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Abstract
The presence of microparticle viruses significantly impacts the quality of silkworm 
seeds for domestic sericulture, making their exclusion from detection in silkworm 
seed production crucial. Traditional methods for detecting microparticle viruses in 
silkworms, such as manual microscopic observation, molecular biology, and immu-
nological approaches, are cumbersome and unable to achieve intelligent, batch real-
time detection. To address this challenge, we employ the YOLOv8 algorithm in this 
paper. Firstly, NAM attention is introduced in the original algorithm’s Backbone 
component, allowing the model to extract more generic feature information. Sec-
ondly, ODConv replaces Conv in the Head component of the original algorithm, 
enhancing the model’s ability to identify microparticle viruses. Finally, NWD-LOSS 
modifies the CIoU loss of the original algorithm to obtain a more accurate prediction 
box. Experimental results demonstrate that the NN-YOLOv8 model outperforms 
mainstream detection algorithms in detecting silkworm microparticle diseases. With 
an average detection time of 22.6 milliseconds per image, the model shows prom-
ising prospects for future applications. This model improvement enhances detec-
tion efficiency and reduces human resource costs, effectively realizing detection 
intelligence.

Keywords Microparticle virus · YOLOv8l · NN-YOLOv8 · NAM · ODConv · 
NWD-LOSS

1 Introduction

1.1  Motivation

As a natural fiber, silk combines lightness, softness, and fineness, making it ideal for 
industrial production, medical testing, and manufacturing processes. High-quality 
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silkworm seeds can improve silk production and cocoon quality. However, the pres-
ence of microparticle viruses in the silkworm Bombyx mori seriously affects the 
quality of silkworm species. This not only leads to a decline in the survival rate 
of silkworms and a reduction in silk production but also results in substantial eco-
nomic losses to the silk industry. Since silk is the primary raw material for silk 
production, infection by microparticle viruses can reduce the quality and quantity 
of silk, impacting the output and quality of silk products. Consequently, this can 
decrease enterprise income and competitiveness in the silk market. Moreover, as 
silk is an important trade commodity, the issue of microparticle viruses may also 
affect a country’s trade income and adversely impact the national economy. There-
fore, achieving intelligent detection of microparticle viruses in domestic silkworms 
is essential. Microsporidium domestica is a specialized intracellular parasite of the 
domesticated silkworm, commonly found in the mulberry silkworm breeding indus-
try as a pathogen of microsporidiosis. If silkworm seeds are infected with micro-
particle disease, symptoms such as black spots, a swollen abdomen, developmental 
delays, and other issues may arise, seriously affecting silk production quality. Tra-
ditional methods for detecting microparticle viruses in domestic silkworms, such as 
manual microscopic observation, molecular biology, and immunology, are cumber-
some, slow, and incapable of achieving intelligent, batch real-time detection. Hence, 
there is an urgent need for a sensitive and intelligent detection method for rapid real-
time detection of microparticle viruses in silkworm species.

1.2  Contributions

In 1857, Nageli [1], in his research, first discovered microsporidia inside the cells 
of silkworm pupae, which is the primary pathogen of infection in silkworm species. 
Pasteur [2] found that oviposition could transmit the microsporidia from the mother 
moth to the offspring. Based on this research finding, examining mother moths using 
microscopic means were first developed in 1870 by Pasteur, which was based on the 
use of the naked eye through tiny observation of Nb spore morphology to make a 
judgment. However, this detection method requires experienced laborers to carry out 
the identification, which is time-consuming, labor-intensive, subjective to human 
factors, and unsuitable for large-scale detection in the sericulture industry.

As research into mulberry microsporidiosis has progressed further, various 
detection methods have been tried. Many scholars have used molecular biology 
and immunology in a laboratory setting to determine detection, such as Polymerase 
Chain Reaction [3] (PCR), Quantitative Real-time PCR [4], Loop-mediated isother-
mal amplification [5] (LAMP). The above detection methods reduce the wasteful-
ness of detecting moths by judging the infection based on the offspring rather than 
sampling and observing them from the mother. This type of detection provides a 
more reliable and effective method for detecting microsporidiosis in the mulberry 
silkworm. Hatakeyama and Hayasaka [6] and Liu et al. [7] developed PCR assays 
and LAMP methods, respectively, in the examination of silkworm eggs for micro-
particle disease based on the DNA sequence of microparticle disease, and these two 
types of method techniques are based on DNA information with specificity, and high 
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sensitivity has been rapidly developed. Rahul et al. [8] observed the whole process 
of microsporidia sampling and summarized the standard protocols for operation 
in different samples (silkworm eggs, larvae). Fu et  al. [9] developed a Quantita-
tive Real-time PCR-based molecular assay with high accuracy and high-throughput 
screening capability. He et al. [10] developed an assay system that combines PCR 
and Nucleic Acid Lateral Flow Strip (NAFLS), which is highly sensitive and easy to 
use. Li et al. [11] proposed an ALMS-qPCR technique combining rapid and straight-
forward DNA extraction and Quantitative Real-time PCR, which can be applied to 
screening pathogenic molecules. Methods based on molecular biology are suscepti-
ble and specific but require special instruments and cumbersome operational steps.

