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Abstract
A new trend in long-range biometrics, gait recognition, is finding application in a 
number of different fields including video surveillance. Recently, with the increase 
in robustness of the pose estimator and the presence of various unpredictable fac-
tors in realistic gait recognition, skeleton-based methods with higher robustness 
have emerged to better meet the challenging gait recognition needs. However, 
existing approaches primarily focus on extracting global skeletal features, neglect-
ing the intricate motion information of local body parts and overlooking inter-limb 
relationships. Our solution to these challenges is the dynamic local fusion network 
(GaitDLF), a novel gait neural network for complex environments that includes a 
detail-aware stream in addition to the previous direct extraction of global skeleton 
features, which provides an enhanced representation of gait features. To extract dis-
criminative local motion information, we introduce predefined body part assign-
ments for each joint in the skeletal structure. By segmenting and mapping the over-
all skeleton based on these limb site divisions, limb-level motion features can be 
obtained. In addition, we will dynamically fuse the motion features from different 
limbs and enhance the motion feature representation of each limb by global con-
text information and local context information of the limb-level motion features. The 
ability to extract gait features between individuals can be improved by aggregating 
local motion features from different body parts. Based on experiments on CASIA-
B, Gait3D, and GREW, we show that our model extracts more comprehensive gait 
features than the state-of-the-art skeleton-based method, demonstrating that our 
method is better suited to detecting gait in complex environments in the wild than 
the appearance-based method.
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1 Introduction

Gait recognition [1, 2] is a biometric technology that identifies human gait patterns 
based on posture features. Compared to other biometric measures such as facial 
recognition, iris scanning, and fingerprint identification, gait recognition method 
offers distinct advantages, being widely applied in domains like video surveillance 
and criminal investigation. This technology constitutes a facet of computer vision 
research, striving to identify the subtle and unique variations within human gait pat-
terns that can differentiate one individual from another [3–5].

The most used approach in gait recognition is a network that takes silhou-
ettes as input. Such appearance-based methods are highly sensitive to factors 
like clothing, carried items, cluttered backgrounds, and occlusions prevalent in 
complex environments [6, 7]. Thus, the main challenge in gait recognition lies in 
extracting robust features unaffected by these influences [8, 9].

Recent research has demonstrated excellent recognition accuracy using sil-
houette images as inputs for appearance-based gait recognition models [10–16]. 
GaitSet [17] treats gait sequences as sets, an efficient approach later adopted by 
subsequent research. GaitPart [18] emphasizes dependence between local motion 
details and time. GaitGL [19] addresses the lack of fine-grained details in spatial 
global gait representations. 3DLocal [20] extracts limb features through adaptive-
scaled 3D local operations. These methods emphasize not only global feature 
extraction but also detailed limb motion features.

Moreover, with advancements in pose estimation networks, the accuracy of 
extracting skeletal sequences from video footage has improved consistently. Skel-
etal-based gait recognition methods promise to have higher robustness in complex 
real-world Environments. In recent years, due to the improved performance of 
attitude estimators [21, 22], such model-based methods have garnered increasing 
attention [23–26]. PoseGait [27] utilizes 3D human posture and prior knowledge 
to mitigate clothing variations, while GaitGraph [28] introduces graph convolu-
tional networks to learn 2D skeletal gait representations. BiFusion [29] integrates 
skeletons and outlines to capture rich spatiotemporal gait features.

However, model-based methods currently lag behind appearance-based 
approaches in terms of performance. This is due to the fact that these methods 
primarily focus on the global features of skeletal sequences, extracting features 
from the entire body skeleton and subsequently subjecting them to joint-level 
pooling, inadvertently overlooking limb-specific motion information and inter-
limb motion relationships.

As shown in Fig. 1, during human locomotion, distinct limb sites may exhibit 
unique motion patterns—for instance, the swing of arms and the stride of legs. 
These different movement patterns of localized limb sites provide complemen-
tary information for the gait recognition process. Notably, within a complete gait 
cycle, highly mobile areas like arms and legs often carry richer and more varied 
motion information than other regions.

Therefore, modeling localized limb sites becomes crucial in order to fully 
exploit the subtle differences in gait patterns and synergies between limb sites.
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In the indoor dataset CASIA-B, however, the silhouette-based gait recognition 
network is able to achieve very superior performance. However, the performance on 
wild datasets such as GREW and Gait3D shows that the performance of the gait rec-
ognition network still needs to be optimized. In order to enable the gait recognition 
network to accurately recognize different people in a complex environment full of 
unpredictable factors, our GiatDLF chooses to use the skeleton data obtained from 
the pose estimator as the input to the network, since skeleton-based methods are not 
highly sensitive to factors such as clothing, carried objects, cluttered backgrounds, 
and occlusions that are prevalent in complex environments. And by focusing on and 
capturing distinctive motion features of different limb sites, we can achieve more 
accurate identification and differentiation of gait patterns among individuals. The 
final conclusion also shows that the fusion of global and local features can enhance 
the performance and robustness of gait recognition.

In order to address the above challenges of existing methods, Skeleton Local 
Mapping (SLM) is introduced in this study. This method comprehensively models 
each limb site of the human skeleton. As shown in Fig. 2, it divides the entire skele-
tal sequence into several partitions based on predefined limb sites. Then a maximum 
pooling operation is performed on the joint motion information contained in each 
partition. In addition, the features obtained from each limb segment are individu-
ally mapped to the corresponding feature space through a fully connected layer. The 
aim is to extract the motion features of each limb segment to produce limb-level 
motion features. This process transforms limb-specific features into a structured and 
informative representation. Compared to the traditional approach of direct global 
joint pooling, this study aims to enhance gait feature extraction in complex environ-
ments, enabling the network to extract finer-grained motion features.

To facilitate information exchange and integration among different limb sites, 
we propose dynamic feature fusion (DFF). The method models different local limb 
motion features and achieves a dynamic mechanism for adaptive selection of rel-
evant limb parts and features by calculating the attention weights obtained by aggre-
gating the global and local contextual information of different limb-level motion 
features. This intricate framework effectively eliminates unnecessary redundant 

Fig. 1  Skeleton sequence. Each limb part has a unique movement pattern, and the hands and legs have 
the greatest variation in movement
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information while retaining the salient and distinctive attributes of the data. Our 
approach aids in comprehending human motion from both global and local perspec-
tives. It adeptly tackles challenges faced by prior methods, enhancing the capability 
of gait feature extraction.

