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Abstract
Implicit neural networks and the related deep equilibrium models are investigated. 
To train these networks, the gradient of the corresponding loss function should be 
computed. Bypassing the implicit function theorem, we develop an explicit repre-
sentation of this quantity, which leads to an easily accessible computational algo-
rithm. The theoretical findings are also supported by numerical simulations.

Keywords  Implicit neural network · Deep equilibrium model · Backpropagation · 
Directed cyclic graph

1  Introduction

The conventional neural networks have a feedforward structure: several layers are 
stacked after each other and their output can be computed explicitly. To generalize 
this structure, the so called implicit neural networks were introduced and analyzed 
in [1–5]. Also, a related approach called the deep equilibrium models was devel-
oped in the works [6–8]. Shortly, this model can be described as a feedforward deep 
neural network with identic layers. Practically, by increasing the number of layers, 
the existence and the computation of an equilibrium state is investigated. More pre-
cisely, Bai et al. [6] formulated an L-layer feedforward network as
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, where z[k] are the hidden states in the k-th layer and the input x was utilized in each 
transition. In case of certain stability conditions, the limit L → ∞ corresponds to a 
fixed-point iteration and hence leads to an equilibrium solution z of the equation

However, the main task is to minimize a given loss function E(z;t) among the solu-
tions of Eq. (1) by optimizing the parameters � of the transformation f

�
 . Here, for a 

gradient-based optimization technique, the gradient �E
��

 of the loss function has to be 
calculated. The corresponding theory is based on the implicit function theorem, see 
[6, 9], and [1]. An efficient numerical approximation of z in Eq.  (1) is also rather 
complex, for further details see [7, 10, 11].

Our contributions in this paper, being theoretical and empirical, are as fol-
lows. We introduce implicit neural networks similarly to deep equilibrium mod-
els, and propose a novel theory bypassing the traditional reliance on the implicit 
function theorem. This advancement leads to an easily accessible algorithm for 
computing the gradient. Our theoretical results are also confirmed with numeri-
cal simulations providing empirical evidence for our theoretical contributions.

2 � Preliminaries

2.1 � Construction of the network

In general, a neural network is represented by a directed graph [12], the computa-
tional graph of the network. A network is called feedforward or acyclic if the cor-
responding graph is acyclic. Similarly, cyclic directed graphs correspond to the so-
called implicit neural networks.

We use K for the total number of vertices, which are also called the neurons. 
Let aj denote the activation value of the j-th neuron with fj ∶ ℝ → ℝ being the 
corresponding activation function. Common examples are, e.g., fj(z) = tanh(z) 
or fj(z) = max{0, z} . Let the lift operator ⋅̂ ∶ ℝ

L
→ ℝ

K be defined by the formula 
x̂ =

(
x1,… , xL, 0… , 0

)T  . That is, we assume that the input data is copied to the 
first L neurons of the network for simplicity.

For an input vector x ∈ ℝ
L , the network is evaluated as follows. If a neuron with 

index j receives a stimulus of magnitude al from its ancestor of index l along the 
edge with the weight wj,l and a constant stimulus bj (also called the bias) applied to 
it, then the cumulated input zj of this neuron is

z[k+1] = f
�
(z[k]; x), k = 0,… , L − 1,

(1)z = f
�
(z; x).

(2)zj =
∑

l

wj,lal + bj + x̂j.
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Accordingly, the activation value of the neuron with index j is

Assume for simplicity that the indexing of the neurons is such that the last N neu-
rons are the output ones.

2.2 � Problem statement

Indeed, the formulas in (2), (3) define the following system of K equations:

Here, summarized, z(x), a(x), b ∈ ℝ
K , W ∈ ℝ

K×K and x ∈ ℝ
L . Also, 

the functions fj ∶ ℝ → ℝ are given for j = 1,… ,K , which define 

f (z) =
(
f1(z1),… , fK(zK)

)T
∈ ℝ

K with z =
(
z1,… , zK

)T . Sometimes, we simplify 
the notation and omit the x-dependence of the terms in (4).

We also have M pairs of training samples (x,  y) with x ∈ ℝ
L the input and 

y ∈ ℝ
N the target vectors assuming that 1 ≤ L,N ≤ K . To compute with vec-

tors of size K, we introduce the operator ⋅̃ ∶ ℝ
N
→ ℝ

K defined by the formula 
ỹ =

(
0,… , 0, y1,… , yN

)T.
At the m-th pair of samples, i.e., at the input x(m) , the error is defined as

where ỹ(m)
j

 denotes the corresponding component of the m-th training sample 

y(m) = (y
(m)

1
,… , y

(m)

N
) ∈ ℝ

N of the target vector to be compared with the value of 
aj(x

(m)).
The average error E over all pairs of training samples is given by

which will be minimized with respect W and b.
Solving Eq.  (4) by a fixed-point iteration yields the vector z =

(
z1,… , zK

)T of 
neuron input values and the vector a =

(
a1,… , aK

)T of activation values. A single 
step of this has the form

An important observation is that the iteration in (7) delivers a feedforward neural 
network of infinite number of layers with K neurons in each layer, so we get a deep 

(3)aj = fj(zj).

(4)
{

z(x) = Wa(x) + x̂ + b

a(x) = f (z(x)).