Wang et al. [12] developed two monoclonal antibodies, 2G10 and 2B10, to study 
the localization of spore wall proteins of microparticle viruses using Immunologi-
cal Fluorescence Assay (IFA) and protein blotting tests. An experimental study by 
Li et  al. [13] successfully identified silkworm microsporidia by DALDI-TOF-MS, 
named SWP26, which showed that it could be used for diagnostic and drug detec-
tion studies. Immunological methods are highly feasible and faster to detect. How-
ever, there are several drawbacks to this method, including cross-contamination, 
limited applications in practical production, as well as extended time requirements, 
and incapacity to handle large numbers of samples.

2  Related work

As computer technology has developed rapidly, researchers are exploring machine 
vision-based approaches to detect microparticle viruses in silkworm species. Xu 
[14] applied digital technology to create a microphotography system that solved the 
reproduction problem in examining microparticle disease, improved examination 
ergonomics, reduced costs, and eased work intensity. Zhou et al. [15] addressed the 
inefficiency of manual detection of microparticle viruses in silkworms by experi-
menting with electronic techniques for image analysis of microparticle virus patho-
gens. A CIAS image analyzer was used to test the method on stained images, and 
the results indicated that the technique could detect microparticle viruses effectively. 
Hu [16] proposed a microparticle image segmentation technique based on the HSI 
model for complex backgrounds. This technique separated only the target image 
from the non-target image and improved the adaptability of the two-dimensional 
Ostu segmentation method. However, machine vision-based detection methods are 
cumbersome in their steps, require high experimental instrumentation, are poorly 
resistant to interference, and detection algorithms need to provide better detection 
of complex microparticle virus images. Table 1 provides a comparative summary of 
related work based on references, type of analysis, and methodology.

A growing number of neural network-based target detection algorithms have been 
developed and used in a variety of fields in recent decades, including image classi-
fication [17], industrial inspection [18], autonomous driving [19], intelligent visual 
charging technology [20–22], the fields of traffic signs and road object detection [23, 
24]. Modern target detection algorithms fall into two major categories. One is the 
two-stage algorithm, like Region-CNN [25] (RCNN), Fast Region-based CNN (Fast 
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RCNN) [26], Faster Region-based CNN (Faster-RCNN) [27]. The other is the one-
stage algorithm, for instance, CenterNet [28], Single Shot Multibox Detector (SSD) 
[24], You Only Look Once (YOLO) [29–34]. This algorithm eliminates the need for 
complicated processes such as image pre-processing and image feature extraction, 
which is highly operational and can be adapted to detect complex scenes.

Silva et al. [35] developed the original RetinaNet model to address the issue of 
rapid detection and counting of leukocyte counts in an In vivo microscope (IVM), 
which transforms the image randomly and uniformly by RGB and HSV color 
schemes, and then expands the data by simulating sample motion with different 
Point spread functions (PSF) as well as variability transformations. The method has 
been shown to be more effective in detecting white blood cell counts. Wang et al. 
[36] proposed an SSD-KD skin cancer detection model. The model uses a weighted 
loss function of cross-entropy for improving disease information extraction and 
incorporates a self-supervised assisted learning strategy to aid training. Experiments 
showed that the model could better detect skin diseases. Fourier laminar microscopy 
is used to detect small white cells. Wang et al. [37] developed the SO-YOLO model. 
The method combines multi-resolution features with grids with higher resolutions 
to detect small targets. Li et al. [38] proposed an MTC-YOLOv5 algorithm for the 
detection of cucumber plant diseases, which added Coordinate attention (CA) to 
reduce background interference, combined a Multi-scale (MS) training to improve 
the detection accuracy of small targets, and experimental results showed that the 
algorithm had high detection accuracy and speed. Zhu et al. developed a faster and 
more accurate SE-YOLOV5 model [39] proposed an improved YOLOv5 model for 
fast sperm detection, which added a Shuffle attention (SA) mechanism to enhance 
the detection performance of sperm and used DWConv to enhance the speed of con-
vergence. Experiments showed that the model effectively reduced sperm leakage 