The primary contributions of this study are summarized as follows:

• We propose a novel gait recognition network called GaitDLF, which takes into 
account local motion information on top of the original modeling of global skel-
eton movements in order to extract key gait features, and the results show that 
this method is more suitable for field environments with complex conditions than 
existing appearance-based networks.

• In GaitDLF, we perform comprehensive modeling of each limb site to gener-
ate limb-level motion features for each limb site. Subsequently, the global and 
local context information is obtained from different limb-level motion features to 
obtain the attention matrix, which realizes the dynamic fusion of different limb-
level motion features.

• We conduct a comprehensive evaluation on the CASIA-B, Gait3D, and GREW 
gait datasets. Experimental results on GaitDLF demonstrate its superiority 
among skeleton-based methods, underscoring the effectiveness of emphasizing 
local limb motion information in model-based gait recognition. It also demon-
strates that the skeleton-based approach is more appropriate than the previous 
appearance-based approach when facing complex environments in the wild.

2  Related work

There are two types of gait recognition methods, which can be broadly categorized 
into two types based on the data depending on how the data are input: appearance 
based and model based.

Fig. 2  Dashed box shows the pre-defined limb parts in the skeleton. V denotes the joint dimension and C 
denotes the feature dimension. The features of each joint are divided into five parts based on the prede-
fined left hand, right hand, left leg, right leg, and head
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2.1  Appearance‑based gait recognition

Appearance-based gait recognition methods focus on directly feeding appearance 
video sequences into the network for gait recognition. This method also performs 
very well in low resolution conditions, so more and more researchers are studying 
this method [30, 31]. The research of appearance-based methods has mainly focused 
on time series modeling and spatial feature extraction due to the rapid development 
in the fields of video understanding and deep learning.

Appearance-based gait recognition methods capitalize on the processing of video 
sequences to identify individuals based on their gait. Researchers have paid consid-
erable attention to these methods, as they proved robust under low-resolution condi-
tions [30, 31]. Advances in video analysis and deep learning have spurred focused 
investigations into spatial feature extraction and temporal modeling within this 
domain.

Among other things, GaitSet [17] believes that given a collection of gait 
sequences of one cycle, it is possible to discriminate between different people. They 
processed each frame of the gait sequence using statistical functions and viewed it as 
a set of frames. This simple but effective method is known as one of the important 
contributions to the research of gait recognition this year. GaitPart [18] considers the 
dependency between local information of input contours and short-range time, and 
it designs a micro-action pattern builder, which investigates the relationship between 
the local detail information of the input contours and the short-range time and com-
bines it with different window sizes to extract the complex local spatial-temporal 
features. In contrast, GaitGL [19] achieves global and local feature extraction by 
using multiple convolutional layers. The approach is able to capture subtle local 
motion information, which overcomes the limitations of ignoring detailed informa-
tion based on global representations and the difficulty of effectively capturing the 
relationship between neighboring regions based on local region descriptors. CSTL 
[32] takes inspiration from the observation that humans can discriminate between 
gaits by adapting their focus to different time scales. It proposes a context-sensi-
tive temporal feature learning (CSTL) network to assess the importance of features 
by modeling relationships between multi-scale features. By enhancing scales that 
are more important and suppressing scales that are less important, the network can 
adapt. Another technique to solve the misalignment problem caused by temporal 
operations (e.g., temporal convolution) is SSFL. This method extracts the most dis-
criminatory parts of a sequence in order to reassemble the frame of salient spatial 
features. Additionally, 3DLocal [20] asserts that current methods of providing local-
ized parts do not produce accurate results because they average feature maps. They 
propose to solve this problem by supporting 3D localization operations that extract 
body parts in sequences with adaptive spatio-temporal scales, positions and lengths. 
In this way, a 3D local neighborhood with specific scales, positions, frequencies, 
and lengths can be used to learn the spatio-temporal patterns of body parts. Mean-
while, GaitEdge [33] argues that end-to-end approaches are inevitably affected by 
gait-related noise (i.e., low-level texture and color information). An end-to-end 
framework is presented which effectively masks gait-independent information and 
unlocks the potential for end-to-end training, synthesizing pedestrian segmentation 
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network output and then feeding it to a recognition network. In order to limit the 
amount of information available to the recognition network, the synthesized silhou-
ette is comprised of trainable edges and a fixed interior. In addition, a large-scale 
self-supervised gait recognition benchmark using contrast learning is also proposed 
by GaitSSB [34], as well as the collection of a large-scale unlabeled gait data set, 
GaitLU-1 M, consisting of 1.02 million walking sequences. A conceptually simple 
model of gait recognition, the GaitSSB, is proposed to provide a robust empirical 
basis for the model.

It is worth noting that in recent years, appearance-based approaches have typi-
cally achieved higher recognition accuracies compared to model-based approaches.

2.2  Model‑based gait recognition

Skeleton-based methods are among the most widely used for model-based gait rec-
ognition. In traditional skeleton-based gait recognition methodologies, a great deal 
of effort is put into extracting discriminative parameters from raw skeleton data to 
determine the gait and then applying those to the gait recognition algorithms [27, 
35, 36]. For example, several spatiotemporal and dynamic parameters for gait recog-
nition were computed by Deng et al. [37]. However, these methods rely on manually 
designed features, making the whole process complex and undesirable.

To address real-world application demands, researchers collected the GREW [38] 
and Gait3D [39] datasets in outdoor environments in 2021 and 2022, respectively, 
marking a shift from indoor to outdoor research. Model-based approaches to gait 
recognition have gained new vigor with the gradual shift in research direction from 
indoor to outdoor and the improved robustness of lightweight pose estimators [21, 
22]. Model-based methods enable gait recognition to perform more robustly in com-
plex environments in the face of unpredictable factors such as noise interference, 
mixed backgrounds, unconstrained walking paths, and occlusions.

Specifically, the pose-based spatio-temporal network PTSN [23] uses CNN for 
spatial modeling and LSTM for temporal modeling for spatio-temporal gait feature 
extraction. It is the first to propose a gait recognition method using pose estimation 
and utilizing pose keypoints. PoseGait [27] computes joint angles, bone lengths, and 
joint motions by means of 3D keypoints in Euclidean space. The method utilizes 3D 
human pose and a priority knowledge of the human body and overcomes the prob-
lem of clothing variations by using hand-crafted 3D pose estimation features. These 
hand-crafted features are then input into a convolutional neural network to learn 
advanced spatio-temporal features. The method was evaluated in the cross-view 
setting of CASIA-B [36], with highly competitive results compared to appearance-
based methods.

