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Abstract

Gait recognition has become an important biometric feature for human identifica-
tion, in addition to data such as face, iris, and fingerprint. The goal of human gait
recognition is to identify people based on walking images. Artificial intelligence
technologies have revolutionized the field of gait recognition by enabling computers
to automatically learn and extract intricate patterns. These techniques examine video
recordings to determine key features in an individual’s gait, and these features are
used to identify the person. This paper examines the existing appearance-based gait
recognition methods that have been published in recent years. The primary objective
of this paper is to provide an informative survey of the state-of-the-art in appear-
ance-based gait recognition techniques, highlighting their applications, strengths,
and limitations. Through our analysis, we aim to highlight the significant advance
that has been made in this field, draw attention to the challenges that have been
faced, and identify areas of prospective future research and advances in technology.
Furthermore, we comprehensively examine common datasets used in gait recogni-
tion research. By analyzing the latest developments in appearance-based gait recog-
nition, our study aims to be a helpful resource for researchers, providing an exten-
sive overview of current methods and guiding future attempts in this dynamic field.
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1 Introduction

Gait recognition is a sort of biometric technology that identifies people based on
their distinct walking patterns [1]. It evaluates how a person walks by capturing
and quantifying numerous gait variables such as step width, stride length and foot
angle (the angle between the foot and the horizontal) during heel strike and toe-off
(pre-swing). These metrics are used to derive a gait signature for each person that
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can be compared to a database of recognized signatures to help identify them [2].
The most beneficial advantage of gait as a biometric feature is that it can be used
for identifying people at a distance. Furthermore, it does not necessitate the user’s
participation unlike other features [3]. These advantages make gait useful for video
surveillance-based applications. Gait recognition has potential uses in security and
surveillance, including the identification of people in crowded public places and the
tracking of criminal suspects [4]. It could also have medical uses, such seeing varia-
tions in gait patterns that might point to illnesses or injuries [5]. Among the above-
mentioned advantages, gait recognition performance can be negatively affected by
certain factors related to human pose analysis. Human pose analysis in computer
vision faces several challenges, including occlusions, changing lighting conditions,
and low image quality.

The following steps are often included in a gait recognition system [6]: (1) Data
collection. To recognize an individual’s gait, it is necessary to collect data about
their gait patterns. Many techniques, including video recordings, pressure sensors,
floor sensors and motion capture systems, can be used to obtain this data. (2) Fea-
ture Extraction. To identify an individual’s gait, it is necessary to extract features
that are unique to their walking pattern, such as stride length, walking speed and
foot angle. (3) Dimension Reduction. In general, features extracted from gait data
cannot be used for classification directly because in the feature representation step,
the dimensionality of features (the number of features) collected from raw data is
higher than the number of samples in the training data. Consequently, it is preferred
to use a dimension reduction approach prior to classification. (4) Classification. To
identify the individual based on their gait features extracted in the previous step,
classification is performed using a machine learning or a deep learning algorithm.

Gait recognition problem approaches in computer vision are generally clas-
sified into two categories: model-based and appearance-based (model-free) [7].
Model-based gait recognition approaches utilize mathematical models to represent
the walking motion of a person. In this approach, the kinematics of joint angles are
modeled when people walk. Appearance-based gait recognition approaches extract
features from the visual appearance of a person’s walking pattern, such as body
shape and limb movements. In this approach, silhouettes are analyzed from a gait
sequence that embed both appearance and movement information, ensuring that the
analysis encompasses the entire body structure, including key joints, without isolat-
ing them [8].

Appearance-based methods do not require extra sensors or subject consent
because they depend on visual data obtained from security cameras. This makes
them useful for real-world applications. Although model-based methods have
benefits like providing detailed motion information and explicitly modeling skel-
etal systems, they also have disadvantages such as resource-intensive processing
requirements or inaccurate key point estimation. Consequently, when compared to
appearance-based approaches, they exhibit lower performance in recognition tasks
[9-11]. Such reasons have led to the widespread research and establishment of
appearance-based methods in the field. They have a solid foundation in the exist-
ing literature, with many methods and datasets available. Hence, the purpose of this
paper is to survey appearance-based gait recognition methods that rely mostly on
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deep learning. Although there are many existing surveys [6, 8, 12—15] conducted on
gait recognition, it is the first survey paper based only on recent appearance-based
gait recognition studies as far as we know. By focusing entirely on appearance-based
methods, the paper gives a full and extensive evaluation of many approaches used
in gait recognition. This provides for a better understanding of the specific strate-
gies that rely only on visual clues from gait patterns. Detailed information about the
existing surveys and the number of references and citations from Web of Science are
shown in Table 1.

The paper aims to provide an extensive overview of the appearance-based gait
recognition methods. The paper summarizes the important methods and models
used in this area, allowing readers to get a deep understanding of some of the most
recent advances. The main contributions of this survey are as follows:

e The survey provides a comprehensive and systematic examination of appear-
ance-based gait recognition methods. It analyzes the current literature and pro-
vides a comprehensive assessment of the state-of-the-art in this field of gait rec-
ognition.

e The survey evaluates the performance of gait recognition techniques. This evalu-
ation provides useful insights for researchers in determining usability of appear-
ance-based gait recognition methods.

e The survey provides a thorough examination of various publicly available data-
sets used in the literature.

e The survey highlights challenges in gait recognition. It suggests researchers in
new and significant directions within this domain by suggesting prospective
options for future study.

We employed a review methodology in parallel with these purposes. We first
identified potential papers using search engines (e.g., Google Scholar [16]) and
online archives (e.g., IEEE Xplore [17], ScienceDirect [18]). Our search string was
a combination of different keywords such as “gait recognition”, “deep learning”,
“human identification”, and “gait dataset”. We have included search results after
2018 because we want to focus on the studies of recent years. We then excluded the
papers that use model-based gait recognition approaches, do not provide a unique
solution, use private datasets for performance assessment, or do not evaluate their
performance in comparison to the state-of-the-art. Finally, we identified a series of
papers that have applied deep learning to gait recognition.

The reminder of this survey is organized as follows. Section 2 introduces the
conceptual framework of gait recognition. Gait datasets and evaluation criteria are
shown in Sect. 3. Section 4 reviews and compares appearance-based gait recogni-
tion approaches published in recent years. Section 5 discusses some challenges and
future trends in gait recognition. Section 6 concludes and ends the paper.
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Fig.2 Deep gait recognition pipeline

2 Gait recognition

In order to help demonstrate a general structure for understanding gait recognition
approaches, which will be discussed in the following sections, we present the con-
ceptual framework of gait recognition (Fig. 1). It includes obtaining different types
of input data, feature extraction and representation, dimension reduction and classi-
fication. Deep pipelines for gait recognition require fewer steps than traditional pipe-
lines, because the deep learning model can perform feature extraction and classifica-
tion in a single step (Fig. 2). This can improve efficiency and reduce the likelihood
of errors introduced by human-defined feature extraction and selection techniques.
Deep pipelines, on the other hand, may need additional data and computational
resources for training and evaluation, as well as deep learning skills. In this sec-
tion, we initially described data collection processes conducted independently of the
methodologies. Subsequently, we provided an overview of the general framework
for gait recognition in both machine learning and deep learning, examining in detail
the deep learning techniques employed in the methods examined within this article.
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2.1 Data collection

The first stage in the gait recognition framework involves collecting data to iden-
tify individual’s gait patterns. Gait recognition can be performed using various input
data such as RGB image, silhouette, GEI (Gait Energy Image), optical flow image,
body skeleton and human mesh acquired by various sensors. In addition, movement
data and pressure data from some wearable sensors can also be used for gait recog-
nition. However, since the focus of this study is on vision-based gait recognition, the
gait datasets mentioned in this study do not include them. Figure 3 contains exam-
ples of different input data types obtained from different gait dataset [19-22].