(5)E
(m) =

1

2

K∑

j=K−N+1

(
ỹ
(m)

j
− aj(x

(m))
)2
,

(6)E =
1

M

M∑

m=1

E
(m),

(7)z(l) = Wa(l−1) + b + x̂, a(l) = f (z(l)), l ≥ 2 and z(1) = x̂ ∈ ℝ
K .
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equilibrium model. In this framework, the fixed point iteration corresponds to the 
layer-wise computation with the original input. The weights of the edges passing 
between each two adjacent layers are given by the matrix W ∈ ℝ

K×K and the bias 
vector b ∈ ℝ

K . A small network is shown in Fig. 1 while Fig. 2 illustrates the unroll-
ing of this network, focusing on the third neuron.

The pseudocode for computing the network is given in Algorithm 1.

Fig. 1   Example of computing the value of a neuron in an implicit neural network. The neuron of index 3 
has three conventional inputs, plus a loop edge leading back to itself and the output of the neuron is also 
its input, therefore z3 = w3,1a1 + w3,2a2 + b3

Fig. 2   Unrolling of the implicit neural network shown in Fig.  1 focusing on the third neu-
ron in the l − 1-th, l-th and l + 1-th layers, z

(l)

3
= w3,1a

(l−1)

1
+ w3,2a

(l−1)

2
+ w3,3a

(l−1)

3
+ b3 , and 

z
(l+1)

3
= w3,1a

(l)

1
+ w3,2a

(l)

2
+ w3,3a

(l)

3
+ b3
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Algorithm 1   Calculation of the network

2.3 � Further notations

Summarized, we use the following notations in the infinitely deep network:

•	 The initial vector of the iteration is z(1) = x̂ ∈ ℝ
K . Let z(l)

i
(x) denote the input 

value of the i-th neuron in the l-th layer and use zi(x) = liml→∞ z
(l)

i
(x) provided 

that this exists and is finite. In vector form, we have 

 Sometimes, for simplicity, we omit the arguments x.
•	 Let a(l)

i
(x) denote the activation value of the i-th neuron in the l-th layer with 

the input vector x. We use the notation ai(x) = liml→∞ a
(l)

i
(x), provided that this 

exists and is finite. Accordingly, we use 

 and a(x) =
(
a1(x),… , aK(x)

)T
.

•	 Parallel with the formula (5), we also introduce d(∞) ∈ ℝ
K as 

z(l)(x) =
(
z
(l)

1
(x),… , z

(l)

K
(x)

)T

and z(x) =
(
z1(x),… , zK(x)

)T
.

f (z(l))(x) = a(l)(x) =
(
a
(l)

1
(x),… , a

(l)

K
(x)

)T
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 Here, the activation function fj ∶ ℝ → ℝ , which is applied to the j-th neuron.
•	 We use the notation 

 for the utility value of the i-th neuron in the l-th layer and Di = liml→∞ D
(l)

i
 pro-

vided that it exists and is finite. We also define the diagonal matrix D ∈ ℝ
K×K 

such that D = diag
(
D1,… ,DK

)
 and similarly, the diagonal matrices D(l) ∈ ℝ

K×K 
on the l-th layer.

3 � Theoretical results

As discussed previously, we transform the original implicit network into an infinitely 
deep feedforward one. We apply the gradient backpropagation method in this net-
work. To minimize, the error function (6) using some gradient-based method, we 
need to determine the partial derivatives �E

(m)

�wj,i

 and �E
(m)

�bj
 after calculating the equilib-

rium in iteration (7). In the following statement, we express these in concrete terms. 
We make use the gradient backpropagation method [13] by applying it first to a 
finite network, and then performing a limit transition with respect to the number of 
the layers. For our main result, we use the following assumptions.

Assumptions:

	 (i)	 Equation (4) has a unique solution and the iteration in (7) is convergent such 
that we also have 

 for all indices k = K − N + 1,… ,K and j = 1,… ,K.
	 (ii)	 fi ∈ C1(ℝ) , ∀i = 1,… ,K and their derivatives are bounded.
	 (iii)	 The linear mapping DWT ∈ ℝ

K×K is a contraction in some induced norm, i.e. 
‖DWT‖ < 1.

Theorem 1  Using assumptions in (i)–(iii), the system of equations

has a unique solution. Here, I ∈ ℝ
K×K is the identity matrix. Furthermore, the par-

tial derivatives of the error function E(m) can be given as

d
(∞)

j
=

{(
aj − ỹ

(m)

j

)
fj
�(zj), K − N < j ≤ K

0, 1 ≤ j ≤ K − N.

D
(l)

i
= f �

i
(z

(l)

i
)

�ak

�bj
= lim

R→∞

�a
(R),R

k

�bj

(8)d =
(
I − DWT

)−1
d(∞)
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Proof  Consider the finite network that consists of the first R ≥ 2 layers from the pre-
viously constructed infinite forward-connected network. Let z ∈ ℝ

K given as the ini-
tialization of the fixed point iteration in (7). With these, we have 

 or component wise, z(l),R
j

=
∑

k

wj,ka
(l−1),R

k
+ bj + x̂

(m)

j
. Here, the letter R in the super-

scripts refers to the actual truncated finite network including R layers, where the 
gradient backpropagation is performed.

Using (x(m), y(m)) as an input–output pair, the error on the R-th layer of this trun-
cated network is given by 

where, we denote the z-dependence of the error. The partial derivative d(l),R
i

=
�E

(m)

R
(z)

�z
(l),R

i

 

is defined for the output neurons and will be extended to the non-output ones. In the 
R-th layer, according to the classical algorithm for gradient backpropagation, we 
have

for the output ( K − N < j ≤ K ) and nonoutput ( 1 ≤ j ≤ K − N ) neurons, 
respectively.