In order to represent gait more accurately, GaitGraph [28] uses RGB images 
directly to determine robust skeleton postures. Based on their arguments, these 
methods misrepresent fine-grained spatial information while silhouette images 
retain several recognizable visual cues as well as gait features as they lose the fine-
grained spatial information. Therefore, they proposed GaitGraph to achieve a num-
ber of modern gait recognition methods by combining skeleton poses with graph 
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convolutional networks (GCNs) to create a method based on modern model-based 
gait recognition. Gaitgraph2 [40] believes that silhouette images contain a wide 
range of visual cues that aren’t actually gait features but can be used for recognizing 
gait patterns, but they can also provide context for deceiving the system in the pro-
cess. Hence, they propose an algorithm for gait recognition that combines higher-
order inputs with residual networks that use graph convolutional networks (GCNs) 
to produce an architecture that is efficient and effective for the recognition of gait 
and its variations. HMRGait [41] propose a model-based approach for end-to-end 
gait recognition. The study utilizes a skinned multi-person linear (SMPL) model in 
order to model humans and parameters of this model can then be estimated through 
the use of a pre-trained human mesh recovery (HMR) network. The reconstruction 
loss that is introduced between the contour masks of the gait dataset and the con-
tours of the renders of the estimated SMPL model that is generated by the differ-
entiable renderer allow them to compensate for the discrepancy between the gait 
dataset and the dataset used for pre-training HMR. A study conducted by SMPLGait 
[29] has found that most existing gait recognition methods learn features from either 
contours or skeletons, but that the combination of these two data sources may offer 
more than just one advantage. In the past, multimodal gait recognition methods have 
mainly utilized the skeleton as an aid in extracting local features, instead of taking 
advantage of the inherent discriminative properties of skeleton data. In concert with 
bimodal fusion (BiFusion) techniques, they propose that to learn rich recognition 
features from gait patterns, the skeleton should be mined for discriminative gait pat-
terns, which can then be combined with contour representations.

We found that many studies in the field of appearance-based approaches empha-
size modeling local limb motion details and extracting local motion features 
through corresponding modules. Drawing inspiration from these appearance-based 
approaches, our proposed skeleton-based gait recognition network focuses on mod-
eling the relationships between different limb motions to achieve richer feature 
representations.

3  GaitDLF

In this section, we provide a comprehensive elucidation of the feature extraction 
process within GaitDLF, along with the functions of each pivotal component.

3.1  Preliminaries

3.1.1  Human pose estimation

Human pose estimation, also known as joint detection, is used to detect the posi-
tions of V joint points (such as wrists, ankles, etc.) in each frame of an image of 
size W × H × 3 . In gait recognition, datasets are obtained through the original video 
sequences and pre-trained human pose estimation to obtain human skeleton graph 
sequences.
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3.1.2  Notation

A human skeleton graph sequence is presented in the form of a matrix, denoted 
as Xi ∈ ℝC×T×V , where i represents that this is the i-th sequence, V represents the 
number of joints included in the human skeleton graph, T the number of frames in 
a sequence, and C the features of each joint, which include 2D coordinate infor-
mation and confidence score.

3.2  Pipline

The whole process of GaitDLF is shown in the diagram Fig. 3. To be more spe-
cific, considering Xi as the representation of the input skeleton sequence, the 
entire process can be mathematically formalized as follows:

where F(⋅) denotes the Feature Extractor responsible for extracting key motion pat-
terns and features Zi from the skeleton sequence. FG(⋅) represents GAS, FL(⋅) rep-
resents LDS, concat(⋅) signifies the channel-wise concatenation operation, and Yi 
denotes the final gait features used for loss computation.

In comparison with earlier research, GaitDLF not only emphasizes global 
motion representation but also underscores local motion representation, thus 
achieving superior recognition capability. The details of the Feature Extractor are 
discussed in Sect.  3.3, while the Local Detail Stream is elaborated in Sect.  3.4 
and the Global Awareness Stream is detailed in Sect. 3.5.

(1)Zi = F
(

Xi

)

,

(2)Yi = concat
(

FL

(

Zi
)

,FG

(

Zi
))

,

Fig. 3  Overall flow of GaitDLF. The skeleton sequence Xi is fed into the feature extractor to extract spa-
tio-temporal features and then spliced after passing through the Global Awareness Stream (GAS) and 
Local Detail Stream (LDS), and finally, the loss is computed. The detailed structure of Skeleton local 
mapping (SLM) and Dynamic Feature Fusion (DFF) is shown in Figs. 6 and 7
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3.3  Feature extractor

In our GaitDLF, the first step is to pass the input skeleton sequence through a feature 
extractor to extract temporal and spatial features.

Our approach mainly addresses how to enable the network to focus on the unique 
information of different limbs and how to adaptively fuse limb-level features, for 
which we refer to the structure proposed by GaitGraph2. As shown in Fig. 4, this 
extractor computes the input skeleton sequence into three features, position, veloc-
ity, and skeleton. Then these three features through three branches of ST-GCNs, 
respectively. To reduce computational complexity, channel splicing is performed 
in the middle of the network to fuse the features. Subsequently, the fused features 
continue to extract spatio-temporal features through multi-layer ST-GCNs. The ST-
GCN blocks utilize the ability of graph convolutional networks (GCNs) to model 
skeleton data in the spatial domain to capture the connectivity between human 
joints through the graph structure. Each ST-GCN block consists of a graph convo-
lutional layer for learning feature representations on the skeleton graph and a tem-
poral convolutional layer for capturing the evolution of movements over time. This 
combination of modeling in the temporal and spatial domains allows our network to 
effectively understand and characterize the complexity of human actions. With this 
in-depth feature extraction, the ST-GCN block significantly improves the accuracy 
and efficiency of gait recognition [40]. Among them, the improved ST-GCN adds a 
bottleneck and residuals to the original ST-GCN [42, 43] as shown in Fig. 5.

With this extraction method, we can effectively capture the basic motion patterns 
and features in the skeleton sequence, thus laying the foundation for the subsequent 
gait recognition task. It should be emphasized that this feature extractor has the 
same architecture and the same feature computation method as GaitGraph2 [40].