2.2 Machine learning techniques
2.2.1 Feature extraction and representation

This is the process of extracting features from the data that are most useful for iden-
tifying an individual’s gait pattern. Feature extraction requires the ability to describe
the distinctive characteristics of individuals and be robust to changing conditions.
There are two main approaches for gait recognition as already mentioned: (1)
model-based, (2) appearance-based. The key distinction between the two approaches

(a) (b) (c)

(d) (e) (

f) (g)

Fig.3 Examples of input data types for gait recognition. a RGB image. b Silhouette. ¢ GEI. d Optical
flow. e 2D Skeleton. f 3D Skeleton. g 3D Mesh
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is in how the features are extracted and the type of data used for recognition. Model-
based gait recognition extracts features from a physical model of the human body
that predicts joint angles and trajectories during walking. In appearance-based gait
recognition, features are extracted by considering the entire movement pattern of
the walking person’s body. It handles occlusion better and contains more invariant
features [14]. Feature representation for gait recognition transforming raw gait data
into a set of features that can be utilized for classification. Appearance-based feature
representation methods are statistical methods and spatiotemporal methods. Statisti-
cal features include shape (e.g., how high the leg is raised during the walking cycle),
motion (e.g., speed) and texture (e.g., variations of clothing and carrying condi-
tions). The spatiotemporal methods gather the motion characteristics and maintain
both the spatial aspects (such as shape, distance, and direction) and the temporal
aspects (like duration and occurrence time) of gait video sequences [12]. Human
movement is usually represented through both spatial and temporal information.

2.2.2 Dimensionality reduction

The major goal of dimensionality reduction is to reduce the dimensionality of the
feature vector that represents the gait patterns. Typically, the feature vector is high-
dimensional and comprises a huge number of variables. This makes gait recognition
methods computationally costly and time-consuming to compute. Dimensionality
reduction aims to address this issue by reducing the dimensionality of the feature
vector, while preserving essential information. There are different techniques for
dimensionality reduction, such as principal component analysis (PCA) and linear
discriminant analysis (LDA). These techniques attempt to transform the high-dimen-
sional feature vector into a lower-dimensional space that still captures the important
information. The classification algorithm is then fed the resulting lower-dimensional
feature vector.

e PCA [23] transforms the feature vector into a set of orthogonal principal com-
ponents, each of which is a linear combination of the original variables. Most of
the information is included in the first few primary components, which are kept,
while the other components are disposed.

o LDA [24] seeks to maximize the distance between the means of different classes,
while minimizing the variance within each class. It aims to project the feature
vector into a lower-dimensional space with the goal of maximizing the separa-
tion between the different classes.

2.2.3 Classification

In gait recognition, the classification step refers to the process of giving a label or
class to a gait sequence. This stage is critical because it allows the system to rec-
ognize and distinguish between different individuals based on their gait patterns.
The features selected in the previous steps are used to create a feature vector rep-
resenting the gait sequence. In this stage, the feature vector is input to a classifica-
tion algorithm that assigns the gait sequence to a specific class or label. During the
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classification process, it is learned to recognize patterns in feature vectors associated
with certain individuals, and the gait sequence is assigned to the appropriate label.

In this section, it is useful to mention the two modes of biometrics, identifica-
tion and verification. Person identification involves recognizing an individual from
a group of known persons, which can be challenging due to the need to distinguish
between highly similar gait patterns. Person verification compares a gait pattern to a
single individual’s known patterns to confirm or deny their identity. It is less useful
in applications, where the identity of the individual is unknown or needs to be deter-
mined from a large number of possibilities.

In traditional machine learning approaches, the classification stage consists of
applying an algorithm that can distinguish between the different classes (i.e., indi-
viduals) based on the features extracted from their gait. Because the process of
extracting features is separated from the classification step. The similarity between
features is measured by a vector similarity metric such as Euclidean distance, Cosine
similarity, Manhattan distance or dynamic time warping (DTW). Euclidean distance
measures the straight-line distance between two points in a multi-dimensional space.
Instead of measuring distance, cosine similarity measures the cosine of the angle
between two vectors. Manhattan distance sums the absolute differences of their car-
tesian coordinates. DTW defines an optimum path that can transform one signal into
another [25, 26]. Siamese networks can also be used in gait recognition applications
to learn how to differentiate between inputs, effectively learning a similarity metric.
The siamese network can orient the similarity metric to be small for pairs of gait
from the same individual and large for pairs from different people [27].

Finally, a label is assigned to each image by a classifier. The algorithm used
depends on the type of feature set and the specific requirements of the recognition
task (e.g. complexity of the data). Common algorithms used in this context are given
below.

2.2.3.1 Support vector machine (SVM) Support vector machine (SVM) is a popular
supervised machine learning algorithm used for the classification of gait patterns
[28]. The basic idea behind SVM in gait recognition is to find a hyperplane that
separates the data points representing the gait patterns of different individuals. The
hyperplane is selected in such a way as to maximize the margin, which is the distance
between the hyperplane and the closest data points from each class. After the SVM
model has been trained, it can be used to classify new gait patterns using the features
that were extracted. Depending on which side of the hyperplane the new data point
falls, the SVM model will predict the class of the new gait pattern. In this point, it
is important to note that SVM is basically a binary classification algorithm, aiming
to distinguish between two classes by finding the optimal hyperplane that separates
them in the feature space. However, gait recognition often involves identifying indi-
viduals from a set of multiple classes, requiring a multiclass classification technique.
The one-vs-the-rest strategy is a popular way for adapting SVM for multiclass classi-
fication. This involves creating multiple, dedicated SVMs, each trained to distinguish
between one of the classes and the sum of all other classes [29]. The authors cover the
use of SVMs for automatic recognition of age-related gait changes in [30]. In [31], a
gait recognition system is presented based on SVMs and acceleration data.
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2.2.3.2 Hidden markov model (HMM) Hidden markov model (HMM) can be used to
represent the temporal properties of gait patterns in gait recognition [32]. The main
concept is to describe the sequence of gait features as several states, each represent-
ing a different gait pattern. The transition probabilities between the states show the
possibility of transitioning gait patterns. Given the current condition, the observation
probabilities describe the likelihood of observing a specific gait feature. A training set
of gait data is used to estimate the model parameters for an HMM. The model param-
eters include the transition and observation probability. The authors in [33] describe
a potential approach for identifying people by their gait that involves modeling the
dynamic silhouettes of a human body using a HMM. The research in [34] suggests
utilizing a HMM to assess gait phases to examine a patient’s gait for appropriate
rehabilitation treatment.

2.3 Deep learning techniques

The key concept of the gait recognition using deep learning is automatically learn-
ing to identify individuals based on their unique gait patterns directly from the data.
This ability brings the advantages of making them robust to variations in input data
for the gait recognition task. The layered architecture of deep learning facilitates the
incremental extraction of complex features from unprocessed data, eliminating the
necessity for manually identifying important features, a process often demanding
specialized expertise. This becomes especially significant in the context of analyz-
ing gait patterns, where the automated identification of distinguishing features is
crucial [35]. The automatic feature extraction concept in deep learning can include
extracting and learning spatial features from individual frames and temporal features
across sequences of frames.