Table 1  YOLOv8 model performance analysis

References Analysis type Methods

Nageli [1] Microscopic observation First discovery
Pasteur [2] Microscopic observation Microscopic examina-

tion of female moths
Hatakeyama and Hayasaka [6] Molecular biology PCR
Liu et al. [7] Microscopic observation LAMP
Rahul et al. [8] Molecular biology Summary
Fu et al. [9] Molecular biology qPCR
He et al. [10] Molecular biology PCR+NAFLS
Li et al. [11] Molecular biology ALMS-qPCR
Wang et al. [12] Immunology IFA+Mab2G10
Li et al. [13] Immunology SWP26
Xu [14] Microscopic observation Summary
Zhou et al. [15] CIAS image analyzer Observation of staining
Hu [16] Machine learning HSI+BP Neural network
Ours Deep learning YOLOv8
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and improved detection accuracy. Zhang et al. [40] proposed an enhanced algorithm 
for YOLOv5 and random forest, which introduced HSV and Res-Net to extract fea-
tures and used the random forest to classify and calculate wheat ears for Fusarium 
head blight (FHB) infection in wheat, which cannot be detected with high accuracy. 
Experiments show that the algorithm can quickly and efficiently assess the damage 
caused by FHB to wheat.

In summary, deep learning-based intelligent detection algorithms hold significant 
promise for cell detection. However, there has been limited exploration of such algo-
rithms for detecting microparticle viruses. The current detection methods, which 
rely on manual observation, molecular biology, and machine vision, are labor-inten-
sive and unsuitable for large-scale microparticle virus detection. Traditional deep 
learning detection tasks typically rely on publicly available datasets, which often 
feature distinct and large-scale features. However, microparticle virus samples are 
rare and require observation and sampling using an electron microscope. Moreo-
ver, microparticle viruses exhibit small and inconspicuous features, posing chal-
lenges for accurate feature extraction and detection. These factors increase the dif-
ficulty of detection and accuracy in microparticle virus detection tasks. In light of 
this research status, this paper develops a microparticle intelligence algorithm for 
silkworm species based on YOLOv8l named NN-YOLOv8, which has the following 
main contributions: 

(1) Using NAM attention as a mechanism introduced into the Backbone component 
in the model with the intention of enhancing its ability to extract generic features.

(2) In this study, ODConv is used instead of Conv in the Head part of the original 
model, which enhances its ability to recognize small targets.

(3) In this study, by using NMS-LOSS as opposed to the CIoU loss in the original 
model, one will obtain a more accurate prediction box.

3  Materials and methods

3.1  Dataset construction

Currently, there needs to be more research on the detection of silkworm microparti-
cle viruses using deep learning methods at home and abroad, and there are no pub-
licly available datasets. Therefore, a silkworm species microparticle virus dataset 
was constructed in this work. The dataset was sampled from a silkworm breeding 
farm in the Guangxi Zhuang Autonomous Region, from which 244 specimens con-
taining microparticle viruses were sampled and magnified 400 times by electron 
microscopy, with 7–10 images saved for each specimen at random, yielding 2180 
images, the number of labeled viruses is about 26,000, all with a pixel size of 3840 
× 2160. They were randomly divided into Train, Val and Test in the ratio of 8:1:1. 
Microparticle viruses are oblong and green in color, measuring (3.6–3.8) μm × 
(2.0–2.3) μm , and occupy only 15 × 25 pixel values in the image. In addition, the 
dataset images contain other impurities, such as silkworm moth fragments, air bub-
bles, and nematodes. Figure 1 shows the microparticle virus sample data.
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Deep learning algorithms rely on datasets with labeled data for effective training. 
In this process, the targets to be detected are manually outlined and assigned cor-
responding labels. The annotated data are then used to train the algorithm. In this 
document, the LabelImg software is used for data annotation. Sample frames within 
the regions of interest are annotated, and labeling information is added. Once the 
annotations are complete, the software generates a TXT file for each labeled sample 
box, containing position information and corresponding labels. These files serve as 
the training dataset for the YOLOv8 model. The data labeling process used in this 
paper is illustrated in Fig. 2 below.