Fig. 4  Proposed architecture of feature extractor in GaitDLF. It consists of a three-branch computation, 
some ST-GCNs, and some improved ST-GCNs [40]. The extracted high-level feature Zi will be fed into 
LDS and GAS
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Subsequently, the extracted features are separately fed into the Global Awareness 
Stream (GAS) and Local Detail Stream (LDS). This facilitates the extraction of both 
global and local joint motion information. While GAS focuses on encompassing the 
overall skeletal motion representation, LDS intricately captures local limb motion 
information, thus enhancing the network’s recognition capacity.

3.4  Local detail stream

Prior methods commonly employed graph convolutional networks and temporal 
convolutional networks (TCN) to extract spatial and temporal features from skeleton 
sequences, culminating in significant recognition accuracy. However, they pooled 
the extracted high-level features directly across the joint dimensions to obtain the 
final gait representation. This approach is simple and effective, but since most peo-
ple’s gait movements are very similar and more accurate recognition often requires 
subtle limb movements, we further model the high-level features based on differ-
ent limbs, and the proposed Local Detail Stream achieves more accurate recognition 
accuracy.

The key of LDS is to effectively partition the high-level features Zi into different 
limb parts and map them separately to obtain limb-level motion features that carry 

Fig. 5  a Original ST-GCN consists of a GCN, which is used to learn the feature representation on the 
skeleton map, and a TCN, which is used to capture the evolution of motion over time. b Improved ST-
GCN. Based on the original ST-GCN, the number of parameters is reduced using Bottleneck to lighten 
the network, and residuals are added to enhance the network learning capability
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information unique to different limb parts. This dynamic fusion allows the network to 
adaptively focus on more significant information and extract finer features. LDS con-
sists of the following two modules.

3.4.1  Skeleton local mapping

To achieve this, we first employ the Skeleton local mapping (SLM) process. For a 
detailed schematic of the SLM process, refer to Fig. 6. In SLM, pooling is first per-
formed along the temporal dimension and then divided into different limb part motion 
features based on the limb part to which different joints belong. Subsequently, maxi-
mum pooling is performed on multiple joints within each limb part to obtain limb-level 
motion features so that more fine-grained features can be obtained.

We then map the features of each limb segment to a discriminative feature space 
using separate fully-connected layers, highlighting the motion information of the limb 
segment and obtaining a more fine-grained representation. The use of a separate fully 
connected layer allows the model to learn the most appropriate representation param-
eters for each limb, which helps later modules capture unique information about that 
limb as it performs its movements, and the fully connected layer can also deepen the 
network here to enhance the model’s representational capabilities. It is worth noting 
that we believe that the use of average pooling in the global perceptual flow yields 
information about the global skeleton, whereas max pooling is used here to prevent 
some locally significant information from being averaged out by the global one. The 
following mathematical formalization can be used to describe this process:

where �(⋅) represents the activation function, Div(⋅) denotes the process of dividing 
into localized limb features, FCs(⋅) signifies the fully connected layers for each limb 

(3)fp = �
(

FCs
(

Div
(

TP
(

Zi
))))

,

Fig. 6  Proposed architecture for Skeleton Local Mapping (SLM) in LDS. First, temporal pooling (TP) 
is performed on Zi, then each joint feature is segmented according to the predefined limb parts of the 
Fig. 2, then pooling (MP) is performed on each limb part, and finally, the mapping is performed using 
the fully connected layer (FC) in order to obtain limb-level motion features fp
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part, TP(⋅) denotes maximum pooling in the time dimension, and fp denotes limb-
level features.

3.4.2  Dynamic feature fusion

In this section, we explain the proposed Dynamic Feature Fusion (DFF) process. 
See Fig. 7 for a detailed schematic.

The process utilizes the limb-level features to generate global contextual aggre-
gation features and local contextual aggregation features and then uses a sigmoid 
function to compute the weights on each limb part as well as on each channel, with 
the aim of establishing adaptive fusion weights at each limb part and channel, thus 
dynamically fusing different features from different limb parts.

The process generates global context features and local context features using 
limb-level features and finally sums the global and local context features. The com-
bined global and local context features are obtained, providing a comprehensive 
feature representation. The sigmoid function is then used to map this information 
to the 0–1 range to obtain adaptive weights for each limb site and each channel. 
The limb-level feature points are multiplied by the adaptive weights and then passed 
through maximum pooling, thus dynamically fusing different features from differ-
ent limb-level features. To mitigate gradient vanishing, we also add residual connec-
tivity. This then allows the network to effectively learn the important features and 
ignore the unwanted information. It is worth noting that max-pooling is also used 
here, with the aim of selecting the max values for different limb parts, retaining the 
salient information from different limb parts, and using it in the calculation of the 
attention weights.

Specifically, to fuse information from five limb parts while maintaining a light-
weight approach, we opt for Pointwise Convolution (PWConv) as the channel 

Fig. 7  Proposed architecture of Dynamic Feature Fusion (DFF) in LDS. Attention weights A are com-
puted after global and local contextual aggregation of the limb-level features fp , and the output fl is 
obtained by dot-multiplying with the input and adding residual
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context aggregator. PWConv solely leverages point-wise channel interactions at 
each spatial position. The computation of local context feature L

(

fp
)

 and global con-
text feature G

(

fp
)

 is as follows:

The kernel sizes of PWConv1(⋅) and PWConv2(⋅) are C

r
× C × 1 × 1 and 

C ×
C

r
× 1 × 1 . C denotes the feature dimension; r is the channel shrinkage rate, for 

dimensionality reduction and to make the network more lightweight. It is worth not-
ing that L

(

fp
)

 retains the same shape as the input features, thereby preserving and 
emphasizing subtle details in low-level features. Given the global context feature 
G
(

fp
)

 and local context feature L
(

fp
)

 , the attention matrix A can be formalized as:

where �(⋅) denotes the sigmoid function, L
(

fp
)

 and G
(

fp
)

 denote the local context 
feature and global context feature, and ⊕ denotes the matrix addition.

With this strategy, we are able to focus our attention on key body part informa-
tion and reduce redundant data, thus improving the network’s ability to capture and 
recognize local motion patterns. Dynamic feature fusion (DFF) flexibly adjusts the 
weights of different parts to achieve accurate information fusion. The local motion 
features 

(

fl
)

 can be formalized as:

where MP(⋅) represents max-pooling, ⊗ denotes the dot product, fl denotes the 
locally fused limb part detail features, A represents attention matrix, and FL(⋅) repre-
sents LDS.