When we look at the dimensionality reduction process in the context of deep
learning, it is crucial to simplify models, increase their efficiency and reduce overfit-
ting. Some prominent dimensionality reduction techniques used in deep learning are
described below.

e Pooling is often applied to a set of values arranged in a grid-like structure, such
as the feature maps produced by a convolutional neural network (CNN) in com-
puter vision applications [36]. In order to produce a single output value, the
pooling process divides the grid into non-overlapping or overlapping sub-regions
and applies an aggregate function to the values within each subregion. The infor-
mation stored within the subregion is then summarized using this output value.
Maximum pooling and average pooling are the two most often used pooling
functions. Max pooling includes taking the max value within each subregion,
and average pooling involves taking the average value [36].

e Autoencoders (AEs) are neural networks designed to learn efficient repre-
sentations (encodings) of the input data, typically for the purpose of dimen-
sionality reduction. An autoencoder is composed of an encoder that reduces
the input dimensions and a decoder that reconstructs the input data from the
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reduced representation. The middle layer, also known as the code layer, has
a lower dimensionality and acts as a reduced representation of the input data
[37].

e Variational autoencoders (VAEs) are generative models that learn a latent
variable model for the input data. They are similar to autoencoders but are
intended to produce a probabilistic representation of the input data. Compared
to the input space, the latent space learned by VAEs is generally significantly
lower dimensionality [38].

Deep learning models offer an end-to-end learning approach, which means
that the raw input is fed into the deep learning model, which then outputs the
classification result directly. This smooth process optimizes the pipeline, while
improving the model’s ability to learn complex patterns. In the classification
stage, the deep learning model uses the learned features to classify the gait data
into predetermined classes, with each class representing an individual. This could
be done through an activation function (e.g., softmax) in the output layer. The
model is trained using a labeled dataset, where each gait sequence is associated
with a specific individual. The training involves adjusting the model’s weights via
back propagation based on the difference between the predicted and actual labels,
minimizing a loss function to improve classification accuracy over time.

2.3.1 Convolutional neural networks (CNN)

Convolutional neural network (CNN) [39] is a type of neural network that is com-
monly used in gait recognition. A CNN consists of many layers of interconnected
nodes, such as convolutional layers, pooling layers, and fully connected layers.
The convolutional layers are responsible for detecting and extracting features
from the input data. The pooling layers then decimate the feature maps created by
the convolutional layers, reducing the dimensionality of the data, while preserv-
ing the most critical information. Eventually, the fully connected layers classify
the output from the previous layers into different gait patterns or individuals. A
CNN can be trained to recognize the unique gait patterns of individuals using a
huge dataset of labeled walking sequences. The network learns to extract relevant
features from the input data and utilize them to make accurate predictions about
the identity of the individual during training. Because CNN models are highly
effective at learning spatial features, they are frequently trained using image data
for gait recognition tasks. In these tasks, the CNN architecture allows the mod-
els to maintain the spatial or positional connections among the input data points.
Besides that, CNN can be adapted to extract temporal features effectively by
employing kernels that move in one direction across the temporal dimension of
the data. This approach is typically realized through the use of one-dimensional
(1D) convolutional neural networks (1D-CNNs), where the convolution operation
is applied along the time axis of the input data [40].

Most of the studies analyzed in this survey (please check Table 3) used these
properties of Convolutional Neural Networks (CNNs) for gait recognition.
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2.3.2 Recurrent neural networks (RNN)

Recurrent neural networks (RNNs) perform well at processing sequential data, mak-
ing them an ideal tool for gait recognition tasks that require evaluating the tempo-
ral dynamics of human walking patterns. RNNs are designed to recognize patterns
in data sequences by storing previous inputs in their internal state (hidden layers),
which is updated when new data points are processed. An RNN layer typically com-
prises multiple neurons that exhibit recurrent behavior, enabling the layer to accept
a sequence of inputs and, in turn, output a sequence [41]. Their ability to learn from
the sequence and duration of movement patterns allows for a detailed classification
of distinct gait patterns.

However, traditional RNNs often struggle with the vanishing gradient problem
when learning long sequences, making it hard to capture very long-term depend-
encies [42]. Solutions like long short-term memory (LSTM) [43] and gated recur-
rent units (GRU) [44] have been developed to address this issue. LSTM is a form
of RNN designed to capture long-term dependencies in sequence data by using a
set of gates to control the flow of information [43]. GRUs are a simplified version
of LSTMs that try to capture dependencies in sequential data but use a more com-
pact design that merges the forget and input gates into a single update gate, reducing
complexity.

2.3.3 Generative adversarial networks (GAN)

Generative adversarial networks (GANs), offer novel approaches to gait recognition
among other applications and can be used to generate synthetic gait data, improve
feature extraction, and enhance the robustness of gait recognition approaches under
various conditions. A GAN consists of two neural networks, the generator and the
discriminator, which are trained simultaneously through adversarial processes [45].
GAN:Ss are especially useful in cross-view gait recognition, where the goal is to rec-
ognize individuals from different viewing angles. GANs can be used to produce gait
data from unobserved angles, allowing the training of flexible gait recognition mod-
els that perform well from multiple perspectives. Applying GANs to gait recognition
brings various challenges, including training stability and convergence concerns,
which might result in low-quality or unrealistic synthetic data [46].

2.3.4 3D Convolutional neural networks (3D CNN)

3D convolutional neural networks (3D CNNs) enhance the capabilities of conven-
tional CNNs by directly processing volumetric data, enabling them to collect both
spatial and temporal information. This makes 3D CNNs ideal for video analy-
sis applications such as gait recognition, which require an in-depth understanding
of movement dynamics across time. 3D CNNs examine a sequence of frames as
a single input, in contrast to 2D CNNs which process individual frames and may
require additional mechanisms to integrate temporal information. This allows them
to extract features that capture both the shape and the movement of the subject [47].
This means that 3D CNNs can recognize distinct patterns in the way a person walks
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by considering several frames together. Despite its benefits, 3D CNNs have several
challenges, including the high computational cost of processing 3D data and the
requirement for huge labeled datasets to adequately train the models [48].

2.3.5 Hybrid models

Hybrid models in gait recognition use the benefits of a number of neural networks
to improve the accuracy and robustness of gait recognition systems. Compared to a
single model employed on its own, these models are more suitable for capturing the
complex spatial and temporal features of the human gait. Combining CNNs with
RNNs or LSTM networks is a popular strategy. CNNs are used to extract spatial
features such as the shape and posture of a walking person from individual frames,
while RNNs or LSTMs are used to analyze temporal sequences by capturing gait
dynamics of gait over time [49]. This hybrid strategy integrates the CNN’s ability
to recognize spatial patterns with the RNN/LSTM’s ability to understand temporal
associations, resulting in more accurate gait recognition.

3 Datasets and evaluation criteria
3.1 Datasets

Datasets are crucial for the gait recognition process because they are used to evalu-
ate methods. Over the years, several gait recognition datasets have been developed
to aid research and development in this field. Some publicly available gait datasets
that are commonly used for gait recognition are shown in Table 2. This table pro-
vides an overview of the key features of these gait datasets. These features comprise
the number of subjects (classes), the number of sequences, the number of cameras,
resolution of the image, the frame rate captured per second, the number of training
and testing subjects, the environment conditions, the type of data and variations in
the appearance of the individual.