3.2  NN‑YOLOv8

Among the current mainstream algorithms for target detection, the YOLOv8 algo-
rithm is widely utilized in various fields. Comprising Backbone, Neck, and Head 
components, YOLOv8 serves as a cornerstone in numerous applications. In this 
study, we introduce enhancements to the NN-YOLOv8 model, which is built upon 
the YOLOv8 framework. The structural diagram is depicted in Fig.  3. Firstly, to 
enhance the model’s capability in extracting generic features, we integrate the NAM 
attention mechanism into the end of the Backbone. Secondly, aiming to improve the 
model’s ability to detect microparticle viruses, we replace Conv with ODConv in 
the Head section to enhance performance. Lastly, we recalibrate the losses using 
NWD-Loss instead of CIoU to obtain more accurate prediction boxes.

Fig. 1  Microparticle virus images
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Fig. 2  Data labeling

Fig. 3  NN-YOLOv8 structure
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3.3  NAM attention module

For improved extraction of generic feature information from the model, attention 
mechanisms are often incorporated to highlight the key features of the image, 
reducing the focus on other factors, and thus improving detection speed and accu-
racy [41–43]. Liu et al. [44] proposed a Normalization-based Attention Module 
(NAM), which redesigned the spatial and channel attention modules using the 
idea of weights. According to Eq. (1), the channel attention module uses a scale 
factor based on Batch Normalization (BN).

Where BN denotes batch normalization, Bin and Bout as the input and output of 
image features. �B is the mean, and �B is the standard deviation. � for errors, � and 
o are trainable affine transformation parameters (scale and displacement). The dia-
gram of the channel attention submodule can be found in Fig. 4 and is calculated as 
shown in Eqs. (2) and (3).

Where Mc is used as the output of the image features, for each channel, � is the 
scale factor, and W� is the corresponding weight of the module.

Pixel importance can be measured using scale factors. The corresponding spa-
tial attention module is shown in Fig. 5 and is calculated as shown in Eq. (4).

Ms is used as the output of the image features, and W� is the corresponding mass 
of the module. In Eqs.  (3) and (4), the higher the � , the richer the information 

(1)Bout = BN
(
Bin

)
= �

Bin − �B√
�2
B
+ �

+ o

(2)Mc =sigmoid
(
W�

(
BN

(
F1

)))

(3)W� =�i∕
∑
j=0

�j

(4)Ms = sigmoid
(
W�

(
BNs

(
F2

)))

Fig. 4  Channel attention submodule



1 3

Intelligent detection method of microparticle virus in silkworm…

contained in the channel, the higher the weight given through the sigmoid function, 
and the lower the � , the more homogeneous the information contained in the chan-
nel, the lower the weight given, and the lower the channel with lower feature infor-
mation is suppressed through the idea of weight.

To reduce other weight interference, Eq. (5) is amended with a regulariza-
tion term. x, y represents the input and output, and W represents the weights of the 
network.

where l(x) is the loss function and g(x) is the L1 parametrization. p is a func-
tion of the equilibrium g(�) and g(�) . Adding L1 regularization compresses some 
weight parameters to minimal values to achieve feature selection and sparsity. This 
approach can help the model learn important features more efficiently and improve 
the generalization ability and performance.

3.4  ODConv

Recently, many scholars have enhanced their models’ ability to extract small tar-
get objects by utilizing convolutional kernels of varying sizes. Omni-dimensional 
dynamic convolution (ODConv) achieves dynamism by parallelizing four dimen-
sions: kernel size, number of kernels, input channels, and output channels [45]. By 
allowing the convolution operation to integrate these four dimensions for output, 
ODConv can better extract features from images and effectively apply them to objects 
with complex backgrounds and irregular shapes. Additionally, after the input image 
undergoes feature vector compression through Global Average Pooling (GAP), it is 
mapped to a new feature space following the Fully Connected (FC) layer and ReLu 
activation function. Furthermore, the convolutional feature extraction capability is 
enhanced through parallel complementary superposition, achieved by four independ-
ent branches in four dimensions and four independent Sigmoid functions.” ODConv 
belongs to the category of plug-and-play dynamic convolution. In this study, Back-
bone’s Conv is replaced by ODConv to enhance the model’s ability to recognize 
small-sized targets. The model’s operational diagram is illustrated in Fig. 6.

