait recognition datasets (CASIA-B, OULP, and OUMVLP with the accu-
racy of 96.0%, 99.3%, 89.0% respectively).

Fan et al. [67] introduces a deep learning-based solution for gait recognition (Gait 
Part) which recognizes people based on their walking patterns. The method uses 
a temporal part-based architecture consisting of Frame-level part feature extractor 
(FPFE) and micro-motion capture module (MCM), two separate components. FPFE 
aims to improve fine-grained learning of part-level features and while attention 
based MCM aims to derive local short-range spatiotemporal expressions. Experi-
ments are performed on the CASIA-B and OUMVLP datasets and the averaged 
rank-1 accuracies of the method are 96.2% and 88.7% respectively.

The research in [68] proposes the Gait Lateral Network (GLN), a new network 
for learning discriminative and compact representations from silhouettes of gait 
sequences. For correct recognition, GLN takes advantage of the intrinsic feature 
pyramid in deep CNNs to extract discriminative features and lateral connections to 
integrate silhouette-level and set-level features. Furthermore, GLN has a Compact 
Block to considerably reduce the dimension of the gait representations, while main-
taining accuracy. The experiments are conducted on CASIA-B and OUMVLP data-
sets with the accuracy of 96.8% and 89.1% respectively.

In [11] a Set Residual Network (SRN) is presented for silhouette-based gait rec-
ognition.  It has a fundamental block named Set Residual Block (SRBlock) which 
builds the framework for feature learning from silhouettes. The SR Block is divided 
into two parallel branches: the silhouette-branch (learn features from each silhou-
ette individually) and the set-branch (learn features from all silhouettes collectively). 
The features retrieved from the two branches are concatenated using a residual con-
nection and Leaky ReLU. The paper also presents a Dual Feature Pyramid approach 
for learning more robust part representations for gait recognition using shallow layer 
features. The proposed SRN is tested on the CASIA-B (accuracy is 97.1%) and 
OUMVLP (accuracy is 89.1%) datasets.

In [69], a novel approach is proposed that uses 3D convolutional deep neural 
network (3D CNN) to extract the spatiotemporal features of a gait sequence, while 
adopting a holistic approach using GEIs. This network is made up of two sets of 
convolutional layers, each of which is succeeded by a pooling layer, followed by 
batch normalization, and two fully connected layers. The proposed model is evalu-
ated on the CASIA-B and OULP datasets and to enhance performance, optimization 
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techniques are applied. The best accuracy reported for CASIA-B dataset is 98.3% 
and OULP dataset 93.1%.

The research in [70], a unique approach for gait recognition, introduces the use 
of 3D local convolutional neural networks (CNNs) as building blocks. This block 
enables the retrieval of local 3D volumes sequentially with adaptable spatial and 
temporal scales, locations, and lengths. Location, sampling, feature extraction, and 
fusion modules make up the network. Additionally, a framework for interacting with 
and enhancing global and local 3D volume information in any layer of 3D CNNs is 
presented in the paper. The proposed approach evaluated on CASIA-B (accuracies 
are 97.5% and 98.3% for the resolution of 64 × 44 and 128 × 88 respectively) and 
OUMVLP datasets (accuracy is 90.9%).

The authors in [71] propose a method for gait recognition using a context-sen-
sitive temporal feature learning (CSTL) network and salient spatial feature learn-
ing (SSFL) module. The authors highlight that by focusing on various temporal 
sequences with varying time scales, humans may distinguish between different gaits. 
The CSTL network uses relation modeling to evaluate the importance of multi-scale 
features, increasing the more significant scale and suppressing the less important 
one. The SSFL module solves the misalignment problem induced by temporal oper-
ations by selecting discriminative spatial hints throughout the sequence. The sug-
gested method combines adaptive temporal learning with salient spatial mining. The 
experiments are conducted on three datasets: CASIA-B (accuracies are 98.5% and 
98.7% for the resolution of 64 × 44 and 128 × 88 respectively), OUMVLP (accu-
racy is 91.0%) and GREW (accuracy is 50.6%). Although CSTL achieves Rank-1 
scores more than 90% on both CASIA-B and OU-MVLP datasets it achieves a 
50.6% success rate in recognizing sequences on the GREW dataset. GREW is an 
unconstrained benchmark for gait recognition, aiming to better simulate real-world 
conditions than its predecessors, such as CASIA-B and OU-MVLP. The significant 
variation in performance due to the GREW dataset’s inherently challenging condi-
tions. Unlike CASIA-B and OU-MVLP, which are partially controlled environments 
with limited variations, GREW considers a wider range of factors, such as different 
views, significant differences in clothing, and the presence of objects held by partici-
pants [21]. These factors provide an amount of complexity and unpredictability that 
better captures real-world circumstances, but they also present more difficulties for 
gait recognition systems.

The authors in [72] describe a method for gait recognition named gait quality 
aware network (GQAN). It directly evaluates the quality of each silhouette and each 
part, and it is made up of two blocks: the frame quality block (FQBlock) and the 
part quality block (PQBlock). FQBlock adjusts the features of every silhouette sepa-
rately and combines the scores of all channels to generate a frame quality measure. 
Meanwhile, PQBlock calculates the weighted distance between the probe and gal-
lery by estimating a score for each part. GQAN can be trained using only identity 
annotations at the sequence level by using a loss function called Part Quality Loss 
(PQLoss). CASIA-B and OUMVLP datasets are used to evaluate the proposed net-
work model and the best accuracy reported is 98.5% and 89.7%, respectively.

GaitSlice proposed in [10] is a unique gait recognition model and it enhances 
recognition accuracy by refining spatial and temporal details of each portion of the 
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human body. The model has slice extraction device (SED) and residual frame atten-
tion mechanism (RFAM) modules. SED divides the body into parts and connects 
features of neighboring body parts from head to toe, and for each body component, 
RFAM collects and emphasizes the significant frames of sequences. The GaitSlice 
model combines RFAMs that run in parallel with interrelated slice features in order 
to allow for flexible selection of the key frames of each body part. The model is 
tested on two gait recognition datasets: CASIA-B (accuracy is 96.2%) and OUM-
VLP (accuracy is 89.3%).