The CMU body movement (MoBo) database contains high-quality video record-
ings from multiple angles of subjects walking on a treadmill. This data collection,
which includes different walking speeds and conditions of 25 subjects, provides
a solid resource for analyzing and recognizing individual gait patterns [50]. The
SOTON dataset [51] is a collection of gait videos acquired from a multi-camera sys-
tem that captures people walking along a straight path. The dataset includes vid-
eos from 115 subjects and in indoor and outdoor environments. The CASIA-A [52]
dataset is another dataset for gait recognition research, containing data from 20 sub-
jects. The USF HumanID dataset [1] includes gait videos from 122 subjects, with
variations in shoes, carrying briefcase, and with acquisition times. The videos were
captured using two cameras. The CASIA-B dataset [53] is a large dataset contain-
ing gait cycles from 124 subjects, captured under various conditions such as nor-
mal walking (NM), different clothing (CL), and carrying a bag (BG). The CASIA-
C dataset [54] includes gait videos 153 subjects walking in a cross-view scenario.
The dataset also includes challenging variations such as three different walking

@ Springer



A survey of appearance-based approaches for human gait...

uonIpuod
Surk1es pue
‘Funyrem
Jsej ‘unyem
Mmo[s ‘Sur anenoy[Is
“{[em [eULION ‘pareljuy 100pmnQ 0SI® ¢ SC 0¥eX0ce I 0esT €S 900C [¥S] D-VISVD
uonIpuod
Surk1res pue
‘Funpoo “Sur e
S{[eA [PWION  -NOY[IS ‘DY Jloopup  poytoads jou Y4 0¥eX0ce Il 089°¢I 21 900T [€S]1 4-VISVD
[eAIUI QW)
‘uonIpuod
Surk1es ‘ooey
-Ins Sunyfem (1] au
ur a3uey) SCON | looping  payroads jou 0¢ 0817 X0CL [4 0L81 ¢cl S00¢ -BUINH 4SN
Sunj[em [eULION a0d loopinQ  payroads jou Y4 0yeXese € 0ye 0T €00T [cS] v-VISVD
e JI00p
Sunj[em [BWLION  -NOY[IS ‘gDY  -INO ‘100pu  Payroads jou ST peywadsjou 4 8¢CIC SI1 200z [1S] NOLOS
uonIpuod 3ur
-K11ed pue Sur
S[em durpour
‘Sunyrem jsej AN [os]
‘Sunj[em MO[S  -noy[Is ‘gOY Ioopuy  peyoads jou 0¢ 081 X 09 9 009 §¢ 100C  OdON NND
s300[
-qns Sunsay  (sdy) puooas so[3ue eI SISSE[O
29 Surureny  1od paxmdeo uor}  -wWeo/SeIduwed soouanbas /s109[qns
SUONBLIBA adfyejeq  JuowuoIAUYg Jo ToquunN djerowrel -njosar oSew] JO IoquINN Jo ToquInN Jo requnN Jeax joseIR(

QINJRISN] O} UT Pasn ATUOWIIOD 91k Jey) sjesejep Jres o[qe[reae A[orqng g ajqel

pringer

As



P. Gliner Sahan et al.

199 [oz]
Sunj[em [eWION ‘apenoy[Isg loopu]  $SI°C % €GI°C Y4 086X08CI 14! €10°6ST LOE0T  810C dTAN-NO
0601¢C
woiy Surgues 199 €26'1€ (8¢]
§93e JUaIOHI( ‘openoylrs Joopuy % €T6°1€E 0¢ 081 X0v9 1 9v8°€9 9¥8°€9  LI0T 93y 4'1-N0
sy09[qns
661°8S
uon 45 10J 201°6¢C [L]
-1puod Suikire) ‘anenoylrs loopuy % L60°6T S¢ 086 X08CI 1 ¥8S°L81 8TST9 LIOT Seq d'1-N0
uonIpuod
Surmyjopo pue (uonepirea
Surkired opny 10§ s302[qns [96]
‘rearurouny,  ‘pdo ‘gDY Jloopul (S) SST % 001 0¢ 081 X 0¥9 ! 0LEE ¢0¢ cCloT  dIVO INNL
lo1]
(dT-n0)
uonendod
(TN 910 agre]
Sunj[em [eULION Snenoy[rs loopinQ  payroads jou 0¢ 081X 09 14 89¢°T€ ‘(IA) LOO'Y  T10T dISI-NO
SO
suoneurq —[SG] 1ose1ep
-wod Surylod [[Tupeaiy,
JUSIOYIp TE anenoy[ts Joopuy 8% % 0C 09 8CIX88 % LT 89 CI0¢ dISI-No
paadg —
[SS]1reseIRD
spaads [[Tupeaiy,
Sunj[em SuIN anenoy[rs Joopuy 1% 0¢ 09 8CIX88 ¥ 90¢ e ¢TI0C AISI-NO
sy00[
-qns Sunsay  (sdj) puooas so[3ue 1o SISSE[O
29 Surureny  1od paxmdeo uorn  -wWed/SeIowed saouanbas /s103[qns
SUONBLIEA adfyereg  JuQWUOIIAUF Jo IoquinN JjeIowel] -njosal oFeuw] Jo IoquunN Jo ToquinN Jo IoqunN  Ieox 1o8BIRQ

(ponunuoo) zs|qey

pringer

As



A survey of appearance-based approaches for human gait...

YsON [€9] usaN
Sunj[em [eWLION uewny ¢ loopuy IS % €SIS 4 086 X08CI ¥1  peymwadsjou LOE0T  TTOT dTAN-NO
spaads
Sunyrem
JUQIQYIP pue
‘sage JuoIojf
-JIp ‘ooejIns
Sunjrem ur SUO0JI[YS (uoneprrea
93ueyd ‘vonip dc pue g I10J s309[qns
-uoo urpop  ‘moy [eando Sr€) 0009
pue Surkre) ‘apenoy[Is PIIM 2 000°0C 0¢ Y7 X¥9 788 1L9°8C1 SPE9T  120T [12] MadD
a3esn suoyd
pUE ‘UONIPUOD
Sumporo apenoy[Is
pue Surkre) ‘U0 Joopuy 98 % 98 00€ 01 v 14282 I 0L8 TLT 120 [z9]nensey
uonIpuod
Suryiopd [19]
pue Sutkire) Snenoy[rs onoyukg  peyads jou  payroads jou 00TX08¢ 123 000°000°T 000°TT 1T0T  ¥BOS[NESIoA
[09]esod
Sunj[em [eWLION  UOJR[MS AT Joopul - $SI°G B €SIS Y4 086X 08¢l 4! £10°6ST LOE0T  020T dTAN-NO
saImyesy
JL1}WoOIq 1JOS
pue “9[1s Sur (uonepirea
-[em ‘uonip 10§ s302[qns
-uod 3uryioo 100pINO +11)
pue Surkrre) ananoy[Ig srdnny 00¥% 008 §¢  080IX0c6l 9C TSL'SLL ¥10°T 00T [6S]1 A-VISVD
sy00[
-qns Sunsay  (sdj) puooas so[3ue 1o SISSE[O
29 Surureny  1od paxmdeo uorn  -wWed/SeIowed saouanbas /s103[qns
SUONBLIEA adfyereg  JuQWUOIIAUF Jo IoquinN JjeIowel] -njosal oFeuw] Jo JaquunN Jo ToquunN JorqunN Iedx jesereq