3.5  Global awareness stream

Beyond the Local Detail Stream, perceiving the global skeletal structure is also para-
mount. Effectively utilizing both the global skeletal framework and local limb infor-
mation can offer rich features for gait recognition. The GAS module in this paper 
aims to extract global motion features from skeleton sequences, thus giving the net-
work the ability to recognize global motion. Through global average pooling, we 
reduce the dimensions of the high-level features from output Zi , yielding an overall 
representation of global motion. Average pooling computes the average of multiple 
features, thus yielding information about the global skeleton that complements the 
local information extracted from the local detail stream. Subsequently, we employ 
a fully connected layer to map these features into the discriminant space to enhance 
the discriminative and unique nature of the features. Through GAS, we capture over-
all motion patterns in the skeleton sequences, providing information support from a 
global perspective for recognition tasks. This process can be expressed as:

(4)L
(

fp
)

= PWConv2
(

�
(

PWConv1
(

fp
)))

,

(5)G
(

fp
)

= PWConv2
(

�
(

PWConv1
(

MP
(

fp
))))

,

(6)A = 𝜎(L
(

fp)⊕ G
(

fp
))

,

(7)fl = FL

(

Zi
)

= MP
(

fp ⊗ A
)

,
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where �(⋅) denotes the activation function, FC(⋅) signifies fully connected layers, 
GP(⋅) represents global average pooling, fg denotes global perception features, and 
FG(⋅) represents GAS.

4  Experiments

The following gait datasets are used to evaluate GaitDLF: CASIA-B [36], Gait3D 
[39], and GREW [38]. The first part of this paper presents three benchmark gait 
datasets and their corresponding training configurations. Using identical experi-
mental conditions, we compare GaitDLF with state-of-the-art gait methods. Finally, 
we will conduct ablation experiments to identify how each component of GaitDLF 
affects performance.

4.1  Datasets

A trio of excellent gait datasets are employed, including CASIA-B [36], which is 
widely used indoors, Gait3D [39], which is famous for its diversity in real-life set-
tings, and GREW [38], which is commonly used in wild environments. As shown in 
Table 1, the relevant statistics pertaining to the number of sequences and identities 
are provided. Subsequent sections present a comprehensive outline of the data col-
lection procedures for each dataset, underscoring the notable distinctions between 
indoor and outdoor datasets.

4.1.1  CASIA‑B [36]

 Is a widely used gait recognition dataset with 124 subjects. Each subject had 10 dif-
ferent walking styles, including 6 normal walking styles, 2 backpack walking styles, 
and 2 walking styles with different clothes. Viewing angles ranged from 0 ◦ to 180◦ 
at 18◦ intervals, and a total of 11 cameras were used. The CASIA-B dataset there-
fore includes 13,640 gait sequences. We adopted the popular division scheme of 
existing studies [44], since CASIA-B has never been officially divided into training 
and test sets. Specifically, training data were collected from 74 subjects (001-074), 
while test data were collected from 50 subjects (075-124). Four gait sequences were 
used in the test set in NM condition. The rest of the gait sequences served as probe 
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Table 1  Count of labels (Lab) 
and sequences (Seq) contained 
in the CASIA-B, GREW, and 
Gait3D datasets

Dataset Year Train set Test set

Lab Seq Lab Seq

CASIA-B [36] 2006 74 8140 50 5500
GREW [38] 2021 20,000 102,887 6000 24,000
Gait3D [39] 2022 3000 18,940 1000 6369
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sequences. To extract the pose information in the CASIA-B dataset, we used the 
pretrained HRNet pose estimation model [45] that was pre-trained previously.

4.1.2  Gait3D [39]

 Is a large-scale live gait recognition dataset that was captured using 39 cameras in 
a supermarket, and the dataset includes 4000 different objects and more than 25,000 
gait sequences. In the training phase, we use data from 3000 of these objects for 
training. During the testing phase, all of the remaining 1000 samples will be ana-
lyzed, with a maximum of one sequence from each sample being randomly selected 
as the probe sequence and the remaining 1000 samples serving as the gallery.

4.1.3  GREW [38]

 Is a dataset derived from real-world video streams, which are composed of hun-
dreds of cameras and thousands of hours of streams in open systems, as captured by 
natural cameras. Including 26K identifiers and 128K sequences, the GREW dataset 
contains a variety of attributes, useful view variations, and more natural challenge 
factors throughout that make it a great dataset for training, validation, and test pur-
poses. Test objects are composed of two sequences, one of which is considered a 
probe and the other is considered a gallery, which is composed of two sequences 
from each test object.

In all our experiments, we follow the official protocols or the most popular pro-
tocols for training, testing, and gallery/probe set segmentation in order to achieve 
the most relevant results possible, using the main evaluation metrics such as Rank-
1, Rank-5, Rank-10, and Rank-20 in order to evaluate the effectiveness of our 
experiments.

4.2  Implementation details

4.2.1  Parameter configuration

We use a triplet loss function whose threshold is set to 0.2. The embedding dimen-
sion of the last fully connected layer is specified to be 128, and bn layers are added 
after each activation function. For training, the batch size is configured as (N, S), 
indicating that N labels are selected and S sequences are selected for each label. 
Specifically, for the CASIA-B dataset, the training batch is set to (10, 6), while for 
the GREW and Gait3D datasets, it is set to (48, 12).

4.2.2  Optimizer

SGD [46] optimizer is used during the optimization process. As a result of these 
hyperparameters, the initial learning rate is set at 0.1, momentum is set at 0.9, and 
weight decay is set at 0.005. In order to reduce the learning rate for the GREW data-
set by ten, steps of 30K, 60K, 90K, and 120K were taken, which resulted in 150K 
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training iterations. For the Gait3D dataset, there are 32K iterations in total for the 
training process at a step size of 30K, which results in a reduction in learning rate by 
a factor of 10 during the training process. The learning rate of the CASIA-B dataset 
was reduced by a factor of 10 at step sizes of 20K and 40K, and a total of 42K itera-
tions were required for this dataset

4.2.3  Data augmentation

To mitigate the influence of errors arising from pose predictions of task joints in the 
original RGB videos, a data augmentation strategy is implemented. The coordinates 
of each joint are augmented with Gaussian noise with a variance of 0.25, which sig-
nificantly improves the network’s ability to cope with errors of this magnitude

During the training phase, a sequence of 30 consecutive frames is arbitrarily 
selected as input. In the testing phase, all frames within a sequence are input into 
the network for evaluation. All experimental procedures are conducted using the 
PyTorch framework on a single NVIDIA GeForce GTX 3080 GPU. Table 2 displays 
the main hyper-parameters of our experiments.

