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Abstract
Hyperspectral imaging is applied in the medical field for automated diagnosis of 
diseases, especially cancer. Among the various classification algorithms, the most 
suitable ones are machine and deep learning techniques. In particular, Vision Trans-
formers represent an innovative deep architecture to classify skin cancers through 
hyperspectral images. However, such methodologies are computationally inten-
sive, requiring parallel solutions to ensure fast classification. In this paper, a paral-
lel Vision Transformer is evaluated exploiting technologies in the context of Edge 
and Cloud Computing, envisioning portable instruments’ development through the 
analysis of significant parameters, like processing times, power consumption and 
communication latency, where applicable. A low-power GPU, different models of 
desktop GPUs and a GPU for scientific computing were used. Cloud solutions show 
lower processing times, while Edge boards based on GPU feature the lowest energy 
consumption, thus resulting as the optimal choice regarding portable instrumenta-
tion with no compelling time constraints.
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1 Introduction

The healthcare research field requires hardware able to process huge amounts of 
data and mathematical models as fast as possible to provide prompt answers to 
aid medical diagnoses according to the highest standards [1]. Automated medical 
image diagnosis is one of the most flourishing disciplines of artificial intelligence 
(AI) in health care. Many specialties including radiology, ophthalmology and 
dermatology rely on image-based diagnoses through AI [1–5]. The main draw-
back of this approach is related to the processing power needed both to train the 
models and to perform the inference. On the other hand, AI algorithms are based 
on vector and matrix operations, which are intrinsically parallel. Thus, both the 
training and inference portions of AI models are typically performed using paral-
lel architectures. In this context, high-performance computing (HPC) technolo-
gies such as multi- and many-core processors play a significant role [6, 7], where 
HPC is a broad term comprising a multitude of solutions that encompass both 
Edge and Cloud Computing approaches.

Cloud Computing can be defined as a model of service delivery and access 
where dynamically scalable and virtualized resources are provided as a service 
over the Internet [8]. In particular, computing power, data storage and services of 
Cloud systems are usually, but not always, outsourced to third parties and made 
available to both enterprises and customers [9]. On the other hand, Edge Com-
puting is a paradigm where resources are located at the edge of the Internet, in 
close proximity to the devices that generate data (IoT and mobile devices, sensors 
and end users) or at the nearest edge (i.e., gateway, micro data center), and allow 
computation on downstream data on behalf of Cloud services and upstream data 
on behalf of IoT services [10–12]. They represent counterpoints to massive data 
centers that dominate in Cloud Computing. In fact, the term “Edge” defines any 
computing and network resource along the path between data sources and Cloud 
data centers, as a continuum.

These approaches led academic investigators and scientists to design so-called 
human-sensible applications for personalized medicine. In fact, the number of works 
on this subject greatly increased in recent years thanks to HPC advancements [2, 
4]. Among the various HPC technologies, portable instruments represent a funda-
mental aid in the diagnostic process, oftentimes producing real-time results through 
specific computing devices, like FPGAs and GPUs [13, 14]. GPUs allow for faster 
training and inference times compared to CPUs, since GPUs host many cores that 
perform parallel computations. This is a critical issue when dealing with large data-
sets and complex models. Additionally, in medical contexts where the privacy of 
patients is of crucial importance a single-GPU or a multi-GPU system is better than 
Cloud clusters. In fact, one of the main advantages of GPUs is the ability to store 
and process data on-site, eliminating the need to transfer sensitive data to the Cloud. 
Furthermore, a local GPU system is often more cost-effective than Cloud clusters, 
especially when working with limited research budgets.

The need of HPC hardware is fundamental, since medical AI applications pre-
sent several challenges [1, 4]. Clinical contexts usually provide poor datasets, 
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making it hard to exploit elaborated deep learning (DL) algorithms. Moreover, 
the more complex the model, the greater the need to employ highly performant 
hardware. In addition, healthcare experts may give contrasting opinions regarding 
a diagnosis. Lastly, from a regulatory perspective, clinical AI systems must be 
certified before commercialization [1, 4, 5]. Consequently, hierarchically struc-
tured and standardized evaluations are mandatory to enable AI-based diagnosis. 
Therefore, this work targets approaches employing portable hardware, desktop 
NVIDIA GPUs and a cluster of GPUs, together with programming frameworks to 
accelerate the algorithms and enable the design of blueprints, to comply with the 
time-sensitive criteria required for industry translation.