(5)LOSS =
∑
(x,y)

l(f (x,W), y) + p
∑

g(�) + p
∑

g(�)

Fig. 5  Spatial attention module
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Calculated as shown in Eq. (6), x and y are the output of the image features, and 
Wi is the i-th convolutional kernel. ��i is the attention scalar for the i-th convolu-
tional kernel, �si, �ci, �fi are the attention scalars along the space, input, and output 
channels. Across the various dimensions of the kernel space, ⊙ is the multiplication 
operation.

3.5  NWD‑LOSS

In order to address the issue of slow convergence of the loss function and low 
detection accuracy for some objects, leading to a reduction in the Intersection 
over Union (IoU), several scholars have proposed alternative calculations to 
replace the original CIoU [46–48]. In the context of small target detection, using 
CIoU may result in a higher loss of confidence, as the predicted anchor box may 
not precisely enclose the target object in a standard rectangle. Therefore, this sec-
tion adopts the Normalized Gaussian Wasserstein Distance Loss (NWD-Loss), 
which recalculates the loss using the Wasserstein distance [49]. This approach 
involves modeling the bounding box as a Gaussian distribution and computing 
the difference between two Gaussian distributions using the Wasserstein distance 
to measure the similarity between the detected bounding box and the actual tar-
get. Subsequently, this similarity metric is normalized to a range between [0,1] 
for loss calculation. A higher similarity metric indicates greater resemblance 
between the detected bounding box and the actual target, whereas a lower similar-
ity metric suggests less resemblance.

(6)y =
(
𝛼𝜔1 ⊙ 𝛼f1 ⊙ 𝛼c1 ⊙ 𝛼s1 ⊙W1 +⋯⊙ 𝛼𝜔n ⊙ 𝛼fn ⊙ 𝛼cn ⊙ 𝛼sn ⊙Wn

)∗
x

Fig. 6  ODConv structure
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The box is modeled as a two-dimensional Gaussian distribution. The equation 
for its inner connection ellipse is shown in Eq. (7).

In this case, �x and �y represent the coordinates of the ellipse’s center. Similarly, �x 
and �y represent the semi-axes along x and y , respectively.

Equation (8) illustrates a two-dimensional Gaussian probability density 
function.

Where x,� and Σ denotes the coordinates, vectors of the Gaussian distribution when 
Eq. (9) are satisfied:

An ellipse in Eq. (7) indicates the densities profile of a 2D Gaussian distribution so 
that its border resembles a 2D Gaussian distribution, in which the values are shown 
in Eq. (10).

At this point, it is possible to translate border A’s similarity to border B’s similar-
ity into a Gaussian distribution distance. In the case of two Gaussian distributions 
�1

(
m1,Σ1

)
 and �2

(
m2,Σ2

)
 , the two-dimensional Gaussian distance between them is 

calculated as shown in Eq. (11).

In the following example, F stands for Frobenius parametrization. The Gaussian 
distribution for modeling border A

(
cxa, cya,wa, ha

)
 and border B

(
cxb, cyb,wb, hb

)
 is 

Na ⋅Nb can be further simplified to Eq. (12).

Normalizing this yields Eq. (13).

(7)
(
x − �x

)2
�2
x

+

(
y − �y

)2
�2
y

= 1

(8)f (x ∣ �,Σ) =
exp

(
−

1

2
(x − �)T (x − �)

)

2�|Σ| 1

2

(9)(x − �)TΣ−1(x − �) = 1

(10)� =

[
cx

cy

]
,Σ =

[
w2

2
0

0
h2

2

]

(11)W2
2

�
�1,�2

�
= ‖m − m‖2

2
+
���Σ

1∕2

1
− Σ

1∕2

2

���
2

F

(12)W2
2

(
Na,Nb

)
=

‖‖‖‖‖‖

([
cx, cy,

wa

2
,
ha

2

]T
,

[
cxb, cyb,

wb

2
,
hb

2

])‖‖‖‖‖‖
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Constant C. Using NWD-LOSS instead of the original loss function IoU improves 
accuracy by maintaining scale invariance while better detecting small targets.