GaitSet proposed in [73] considers gait as a set of gait silhouettes and uses a 
deep learning model to recognize gaits. The paper emphasizes that the sequence of 
poses during a walking period is not the most important information for differentiat-
ing individuals, since the pattern of the sequence is universal. The GaitSet model 
extracts frame-level information from each silhouette using a CNN, then combines 
these features into a single set-level feature using Set Pooling. Using Horizontal pyr-
amid mapping, the set-level feature is transformed into a space with more differen-
tiation ability. The experiments are conducted on CASIA-B and OUMVLP datasets 
with the accuracy of 96.1% and 87.9% respectively.

The research in [74] proposes a sequential lightweight deep learning framework 
for gait recognition. The researchers modify two pre-existing deep learning models 
(VGG-19 and MobileNet-V2) and train them using transfer learning. Then, feature 
engineering is conducted on the VGG-19 and MobileNet-V2. Finally, using discri-
minant correlation analysis (DCA), the resulting features were merged. In order to 
select optimum features, a modified moth-flame optimization algorithm is proposed. 
The chosen features are then categorized using an extreme learning machine (ELM). 
The proposed method evaluated on CASIA-B (accuracy is 91.2%) and TUM-GAID 
datasets (accuracy is 98.6%).

STAR (Spatio-Temporal Augmented Relation Network) introduced in [9] is a 
novel approach for gait recognition. Multi-branch diverse-region feature generator 
(MDFG) and spatiotemporal augmented interactor (STAI) are the two modules that 
make up the STAR. The MDFG has the capability to identify body features within 
separate regions that do not overlap, while the STAI, uses the connections of these 
regions within a frame and across various frames to create intra- and inter-relation 
models. The introduced approach evaluated on CASIA-B and OUMVLP datasets 
and the best accuracy reported is 97.3% and 89.7%, respectively.

In [75], GaitAMR is offered as a method for extracting discriminative subject fea-
tures for gait recognition. GaitAMR uses a holistic and partial temporal aggregation 
technique that collects global and local body movement parameters. It is composed 
of four primary parts: a baseline, spatial extraction, temporal extraction, and view 
assessment. The baseline part uses silhouette information to convert gait samples 
into features. Then, a multi-scale feature extractor processes the features to provide 
richer motion data. The remaining sections analyze the features further to extract 
relevant information, solving appearance occlusion and silhouette misalignment 
challenges. After all the features from different domains have been combined, they 
are sent to the classification layer for recognition. The proposed method evaluated 
on CASIA-B (accuracies are 98.1% and 98.6% for the resolution of 64 × 44 and 
128 × 88 , respectively) and OUMVLP datasets (accuracy is 88.3%).
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4.1 � Comparison of different approaches

Considering the methods reviewed in this survey, it has been observed that the 
CASIA-B and OUMVLP datasets are the preferred primary datasets for evaluating 
appearance-based gait recognition applications.

In this section, detailed explanations are provided on how each method differs 
from previous ones and how these differences have led to success compared to ear-
lier methods. Since, the CASIA-B dataset is commonly used across all examined 
studies, the papers are organized in ascending order based on the Rank-1 accu-
racy rates achieved on this dataset. The accuracy rates for the CASIA-B dataset in 
Table 3, correspond to the accuracy under normal walking conditions.

The study conducted in [66], a loss function is proposed that enhances robustness, 
especially when different spatial-temporal features are used. Loss functions in deep 
learning have the advantage of learning discriminative features or metrics. Prior to 
this study, gait recognition methods typically employed classical loss functions like 
softmax. The loss function proposed in this paper has been shown to improve per-
formance when compared to previous works. Additionally, the study combines dif-
ferent parts of silhouettes with certain weight values. It is stated that the features 
obtained in this way have increased the accuracy of the model, but this process 
has brought along computational cost and feature dimension problems. Finally, the 
LSTM attention model used to extract temporal features is mentioned to be insuffi-
cient in terms of efficiency due to the length of the testing sequence and low parallel 
computing capacity.

In [73], a new method named GaitSet is proposed to obtain spatial and tempo-
ral information, differing from existing methods that view walking as a template 
or sequence. The study demonstrates that using additional feature extraction meth-
ods alongside deep networks yields more successful results than those found in the 
literature.

GaitPart [67] performs individual gait recognition by considering both static 
appearance features and dynamic temporal information. Previous studies have been 
conducted without detailed acquisition of temporal features. GaitPart stands out 
with its detailed modeling of temporal features.

In [10], GaitSlice is proposed to refine gait recognition features in both spatial 
and temporal dimensions, based on the logic that the less information included in 
gait silhouettes, the more significant the role of key frames of body parts. The pro-
posed model has particularly improved gait recognition accuracy under cross-view 
conditions and complex walking conditions.

In [74], the VGG-19 and MobileNet-V2 models were trained using deep transfer 
learning. Subsequently, a new moth-flame optimization algorithm was developed to 
select the best features. It has been stated that combining lightweight model features 
with the developed algorithms is time-consuming, but accuracy has been increased 
in this way. Additionally, it has been determined that the optimization algorithm 
reduces computation time and increases accuracy.

In GLN [68], features at the silhouette-level and set-level were extracted at 
different stages within the deep network backbone and were combined from top 
to bottom via lateral connections. This approach aggregated more visual details, 
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thereby enhancing the accuracy of gait recognition. Additionally, the size of the 
gait representations was reduced using a compact block. The proposed method 
has outperformed previous studies in the literature in terms of both accuracy and 
size.