4.3  Comparison with state of the art

The aim of this study is to compare GaitDLF with state-of-the-art skeleton-based 
methods for gait recognition. A systematic and comprehensive experiment was con-
ducted on three different datasets to validate GaitDLF’s effectiveness. These data-
sets are CASIA-B, Gait3D, and GREW. Our first comparison is between GaitDLF 
and representative skeleton-based methods, including PoseGait, GaitGraph, and 
GaitGraph2. This choice was made because of the consistency between these three 
methods and our own evaluation protocol.

As shown in Table 3 in the CASIA-B indoor dataset, the performance of GaitDLF 
is only 84.86% in the NM condition, which is not as good as GaitGraph’s 87.7% , and 
only 70.74% in the BG condition, which is also not as good as GaitGraph’s 74.8% . 
But comparing these several skeleton-based methods, our method was able to obtain 
higher results in the coat-loaded (CL) condition, which suggests that methods 
focusing on localized limb movements can show higher robustness when the over-
all skeleton is more occluded by clothing. However, the CASIA-B indoor dataset 
was collected in the laboratory in order to bridge the gap between laboratory stud-
ies and real-world applications. We need methods that are more applicable to wild 
environments.

Table 2  Hyperparameters used 
in the experiments

Dataset Batch size Steps Frame Multistep scheduler

CASIC-B [36] (10, 6) 42k 40 (40k)
Gait3D [39] (48, 12) 32k 30 (30k)
GREW [38] (48, 12) 150k 30 (30k, 60k, 90k, 120k)
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On both the GREW and Gait3D datasets, our method achieves the highest recog-
nition accuracy and has the best recognition rate compared to the best methods on 
both datasets, as shown in Table 4. Importantly, on the GREW dataset, our accuracy 
is an impressive 30% higher than that of GaitGraph2. This result highlights the abil-
ity of our method to efficiently learn complex and unique gait features from large-
scale datasets, which makes it more suitable for real-world gait recognition tasks. It 
further shows that compared to other methods that pool over the whole skeleton to 
obtain global features, our proposed modeling and dynamically adaptive fusion of 
local limbs is clearly more advantageous.

Given the unique characteristics of these three datasets, it is possible to see that 
our method performs well primarily on larger, more influential datasets (e.g., Gait3D 
and the GREW dataset in the wild). For the smaller CASIA-B dataset, our method 
does not achieve the best results and performs second only to GaitGraph. This is 

Table 3  Averaged Rank-1 accuracies in percent on CASIA-B per probe angle compared with other 
model-based methods

We highlight the best results by bold markup, and the name of our proposed method

Type Methods View Mean

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM PoseGait [27] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7
GaitGraph [28] 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7
GaitGraph2 [40] 78.5 82.9 85.8 85.6 83.1 81.5 84.3 83.2 84.2 81.6 71.8 82.0
GaitDLF 80.1 87.1 87.7 89.2 84.4 84.4 84.2 85.2 85.2 85.4 80.6 84.86

BG PoseGait [27] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5
GaitGraph [28] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8
GaitGraph2 [40] 69.9 75.9 78.1 79.3 71.4 71.7 74.3 76.2 73.2 73.4 61.7 73.2
GaitDLF 68.2 71.0 74.2 75.8 69.0 71.2 71.5 71.2 72.0 70.5 63.5 70.74

CL PoseGait [27] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0
GaitGraph [28] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3
GaitGraph2 [40] 57.1 61.1 68.9 66.0 67.8 65.4 68.1 67.2 63.7 63.6 50.4 63.6
GaitDLF 67.0 68.1 69.1 68.9 64.4 68.0 69.2 71.3 69.3 70.1 62.1 67.95

Table 4  Averaged Rank-1 accuracies in percent on GREW and Gait3D compared with other model-
based methods

We highlight the best results by bold markup, and the name of our proposed method

Methods Publication GREW Gait3D

Rank-1 Rank-5 Rank-10 Rank-20

PoseGait [27] PR 2020 0.23 1.05 2.23 4.28 0.24
GaitGraph [28] ICIP 2021 1.31 3.46 5.08 7.51 6.25
GaitGraph2 [40] CVPRW 2022 33.54 49.45 56.28 61.92 11.1
GaitDLF Ours 68.77 82.25 87.25 90.3 27.2
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because GaitDLF possesses a more complex design than other skeleton-based net-
works to cope with the challenges of complex scenarios, and thus, on the small data-
set, this may have led to overfitting, making GaitDLF difficult to achieve the best 
performance. However, on large datasets, GaitDLF achieves very high performance.

4.4  Comparison with appearance‑based methods

Since appearance-based methods have been predominantly used in gait recognition 
and the silhouette images used include gait information and other recognizable vis-
ual cues (e.g., clothing, handbags), the skeleton-based methods only use dynamic 
skeletal sequences of the subject to extract gait features. Skeletal-based methods, on 
the other hand, use only the dynamic skeletal sequence of the subject to extract gait 
features. The GaitDLF is then compared with various state-of-the-art appearance-
based methods, such as GaitSet, GaitPart, GaitGL, and GaitBase, in order to assess 
its performance.

As shown in Table 5, the appearance-based state-of-the-art method outperforms 
the accuracy of our GaitDLF on the CASIA-B dataset. However, it is worth not-
ing that the CASIA-B dataset was collected under the 2006 constraints and contains 
only 124 individuals and approximately 13K video sequences, as well as artificially 
formulated tilt angles, and occlusions. It is shown that in indoor environments, the 
appearance-based approach can exhibit the highest gait recognition accuracy due to 
the lack of many complicating factors.

It can be concluded from Tables 3 and 5 that the performance of all the meth-
ods is susceptible to the change in walking conditions, based on the performance of 
skeleton-based and silhouette-based methods in the indoor dataset. Moreover, the 
recognition performance of the appearance-based methods exhibits large fluctua-
tions when the tilt angle changes, and it can be expected that such fluctuations will 
be even larger in complex environments. Therefore, in wild environments, skeleton-
based methods, due to their greater robustness, are bound to be more advantageous.