For 1 ≤ l < R , correspondig to the gradient backpropagation algorithm [13], we 
have

For calculating �E
(m)

R
(z)

�bj
 , we have to sum up the above vectors d(l),R . This principle is 

similar to the one in backpropagation through time [14]. Thus, we get the following 
identity:

According to the identity in (11), we have

(9)
�E

(m)

�bj
= dj and

�E
(m)

�wj,i

= aidj.

z(l),R = Wa(l−1),R + b + x̂(m) and z(1),R = z

E
(m)

R
(z) =

1

2

K∑

j=K−N+1

(
a
(R),R

j
(x(m)) − ỹ

(m)

j

)2
,

(10)d
(R),R

j
=

{(
a
(R),R

j
− ỹ

(m)

j

)
fj
�(z

(R),R

j
), K − N < j ≤ K

0, 1 ≤ j ≤ K − N

(11)d(l),R =
�E

(m)

R
(z)

�z(l+1),R
⋅

�z(l+1),R

�z(l),R
= D(l)WTd(l+1),R.

(12)
�E

(m)

R
(z)

�bj
=

R−1∑

k=0

�E
(m)

R
(z)

�z
(R−k),R

j

�z
(R−k),R

j

�bj
=

R−1∑

k=0

d
(R−k),R

j
.
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which can be inserted into (12) to get

Observe that this should be true also for the fixed point z ∈ ℝ
K of the iteration in 

(7). Since in this case, the diagonal matrices D(l) 1 ≤ l ≤ R coincide, denoting their 
common value with D, Eq. (14) is simplified to

Taking the limit R → ∞ in Eq. (15) and using assumptions (i) and (ii), we get the 
equation

, where the existence of the inverse follows from the assumption (iii).
We turn now to the statement for E(m,z)

�wj,i

 . Similarly to (12), we have the following 
equality for arbitrary z ∈ ℝ

K:

 We can apply formula (13) again in (17) to get

We assume again, that z ∈ ℝ
K is the limit in (7). Therefore, D(l) ≡ D holds 

∀ ≤ l ∈ ℕ . With these, we can rewrite (18) as

Performing here limit transition with respect to the number of the layers again, we 
finally get

(13)d(R−k),R =

(
k−1∏

l=0

D(R−l)WT

)
d(R),R,

(14)
�E

(m)

R
(z)

�bj
=

R−1∑

k=0

[(
k−1∏

l=0

D(R−l)WT

)
d(R),R

]

j

.

(15)
�E

(m)

R
(z)

�bj
=

R−1∑

k=0

[(
DWT

)k
d(R),R

]

j
.

(16)

�E
(m)(z)

�bj
= lim

R→∞

�E
(m)

R
(z)

�bj

= lim
R→∞

R−1∑

k=0

[(
DWT

)k
d(R),R

]

j
=

[(
I − DWT

)−1
d(∞)

]

j
,

(17)
�E

(m)

R
(z)

�wj,i

=

R−2∑

k=0

�E
(m)

R
(z)

�z
(R−k),R

j

�z
(R−k),R

j

�wj,i

=

R−2∑

k=0

d
(R−k),R

j
a
(R−k−1),R

i
.

(18)
�E

(m)

R
(z)

�wj,i

=

R−2∑

k=0

[(
k−1∏

l=0

D(R−l)WT

)
d(R),R

]

j

a
(R−k−1),R

i
.

(19)
�E

(m)

R
(z)

�wj,i

=

R−2∑

k=0

[(
DWT

)k
d(R),R

]

j
ai.
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which completes the proof of the theorem.	�  ◻

The pseudocode of the gradient calculation can be found in Algorithm 2. Note, 
that here the product 

(
I − DWT

)−1
d(∞) , is approximated using Neumann series.

Algorithm 2   Calculation of the gradient

(20)

�E(m, z)

�wj,i

= lim
R→∞

�E
(m)

R
(z)

�wj,i

= lim
R→∞

R−2∑

k=0

[(
DWT

)k
d(R),R

]

j
ai =

[(
I − DWT

)−1
d(∞)

]

j
ai,
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3.1 � Computational complexity

If T represents the maximum number of iterations as in Algorithm  2, and K 
denotes the number of neurons, it is easy to see that the computational complex-
ity of both the network evaluation and gradient calculation is O(T ⋅ K) . In the case 
of a feedforward network, this is considerably more favorable since a calcula-
tion is performed exactly once on every neuron for both forward propagation and 
backpropagation, making the computational complexity for the feedforward case 
simply O(K) . This implies that the training duration for an implicit network could 
substantially exceed that of a feedforward network.

4 � Numerical experiments

We will classify pulsars in the HTRU2 dataset [15] and network intrusions in the 
NSL-KDD dataset [16]. The methodology involves using autoencoders to com-
press and reconstruct the multidimensional data, facilitating the identification of 
normal and anomalous signals. Anomalies are distinguished from typical noise 
by leveraging the reconstruction error as a metric. This approach demonstrates 
the effectiveness of autoencoders in detecting patterns within complex datasets 
and their utility in astronomical data analysis and in the detection of network 
intrusions.

The structure of this section is as follows. Firstly, the datasets under investiga-
tion are described, including the data preprocessing. Then, the applied evaluation 
metrics and then the training approach based on [17] will be described. Finally, 
the results of the numerical simulations are shown and discussed.