SRN [11] differs from previous studies mainly by its method of coordinating 
silhouette-level and set-level information for set-based feature learning from sil-
houettes. Additionally, SRN proposes a method to leverage shallow layer features 
to better learn part representations. In particular, compared to GLN, which uses sil-
houette-level and set-level information, it has been stated that upsampling or lateral 
connections are unnecessary. Therefore, SRN suggests a method that utilizes only 
marginal memory cost and takes advantage of shallow layer features to learn more 
robust part representations. The proposed approach is superior to its counterparts in 
terms of accuracy especially under challenging conditions.

The study conducted in [9] introduces a new spatiotemporal augmented relation 
network (STAR). It facilitates the generation of visual clues in various regions for 
fine-grained feature learning through its contained modules and adaptively locates 
non-overlapped various regions that have significant identity information. With 
these aspects it offers, it enables better extraction of distinct information among 
frames and has improved accuracy compared to studies in the literature.

The method proposed in [70] extracts temporal features using its simple but effec-
tive three-dimensional CNN model. This method performs better than the other 
studies through this feature extraction technique.

In the study conducted in [72], unlike other methods, a module named FQBlock 
is proposed to measure the quality of each frame. FQBlock works on the number 
of feature channels, evaluating the features of each frame separately. Moreover, the 
attention values of each frame are based solely on its own features and do not change 
with permutation according to the silhouette pattern. FQBlock shares weights across 
different silhouettes, thus ensuring the comparability of attention values of frames in 
different sequences. These features have enabled the GQAN method to achieve more 
successful results than previous ones.

GaitAMR [75] is superior over other methods in both feature representation 
and temporal representation dimensions, due to its attention to potential silhouette 
error issues, the impact of local body features on final recognition, spatial occlusion 
errors, and appearance variation. It also performs better than other methods in terms 
of recognition performance within a smaller iteration period.

In [69], an effort was made to capture spatial features such as body shape and the 
temporal characteristics of walking patterns, specifically to address the challenges 
of person recognition encountered by gait recognition algorithms in open environ-
ments. GEI (gait energy images) and 3D CNN model was employed for both fea-
ture extraction and gait recognition. Additionally, the network’s parameters were 
optimized using Bayesian optimization. Thanks to the proposed three-dimensional 
model and the conducted hyperparameter optimization, this method ranks among 
the successful studies in the literature.

In [71], a temporal modeling network is proposed to combine multi-scale tempo-
ral features. Additionally, a spatial feature learning module is also suggested to fix 
feature corruption problems resulting from temporal processes. Studies conducted 
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on datasets have demonstrated the superiority of the model compared to current 
methods.

5 � Challenges and future perspectives

Despite substantial improvement in recent years, there are still several challenges 
in human gait recognition. These possible challenges include variability in walk-
ing patterns, occluded views, environmental factors, lack of gait datasets, ethical 
and privacy concerns and learning challenges. The subsequent part of this section 
provides a detailed description of them. The accuracy, reliability, and usefulness 
of gait recognition systems can be improved by researchers by focusing on these 
challenges.

5.1 � Variability of walking patterns

People walk in different ways, and the same person may exhibit many walking styles 
depending on circumstances such as walking speed, carrying and clothing, surface 
type, and aging. When people walk at different speeds, or on different surfaces, they 
naturally adjust gait parameters such as stride length and step width to maintain bal-
ance. Carrying a bag may cause the upper body to lean forward, resulting in a longer 
stride length. Tight or restricting clothes can limit hip and leg range of motion and 
high-heeled shoes can tilt the ankles forward, resulting in a shorter stride length. 
These adjustments can cause changes in the way a person walks and the features 
of their gait pattern. Most of the previous studies [9–11, 66–74] achieve promis-
ing results even with datasets with some of these conditions. Aging also can lead 
to changes in the walking pattern. Changes in joint flexibility and mobility can lead 
to a reduction in the stride length. Some data sets [21] contain gait data of the same 
people at different times. Even so, the longest time interval is 15 months. There is a 
need for further research over a much longer time frame.

5.2 � Occluded views

In real-world scenarios, gait recognition systems can be blocked by obstacles such 
as bags, cars that occlude the view of a part of a person’s body. This could be chal-
lenging to capture enough information about the gait pattern to identify an individ-
ual. The researchers who will create the new dataset can use multiple cameras or 
sensors to collect data from different angles and viewpoints to solve the problem 
of occluded views. Another way to solve this problem can be through human body 
alignment, where the system aligns various parts of the body, including the head, 
torso, and limbs. In this way, gait recognition algorithms can better detect and track 
the person’s gait patterns, even in situations with partial obstacles. There are several 
studies [69, 71, 75] specified they improve gait recognition in occlusion conditions, 
and GaitPart [67] extracts gait features from different parts of the body and can par-
tially solve the problem of occluded views.
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5.3 � Environmental factors

In real-world scenarios there are many uncontrolled factors in the environment such 
as lighting conditions, shadows, and camera angles that can affect gait recognition 
accuracy. Researchers can conduct experiments in a number of real-world environ-
ments to investigate the impact of these factors on gait recognition accuracy. They 
can identify which factors have the greatest impact on accuracy by collecting data 
in varying lighting conditions, for example, and develop algorithms that are more 
resilient to these variations. Varying lighting conditions affect the consistency and 
reliability of the captured gait data collected. Gait recognition can be highly sensi-
tive to changes in lighting, which can alter the appearance of the subject’s silhou-
ette and overall visibility. Poor lighting can lead to incomplete or inaccurate silhou-
ettes, making it difficult to extract reliable gait features [76]. Fluctuating lighting can 
introduce variability in important features, reducing the model’s ability to recognize 
and classify gait patterns accurately. Strong lighting can create shadows that may be 
misinterpreted as part of the gait, leading to incorrect feature extraction and analysis 
[77]. By employing a combination of robust feature selection, preprocessing tech-
niques, depth sensing, and adaptive machine learning approaches, it’s possible to 
mitigate the impact of lighting variability and enhance the performance of gait rec-
ognition systems in diverse environments. Most of the current publicly available gait 
datasets were obtained under controlled conditions and are comparatively simple to 
recognize. ResGait [62] dataset is based on real scenarios and GREW [21] dataset is 
optimized for real-world applications.