Among the different imaging methods adopted in the medical field, hyperspectral 
imaging (HSI) gained relevance in the last decade thanks to its increased process-
ing power which enabled faster analysis. HSI is a noninvasive, non-contact, non-
ionizing and label-free technique, which measures the reflected and transmitted 
light, gathering relations values associated with several bands of the electromagnetic 
spectrum [7, 15]. Therefore, the outcome is a three-dimensional dataset comprising 
a two-dimensional image for each wavelength: this is named “hyperspectral cube,” 
because it retains both the spatial and spectral information of the analyzed sample. 
Such cube contains the fraction of incident electromagnetic radiation reflected by a 
surface. Typically, the bands cover the range of both the visible and near-infrared 
wavelengths, allowing a precise discrimination of different materials [16, 17]. Each 
presents a specific variation of reflectance values concerning wavelengths, called 
spectral signature, allowing for precise discrimination [16, 18–21]. HSI classifica-
tion focuses on the recognition of the material contained in each pixel and com-
prises several supervised and unsupervised algorithms whose elaboration could be 
computationally intensive [22, 23].

This feature of hyperspectral imaging has been adopted in the medical field to dis-
criminate between healthy and pathological tissues [21]. Biochemical and morpho-
logical changes associated with lesions modify the optical characteristics of tissues, 
providing valuable information for automatic cancer detection. In fact, compared to 
other imaging techniques, hyperspectral cameras can capture larger areas and deliver 
more accurate results [7, 24]. Technological progress allowed their widespread use 
in many fields, making them popular, especially in medicine, for cancer detection 
[6, 18–20, 22, 25–27]. Several studies highlighted that tumor cells exhibit peculiar 
reflectance values and molecular spectral signatures [27–30]. In cancer research, 
the focus is on the light–matter physical interaction causing different reactions from 
each material or tissue to the beam radiation on its surface, thus allowing the dis-
crimination between healthy and tumor tissue [27].

During the last decade, machine and deep learning (ML and DL, respectively) 
solutions emerged as tools to analyze and cluster different cancer types in HSIs [18, 
31–35]. In particular, the literature focused on brain, skin, colon and esophageal 
cancer [7, 27, 28, 36].

More specifically, one of the most common types is skin cancer that is catego-
rizable as non-melanoma skin cancer (NMSC) and melanoma skin cancer (MSC). 
NMSC is the fifth most common tumor worldwide [37]. Moreover, progression 
of melanocytes causes pigmented skin lesions (PSLs) classifiable as malignant or 
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benign. Even atypical moles or dysplastic nevi are benign PSLs that are associated 
with an increased risk of evolving to melanoma. On the other hand, melanoma is 
one of the rarest skin cancers, but it has associated the highest mortality rate, due to 
the lack of early detection. Thus, research aims to provide AI solutions to strengthen 
current diagnostic performances [38]. The first adopted approach concerned typical 
ML methods such as artificial neural networks (ANNs), support vector machines 
(SVMs) and K-means clustering. More complex solutions combined different algo-
rithms to enhance the detection quality. An example is given by the K-means cluster-
ing applied together with SVM classification [22]. However, in recent years, DL net-
works emerged as an ideal solution for end-to-end classification tasks, even though 
they are not yet adopted in the medical field [39]. Among the different DL methods, 
Vision Transformers (ViTs) have recently been proposed [40]. These networks rely 
on the self-attention mechanism, firstly designed for natural language processing 
(NLP) applications [15, 40]. More recently, ViT has been used to detect skin cancer 
[15, 41], in particular addressing the evaluation of the most appropriate algorithmic 
solution, without considering the development of the whole system.

This paper proposes different solutions to develop a portable system to detect 
skin cancer through HSI adopting ViT. Two main approaches are evaluated and 
compared, namely Edge and Cloud Computing. In this second case, also data 
transfer technology and latency have been discussed and taken into account. The 
evaluated solutions are then compared in terms of both processing times and power 
consumption.

The paper is organized as follows: Section II shows the main computing frame-
works, in particular regarding Edge and Cloud Computing, while Section III pre-
sents the technologies and algorithms used in the specific case of skin cancer detec-
tion with HSIs, together with experimental results, followed by the conclusions.

2  Skin cancer detection through HSI and Vision Transformers

2.1  Related works

Skin cancer affects the body’s largest organ. MSC develops from any cell capable of 
forming melanin and includes three subtypes: superficial extension, lentigo maligna 
and nodular tumor [24, 42–44]. Some present genetic modifications that, if left 
untreated, can spread over the body, potentially yielding metastases. NMSC lesions 
include more than 98% of the known skin lesions, of which 75–80% are basal cell 
carcinoma (BCC) and 15–20% are squamous cell carcinoma (SCC) [22, 24, 42, 45]. 
Therefore, distinguishing epidermal tumors into benign and malignant categories is 
fundamental.