4  Experimental environment and evaluation criteria

4.1  Experimental environment

This study conducts all experiments under Windows 10. During the experiment, the 
hardware environment is Intel(R) i7-11700KF@3.60GHz 8CPU, NVIDIA RTX3080Ti 
GPU, 64 G RAM. Programmed in Python 3.7. Deep learning frameworks are CUDA 
11.0 and CUDNN 11.1. A Stochastic Gradient Descent (SGD) method was employed 
to optimize the model. During the training process, we utilized input images with 
dimensions of 3840 × 2160 , and the official yolov8l.pt file served as the pretrained 
model for training. We determined the epoch to be 150 based on early stopping criteria 
and the observation that the training loss stabilized without further decrease. Consider-
ing the performance of the GPU graphics card, we set the batch size to 16. Empirically, 
we assigned the initial learning rate to 0.001, the mosaic enhancement to 1.0, and the 
mix-up enhancement to 0.243. These hyper-parameters will remain consistent for sub-
sequent experiments.

4.2  Evaluation criteria

In this experiment, the following evaluation criteria were used: Precision (P), Recall 
(R), Average Precision (AP), and mean Average Precision (mAP).

The model’s correct detection rate is True Positive (TP), and the incorrect detection 
rate is False Positive (FP). P is the model’s accuracy; R is the regression rate. The for-
mulae are shown in Eqs. (14) and (15).

AP is expressed as the average precision of the prediction based on the following 
Eq. (16).

(13)NWD
�
Na,Nb

�
= exp

⎛
⎜⎜⎜⎝
−

�
W2

2

�
Na,Nb

�

C

⎞
⎟⎟⎟⎠

(14)P =
TP

TP + FP
× 100%

(15)R =
TP

TP + FN
× 100%

(16)AP = ∫
1

0

P(R)dR
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The mAP is an ideal metric for assessing models and is calculated as shown in Eq. 
(17):

In Eq. (18), F1 is calculated as the summed average of precision and recall.

5  Experimental results

5.1  Model validation

Based on the model’s width and depth, the YOLOv8 algorithm can be classified 
into five different versions: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 
YOLOv8x. In this section, we experiment with the constructed silkworm micropar-
ticle virus dataset using each of these five versions, and the comparative results are 
presented in Table 2.

Compared to the YOLOv8n model, the YOLOv8l model exhibits a 3.4% higher 
precision, a 1.4% higher recall, and a 5.3% higher mAP, with an average single 
image detection time increase of 3.5ms. In comparison with the YOLOv8s model, 
the YOLOv8l model demonstrates a 2.4% higher precision, a 0.1% higher recall, 
and a 3% higher mAP, with an average single image detection time increase of 3ms. 
When compared to the YOLOv8m model, the YOLOv8l model shows a 1.1% higher 
precision, a 1.4% higher mAP, and an increase in average single image detection 
time of 1.8ms. Finally, compared to the YOLOv8x model, the YOLOv8l model 
exhibits a 2.3% higher precision, a 0.2% higher recall, and a 2.2% higher mAP, with 
the average single image detection time reduced by 0.4ms.

The average single image detection time has been reduced by 0.4ms. Precision 
and Recall are often negatively correlated in a model, while mAP serves as the 
most important evaluation metric for measuring model performance. In summary, 
the YOLOv8l model demonstrates superior detection performance for silkworm 
microparticle viruses. Additionally, to provide a more visual representation of the 

(17)mAP =
1

N

N∑
1

AP

(18)F1 = 2
P × R

P + R

Table 2  YOLOv8 model 
performance analysis

Method Precision (%) Recall (%) mAP (%) Speed (ms)

YOLOV8n 59.8 66.7 59.2 11.2
YOLOv8s 60.8 68 61.5 11.7
YOLOv8m 62.1 68.5 63.1 12.9
YOLOv8l 63.2 68.1 64.5 14.7
YOLOV8x 60.9 67.9 62.3 15.1
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Fig. 7  F1 Curve and PR Curve, a is F1 Curve and b is PR Curve
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YOLOv8l model’s performance, we compare the F1_Curve with the PR_Curve for 
the YOLOv8 model in its four different versions. The results clearly indicate that 
the YOLOv8l model outperforms the other models in both the F1_Curve and PR_
Curve. Figure 7 illustrates the comparison results.