(ponunuoo) zs|qey

pringer

As



P. Gliner Sahan et al.

“TdINS pue
SIYSIN A€
uonIpuod pUE ‘suojd
Surpopo IS de
‘spoads Sur pue g ‘ane
S{[em URIPIq  -noY[IS ‘gOy PIIM 0001 % 000€ SC  0801X0¢C61 6¢ 60€°ST 000y 20T [ze] agmen
sy00[
-qns Sunsay  (sdj) puooas so[3ue 1o SISSE[O
29 Surureny  1od paxmdeo uorn  -wWed/SeIowed saouanbas /s103[qns
SUONBLIEA adfyereg  JuQWUOIIAUF Jo IoquinN JjeIowel] -njosal oFeuw] Jo IoquunN Jo ToquinN Jo IoqunN  Ieox 1o8BIRQ

(ponunuoo) zs|qey

pringer

As



A survey of appearance-based approaches for human gait...

speeds (Normal walking—NM, slow walking—SW, fast walking—FW), and car-
rying a bag (BW). OU-ISIR Treadmill dataset [55] is a gait dataset that was col-
lected at the University of Osaka in Japan. The speed dataset includes gait videos
of 34 subjects walking on a treadmill at nine different speeds. The clothes dataset
includes gait videos of 68 subjects with different clothes up to 32 options. OU-LP
dataset [19] is a large-scale gait database that includes gait sequences of 4,007 sub-
jects (in version 1). The gait sequences were collected using four camera angles.
The OU-LP dataset includes a large number of participants with a wide range of
gait patterns, all captured in a controlled environment to minimize external variables
such as lighting and background variations, and subjects are typically dressed uni-
formly to reduce the impact of clothing variations on gait recognition. The TUM
GAID dataset [56] incorporates audio, image (video), and depth data, providing a
comprehensive set of modalities for gait analysis. It consists of 305 subjects and the
32 subjects in the subset enable study in clothing and time invariant gait recognition.
The OU-LP Bag dataset [57] includes gait sequences of 62,528 subjects carrying an
object, while walking. The dataset includes variations in types of carried objects.
OU-LP Age dataset [58] includes gait sequences of 63,846 subjects at different ages.
The OU-MVLP (Multi-View Large Population) dataset [20] is another large-scale
gait database that includes gait sequences of 10,307 subjects captured from 14 dif-
ferent views ranging from 0 to 90, and 180 to 270. CASIA-E dataset [59] includes
silhouettes from 1,014 subjects and variations in walking style, carrying objects, and
wearing different clothing. The OU-MVLP Pose dataset [60] was created by tak-
ing the RGB images from the OU-MVLP and extracting pose skeleton sequences
from them. VersatileGait [61] is a large-scale synthetic gait dataset produced using
a gaming engine. The dataset includes nearly one million silhouette sequences of
11,000 participants, each with fine-grained features. This dataset intends to solve
the shortcomings of existing real-world gait datasets, which frequently have small
sample sizes and simple scenarios. The ReSGait dataset [62] consists of 172 sub-
jects and 870 video clips that were collected over a period of 15 months. The dataset
include gender, clothing and carrying conditions, and use of mobile phones. The
GREW dataset [21] is known as the first extensive dataset for gait recognition in
the wild. The dataset consists of gait sequences from 26,345 subjects collected from
882 cameras. Also, the dataset includes some information such as gender, age group,
carrying and clothing condition. OU-MVLP Mesh [63] dataset was built upon OU-
MVLP and it examines informative 3D human mesh model using parametric pose
and shape features (i.e., SMPL). The Gait3D dataset [22] is a large-scale gait recog-
nition dataset based on 3D representation. It contains 4,000 subjects taken from 39
cameras in the wild. The dataset also includes variations such as different walking
speeds and clothing conditions.

3.2 Evaluation criteria
To evaluate gait recognition methods using different databases, there are two types

of evaluation protocols that have been frequently used: subject-dependent and sub-
ject-independent [13]. Subject-dependent protocols involve training and testing the
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gait recognition method using the same set of subjects. In this scenario, the solution
is trained on a subset of the gait data and then tested on the remaining data for each
subject. The goal of this approach is to find out how well the method recognizes the
gait patterns of an individual in the context of intraclass variations such as different
walking speeds, clothing, and carrying conditions. Subject-independent protocols,
on the other hand, involve training the gait recognition method on a set of subjects
and testing it on a different set of subjects. This approach intended to evaluate how
well the method generalizes to new individuals who were not included in the train-
ing data. The test data are subdivided into gallery and probe sets, and the learned
model on the separate training subjects are utilized to extract features from these
subsets. Overall, a classifier is used to compare the probe and gallery data to deter-
mine the most related gait patterns and categorize them as belonging to the same
identity.

The gait recognition methods studied in this paper use the cumulative match
characteristic (CMC) as an evaluation criterion. The CMC curve is a performance
evaluation metric commonly used in biometrics and computer vision, particularly in
tasks related to recognition systems such as face recognition, fingerprint identifica-
tion, and gait recognition. It helps to assess the accuracy of identification systems.
The CMC curve is essentially a rank-based metric and represents the probability that
a query identity appears within the top K ranks of a sorted list of candidates gener-
ated by the system [64]. The CMC curve, despite being a widely used metric for
measuring the precision of identification systems, has its limitations. It ignores the
overall accuracy and confidence of matches as a result of focusing only on rank-
ing performance. It provides limited insights on system performance across different
circumstances, which might overlook the complex nature of real-world applications
[65]. However, some studies reviewed in this survey focus solely on reporting rank-1
recognition accuracy that is the first point on a CMC curve. Consequently, in the
subsequent sections, we will also use the rank 1 accuracy as our primary evaluation
criteria.

4 Appearance-based gait recognition approaches

In the last decades, numerous approaches to gait recognition have been developed.
We mentioned that these approaches are divided into model-based and appearance-
based approaches. This section reviews the appearance-based gait recognition
approaches published in recent years. Appearance-based techniques consider the
complete human body structure or motion. This approach extracts gait features from
human walking sequences, focusing on the silhouette shape and dynamic informa-
tion needed for pattern matching.

Numerous methodologies exist in the literature, yet this section cannot cover all
these methods. It does discuss the details of the state-of-the-art techniques. Table 3
summarizes the reviewed appearance-based gait recognition approaches arranged
by the dates of publication. Section 4.1 contains a rigorous comparison of these
approaches.
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In [66] a new loss function for cross-view gait recognition called angle center loss
(ACL) and a method for learning spatial-temporal features that combines learned
horizontal partition and an LSTM attention model are proposed. Gait silhouettes are
divided into four horizontal parts and each part is fed into a separate CNN. Atten-
tion weights for each part are used to average frame-level features. During train-
ing, various weighted features are fed into various loss functions, but during testing,
the weighted features for each part are concatenated to form a feature vector. For
both verification and identification tasks, cosine similarities are determined between
these feature vectors. For each local part, several independent CNNs are used to
learn the local gait features, and a simplified spatial transformer network is used to
localize the informative parts. An LSTM-based temporal attention model is used to
capture the temporal features. The proposed method is evaluated using silhouettes
on three gait recognition datasets (CASIA-B, OULP, and OUMVLP with the accu-
racy of 96.0%, 99.3%, 89.0% respectively).

Fan et al. [67] introduces a deep learning-based solution for gait recognition (Gait
Part) which recognizes people based on their walking patterns. The method uses
a temporal part-based architecture consisting of Frame-level part feature extractor
(FPFE) and micro-motion capture module (MCM), two separate components. FPFE
aims to improve fine-grained learning of part-level features and while attention
based MCM aims to derive local short-range spatiotemporal expressions. Experi-
ments are performed on the CASIA-B and OUMVLP datasets and the averaged
rank-1 accuracies of the method are 96.2% and 88.7% respectively.