5.4 � Lack of gait datasets

Gait recognition systems rely on large amounts of data to accurately identify indi-
viduals. However, obtaining and labeling such data can be time-consuming and 
expensive. A possible solution for researchers to access more data is to generate syn-
thetic gait data from virtual 3D human models. As synthetic data can be produced 
with remarkable control and accuracy, it can also be used to create data that captures 
specific variations in gait patterns that may be difficult to capture in real-world data. 
VersatileGait [61] is the only synthetic data in gait recognition as far as we know, 
and it contains gait data of 11,000 subjects. The use of unlabeled data, which is eas-
ily accessible via the videos on the Internet, can also help overcome the lack of gait 
data. But, since labeling these data one by one will be tedious and time-consuming, 
self-supervised learning can help researchers at this point. Self-supervised learning 
has shown potential to train such unlabeled data, as it can learn useful representa-
tions of the data without requiring human labeling [78].

5.5 � Ethical and privacy concerns

Gait recognition is a form of biometric identification, and there are worries over data 
privacy and its exploitation. People may be worried about having their gait patterns 
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captured and retained, particularly if they are unfamiliar with the technology or how 
their data will be used. Gait recognition could become a powerful tool for mass sur-
veillance, as gait can be captured remotely without the person’s knowledge or con-
sent. Gait data could be repurposed for uses not originally intended, or it might fall 
into the hands of unauthorized individuals who could exploit it for illegal activi-
ties [79]. Addressing these concerns requires comprehensive regulatory frameworks. 
There should be strict guidelines on data collection, usage, and storage, ensuring 
individuals’ rights are protected. The gait data should be maintained securely and 
protected from unauthorized access through secure storage and protective measures 
such as encryption and access control. Moreover, the development of gait recogni-
tion technologies must include ethical considerations from the outset, with ongoing 
assessments of their impact on society.

5.6 � Learning challenges

The use of deep learning and machine learning techniques within gait recognition 
areas brings several crucial challenges that must be resolved in order to get reliable 
findings. An examination of a few key issues is provided below.

When a model learns the training set too well, overfitting occurs, and this leads 
to poor generalization to new unknown data [80]. This could mean that the model 
performs well when applied to known subjects but misrecognizes the gait patterns 
of unknown subjects. Overfitting can be addressed by regularization strategies, data 
augmentation approaches, and dropout layers (in deep learning models). Further-
more, using cross-validation to check model performance on unseen data during 
training might lead to the early termination of training to avoid overfitting [81].

Deep learning models, in particular, are considered black boxes due to their com-
plex architectures and the high dimensionality of their learned feature spaces [80]. 
This lack of interpretability may cause issues in sensitive gait recognition systems, 
where it is important to understand the reasoning behind decisions. Model behavior 
may be partially understood by visualizing the parts of the input data that have the 
most impact on the model’s decisions through the use of techniques such as layer-
wise relevance propagation (LRP) [82].

Machine learning and deep learning models, especially the deep learning models, 
require large amounts of labeled data for training. It takes a lot of time and resources 
to gather and analyze a large number of gait patterns. Using synthetic data or unla-
beled data might be an option as shown in 5.4.

Two major issues that can frequently arise in gait recognition with deep learn-
ing are catastrophic forgetting and low inter-class variance. Catastrophic forgetting 
happens when a neural network loses information from past tasks after training on 
a new task. Elastic weight consolidation (EWC), proposed to solve this problem, 
allows the network to learn new tasks while helping to preserve weights that are 
important for previous tasks [83]. Low inter-class variance indicates a situation in 
which distinct classes (i.e., gait patterns of different individuals) have highly simi-
lar features, making it challenging for the model to distinguish between them suc-
cessfully. This can result in higher misclassification rates, since the model fails to 
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identify unique identifying features that distinguish one person’s gait from another’s. 
Feature aggregation is an effective method for addressing the challenge of low inter-
class variance in gait recognition and other tasks that require distinguishing between 
extremely similar classes [84]. To address the challenge of low inter-class variance 
in gait recognition, in [25] a novel approach is introduced through the development 
of a generalized inter-class loss. This strategy tackles the problem by focusing on 
both the sample-level and class-level feature distributions.

One of the most typical challenges in machine learning is class imbalance refer-
ring to a situation, where the number of instances of one class significantly out-
numbers the instances of one or more other classes in a dataset. This imbalance can 
lead to biased models that tend to predict the majority class better than the minority 
classes. In gait recognition tasks, each class typically represents an individual. If the 
dataset contains approximately an equal number of walking examples for all individ-
uals, significant class imbalance does not occur. However, there may be situations 
where some individuals have more examples than others. This could lead to the 
model recognizing some individuals better than others, which can cause problems, 
especially in sensitive applications. There are some strategies to solve the problem 
of class imbalance such as oversampling (increasing the number of minority class 
instances), undersampling (reducing the number of majority class instances) and 
using ensemble methods [85].