5.2  Ablation experiments

In order to verify the effectiveness of the module used in this paper in the model, we 
replace the mainstream attention mechanisms such as ECA [50], SimAM [42] and 
CBAM [51] and compare them with the original YOLOv8l model in terms of Preci-
sion, Recall, and mAP, and the comparison of the data is shown in Table 3:

As can be seen from Table 3, YOLOv8l+CBAM performs best in Precision with 
65.4%, which is 2.2% higher than the YOLOv8l model, and YOLOv8l+NAM has 
the best performance in Recall and mAP with 71.8% and 67.6%, which is higher 
than the YOLOv8l model with 3.7% and 3.1%, respectively, compared to the 
YOLOv8l model. The implementation results show that the NAM attention mecha-
nism performs excellently in this paper’s dataset. Using different types of convolu-
tions will give the model different features. When processing the features, we used 
three convolutions, DSConv [52], and GNConv [53] for validation. The comparison 
results are shown in Table 4:

As can be seen from Table 4, in terms of Precision, YOLOv8l+DSConv performs 
better with 68.3%, which is 5.1% higher compared to the YOLOv8l model, and in 
terms of Recall and mAP, the YOLOv8l+ODConv model performs the best with 
72.1% and 67.7%, which is 4% higher compared to the YOLOv8l model and 3.2%. 
The experimental results show that ODConv improves the expressiveness of the 
model in the dataset used in this paper and is more effective than other convolutions.

Adjusting the loss of the model can recalculate the loss to the model, which in 
turn improves the accuracy of the prediction; we used four loss functions: SIoU 

Table 3  comparison of different 
attention mechanisms

Method Precision (%) Recall (%) mAP (%)

YOLOv8l 63.2 68.1 64.5
YOLOv8l+NAM 64.7 71.8 67.6
YOLOv8l+ECA 64.6 70.4 65.1
YOLOv8l+SimAM 63.9 70.6 64.8
YOLOv8l+CBAM 65.4 70.1 66.6

Table 4  Comparing different 
convolutions

Method Precision (%) Recall (%) mAP (%)

YOLOv8l 63.2 68.1 64.5
YOLOv8l+ODConv 64.6 70.4 65.1
YOLOv8l+DSConv 68.3 67 65.6
YOLOv8l+GNConv 64.3 67.7 64.8
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[47], WIoU [48], GIoU [54] recalculation and validation. The comparison results 
are shown in Table 5:

As can be seen from Table 5, YOLOv8l+NWD-LOSS has the best performance 
in terms of Precision, Recall, and mAP, reaching 69.1%, 70.3%, and 68.5%, respec-
tively, which are 5.9%, 2.2%, and 4% higher than the YOLOv8l model compared 
to the YOLOv8l model, respectively. The implementation results show that NWD-
LOSS can minimize the loss in training and guide the model to converge toward the 
optimal solution.

To validate the proposed model, this section conducts a comparative experiment 
for each improvement step. Table 6 provides a concise overview of the outcomes of 
their comparison at each stage.

Incorporating the NAM attention mechanism into the YOLOv8l model improved 
Precision and Recall by 1.5% and 3.7%, respectively, while increasing mAP by 
3.1%. This enhancement came at the cost of a 6.6ms increase in average single 
image detection time. Subsequently, integrating ODConv further improved Precision 
and Recall by 0.3% and 2.3%, respectively, and mAP by 2.5%, with a slight increase 
in detection time by 1.2ms compared to YOLOv8l+NAM. Finally, implementing 
NWD-LOSS led to a 2.1% increase in Precision, a 2.4% increase in mAP, and only a 
marginal 0.1ms increase in detection time compared to YOLOv8l+NAM+ODConv.

In addition, to give a more visual representation of the NN-YOLOv8 model’s 
performance, this section compares the F1_Curve and PR_Curve of the YOLOv8l 
and NN-YOLOv8 models with the actual inspection plots. Figure 8 shows that the 
modified NN-YOLOv8 model performs much better in F1_Curve and PR_Curve. 
Figure 9a shows the actual position of the microparticle virus in the picture to be 
detected, Fig. 9b depicts a comparison of model heat maps, and Fig. 9c compares 
the level of detection of the model. Comparing the NN-YOLOv8 model to the 
YOLOv8l model indicates that the NN-YOLOv8 algorithm is more accurate and has 

Table 5  Comparing different 
loss functions

Method Precision (%) Recall (%) mAP (%)

YOLOv8l 63.2 68.1 64.5
YOLOv8l+NWD-LOSS 69.1 70.3 68.5
YOLOv8l+WIoU 66.4 67.7 66
YOLOv8l+SIoU 66.3 68.1 65.7
YOLOv8l+GIoU 67.9 69.2 66.3

Table 6  Comparison of ablation experimental performance

Method Precision (%) Recall (%) mAP (%) Speed (ms)