One of the most notable features of the GREW dataset is that it is available in 
2021 in a highly complex and free environment with 26K individuals and approxi-
mately 128K video sequences. The dataset is completely unconstrained, has a large 
number of undefined variations, and has diverse and useful perspectives. GREW 
also includes a variety of challenging factors such as complex backgrounds, occlu-
sion, carrying objects, and wearing jewelry. As shown in Table 6, GaitDLF achieves 
a Rank-1 accuracy of 68.77% , and the Rank-1 accuracy of the state-of-the-art silhou-
ette-based method is 60.1% . This indicates that GaitDLF outperforms the existing 
state-of-the-art appearance-based methods in an unconstrained wild environment.

Skeletal-based gait recognition can prioritize pose, angle, and directly relevant 
gait information, whereas appearance-based networks tend to emphasize subjective 
features such as color and texture. Therefore, for such a large dataset collected in 
unconstrained and complex environments, a skeleton-based approach that extracts 
gait features only from skeleton sequences is more appropriate than an appearance-
based approach.
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The Gait3D dataset contains only 4K individuals and 25K video sequences, 
which are collected in supermarkets, and the amount of data is much smaller than 
that of the GREW dataset, as shown in Table 6, the Rank-1 accuracy of GaitDLF 
is only 27.2% , and that of the state-of-the-art silhouette-based method is 64.4% . It 
shows that the silhouette-based and skeleton-based methods have their own advan-
tages and usage scenarios.

The above results show that for gait recognition under strict constraints, good 
results can be achieved using an appearance-based approach, but for unconstrained 
wild environments with a large number of samples, a skeleton-based approach would 

Table 5  Averaged Rank-1 accuracies in percent on CASIA-B per probe type compared with other 
appearance-based methods

We highlight the best mean results by marking them in bold, and the name of our proposed method

Type Methods View Mean

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM GaitSet [17] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [18] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.1
GaitGL [19] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
GaitBase [47] 93.9 98.8 99.6 98.1 94.0 91.6 94.9 98.4 99.3 98.5 91.8 97.6
GaitDLF 80.1 87.1 87.7 89.2 84.4 84.4 84.2 85.2 85.2 85.4 80.6 84.86

BG GaitSet [17] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 30.0 92.2 94.4 79.0 87.2
GaitPart [18] 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 90.7
GaitGL [19] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
GaitBase [47] 91.9 95.5 96.8 94.7 90.9 88.9 91.7 94.9 96.2 95.5 86.3 94.0
GaitDLF 68.2 71.0 74.2 75.8 69.0 71.2 71.5 71.2 72.0 70.5 63.5 70.74

CL GaitSet [17] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [18] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitGL [19] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.8
GaitBase [47] 60.2 77.6 82.8 78.7 74.8 72.2 76.1 78.2 76.8 72.0 56.9 77.4
GaitDLF 67.0 68.1 69.1 68.9 64.4 68.0 69.2 71.3 69.3 70.1 62.1 67.95

Table 6  Averaged Rank-1, Rank-5, Rank-10, and Rank-20 accuracies in percent on GREW and averaged 
Rank-1 accuracies in percent on Gait3D compared with other appearance-based methods

We highlight the best results by bold markup, and the name of our proposed method

Methods Publication GREW Gait3D

Rank-1 Rank-5 Rank-10 Rank-20

GaitSet [17] AAAI 2019 46.28 63.58 70.26 76.82 36.7
GaitPart [18] CVPR 2020 44.01 60.68 67.25 73.47 28.2
GaitGL [19] ICCV 2021 47.28 63.56 69.32 74.18 29.7
GaitBase [47] CVPR2023 60.1 75.4 80.38 84.16 64.6
GaitDLF Ours 68.77 82.25 87.25 90.3 27.2
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be more appropriate. We believe this is caused by the fact that the skeleton sequence 
contains much less information than the silhouette sequence. Skeleton sequences 
simply include only the coordinates of each joint and the confidence level, whereas 
silhouette maps contain a large number of visual cues. However, large datasets have 
more data volume and diversity, which can help skeleton-based models better cap-
ture different variations and characteristics of gait. Therefore, on smaller datasets, 
the diversity of data may not be sufficient to support the skeleton based model to 
learn a wider range of gait variations, leading to performance degradation.

In conclusion, a larger capacity and more diverse dataset can help the skeleton-
based model better capture a variety of gait variations and features. Compared with 
appearance-based methods, model-based methods focus only on human gait infor-
mation and do not focus on rich appearance information, although it performs poorly 
on small datasets, in datasets with many unpredictable influences, and due to the 
large amount of data, skeleton-based methods are precisely able to ignore very sen-
sitive appearance features and learn gait features. Therefore, based on this fact, this 
approach can be more effective in realizing its potential when applying gait recogni-
tion tasks in datasets of complexity and large data volumes or even in the real world.

4.5  Ablation studies

Our objective in this section is to determine the effectiveness of the modules we have 
designed by performing an extensive ablation analysis of each module in GaitDLF 
for each module. Using Gaitgraph2 as a baseline, this study is able to improve the 
effectiveness of the method by modifying its loss function, data augmentation, and 
test time augmentation (TTA) strategies in order to improve its performance. Dur-
ing the testing of Gaitgraph2, the left-right flip sample and the time reversal sample 
are used as two supplementary samples, and the three embedded data obtained are 
connected to facilitate the subsequent distance calculation. And the distance metric 
between its gallery samples and probe samples uses the cosine similarity function. 
On the other hand, our approach avoids the use of supplementary samples during 
the testing process and instead computes the distance between gallery samples and 
probe samples by using the Euclidean distance between the respective feature vec-
tors of gallery samples and probe samples. Additionally, auxiliary samples are not 
utilized, and all frames are input to the network for testing. It is shown in the table 
that in comparison with the original Gaitgraph2, the adjusted baseline achieves a 
recognition accuracy of approximately 58% , which shows an increase of approxi-
mately 25% when compared to the original Gaitgraph2.

4.5.1  Evaluation of the SLM block

Inspired by the appearance-based approach, we introduce the SLM module, 
which aims to capture unique motion information from different limb parts to uti-
lize richer gait characteristics. As shown in Table  7, the Rank-1 metric is only 
58.2% when only GAS is left in the network, a result that is 10.5% lower than the 
performance of GaitDLF. This result validates the ability of the SLM module to 
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model different limb parts and emphasizes that focusing on the complex details 
of localized limb parts is not only effective for appearance-based approaches, but 
also for model-based approaches.