The research in [68] proposes the Gait Lateral Network (GLN), a new network
for learning discriminative and compact representations from silhouettes of gait
sequences. For correct recognition, GLN takes advantage of the intrinsic feature
pyramid in deep CNNs to extract discriminative features and lateral connections to
integrate silhouette-level and set-level features. Furthermore, GLN has a Compact
Block to considerably reduce the dimension of the gait representations, while main-
taining accuracy. The experiments are conducted on CASIA-B and OUMVLP data-
sets with the accuracy of 96.8% and 89.1% respectively.

In [11] a Set Residual Network (SRN) is presented for silhouette-based gait rec-
ognition. It has a fundamental block named Set Residual Block (SRBlock) which
builds the framework for feature learning from silhouettes. The SR Block is divided
into two parallel branches: the silhouette-branch (learn features from each silhou-
ette individually) and the set-branch (learn features from all silhouettes collectively).
The features retrieved from the two branches are concatenated using a residual con-
nection and Leaky ReL.U. The paper also presents a Dual Feature Pyramid approach
for learning more robust part representations for gait recognition using shallow layer
features. The proposed SRN is tested on the CASIA-B (accuracy is 97.1%) and
OUMVLP (accuracy is 89.1%) datasets.

In [69], a novel approach is proposed that uses 3D convolutional deep neural
network (3D CNN) to extract the spatiotemporal features of a gait sequence, while
adopting a holistic approach using GEls. This network is made up of two sets of
convolutional layers, each of which is succeeded by a pooling layer, followed by
batch normalization, and two fully connected layers. The proposed model is evalu-
ated on the CASIA-B and OULP datasets and to enhance performance, optimization
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techniques are applied. The best accuracy reported for CASIA-B dataset is 98.3%
and OULP dataset 93.1%.

The research in [70], a unique approach for gait recognition, introduces the use
of 3D local convolutional neural networks (CNNs) as building blocks. This block
enables the retrieval of local 3D volumes sequentially with adaptable spatial and
temporal scales, locations, and lengths. Location, sampling, feature extraction, and
fusion modules make up the network. Additionally, a framework for interacting with
and enhancing global and local 3D volume information in any layer of 3D CNNS is
presented in the paper. The proposed approach evaluated on CASIA-B (accuracies
are 97.5% and 98.3% for the resolution of 64 x44 and 128 x 88 respectively) and
OUMVLP datasets (accuracy is 90.9%).

The authors in [71] propose a method for gait recognition using a context-sen-
sitive temporal feature learning (CSTL) network and salient spatial feature learn-
ing (SSFL) module. The authors highlight that by focusing on various temporal
sequences with varying time scales, humans may distinguish between different gaits.
The CSTL network uses relation modeling to evaluate the importance of multi-scale
features, increasing the more significant scale and suppressing the less important
one. The SSFL module solves the misalignment problem induced by temporal oper-
ations by selecting discriminative spatial hints throughout the sequence. The sug-
gested method combines adaptive temporal learning with salient spatial mining. The
experiments are conducted on three datasets: CASIA-B (accuracies are 98.5% and
98.7% for the resolution of 64x44 and 128 x 88 respectively), OUMVLP (accu-
racy is 91.0%) and GREW (accuracy is 50.6%). Although CSTL achieves Rank-1
scores more than 90% on both CASIA-B and OU-MVLP datasets it achieves a
50.6% success rate in recognizing sequences on the GREW dataset. GREW is an
unconstrained benchmark for gait recognition, aiming to better simulate real-world
conditions than its predecessors, such as CASIA-B and OU-MVLP. The significant
variation in performance due to the GREW dataset’s inherently challenging condi-
tions. Unlike CASIA-B and OU-MVLP, which are partially controlled environments
with limited variations, GREW considers a wider range of factors, such as different
views, significant differences in clothing, and the presence of objects held by partici-
pants [21]. These factors provide an amount of complexity and unpredictability that
better captures real-world circumstances, but they also present more difficulties for
gait recognition systems.

The authors in [72] describe a method for gait recognition named gait quality
aware network (GQAN). It directly evaluates the quality of each silhouette and each
part, and it is made up of two blocks: the frame quality block (FQBlock) and the
part quality block (PQBlock). FQBlock adjusts the features of every silhouette sepa-
rately and combines the scores of all channels to generate a frame quality measure.
Meanwhile, PQBlock calculates the weighted distance between the probe and gal-
lery by estimating a score for each part. GQAN can be trained using only identity
annotations at the sequence level by using a loss function called Part Quality Loss
(PQLoss). CASIA-B and OUMVLP datasets are used to evaluate the proposed net-
work model and the best accuracy reported is 98.5% and 89.7%, respectively.

GaitSlice proposed in [10] is a unique gait recognition model and it enhances
recognition accuracy by refining spatial and temporal details of each portion of the
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human body. The model has slice extraction device (SED) and residual frame atten-
tion mechanism (RFAM) modules. SED divides the body into parts and connects
features of neighboring body parts from head to toe, and for each body component,
RFAM collects and emphasizes the significant frames of sequences. The GaitSlice
model combines RFAMs that run in parallel with interrelated slice features in order
to allow for flexible selection of the key frames of each body part. The model is
tested on two gait recognition datasets: CASIA-B (accuracy is 96.2%) and OUM-
VLP (accuracy is 89.3%).

GaitSet proposed in [73] considers gait as a set of gait silhouettes and uses a
deep learning model to recognize gaits. The paper emphasizes that the sequence of
poses during a walking period is not the most important information for differentiat-
ing individuals, since the pattern of the sequence is universal. The GaitSet model
extracts frame-level information from each silhouette using a CNN, then combines
these features into a single set-level feature using Set Pooling. Using Horizontal pyr-
amid mapping, the set-level feature is transformed into a space with more differen-
tiation ability. The experiments are conducted on CASIA-B and OUMVLP datasets
with the accuracy of 96.1% and 87.9% respectively.

The research in [74] proposes a sequential lightweight deep learning framework
for gait recognition. The researchers modify two pre-existing deep learning models
(VGG-19 and MobileNet-V2) and train them using transfer learning. Then, feature
engineering is conducted on the VGG-19 and MobileNet-V2. Finally, using discri-
minant correlation analysis (DCA), the resulting features were merged. In order to
select optimum features, a modified moth-flame optimization algorithm is proposed.
The chosen features are then categorized using an extreme learning machine (ELM).
The proposed method evaluated on CASIA-B (accuracy is 91.2%) and TUM-GAID
datasets (accuracy is 98.6%).

STAR (Spatio-Temporal Augmented Relation Network) introduced in [9] is a
novel approach for gait recognition. Multi-branch diverse-region feature generator
(MDEFG) and spatiotemporal augmented interactor (STAI) are the two modules that
make up the STAR. The MDFG has the capability to identify body features within
separate regions that do not overlap, while the STAI, uses the connections of these
regions within a frame and across various frames to create intra- and inter-relation
models. The introduced approach evaluated on CASIA-B and OUMVLP datasets
and the best accuracy reported is 97.3% and 89.7%, respectively.

In [75], GaitAMR is offered as a method for extracting discriminative subject fea-
tures for gait recognition. GaitAMR uses a holistic and partial temporal aggregation
technique that collects global and local body movement parameters. It is composed
of four primary parts: a baseline, spatial extraction, temporal extraction, and view
assessment. The baseline part uses silhouette information to convert gait samples
into features. Then, a multi-scale feature extractor processes the features to provide
richer motion data. The remaining sections analyze the features further to extract
relevant information, solving appearance occlusion and silhouette misalignment
challenges. After all the features from different domains have been combined, they
are sent to the classification layer for recognition. The proposed method evaluated
on CASIA-B (accuracies are 98.1% and 98.6% for the resolution of 64 x44 and
128 x 88 , respectively) and OUMVLP datasets (accuracy is 88.3%).
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4.1 Comparison of different approaches

Considering the methods reviewed in this survey, it has been observed that the
CASIA-B and OUMVLP datasets are the preferred primary datasets for evaluating
appearance-based gait recognition applications.