6 � Conclusion

This survey provides an extensive examination of appearance-based methods for 
human gait recognition, covering the significant developments made in this field. 
The paper highlights the enormous advances that have been achieved in this field as 
well as the many strategies used for gait recognition using visual information. We 
have demonstrated the effectiveness of appearance-based methods in successfully 
recognizing individuals based on their unique gait patterns through careful examina-
tion. The paper also reviews publicly available gait datasets that are commonly used 
for gait recognition, and it underlines the significance of dataset size, quality, and 
diversity in the development of accurate and robust gait recognition algorithms. Fur-
thermore, challenges such as variability in walking patterns, occluded views, envi-
ronmental factors, lack of gait datasets, ethical and privacy concerns, and learning 
challenges are addressed, along with potential solutions proposed in recent research. 
In conclusion, while appearance-based human gait recognition demonstrates consid-
erable promise and has achieved significant progress, there is still need for further 
exploration and improvement. Future research should focus on addressing the identi-
fied challenges, exploring the integration of different types of data, and improving 
the interpretability and generalizability of gait recognition models. Overall, appear-
ance-based human gait recognition algorithms have a lot of potential for applica-
tions in surveillance, health and biometrics, and future progress in this subject will 
help to improve security, personal identity, and health tracking systems.



1 3

A survey of appearance‑based approaches for human gait…

Author contributions  Study conception done by PGŞ, SŞ, FKG; Study design done by PGŞ, SŞ, FKG; 
Supervision done by PGŞ, SŞ, FKG; Figure and Table preparation done by PGŞ; Materials done by PGŞ, 
SŞ, FKG; Data collection and/or processing done by PGŞ; Literature review done by PGŞ, SŞ, FKG; 
Manuscript preparation done by PGŞ, SŞ, FKG; and Critical review done by PGŞ, SŞ, FKG.

Funding  Open access funding provided by the Scientific and Technological Research Council of Türkiye 
(TÜBİTAK). 

Data availability  Not applicable as no datasets were generated during the current study.

Declarations 

Conflict of interests  The authors declare that they have no competing interests.

Ethical approval  Not applicable as the nature of the article being a survey.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Sarkar S, Phillips PJ, Liu Z et  al (2005) The humanID gait challenge problem: data sets, perfor-
mance, and analysis. IEEE Trans Pattern Anal Mach Intell 27:162–177. https://​doi.​org/​10.​1109/​
TPAMI.​2005.​39

	 2.	 Nixon MS, Carter JN, Cunado D et al (1999) Automatic gait recognition. In: Jain AK, Bolle R, Pan-
kanti S (eds) Biometrics. Springer, Boston, pp 231–249

	 3.	 Wang L, Ning H, Tan T, Hu W (2004) Fusion of static and dynamic body biometrics for gait recog-
nition. IEEE Trans Circuits Syst Video Technol 14:149–158. https://​doi.​org/​10.​1109/​TCSVT.​2003.​
821972

	 4.	 Wu Z, Huang Y, Wang L et al (2017) A comprehensive study on cross-view gait based human iden-
tification with deep CNNs. IEEE Trans Pattern Anal Mach Intell 39:209–226. https://​doi.​org/​10.​
1109/​TPAMI.​2016.​25456​69

	 5.	 Chen J (2014) Gait correlation analysis based human identification. Sci World J 2014:1–8. https://​
doi.​org/​10.​1155/​2014/​168275

	 6.	 Wan C, Wang L, Phoha VV (2019) A survey on gait recognition. ACM Comput Surv 51:1–35. 
https://​doi.​org/​10.​1145/​32306​33

	 7.	 Kale A, Sundaresan A, Rajagopalan AN et  al (2004) Identification of humans using gait. IEEE 
Trans on Image Process 13:1163–1173. https://​doi.​org/​10.​1109/​TIP.​2004.​832865

	 8.	 Kusakunniran W (2020) Review of gait recognition approaches and their challenges on view 
changes. IET Biom 9:238–250. https://​doi.​org/​10.​1049/​iet-​bmt.​2020.​0103

	 9.	 Huang X, Wang X, He B et al (2023) STAR: spatio-temporal augmented relation network for gait 
recognition. IEEE Trans Biom Behav Identity Sci 5:115–125. https://​doi.​org/​10.​1109/​TBIOM.​2022.​
32118​43

	10.	 Li H, Qiu Y, Zhao H et al (2022) GaitSlice: a gait recognition model based on spatio-temporal slice 
features. Pattern Recogn 124:108453. https://​doi.​org/​10.​1016/j.​patcog.​2021.​108453

	11.	 Hou S, Liu X, Cao C, Huang Y (2021) Set residual network for silhouette-based gait recognition. 
IEEE Trans Biom Behav Identity Sci 3:384–393. https://​doi.​org/​10.​1109/​TBIOM.​2021.​30749​63

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPAMI.2005.39
https://doi.org/10.1109/TPAMI.2005.39
https://doi.org/10.1109/TCSVT.2003.821972
https://doi.org/10.1109/TCSVT.2003.821972
https://doi.org/10.1109/TPAMI.2016.2545669
https://doi.org/10.1109/TPAMI.2016.2545669
https://doi.org/10.1155/2014/168275
https://doi.org/10.1155/2014/168275
https://doi.org/10.1145/3230633
https://doi.org/10.1109/TIP.2004.832865
https://doi.org/10.1049/iet-bmt.2020.0103
https://doi.org/10.1109/TBIOM.2022.3211843
https://doi.org/10.1109/TBIOM.2022.3211843
https://doi.org/10.1016/j.patcog.2021.108453
https://doi.org/10.1109/TBIOM.2021.3074963


	 P. Güner Şahan et al.

1 3

	12.	 Singh JP, Jain S, Arora S, Singh UP (2021) A survey of behavioral biometric gait recognition: cur-
rent success and future perspectives. Arch Comput Methods Eng 28:107–148. https://​doi.​org/​10.​
1007/​s11831-​019-​09375-3

	13.	 Sepas-Moghaddam A, Etemad A (2023) Deep gait recognition: a survey. IEEE Trans Pattern Anal 
Mach Intell 45:264–284. https://​doi.​org/​10.​1109/​TPAMI.​2022.​31518​65

	14.	 Rani V, Kumar M (2023) Human gait recognition: a systematic review. Multimed Tools Appl. 
https://​doi.​org/​10.​1007/​s11042-​023-​15079-5