4.1 � The investigated datasets

4.1.1 � The HTRU2 dataset

The HTRU2 dataset [15] is a collection of pulsar candidates collected during the 
high time resolution universe survey. It consists of 17,898 total samples, with 
1639 real pulsar examples. These samples are described by eight continuous vari-
ables and a class label that distinguishes between the pulsar and nonpulsar can-
didates. Pulsars are a rare type of neutron stars that emit radiation that can be 
observed on Earth, making them of significant interest in astrophysics.

We partition the dataset into learning and testing sets. The learning set con-
tains 90% of the original data. Then, the SMOTE algorithm [18] is applied to the 
learning set. That is, the learning set consists of 29,282 elements in a balanced 
ratio. This resampled set is further divided into training and validation sets for 
cross-validation using the above ratio.
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Then, a simple standardization is used to normalize the data based only on 
non-pulsar samples. The exact sizes of the sets and the element numbers of the 
classes are shown in Table 1.

4.1.2 � The NSL‑KDD dataset

The NSL-KDD dataset [16] is widely used to detect network intrusions. This 
dataset was created to address certain deficiencies of the KDD Cup 99 dataset 
[19], such as redundant records in the training and testing sets, which could dis-
tort the evaluation of machine learning models. It includes data from normal traf-
fic and various types of attacks.

In the preprocessing phase, numerical representations are derived from non-
numerical data to construct inputs suitable for the autoencoder. The features Pro-
tocol, Service, and Flag are identified as categorical. The Protocol feature, which 
specifies a network protocol, can assume the values tcp, udp, or icmp. Through 
the application of one-hot encoding, this feature is transformed into a 3-dimen-
sional vector. The Service feature, encompassing 70 distinct categories, is repre-
sented by a vector with 70 entries. Similarly, the Flag feature, with coded with 
11 entries. Consequently, the input data are formulated as vectors of 117 dimen-
sions by combining 33 numerical features with 84 one-hot-encoded categorical 
features.

Subsequently, the dataset is partitioned into sets for learning and testing. The 
learning set, comprising 84.83% of the total data, is further partitioned into train-
ing and validation subsets to facilitate cross-validation. This arrangement adopts 
a splitting ratio of 63.62/21.21/15.17% for the training, validation, and test sets. 
Then, a simple standardization is used to normalize all the features by calculating 
the two required scalars, the mean and the standard deviation of the training set 
only for benign samples. Table 2 shows the precise distribution of class elements.

Table 1   Sizes of the classes 
in the training, validation, 
and testing sets in the HTRU2 
dataset

Sample type Training Validation Testing

All 26,353 2929 1790
Non-pulsar 13,164 1477 1618
Pulsar 13,189 1452 172

Table 2   Sizes of the classes 
in the training, validation, and 
testing sets in the NSL-KDD 
dataset

Sample type Training Validation Testing

All 94,479 31,494 22,544
Benign 50,528 16,815 12,833
Attack 43,951 14,679 9711
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4.2 � Evaluation metrics

The predictions made can vary for different values of the threshold c to belonging to 
the positive class. With this, it can be determined whether a prediction qualifies as true 
positive ( TPc ), false positive ( FPc ), true negative ( TNc ) or false negative ( FNc ). The fol-
lowing evaluation metrics are used based on these values.

•	 Accuracy ( Ac ) It is the ratio of all correctly identified instances, positive and nega-
tive classes, to the total number of instances in the dataset with a given classifica-
tion threshold c. This quantity is given by the formula 

•	 Precision ( Pc ) It is defined as the ratio of correctly identified positive instances and 
the total number of instances classified as positive. This metric evaluates the accu-
racy of positive predictions with a given classification threshold c as follows: 

•	 Recall ( Rc ) or True Positive Rate ( TPRc ) It quantifies the percentage of positive 
cases correctly identified with a given c classification threshold. It can be calculated 
using the following equation: 

•	 Matthew’s Correlation Coefficient ( MCCc ) We use this as the primary metric to 
represent the best performance the model can achieve at a fixed threshold c. It is in 
the range between −1 and 1, where one indicates a perfect prediction and −1 means 
all predictions are false. In concrete terms, this score is given by 

•	 F1-score ( F1c ) It is the harmonic mean of the precision and recall values, it can be 
calculated as follows. 

4.3 � Training approach

Here, the steps of the suggested training approach are described, slightly modified 
from those in article [17]. 

Ac =
TPc + TNc

TPc + TNc + FPc + FNc

.

Pc =
TPc

TPc + FPc
.

Rc = TPRc =
TPc

TPc + FNc

.

MCCc =
TPc ⋅ TNc − FPc ⋅ FNc√(

TPc + FPc
)
⋅

(
TPc + FNc

)
⋅

(
TNc + FPc

)
⋅

(
TNc + FNc

) .

F1c = 2 ⋅
Pc ⋅ Rc

Pc + Rc
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1.	 Preprocessing Initially, samples of the positive class are excluded from the train-
ing dataset. Feature values are scaled via standardization. Specific preprocessing 
techniques applied to the HTRU2 and NSL-KDD datasets are shown in detail in 
Sect. 4.1.

2.	 Training The autoencoder is designed to reconstruct inputs so that they closely 
resemble normal patterns, utilizing the L2-norm for calculating reconstruction 
loss, as introduced in the formula (6). Inputs corresponding to anomalies, when 
processed, are expected to deviate significantly from their original form, facili-
tating classification based on the disparity between the input and its output. A 
threshold differentiates anomalies from normal instances. During training, the 
Stochastic Gradient optimizer and Cosine learning rate scheduler [20] are utilized, 
incorporating Nesterov momentum and a weight decay of 0.0001. The initial 
learning rate is set at 0.01, while the final learning rate is adjusted to 0.001. For 
the HTRU2 dataset, training is conducted over 20 epochs with a minibatch size 
of 16, whereas for the NSL-KDD dataset, training is conducted for 5 epochs with 
a minibatch size of 32.