4.5.2  Evaluation of the DFF block

After feature extraction through the SLM module, limb-level motion features cor-
responding to the five limb parts are obtained. Several simple but effective meth-
ods can be used to fuse these five parts, but to further enhance the fusion of these 
five limb part motion features, we propose an attention-based DFF block. The 
goal is to dynamically adjust the attention weights of the five limb part motion 
features to facilitate dynamic fusion to preserve essential information and discard 
redundant details.

It is worth noting that both global and local channel context information are 
computed based on the five limb segments during the generation of attention 
weights. As shown in Table 7, the accuracy of the DFF block when removed from 
the LDS is 66.1% , a result that is 2.6% lower than the performance of GaitDLF. 
This result further confirms the efficacy of the proposed DFF block in fusing 
localized limb segments.

4.5.3  Evaluation of the GAS

We have verified the effectiveness of the two modules, of LDS, and we intend to 
remove the original GAS, according to Table 7, the performance of the network 
with only LDS is 68.1% , and this result is 0.67% lower than the performance of 
GaitDLF. It shows that GAS and LDS together can make the network achieve bet-
ter performance.

Table 7  Rank-1 accuracy of the network on the GREW dataset, with each of the proposed modules being 
removed in turn to assess the validity of each module

We highlight the best results by bold markups

Methods GAS LDS Rank-1 Rank-5 Rank-10 Rank-20

SLM DFF

GaitGraph2 33.54 49.45 56.28 61.92
GaitBase 60.1 75.4 80.38 84.16
our ✓ ✓ ✓ 68.77 82.77 87.25 90.3

✓ ✓ 66.1 81.8 86.6 90
✓ 58.2 76.2 82.1 86.2

✓ ✓ 68.1 82.3 86.6 89.8
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4.6  More experiments

GaitDLF will be the subject of more experiments in this section. Besides testing 
the two modules above, we will also evaluate the role these two modules play in 
improving the feature extraction capability of GaitDLF by comparing the baseline 
model without the integrated SLM and DFF modules with the full GaitDLF model. 
Moreover, we will analyze GaitDLF’s complexity and compare it with currently 
available skeleton-based gait recognition methods.

4.6.1  Feature visualization

For the experiments on the GREW dataset, we randomly selected 80 different labels, 
each containing 12 samples of skeleton sequences, for a total of 960 samples.These 
samples were input into Baseline and our GaitDLF, respectively, and the respec-
tive output gait feature distributions were subsequently visualized and analyzed 
using t-SNE [48]. As can be seen from the results in Fig. 8, in the comparison of 
Baseline and GaitDLF feature distributions, we note that Baseline shows some abil-
ity in distinguishing between differently labeled samples, even though the feature 
distributions of these samples are relatively concentrated in the feature space. This 
concentrated distribution may imply that the features of differently labeled samples 
are spatially closer together, and may pose a challenge to the network’s ability to 
distinguish between these labels. In contrast, GaitDLF shows slightly better perfor-
mance in feature extraction, being able to distinguish between samples with different 
labels with some degree of clarity, as evidenced by the fact that the distribution of 
samples with different labels is slightly more spread out in the feature space. This 
also reflects the advantage of GaitDLF in extracting gait features to some extent and 
also shows that the two modules we developed are effective from the perspective of 
feature visualization.

Fig. 8  Results of visual analysis of a sample of 80 labels selected from the GREW dataset using t-SNE. 
Same color indicates the same label; different colors indicate different labels
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4.7  Complexity analysis

We perform a complexity analysis of GaitDLF with the state-of-the-art skeleton-
based methods, as shown in Table 8, the parameter of GaitDLF is 0.94 M, which is 
just 0.18 M more than the 0.76 M of GaitGraph2, while their FLOPs are compara-
ble, indicating that GaitDLF optimizes the computational burden while maintain-
ing a similar model design while maintaining a similar computational burden. More 
importantly, GaitDLF shows excellent performance on two important outdoor data-
sets, Gait3D and GREW, with the top-ranked accuracy reaching 27.2% on Gait3D 
and 68.77% on GREW, which clearly outperforms the other comparison methods. 
In contrast, Gaitgraph, despite being more lightweight in terms of model size, 
with a parameter count of only 0.35 M, does not perform as well in terms of actual 
performance.

5  Conclusion

In this paper, we introduce a network that is more adapted to the field environment 
and focuses on both global and localized limb motion, called the dynamic local 
fusion network (GaitDLF). Unlike existing skeleton-based approaches, our GaitDLF 
not only focuses on the motion information of the overall skeleton, but is also able 
to extract a more discriminative representation of gait features from the local limb 
motion information. As GaitDLF extracts features at different scales from both local 
detail streams and global-aware streams, it is able to provide information that is 
more comprehensive in terms of representation of features.

In addition, a dynamic feature fusion mechanism is used to dynamically inte-
grate the details of different limb parts and retain more critical motion features. 
Several studies on the CASIA-B, the GREW, and the Gait3D datasets have shown 
that GaitDLF has a superior discriminative power to other skeleton-based methods, 
while still meeting the requirements for gait recognition in complex environments. 
GaitDLF also shows superior discriminative power to skeleton-based methods on 
the CASIA-B, GREW, and Gait3D datasets. Our experiments reveal the robustness 
of the skeleton-based approach in datasets with complex environmental factors. 
Skeleton-based gait recognition methods are better suited for complex and large data 
sets than appearance-based methods.

Table 8  Comparison of 
performance and computational 
complexity of skeleton-based 
gait recognition methods on 
Gait3D and GREW outdoor 
datasets

We highlight the best results by bold markups

Methods Gait3D GREW params FLOPs
Rank-1 Rank-1

Gaitgraph 6.25 1.31 0.35M 0.0753G
Gaitgraph2 11.1 33.54 0.76M 0.1936G
GaitDLF 27.2 68.77 0.94M 0.1939G
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Based on these results, GaitDLF has the potential to be applied in the medical 
field, especially in the prediction of Parkinson’s disease. Parkinson’s disease is a 
neurological disorder that typically affects a patient’s gait and motor skills. By using 
GaitDLF or similar gait recognition technology in field scenarios, physicians and 
researchers can characterize the final gait of potential patients in the community to 
identify the disease. This early detection may help with early intervention and treat-
ment, thereby improving the quality of life for patients. In the field of public security 
and safety, GaitDLF can be used to recognize and track specific pedestrians. This 
can achieve high accuracy for monitoring pedestrians in cameras, even in complex 
environments such as crowded locations or city streets.
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