	15.	 Parashar A, Parashar A, Shabaz M et al (2024) Advancements in artificial intelligence for biomet-
rics: a deep dive into model-based gait recognition techniques. Eng Appl Artif Intell 130:107712

	16.	 Google Scholar. https://​schol​ar.​google.​com/?​hl=​en&​as_​sdt=​0,5. Accessed 4 Jul 2023
	17.	 IEEE Xplore. https://​ieeex​plore.​ieee.​org/​Xplore/​home.​jsp. Accessed 4 Jul 2023
	18.	 ScienceDirect.global | Science, health and medical journals, full text articles and books. https://​scien​

cedir​ect.​global/. Accessed 4 Jul 2023
	19.	 Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The OU-ISIR gait database comprising the 

large population dataset and performance evaluation of gait recognition. IEEE Trans Inform Foren-
sic Secur 7:1511–1521. https://​doi.​org/​10.​1109/​TIFS.​2012.​22042​53

	20.	 Takemura N, Makihara Y, Muramatsu D et al (2018) Multi-view large population gait dataset and its 
performance evaluation for cross-view gait recognition. IPSJ Trans Comput Vis Appl 10:4. https://​
doi.​org/​10.​1186/​s41074-​018-​0039-6

	21.	 Zhu Z, Guo X, Yang T, et al. (2022). Gait Recognition in the Wild: A Benchmark. IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 14769–14779.

	22.	 Zheng J, Liu X, Liu W, et al. (2022). Gait Recognition in the Wild with Dense 3D Representations 
and A Benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (pp. 20228–20237).

	23.	 Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edin-
burgh Dublin Philosophical Mag J Sci 2:559–572. https://​doi.​org/​10.​1080/​14786​44010​94627​20

	24.	 Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–
188. https://​doi.​org/​10.​1111/j.​1469-​1809.​1936.​tb021​37.x

	25.	 Yu W, Yu H, Huang Y, Wang L. (2022). Generalized inter-class loss for gait recognition. In: Pro-
ceedings of the 30th ACM International Conference on Multimedia (pp. 141–150).

	26.	 Crouse MB, Chen K, Kung HT. (2014). Gait Recognition using Encodings with Flexible Similarity 
Metrics. In: 11th International Conference on Autonomic Computing (ICAC 14) (pp. 169–175).

	27.	 Zhang C, Liu, W, Ma H, Fu H. (2016). Siamese neural network based gait recognition for human 
identification. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) (pp. 2832–2836). IEEE.

	28.	 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://​doi.​org/​10.​
1007/​BF009​94018

	29.	 Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer, New 
York, p 738

	30.	 Begg RK, Palaniswami M, Owen B (2005) Support vector machines for automated gait classifica-
tion. IEEE Trans Biomed Eng 52:828–838. https://​doi.​org/​10.​1109/​TBME.​2005.​845241

	31.	 Gou H, Yan L, Xiao J (2015) A gait recognition system based on SVM and accelerations. MATEC 
Web Conf 30:06001. https://​doi.​org/​10.​1051/​matec​conf/​20153​006001

	32.	 Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc IEEE 77:257–286. https://​doi.​org/​10.​1109/5.​18626

	33.	 Suk H-I, Sin B-K (2006) HMM-based gait recognition with human profiles. In: Yeung D-Y, Kwok 
JT, Fred A et al (eds) Structural, syntactic, and statistical pattern recognition. Springer, Berlin, pp 
596–603

	34.	 Bae J, Tomizuka M (2010) Gait phase analysis based on a hidden markov model. IFAC Proc Vol 
43:746–751. https://​doi.​org/​10.​3182/​20100​913-3-​US-​2015.​00014

	35.	 Dargan S, Kumar M, Ayyagari MR, Kumar G (2019) A survey of deep learning and its applications: 
a new paradigm to machine learning. Arch Comput Methods Eng 27:1–22

	36.	 Zafar A, Aamir M, Mohd Nawi N et al (2022) A comparison of pooling methods for convolutional 
neural networks. Appl Sci 12:8643. https://​doi.​org/​10.​3390/​app12​178643

	37.	 Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. 
Science 313(5786):504–507

	38.	 Welling M, Kingma DP (2019) An introduction to variational autoencoders. Found Trends Mach 
Learn 12(4):307–392

https://doi.org/10.1007/s11831-019-09375-3
https://doi.org/10.1007/s11831-019-09375-3
https://doi.org/10.1109/TPAMI.2022.3151865
https://doi.org/10.1007/s11042-023-15079-5
https://scholar.google.com/?hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/Xplore/home.jsp
https://sciencedirect.global/
https://sciencedirect.global/
https://doi.org/10.1109/TIFS.2012.2204253
https://doi.org/10.1186/s41074-018-0039-6
https://doi.org/10.1186/s41074-018-0039-6
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/TBME.2005.845241
https://doi.org/10.1051/matecconf/20153006001
https://doi.org/10.1109/5.18626
https://doi.org/10.3182/20100913-3-US-2015.00014
https://doi.org/10.3390/app12178643


1 3

A survey of appearance‑based approaches for human gait…

	39.	 Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recog-
nition. Proc IEEE 86:2278–2324. https://​doi.​org/​10.​1109/5.​726791

	40.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge
	41.	 Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl 5(64–67):2
	42.	 Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is 

difficult. IEEE Trans Neural Netw 5(2):157–166
	43.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
	44.	 Cho K, Van Merriënboer B, Gulcehre C, et al. (2014). Learning phrase representations using RNN 

encoder-decoder for statistical machine translation. preprint arXiv:​1406.​1078v3.
	45.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, et  al. (2014). Generative adversarial networks. arXiv:​

1406.​2661.
	46.	 Kodali N, Abernethy J, Hays J, Kira Z. (2017). On convergence and stability of gans. arXiv preprint 

arXiv:​1705.​07215.
	47.	 Tran D, Bourdev L, Fergus R, et al. (2015). Learning spatiotemporal features with 3d convolutional 

networks. In: Proceedings of the IEEE International Conference on Computer Vision.
	48.	 Nonis F, Dagnes N, Marcolin F, Vezzetti E (2019) 3D approaches and challenges in facial expres-

sion recognition algorithms—a literature review. Appl Sci 9(18):3904. https://​doi.​org/​10.​3390/​
app91​83904

	49.	 Shi X, Chen Z, Wang H, et al. (2015). Convolutional LSTM network: A machine learning approach 
for precipitation nowcasting. Advances in Neural Information Processing Systems, 28.