YOLOv8l 63.2 68.1 64.5 14.7
YOLOv8l+NAM 64.7 71.8 67.6 21.3
YOLOv8l+NAM+ODConv 65 74.1 70.1 22.5
YOLOv8l+NAM+ODConv+NWD-LOSS 67.1 74.3 72.5 22.6
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Fig. 8  F1 Curve and PR Curve, a is F1 Curve and b is PR Curve
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a lower miss detection rate. However, compared to all the microparticle viruses pre-
sent in Fig. 9a, it can be observed that there is still a certain status quo of missed 
detections. NN-YOLOv8 More detection diagrams are shown in Fig. 10. A compari-
son of Figs. 9 and 10 reveals that, despite the strong performance of our proposed 
NN-YOLOv8 model in detection, there are still instances of missed detections. This 
is attributed to the smaller size and less prominent features of the undetected micro-
particle viruses.

5.3  Comparative analysis of different algorithms

In this section, a comprehensive comparison between the proposed NN-YOLOv8 algo-
rithm and mainstream algorithms, including YOLOv3, YOLOv4, SSD, Fast-RCNN, 
and YOLOv8l, is presented to further validate its performance. Figure  11 depicts a 
comparison of their mAP values. Introducing error bars in the bar chart image data 
analysis enhance its credibility. Error bars are used to represent the uncertainty or vari-
ability of the data, visually indicating the range of the data and assisting in evaluating 
the credibility of prediction results. Compared to the YOLOv3 algorithm, the proposed 
NN-YOLOv8 model achieves a remarkable 27.65% improvement in mAP. Similarly, 
in comparison with the YOLOv4 algorithm, the NN-YOLOv8 model exhibits a sub-
stantial improvement of 25.15% in mAP. Moreover, when compared to the YOLOv8l 
model, the NN-YOLOv8 model demonstrates an 8% improvement in mAP, signifying 

Fig. 9  Heat map versus actual inspection, a depicts the positions of all viral particles, b shows the mod-
el’s heatmap, c displays the actual detection results
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its superior performance. Additionally, when compared to the Faster-RCNN algorithm, 
the NN-YOLOv8 model outperforms with a significant improvement of 32.68% in 
mAP. Furthermore, compared to the SSD algorithm, the NN-YOLOv8 model shows a 
remarkable enhancement of 45.89% in terms of mAP. In summary, the proposed NN-
YOLOv8 algorithm, as presented in this study, exhibits higher mAP and detection per-
formance compared to mainstream detection algorithms.

Fig. 10  More test results, a is YOLOv8l test results, b is NN-YOLOv8 test results
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6  Conclusion and future studies

In this paper, we propose NN-YOLOv8l as an enhanced version of the YOLOv8l 
model. The enhancements include the incorporation of the NAM attention mech-
anism into the Backbone component to improve generic feature extraction. Addi-
tionally, ODConv is utilized instead of Conv in the Head component to enhance 
the model’s capability in detecting small target objects. Lastly, NMS-LOSS is 
employed to mitigate the CIoU loss, aiming for more accurate prediction boxes. 
According to experimental results, the NN-YOLOv8 model achieves a remark-
able mAP of 72.5%. Compared to mainstream target detection algorithms, NN-
YOLOv8 demonstrates superior performance in detection. In practical applica-
tions, researchers only need to collect samples of the specimens, as the model can 
swiftly determine the location and density of microparticle viruses in the image. 
This capability fulfills real-time detection requirements, eliminating the necessity 
for experienced validators to make judgments and effectively addressing the issue 
of high manual labor intensity.

Although the model exhibits a superior mean Average Precision (mAP) com-
pared to other mainstream algorithms, several shortcomings still require atten-
tion. These include the relatively lower mAP of the model, the excessive number 

Fig. 11  Comparison of different algorithms mAP
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of layers in the improved model leading to a high number of parameters, which 
results in a large model size unsuitable for embedded device applications, and 
the presence of smaller microparticle viral microspores leading to detection leak-
age. Following team consultation, it was determined that excessive background 
impurities and motion blur in the captured images contribute to these issues. To 
address this, the next step involves processing the background impurities using 
image processing techniques such as top-hat arithmetic on the dataset. This will 
help lighten the model and improve its performance. Generative adversarial net-
works (GAN) will deblur the images, resulting in more precise and accurate pic-
tures. The high-quality images generated through this process will be used to 
train the detection model further, leading to improved detection accuracy.
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