3.	 Model Selection The F1-score is calculated at each epoch multiple times at a par-
ticular frequency. The highest F1-score’s model weights are utilized upon training 
completion. It is calculated through the selection of the threshold, as shown in 
the following step.

4.	 Threshold Selection Selecting the threshold for reconstruction distance between 
input and output significantly impacts performance. The optimal threshold ĉ is 
determined by evaluating the model on the validation set by maximizing the F1c
-score in c. Also, this maximal F1c value is the F1-score mentioned in the previous 
step. This process involves standardizing reconstruction distances using mean and 
variance from negative samples in the validation set to determine the most effec-
tive threshold for class separation. This means the Z-score of the validation loss 
is calculated. The optimal threshold is sought within the [− 4, 4] interval with a 
division of 0.001. According to the properties of the standard normal distribution, 
99.994% of the scaled errors falls within the [− 4, 4] interval. The Z-score that 
most effectively separates the anomalies from normal samples in the validation 
data is the threshold ĉ.

5.	 Evaluation Performance is assessed using test data, classifying samples based on 
their Z-score relative to the threshold. Samples identified as anomalies exceed the 
threshold. Predicted labels are compared to actual labels to compute the model’s 
metrics.

4.4 � The proposed implicit autoencoder models

Autoencoder networks for anomaly detection are operating by learning to replicate 
normal data input. They consist of three main components:

•	 Encoder It compresses the input into a latent-space representation. It learns the 
most important features of the data, effectively reducing its dimensionality.
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•	 Decoder It reconstructs the input data from the latent space representation, aim-
ing to compute output as close to the original input as possible.

•	 Latent Layer This is the core of the autoencoder: a compressed knowledge repre-
sentation of the input data between the encoder and decoder.

The proposed autoencoder models are shown in Fig. 3. In case of v1 models, every 
neuron in the latent layer is interconnected in a directed manner, with no edges lead-
ing back to itself. The activation function chosen for the encoder, decoder, and latent 
layers is the arctan function. For v2 models, the latent layer consists of two blocks 
of neurons. The pointwise product of the two blocks constitutes the layer’s output, 
which is directed towards the decoder. The input to the first block of the latent layer 
is sourced from the last encoder layer. The activation function for the first block and 
the encoders and decoders is the arctan function. In contrast, the activation function 
for the second block of the latent layer is the sigmoid function. Also, in v2 models, 
no edges lead from a neuron back to itself within the latent layer. With these choices, 
we examine whether adding extra weights to feedforward networks and, thus, getting 
implicit networks brings advantages by fixing the number of neurons. Here we made 
only the smallest, i.e., the latent layer implicit to keep computational costs at a rela-
tively low level.

For a fair comparison, we consider six different feedforward autoencoder configu-
rations, each with 8 and 16 neurons in the latent layer. We refer to these networks as 
the v0 model family. All the configurations are shown in Table 3. In the feedforward 

Fig. 3   The proposed implicit autoencoder models. Directed arrows are used to denote fully connected 
layers. In the left figure, a member of the v1 family is shown. The connection of the latent layer to itself 
indicates that each neuron in this layer is interconnected in a directed way. In the right figure, a member 
of the v2 family is shown. The latent layer consists of two blocks of neurons. The output of this layer is 
given by the pointwise product of the two blocks. The output of the layer is directed towards the decoder. 
The input to the first block of the latent layer comes from the last encoder layer. In both cases, no edges 
are drawn from neurons to themselves in the implicit latent layers. For each layer, it has been indicated to 
which part of the autoencoder it belongs and the number of neurons contained therein
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networks, the ReLu activation function is applied in the encoder, decoder, and latent 
layers.

Also, for the purpose of ensuring fair comparisons, two classic models, the Random 
Forest and XGBoost models, are selected.

4.5 � Experiment environment

With our implementation, all models were executed on a single NVIDIA 
Geforce GTX 1080 8GB GPU and a Xeon X5670 CPU, utilizing Python 3.8 
and the CUDA C programming language with CUDA version 11.4. We set all 
possible random seeds during our numerical experiments for reproducibility 
purposes. To account for the variability of random processes, we repeat each 
experiment ten times and report the best and average scores in Sect. 5.

Table 3   Configuration of the autoencoder models

TP-H denotes the number of trainable parameters for the HTRU2 dataset, TP-N marks the same quantity 
for the NSL-KDD dataset, I denotes the number of the input features. The models labeled with v0 refer to 
feedforward networks, while labels v1 and v2 refer to implicit ones