	50.	 Gross R, Shi J. (2001). The CMU motion of body (MoBo) database. Carnegie Mellon Univ., Pitts-
burgh, PA, USA, Tech. Rep. CMU-RI-TR-01–18.

	51.	 Shutler JD, Grant MG, Nixon MS, Carter JN (2004) On a large sequence-based human gait data-
base. In: Lotfi A, Garibaldi JM (eds) Applications and science in soft computing. Springer, Berlin, 
pp 339–346

	52.	 Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identi-
fication. IEEE Trans Pattern Anal Mach Intell 25:1505–1518. https://​doi.​org/​10.​1109/​TPAMI.​2003.​
12511​44

	53.	 Yu S, Tan D, Tan T. (2006). A Framework for Evaluating the Effect of View Angle, Clothing and 
Carrying Condition on Gait Recognition. In: 18th International Conference on Pattern Recognition 
(ICPR’06). IEEE, Hong Kong, China, pp 441–444

	54.	 Tan D, Huang K, Yu S, Tan T. (2006). Efficient Night Gait Recognition Based on Template Match-
ing. In: 18th International Conference on Pattern Recognition (ICPR’06). IEEE, Hong Kong, China, 
pp 1000–1003

	55.	 Makihara Y, Mannami H, Tsuji A et al (2012) The OU-ISIR gait database comprising the treadmill 
dataset. IPSJ Trans Comput Vis Appl 4:53–62. https://​doi.​org/​10.​2197/​ipsjt​cva.4.​53

	56.	 Hofmann M, Geiger J, Bachmann S et  al (2014) The TUM gait from audio, image and depth 
(GAID) database: multimodal recognition of subjects and traits. J Vis Commun Image Represent 
25(1):195–206

	57.	 Uddin MdZ, Ngo TT, Makihara Y et al (2018) The OU-ISIR large population gait database with 
real-life carried object and its performance evaluation. IPSJ T Comput Vis Appl 10:5. https://​doi.​
org/​10.​1186/​s41074-​018-​0041-z

	58.	 Xu C, Makihara Y, Ogi G et  al (2017) The OU-ISIR gait database comprising the large popula-
tion dataset with age and performance evaluation of age estimation. IPSJ T Comput Vis Appl 9:24. 
https://​doi.​org/​10.​1186/​s41074-​017-​0035-2

	59.	 Song C, Huang Y, Wang W, Wang L (2022) CASIA-E: a large comprehensive dataset for gait recog-
nition. IEEE Trans Pattern Anal Mach Intell. https://​doi.​org/​10.​1109/​TPAMI.​2022.​31832​88

	60.	 An W, Yu S, Makihara Y et al (2020) Performance evaluation of model-based gait on multi-view 
very large population database with pose sequences. IEEE Trans Biom Behav Identity Sci 2:421–
430. https://​doi.​org/​10.​1109/​TBIOM.​2020.​30088​62

	61.	 Dou H, Zhang W, Zhang P, et al. (2021). VersatileGait: A Large-Scale Synthetic Gait Dataset with 
Fine-GrainedAttributes and Complicated Scenarios. ArXiv, abs/2101.01394.

	62.	 Mu Z, Castro FM, Marin-Jimenez MJ, et  al. (2021). ReSGait: The Real-Scene Gait Dataset. In: 
2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, Shenzhen, China, pp 1–8.

	63.	 Li X, Makihara Y, Xu C, Yagi Y (2022) Multi-view large population gait database with human 
meshes and its performance evaluation. IEEE Trans Biom Behav Identity Sci 4:234–248. https://​doi.​
org/​10.​1109/​TBIOM.​2022.​31745​59

https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1406.1078v3
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1705.07215
https://doi.org/10.3390/app9183904
https://doi.org/10.3390/app9183904
https://doi.org/10.1109/TPAMI.2003.1251144
https://doi.org/10.1109/TPAMI.2003.1251144
https://doi.org/10.2197/ipsjtcva.4.53
https://doi.org/10.1186/s41074-018-0041-z
https://doi.org/10.1186/s41074-018-0041-z
https://doi.org/10.1186/s41074-017-0035-2
https://doi.org/10.1109/TPAMI.2022.3183288
https://doi.org/10.1109/TBIOM.2020.3008862
https://doi.org/10.1109/TBIOM.2022.3174559
https://doi.org/10.1109/TBIOM.2022.3174559


	 P. Güner Şahan et al.

1 3

	64.	 Phillips P, Grother R, Michaels D. (2003). FRVT 2002: Facial Recognition Vendor Test. Technical 
report, DoD.

	65.	 Ye M, Shen J, Lin G (2021) Deep learning for person re-identification: a survey and outlook. IEEE 
Trans Pattern Anal Mach Intell 44(6):2872–2893

	66.	 Zhang Y, Huang Y, Yu S, Wang L (2020) Cross-view gait recognition by discriminative feature 
learning. IEEE Trans on Image Process 29:1001–1015. https://​doi.​org/​10.​1109/​TIP.​2019.​29262​08

	67.	 Fan C, Peng Y, Cao C, et al. (2020). GaitPart: Temporal Part-Based Model for Gait Recognition. In: 
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, 
WA, USA, pp 14213–14221

	68.	 Hou S, Cao C, Liu X, Huang Y (2020) Gait lateral network: learning discriminative and compact 
representations for gait recognition. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Computer 
vision— ECCV 2020. Springer International Publishing, Cham, pp 382–398

	69.	 Gul S, Malik MI, Khan GM, Shafait F (2021) Multi-view gait recognition system using spatio-
temporal features and deep learning. Expert Syst Appl 179:115057. https://​doi.​org/​10.​1016/j.​eswa.​
2021.​115057

	70.	 Huang Z, Xue D, Shen X, et al. (2021). 3D Local Convolutional Neural Networks for Gait Recogni-
tion. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Montreal, 
QC, Canada, pp 14900–14909

	71.	 Huang X, Zhu D, Wang X, et  al. (2022). Context-Sensitive Temporal Feature Learning for Gait 
Recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 
12909–12918).