In this section, detailed explanations are provided on how each method differs
from previous ones and how these differences have led to success compared to ear-
lier methods. Since, the CASIA-B dataset is commonly used across all examined
studies, the papers are organized in ascending order based on the Rank-1 accu-
racy rates achieved on this dataset. The accuracy rates for the CASIA-B dataset in
Table 3, correspond to the accuracy under normal walking conditions.

The study conducted in [66], a loss function is proposed that enhances robustness,
especially when different spatial-temporal features are used. Loss functions in deep
learning have the advantage of learning discriminative features or metrics. Prior to
this study, gait recognition methods typically employed classical loss functions like
softmax. The loss function proposed in this paper has been shown to improve per-
formance when compared to previous works. Additionally, the study combines dif-
ferent parts of silhouettes with certain weight values. It is stated that the features
obtained in this way have increased the accuracy of the model, but this process
has brought along computational cost and feature dimension problems. Finally, the
LSTM attention model used to extract temporal features is mentioned to be insuffi-
cient in terms of efficiency due to the length of the testing sequence and low parallel
computing capacity.

In [73], a new method named GaitSet is proposed to obtain spatial and tempo-
ral information, differing from existing methods that view walking as a template
or sequence. The study demonstrates that using additional feature extraction meth-
ods alongside deep networks yields more successful results than those found in the
literature.

GaitPart [67] performs individual gait recognition by considering both static
appearance features and dynamic temporal information. Previous studies have been
conducted without detailed acquisition of temporal features. GaitPart stands out
with its detailed modeling of temporal features.

In [10], GaitSlice is proposed to refine gait recognition features in both spatial
and temporal dimensions, based on the logic that the less information included in
gait silhouettes, the more significant the role of key frames of body parts. The pro-
posed model has particularly improved gait recognition accuracy under cross-view
conditions and complex walking conditions.

In [74], the VGG-19 and MobileNet-V2 models were trained using deep transfer
learning. Subsequently, a new moth-flame optimization algorithm was developed to
select the best features. It has been stated that combining lightweight model features
with the developed algorithms is time-consuming, but accuracy has been increased
in this way. Additionally, it has been determined that the optimization algorithm
reduces computation time and increases accuracy.

In GLN [68], features at the silhouette-level and set-level were extracted at
different stages within the deep network backbone and were combined from top
to bottom via lateral connections. This approach aggregated more visual details,
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thereby enhancing the accuracy of gait recognition. Additionally, the size of the
gait representations was reduced using a compact block. The proposed method
has outperformed previous studies in the literature in terms of both accuracy and
size.

SRN [11] differs from previous studies mainly by its method of coordinating
silhouette-level and set-level information for set-based feature learning from sil-
houettes. Additionally, SRN proposes a method to leverage shallow layer features
to better learn part representations. In particular, compared to GLN, which uses sil-
houette-level and set-level information, it has been stated that upsampling or lateral
connections are unnecessary. Therefore, SRN suggests a method that utilizes only
marginal memory cost and takes advantage of shallow layer features to learn more
robust part representations. The proposed approach is superior to its counterparts in
terms of accuracy especially under challenging conditions.

The study conducted in [9] introduces a new spatiotemporal augmented relation
network (STAR). It facilitates the generation of visual clues in various regions for
fine-grained feature learning through its contained modules and adaptively locates
non-overlapped various regions that have significant identity information. With
these aspects it offers, it enables better extraction of distinct information among
frames and has improved accuracy compared to studies in the literature.

The method proposed in [70] extracts temporal features using its simple but effec-
tive three-dimensional CNN model. This method performs better than the other
studies through this feature extraction technique.

In the study conducted in [72], unlike other methods, a module named FQBlock
is proposed to measure the quality of each frame. FQBlock works on the number
of feature channels, evaluating the features of each frame separately. Moreover, the
attention values of each frame are based solely on its own features and do not change
with permutation according to the silhouette pattern. FQBlock shares weights across
different silhouettes, thus ensuring the comparability of attention values of frames in
different sequences. These features have enabled the GQAN method to achieve more
successful results than previous ones.

GaitAMR [75] is superior over other methods in both feature representation
and temporal representation dimensions, due to its attention to potential silhouette
error issues, the impact of local body features on final recognition, spatial occlusion
errors, and appearance variation. It also performs better than other methods in terms
of recognition performance within a smaller iteration period.

In [69], an effort was made to capture spatial features such as body shape and the
temporal characteristics of walking patterns, specifically to address the challenges
of person recognition encountered by gait recognition algorithms in open environ-
ments. GEI (gait energy images) and 3D CNN model was employed for both fea-
ture extraction and gait recognition. Additionally, the network’s parameters were
optimized using Bayesian optimization. Thanks to the proposed three-dimensional
model and the conducted hyperparameter optimization, this method ranks among
the successful studies in the literature.

In [71], a temporal modeling network is proposed to combine multi-scale tempo-
ral features. Additionally, a spatial feature learning module is also suggested to fix
feature corruption problems resulting from temporal processes. Studies conducted
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on datasets have demonstrated the superiority of the model compared to current
methods.

5 Challenges and future perspectives

Despite substantial improvement in recent years, there are still several challenges
in human gait recognition. These possible challenges include variability in walk-
ing patterns, occluded views, environmental factors, lack of gait datasets, ethical
and privacy concerns and learning challenges. The subsequent part of this section
provides a detailed description of them. The accuracy, reliability, and usefulness
of gait recognition systems can be improved by researchers by focusing on these
challenges.

5.1 Variability of walking patterns

People walk in different ways, and the same person may exhibit many walking styles
depending on circumstances such as walking speed, carrying and clothing, surface
type, and aging. When people walk at different speeds, or on different surfaces, they
naturally adjust gait parameters such as stride length and step width to maintain bal-
ance. Carrying a bag may cause the upper body to lean forward, resulting in a longer
stride length. Tight or restricting clothes can limit hip and leg range of motion and
high-heeled shoes can tilt the ankles forward, resulting in a shorter stride length.
These adjustments can cause changes in the way a person walks and the features
of their gait pattern. Most of the previous studies [9-11, 66-74] achieve promis-
ing results even with datasets with some of these conditions. Aging also can lead
to changes in the walking pattern. Changes in joint flexibility and mobility can lead
to a reduction in the stride length. Some data sets [21] contain gait data of the same
people at different times. Even so, the longest time interval is 15 months. There is a
need for further research over a much longer time frame.

5.2 Occluded views

In real-world scenarios, gait recognition systems can be blocked by obstacles such
as bags, cars that occlude the view of a part of a person’s body. This could be chal-
lenging to capture enough information about the gait pattern to identify an individ-
ual. The researchers who will create the new dataset can use multiple cameras or
sensors to collect data from different angles and viewpoints to solve the problem
of occluded views. Another way to solve this problem can be through human body
alignment, where the system aligns various parts of the body, including the head,
torso, and limbs. In this way, gait recognition algorithms can better detect and track
the person’s gait patterns, even in situations with partial obstacles. There are several
studies [69, 71, 75] specified they improve gait recognition in occlusion conditions,
and GaitPart [67] extracts gait features from different parts of the body and can par-
tially solve the problem of occluded views.