Model name Number of neurons for each layer TP-H TP-N

(5;32;8) − v0 I − 32 − 16 − 8 − 16 − 32 − I 1904 8989
(5;64;8) − v0 I − 64 − 32 − 8 − 32 − 64 − I 5840 19,901
(7;64;8) − v0 I − 64 − 32 − 16 − 8 − 16 − 32 − 64 − I 6640 20,701
(5;32;16) − v0 I − 32 − 16 − 16 − 16 − 32 − I 2168 9253
(5;64;16) − v0 I − 64 − 32 − 16 − 32 − 64 − I 6360 20,421
(7;64;16) − v0 I − 64 − 32 − 16 − 16 − 16 − 32 − 64 − I 6904 20,965
(5;32;8) − v1 I − 32 − 16 − 8 − 16 − 32 − I 1960 9045
(5;64;8) − v1 I − 64 − 32 − 8 − 32 − 64 − I 5896 19,957
(7;64;8) − v1 I − 64 − 32 − 16 − 8 − 16 − 32 − 64 − I 6696 20,757
(5;32;16) − v1 I − 32 − 16 − 16 − 16 − 32 − I 2408 9493
(5;64;16) − v1 I − 64 − 32 − 16 − 32 − 64 − I 6600 20,661
(7;64;16) − v1 I − 64 − 32 − 16 − 16 − 16 − 32 − 64 − I 7144 21,205
(5;32;8) − v2 I − 32 − 16 − (8, 8) − 16 − 32 − I 1968 9053
(5;64;8) − v2 I − 64 − 32 − (8, 8) − 32 − 64 − I 5904 19,965
(7;64;8) − v2 I − 64 − 32 − 16 − (8, 8) − 16 − 32 − 64 − I 6704 20,765
(5;32;16) − v2 I − 32 − 16 − (16, 16) − 16 − 32 − I 2424 9509
(5;64;16) − v2 I − 64 − 32 − (16, 16) − 32 − 64 − I 6616 20,677
(7;64;16) − v2 I − 64 − 32 − 16 − (16, 16) − 16 − 32 − 64 − I 7160 21,221
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5 � Numerical results

5.1 � The HTRU2 dataset

We summarize the results in Table 4. The two largest values for each model fam-
ily are displayed in bold in each column. Also, the two largest values in each col-
umn are underlined. The implicit model, identified as (5;32;16) − v1 , dominates four 
out of five test metrics. From the perspective of the dataset under consideration, the 
most crucial test metric is recall, for which the (5;64;16) − v2 model performs the 
best, achieving the highest score of 0.9244. Recall is crucial for the HTRU2 data-
set, because minimizing false negative predictions is essential for pulsar detection. 
Nevertheless, the XGBoost and Random Forest models exhibit marginally higher 
performance in the other metrics. The confusion matrices created on the test set by 
the implicit (5;64;8) − v1 and (5;64;16) − v2 models can be seen in Fig. 4.

We have also studied the stability of the methods by computing the average 
test metrics over ten simulations. This can confirm the computations’ reliability 

Table 4   Evaluation metrics among ten simulations for the HTRU2 dataset with the following abbrevia-
tions

BVF1 the best validation F1-score, CTF1 test F1-score, CTMCC test MCC score, CTA​ test accuracy, 
CTP test precision and CTR​ test recall
In each column, the two largest values are underlined. Additionally, in each column, for each model fam-
ily, the two largest values are displayed in bold

Model name BVF1 CTF1 CTMCC CTA​ CTP CTR​

(5;32;8) − v0 �.���� �.���� �.���� �.���� �.���� 0.8837
(5;64;8) − v0 �.���� 0.7959 0.7786 0.9553 0.7091 �.����

(7;64;8) − v0 0.9154 0.7568 0.7377 0.9447 0.6553 �.����

(5;32;16) − v0 �.���� 0.7666 0.7489 0.9469 0.6638 �.����

(5;64;16) − v0 0.9253 �.���� �.���� �.���� �.���� 0.8895
(7;64;16) − v0 0.9163 0.7463 0.7265 0.9419 0.6429 0.8895
(5;32;8) − v1 0.9244 0.7711 0.7528 0.9486 0.6739 0.9012
(5;64;8) − v1 0.9256 0.6781 0.6638 0.9162 0.5374 �.����

(7;64;8) − v1 0.9279 0.7792 0.7622 0.9503 0.6797 �.����

(5;32;16) − v1 0.9282 �.���� �.���� �.���� �.���� 0.8779
(5;64;16) − v1 �.���� �.���� �.���� �.���� �.���� 0.9012
(7;64;16) − v1 �.���� 0.7393 0.7217 0.9385 0.6240 0.9070
(5;32;8) − v2 0.9287 0.7482 0.7305 0.9413 0.6367 0.9070
(5;64;8) − v2 �.���� �.���� �.���� �.���� �.���� �.����

(7;64;8) − v2 0.9226 �.���� �.���� �.���� �.���� 0.8953
(5;32;16) − v2 �.���� 0.7859 0.7684 0.9525 0.6933 0.9070
(5;64;16) − v2 �.���� 0.7378 0.7227 0.9369 0.6139 �.����

(7;64;16) − v2 0.9253 0.7185 0.7021 0.9313 0.5925 �.����

XGBoost 0.9787 0.8674 0.8538 0.9732 0.9085 0.9128
Random Forest 0.9773 0.8674 0.8538 0.9732 0.9085 0.9128
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in Table 4. The results are shown in Table 5. The results are observed to be very 
close to one another. The implicit v1 family dominates the CTR metric within the 

Table 5   Average evaluation metrics among ten simulations for the HTRU2 dataset

AVF1 denotes the average validation F1-score, ATF1 marks the average test F1-score, ATMCC is the 
average test MCC score, ATA denotes the average test accuracy, ATP means average test precision and 
ATR is the average test recall
In each column, the two largest values are underlined. Additionally, in each column, for each model fam-
ily, the two largest values are displayed in bold

Model name AVF1 ATF1 ATMCC ATA​ ATP ATR​

(5;32;8) − v0 0.9162 0.7577 0.7396 0.9441 0.6603 0.8959
(5;64;8) − v0 �.���� 0.7600 0.7416 0.9450 0.6614 �.����

(7;64;8) − v0 0.9113 0.7161 0.6973 0.9312 0.6002 0.8930
(5;32;16) − v0 0.9163 �.���� �.���� �.���� �.���� 0.8930
(5;64;16) − v0 �.���� �.���� �.���� �.���� �.���� �.����

(7;64;16) − v0 0.9113 0.7341 0.7147 0.9375 0.6276 0.8890
(5;32;8) − v1 0.9204 �.���� �.���� �.���� �.���� �.����

(5;64;8) − v1 �.���� 0.7430 0.7261 0.9387 0.6338 �.����

(7;64;8) − v1 0.9198 0.7392 0.7212 0.9382 0.6304 0.8994
(5;32;16) − v1 0.9207 0.7317 0.7140 0.9355 0.6219 0.8983
(5;64;16) − v1 �.���� �.���� �.���� �.���� �.���� 0.9012
(7;64;16) − v1 0.9203 0.7471 0.7294 0.9406 0.6401 �.����

(5;32;8) − v2 0.9212 0.7459 0.7278 0.9404 0.6391 0.9000
(5;64;8) − v2 �.���� 0.7628 0.7446 0.9458 0.6651 0.8983
(7;64;8) − v2 0.9188 �.���� �.���� �.���� �.���� 0.8971
(5;32;16) − v2 0.9214 0.7653 0.7474 0.9462 0.6708 0.8977
(5;64;16) − v2 �.���� 0.7398 0.7218 0.9387 0.6290 �.����

(7;64;16) − v2 0.9201 �.���� �.���� �.���� �.���� �.����

XGBoost 0.9732 0.8643 0.8506 0.9725 0.9063 0.9116

Random Forest 0.9711 0.8621 0.8482 0.9796 0.9039 0.9122

Fig. 4   The confusion matrices generated with the best (5;64;8) − v1 and the (5;64;16) − v2 implicit mod-
els on the testing set for the HTRU2 dataset
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Table 6   Evaluation metrics among 10 simulations for the NSL-KDD dataset with the following abbre-
viations

BVF1 the best validation F1-score, CTF1 test F1-score, CTMCC test MCC score, CTA​ test accuracy, 
CTP test precision and CTR​ test recall
In each column, the two largest values are underlined. Additionally, in each column, for each model fam-
ily, the two largest values are displayed in bold

Model name BVF1 CTF1 CTMCC CTA​ CTP CTR​

(5;32;8) − v0 �.���� �.���� �.���� �.���� 0.9156 �.����

(5;64;8) − v0 0.9369 0.8682 0.7459 0.8636 �.���� 0.7887
(7;64;8) − v0 0.9367 0.8811 0.7652 0.8755 �.���� 0.8103
(5;32;16) − v0 0.9379 0.8641 0.7399 0.8599 �.���� 0.7821
(5;64;16) − v0 �.���� �.���� �.���� �.���� 0.9091 �.����

(7;64;16) − v0 0.9359 0.8739 0.7543 0.8689 �.���� 0.7985
(5;32;8) − v1 �.���� 0.9090 0.7926 0.8977 0.9210 0.8973
(5;64;8) − v1 �.���� 0.9053 0.7848 0.8937 0.9190 0.8919
(7;64;8) − v1 0.9555 0.9185 �.���� �.���� �.���� 0.9141
(5;32;16) − v1 0.9584 0.9170 0.8098 0.9064 �.���� 0.9090
(5;64;16) − v1 0.9567 �.���� �.���� �.���� 0.9188 �.����

(7;64;16) − v1 0.9566 �.���� �.���� �.���� 0.9214 �.����

(5;32;8) − v2 0.9602 �.���� �.���� �.���� 0.9198 �.����

(5;64;8) − v2 �.���� 0.8912 0.7613 0.8804 0.9245 0.8601
(7;64;8) − v2 0.9576 0.8908 0.7605 0.8800 0.9241 0.8598
(5;32;16) − v2 0.9598 0.9203 0.8168 0.9099 �.���� 0.9136
(5;64;16) − v2 �.���� �.���� �.���� �.���� �.���� 0.9264
(7;64;16) − v2 0.9595 0.9258 0.8275 0.9154 0.9247 �.����

XGBoost 0.9998 0.8227 0.6885 0.8250 0.8456 0.7134
Random Forest 0.9996 0.7870 0.6453 0.7960 0.8278 0.6619

Fig. 5   The confusion matrices generated with the best (5;64;16) − v1 and the (5;32;8) − v2 implicit mod-
els on the testing set for the NSL-KDD dataset
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autoencoders, while the v2 family excels in the other test metrics. Overall, how-
ever, the XGBoost and Random Forest models yield the most consistent values.

5.2 � The NSL‑KDD dataset

The results are shown in Table 6. The two largest values for each model family 
are printed in bold in each column. Also, the two largest values in each column 
are underlined. The (5;64;16) − v1 model is observed to dominate in four out of 
five test metrics, including the CTR metric, which is also this dataset’s most cru-
cial test metric. The performance of the best v2 model, namely the (5;32;8) − v2 , 
is observed to fall behind only a little from this. The XGBoost and Random For-
est models are observed to perform substantially weaker than the autoencoders 
here. The confusion matrices created on the test set by the implicit (5;64;8) − v1 
and (5;64;16) − v2 models can be shown in Fig. 5.