	72.	 Hou S, Liu X, Cao C, Huang Y (2022) Gait quality aware network: toward the interpretability of 
silhouette-based gait recognition. IEEE Trans Neural Netw Learn Syst. https://​doi.​org/​10.​1109/​
TNNLS.​2022.​31547​23

	73.	 Chao H, Wang K, He Y et al (2021) GaitSet: cross-view gait recognition through utilizing gait as a 
deep set. IEEE Trans Pattern Anal Mach Intell 44(7):3467–3478

	74.	 Khan MA, Arshad H, Damaševičius R et al (2022) Human gait analysis: a sequential framework of 
lightweight deep learning and improved moth-flame optimization algorithm. Comput Intell Neuro-
sci 2022:1–13. https://​doi.​org/​10.​1155/​2022/​82383​75

	75.	 Chen J, Wang Z, Zheng C et al (2023) GaitAMR: cross-view gait recognition via aggregated multi-
feature representation. Inf Sci 636:118920. https://​doi.​org/​10.​1016/j.​ins.​2023.​03.​145

	76.	 Lee TK, Belkhatir M, Sanei S (2014) A comprehensive review of past and present vision-based 
techniques for gait recognition. Multimed Tools Appl 72:2833–2869

	77.	 Verlekar TT, Soares LD, Correia PL (2018) Gait recognition in the wild using shadow silhouettes. 
Image Vis Comput 76:1–13

	78.	 Ohri K, Kumar M (2021) Review on self-supervised image recognition using deep neural networks. 
Knowl-Based Syst 224:107090. https://​doi.​org/​10.​1016/j.​knosys.​2021.​107090

	79.	 Boulgouris NV, Hatzinakos D, Plataniotis KN (2005) Gait recognition: a challenging signal pro-
cessing technology for biometric identification. IEEE Signal Process Mag 22(6):78–90

	80.	 Talaei Khoei T, Ould Slimane H, Kaabouch N (2023) Deep learning: systematic review, models, 
challenges, and research directions. Neural Comput Appl 35:23103–23124. https://​doi.​org/​10.​1007/​
s00521-​023-​08957-4

	81.	 Jabbar H, Khan RZ (2015) Methods to avoid over-fitting and under-fitting in supervised machine 
learning (comparative study). Comput Sci Commun Instrum Devices 70(10.3850):978–981

	82.	 Montavon G, Samek W, Muller K (2018) Methods for interpreting and understanding deep neural 
networks. Dig Signal Process 73:1–15

	83.	 Kirkpatrick J, Pascanu R, Rabinowitz N et al (2017) Overcoming catastrophic forgetting in neural 
networks. Proc Natl Acad Sci 114(13):3521–3526

	84.	 Zhang Z, Luo C, Wu H et al (2022) From individual to whole: reducing intra-class variance by fea-
ture aggregation. Int J Comput Vis 130(3):800–819

	85.	 Al Musalhi N, Çelebi E. (2023). Age estimation in human gait extraction using a combination of 
multi-energy image with invariant moment. Preprints, 2023060186. https://​doi.​org/​10.​20944/​prepr​
ints2​02306.​0186.​v1

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1109/TIP.2019.2926208
https://doi.org/10.1016/j.eswa.2021.115057
https://doi.org/10.1016/j.eswa.2021.115057
https://doi.org/10.1109/TNNLS.2022.3154723
https://doi.org/10.1109/TNNLS.2022.3154723
https://doi.org/10.1155/2022/8238375
https://doi.org/10.1016/j.ins.2023.03.145
https://doi.org/10.1016/j.knosys.2021.107090
https://doi.org/10.1007/s00521-023-08957-4
https://doi.org/10.1007/s00521-023-08957-4
https://doi.org/10.20944/preprints202306.0186.v1
https://doi.org/10.20944/preprints202306.0186.v1

	A survey of appearance-based approaches for human gait recognition: techniques, challenges, and future directions
	Abstract
	1 Introduction
	2 Gait recognition
	2.1 Data collection
	2.2 Machine learning techniques
	2.2.1 Feature extraction and representation
	2.2.2 Dimensionality reduction
	2.2.3 Classification
	2.2.3.1 Support vector machine (SVM) 
	2.2.3.2 Hidden markov model (HMM) 


	2.3 Deep learning techniques
	2.3.1 Convolutional neural networks (CNN)
	2.3.2 Recurrent neural networks (RNN)
	2.3.3 Generative adversarial networks (GAN)
	2.3.4 3D Convolutional neural networks (3D CNN)
	2.3.5 Hybrid models


	3 Datasets and evaluation criteria
	3.1 Datasets
	3.2 Evaluation criteria

	4 Appearance-based gait recognition approaches
	4.1 Comparison of different approaches

	5 Challenges and future perspectives
	5.1 Variability of walking patterns
	5.2 Occluded views
	5.3 Environmental factors
	5.4 Lack of gait datasets
	5.5 Ethical and privacy concerns
	5.6 Learning challenges

	6 Conclusion
	References