@ Springer



P. Giiner Sahan et al.

5.3 Environmental factors

In real-world scenarios there are many uncontrolled factors in the environment such
as lighting conditions, shadows, and camera angles that can affect gait recognition
accuracy. Researchers can conduct experiments in a number of real-world environ-
ments to investigate the impact of these factors on gait recognition accuracy. They
can identify which factors have the greatest impact on accuracy by collecting data
in varying lighting conditions, for example, and develop algorithms that are more
resilient to these variations. Varying lighting conditions affect the consistency and
reliability of the captured gait data collected. Gait recognition can be highly sensi-
tive to changes in lighting, which can alter the appearance of the subject’s silhou-
ette and overall visibility. Poor lighting can lead to incomplete or inaccurate silhou-
ettes, making it difficult to extract reliable gait features [76]. Fluctuating lighting can
introduce variability in important features, reducing the model’s ability to recognize
and classify gait patterns accurately. Strong lighting can create shadows that may be
misinterpreted as part of the gait, leading to incorrect feature extraction and analysis
[77]. By employing a combination of robust feature selection, preprocessing tech-
niques, depth sensing, and adaptive machine learning approaches, it’s possible to
mitigate the impact of lighting variability and enhance the performance of gait rec-
ognition systems in diverse environments. Most of the current publicly available gait
datasets were obtained under controlled conditions and are comparatively simple to
recognize. ResGait [62] dataset is based on real scenarios and GREW [21] dataset is
optimized for real-world applications.

5.4 Lack of gait datasets

Gait recognition systems rely on large amounts of data to accurately identify indi-
viduals. However, obtaining and labeling such data can be time-consuming and
expensive. A possible solution for researchers to access more data is to generate syn-
thetic gait data from virtual 3D human models. As synthetic data can be produced
with remarkable control and accuracy, it can also be used to create data that captures
specific variations in gait patterns that may be difficult to capture in real-world data.
VersatileGait [61] is the only synthetic data in gait recognition as far as we know,
and it contains gait data of 11,000 subjects. The use of unlabeled data, which is eas-
ily accessible via the videos on the Internet, can also help overcome the lack of gait
data. But, since labeling these data one by one will be tedious and time-consuming,
self-supervised learning can help researchers at this point. Self-supervised learning
has shown potential to train such unlabeled data, as it can learn useful representa-
tions of the data without requiring human labeling [78].

5.5 Ethical and privacy concerns

Gait recognition is a form of biometric identification, and there are worries over data
privacy and its exploitation. People may be worried about having their gait patterns

@ Springer



A survey of appearance-based approaches for human gait...

captured and retained, particularly if they are unfamiliar with the technology or how
their data will be used. Gait recognition could become a powerful tool for mass sur-
veillance, as gait can be captured remotely without the person’s knowledge or con-
sent. Gait data could be repurposed for uses not originally intended, or it might fall
into the hands of unauthorized individuals who could exploit it for illegal activi-
ties [79]. Addressing these concerns requires comprehensive regulatory frameworks.
There should be strict guidelines on data collection, usage, and storage, ensuring
individuals’ rights are protected. The gait data should be maintained securely and
protected from unauthorized access through secure storage and protective measures
such as encryption and access control. Moreover, the development of gait recogni-
tion technologies must include ethical considerations from the outset, with ongoing
assessments of their impact on society.

5.6 Learning challenges

The use of deep learning and machine learning techniques within gait recognition
areas brings several crucial challenges that must be resolved in order to get reliable
findings. An examination of a few key issues is provided below.

When a model learns the training set too well, overfitting occurs, and this leads
to poor generalization to new unknown data [80]. This could mean that the model
performs well when applied to known subjects but misrecognizes the gait patterns
of unknown subjects. Overfitting can be addressed by regularization strategies, data
augmentation approaches, and dropout layers (in deep learning models). Further-
more, using cross-validation to check model performance on unseen data during
training might lead to the early termination of training to avoid overfitting [81].

Deep learning models, in particular, are considered black boxes due to their com-
plex architectures and the high dimensionality of their learned feature spaces [80].
This lack of interpretability may cause issues in sensitive gait recognition systems,
where it is important to understand the reasoning behind decisions. Model behavior
may be partially understood by visualizing the parts of the input data that have the
most impact on the model’s decisions through the use of techniques such as layer-
wise relevance propagation (LRP) [82].

Machine learning and deep learning models, especially the deep learning models,
require large amounts of labeled data for training. It takes a lot of time and resources
to gather and analyze a large number of gait patterns. Using synthetic data or unla-
beled data might be an option as shown in 5.4.

Two major issues that can frequently arise in gait recognition with deep learn-
ing are catastrophic forgetting and low inter-class variance. Catastrophic forgetting
happens when a neural network loses information from past tasks after training on
a new task. Elastic weight consolidation (EWC), proposed to solve this problem,
allows the network to learn new tasks while helping to preserve weights that are
important for previous tasks [83]. Low inter-class variance indicates a situation in
which distinct classes (i.e., gait patterns of different individuals) have highly simi-
lar features, making it challenging for the model to distinguish between them suc-
cessfully. This can result in higher misclassification rates, since the model fails to
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identify unique identifying features that distinguish one person’s gait from another’s.
Feature aggregation is an effective method for addressing the challenge of low inter-
class variance in gait recognition and other tasks that require distinguishing between
extremely similar classes [84]. To address the challenge of low inter-class variance
in gait recognition, in [25] a novel approach is introduced through the development
of a generalized inter-class loss. This strategy tackles the problem by focusing on
both the sample-level and class-level feature distributions.

One of the most typical challenges in machine learning is class imbalance refer-
ring to a situation, where the number of instances of one class significantly out-
numbers the instances of one or more other classes in a dataset. This imbalance can
lead to biased models that tend to predict the majority class better than the minority
classes. In gait recognition tasks, each class typically represents an individual. If the
dataset contains approximately an equal number of walking examples for all individ-
uals, significant class imbalance does not occur. However, there may be situations
where some individuals have more examples than others. This could lead to the
model recognizing some individuals better than others, which can cause problems,
especially in sensitive applications. There are some strategies to solve the problem
of class imbalance such as oversampling (increasing the number of minority class
instances), undersampling (reducing the number of majority class instances) and
using ensemble methods [85].

6 Conclusion

This survey provides an extensive examination of appearance-based methods for
human gait recognition, covering the significant developments made in this field.
The paper highlights the enormous advances that have been achieved in this field as
well as the many strategies used for gait recognition using visual information. We
have demonstrated the effectiveness of appearance-based methods in successfully
recognizing individuals based on their unique gait patterns through careful examina-
tion. The paper also reviews publicly available gait datasets that are commonly used
for gait recognition, and it underlines the significance of dataset size, quality, and
diversity in the development of accurate and robust gait recognition algorithms. Fur-
thermore, challenges such as variability in walking patterns, occluded views, envi-
ronmental factors, lack of gait datasets, ethical and privacy concerns, and learning
challenges are addressed, along with potential solutions proposed in recent research.
In conclusion, while appearance-based human gait recognition demonstrates consid-
erable promise and has achieved significant progress, there is still need for further
exploration and improvement. Future research should focus on addressing the identi-
fied challenges, exploring the integration of different types of data, and improving
the interpretability and generalizability of gait recognition models. Overall, appear-
ance-based human gait recognition algorithms have a lot of potential for applica-
tions in surveillance, health and biometrics, and future progress in this subject will
help to improve security, personal identity, and health tracking systems.
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