In Table 7, the stability of the models is investigated. Here, the (5;64;16) − v1 
and (5;32;8) − v2 implicit autoencoder are observed to dominate, too.

Table 7   Average evaluation metrics among ten simulations for the NSL-KDD dataset

AVF1 denotes the average validation F1-score, ATF1 marks the average test F1-score, ATMCC is the 
average test MCC score, ATA denotes the average test accuracy, ATP means average test precision and 
ATR is the average test recall
In each column, the two largest values are underlined. Additionally, in each column, for each model fam-
ily, the two largest values are displayed in bold

Model name AVF1 ATF1 ATMCC ATA​ ATP ATR​

(5;32;8) − v0 �.���� 0.8934 0.7692 0.8834 0.9299 0.8610
(5;64;8) − v0 0.9033 0.8762 0.6952 0.8524 0.8980 0.8720
(7;64;8) − v0 0.9315 0.8872 0.7642 0.8788 �.���� 0.8410
(5;32;16) − v0 �.���� �.���� �.���� �.���� 0.9238 �.����

(5;64;16) − v0 0.9294 �.���� �.���� �.���� 0.9196 �.����

(7;64;16) − v0 0.9315 0.8902 0.7677 0.8813 �.���� 0.8485
(5;32;8) − v1 0.9486 0.9120 0.7995 0.9008 0.9184 0.9066
(5;64;8) − v1 0.9508 �.���� �.���� �.���� 0.9185 �.����

(7;64;8) − v1 0.9489 0.9085 0.7928 0.8974 �.���� 0.8979
(5;32;16) − v1 �.���� �.���� �.���� �.���� 0.9191 �.����

(5;64;16) − v1 �.���� 0.9176 0.8124 0.9071 �.���� 0.9164
(7;64;16) − v1 0.9470 0.9161 0.8065 0.9049 0.9187 0.9138
(5;32;8) − v2 0.9537 0.9171 0.8096 0.9062 0.9204 0.9143
(5;64;8) − v2 �.���� 0.9171 0.8090 0.9060 0.9198 0.9147
(7;64;8) − v2 0.9515 0.9145 0.8054 0.9037 0.9197 0.9104
(5;32;16) − v2 0.9536 �.���� �.���� �.���� 0.9208 �.����

(5;64;16) − v2 �.���� 0.9218 0.8186 0.9110 �.���� 0.9220
(7;64;16) − v2 0.9551 �.���� �.���� �.���� �.���� �.����

XGBoost 0.9996 0.8320 0.7010 0.8330 0.8510 0.7277
Random Forest 0.9991 0.7701 0.6257 0.7829 0.8199 0.6392
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Unfortunately, a significant cost is associated with the implicit models. This 
can be shown in Table 8. The computational time is about four times as much as 
their feedforward variants.

The comparison with the XGBoost and Random Forest models in terms of compu-
tational time, this is only partially fair, as these were executed without the use of GPUs.

6 � Future work

Expanding and deepening our numerical simulations is a priority in the future work, 
especially in scenarios where current frameworks like PyTorch [21] or TensorFlow 
[22] encounter limitations. Furthermore, we aim to understand better the impact of acti-
vation functions and the sparsity of computational graphs representing network archi-
tectures on the speed and efficiency of convergence. Additionally, accelerating com-
putations is a crucial issue, for which we would like to develop further the algorithm 
proposed in the article [6].

Table 8   Training time TT 
inference time IT in various 
models

Model name HTRU2 dataset NSL-KDD dataset

TT [s] IT [s] TT [s] IT [s]

(5;32;8) − v0 28.77 0.17 82.81 2.93
(5;64;8) − v0 39.59 0.18 82.40 2.93
(7;64;8) − v0 42.13 0.19 78.10 3.00
(5;32;16) − v0 34.55 0.18 61.79 2.90
(5;64;16) − v0 39.98 0.18 29.08 2.98
(7;64;16) − v0 42.24 0.19 78.86 2.98
(5;32;8) − v1 149.06 0.65 235.50 7.10
(5;64;8) − v1 148.34 0.77 207.95 7.60
(7;64;8) − v1 210.14 0.70 267.44 8.39
(5;32;16) − v1 159.44 0.65 259.46 9.15
(5;64;16) − v1 232.14 0.79 153.71 9.83
(7;64;16) − v1 229.34 0.67 89.62 9.82
(5;32;8) − v2 112.83 0.40 268.32 5.91
(5;64;8) − v2 153.01 0.53 276.47 6.10
(7;64;8) − v2 134.90 0.49 311.50 6.69
(5;32;16) − v2 101.21 0.41 256.42 5.99
(5;64;16) − v2 136.19 0.50 291.86 6.67
(7;64;16) − v2 134.83 0.47 317.77 6.82
XGBoost 133.54 0.03 273.00 0.17
Random Forest 187.02 0.37 320.45 2.65



1 3

On the computation of the gradient in implicit neural networks﻿	

7 � Conclusion

In this work, we have shown an illustrative approach to constructing deep equilib-
rium models, also called implicit neural networks, highlighting that these networks 
are given by such a computational graph that may even include a directed cycle. We 
have proved a theorem for calculating the gradient in such a network, enabling the 
computation of gradients without resorting to the implicit function theorem, but by 
directly calculating them in an infinitely deep feedforward network associated with 
the computational graph. Furthermore, numerical experiments confirmed our find-
ings, providing empirical evidence to support the theoretical results. This work lays 
a foundation for further exploration into the capabilities and applications of Implicit 
Neural Networks, marrying theoretical insights with practical validation.
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