Clinical dermatological diagnosis follows the so-called ABCDE rule, where 
A stands for asymmetry, B for border irregularity, C for color, D for diameter 
and E for evolution [29, 42, 46]. Nevertheless, this procedure introduces false 
positives; consequently, the gold standard is performing a biopsy. However, this 
process is painful, time-consuming, slow and expensive [24, 42, 46]. Hence, in 
this domain, the increase of skin cancers and the lack of expertise and innovative 
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methodologies leads to the demand for systems based on HPC techniques making 
use of AI and novel optical technologies [24].

In this context, HSI systems aim at capturing information coming from 
chromophores (melanin and/or hemoglobin), which characterize epidermal 
lesions’ spectral properties and vary among different skin lesions [22, 24].

AI literature also reports the presence of standard stages in most workflows for 
medical image processing (Fig.  1) [1, 2]. Present solutions differ mainly in the 
model of camera employed, its cost and weight, as well as on the materials and 
the existence of customized graphical user interfaces (GUIs).

The main methods used for skin cancer detection are ANNs and convolutional 
neural networks (CNNs). However, ANNs are not able to detect small lesions, 
compared to CNNs. This is because the convolution takes into account not only 
the spectral features but also the spatial domain [42, 46, 47]. Current AI algo-
rithms are in the early stages of clinical application, but they can be scalable to 
multiple devices [1]. Modern solutions carry out a concurrent elaboration of the 
pixels to reduce execution time. For this level of classification, parallel technolo-
gies are suitable, since each processing core elaborates on a single or a group of 
pixels.

Concerning skin cancer, the output of these classification systems is typically 
a thematic map, where researchers assign a color to each pixel to represent a spe-
cific tissue type or lesion condition.

Fig. 1  The standard workflow for medical image processing through AI solutions. In the classical ML 
framework, feature extraction and selection are typically separated from the prediction performed by 
the model. During the inference process, the model can automatically pull out other features from the 
received ones. On the other hand, in the DL paradigm, feature extraction and selection are always embed-
ded into the model, which automatically extracts and chooses the most suitable feature to perform the 
prediction. The cost is a more complicated model, resulting in higher processing times
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2.2  Dataset of skin cancer hyperspectral images

Images of skin lesions of various body parts have been acquired from 116 subjects 
at the Doctor Negrin University Hospital and the Materno Infantil University Hospi-
tal Complex, both located in Las Palmas de Gran Canaria (Spain).

The database has been obtained via a custom solution [30]: a snapshot camera 
(Cubert UHD 185, Cubert GmbH, Ulm, Germany) capable of capturing the visual 
and near-infrared (VNIR) spectrum, with a spectral range from 450 to 950  nm, 
resulting in a spectral resolution of 8 nm and a spatial resolution of 50 × 50 pixels, 
whose pixel size was 240 × 240 μm2. The camera has a Cinegon 1.9/10 lens (Schnei-
der Optics Inc., Hauppauge, NY, USA) with a 10.4 nm focal length. The acquisition 
system employed a Dolan-Jenner halogen source light (Dolan-Jenner, Boxborough, 
MA, USA) with a 150 watts quartz–tungsten bulb lamp. A fiber optic ring light 
guides the camera to illuminate the skin surface with cold light, avoiding the high 
temperature of a halogen lamp on the subject’s skin [30]. A dermoscopic lens with 
human skin refraction index in a 3D printed contact structure was attached to the 
system. This allows an HSI acquisition time of 250 ms [30]. Fifty-five images have 
been removed from the initial database because they derived from challenging areas 
(e.g., shoulders, nose, chin and other face parts) from the acquisition point of view, 
preventing total lens contact with the skin surface. Hence, the final database is made 
up of 76 images, 40 benign and 36 malignant skin lesions, belonging to 61 subjects 
[30, 48].

Pathologists and dermatologists diagnosed suspected malignant lesions through 
histological assessment to evaluate its etiology. Professionals clustered the images 
and assigned each pixel a specific label from one of the etiologies described in Sec-
tion II. Images were also manually segmented, generating the ground truth. Each 
hyperspectral image has 50 × 50 × 125 hyperspectral cubes, and a single hypercube 
has a 50 × 50 ground truth. Figure 2 shows the ground truths of the entire database, 
with each type of label associated with a color: black for skin, yellow and red for 
malignant skin lesions, green and blue for benign skin lesions. 53% of them are 
benign, while 47% are malignant. The most prevalent tumors are the benign melano-
cytic (45%) and malignant epithelial ones (32%). The distribution of lesions within 
the database reflects the actual distribution in the population.

The dataset has a tree structure with two root nodes for, respectively, benign and 
malignant lesions. The root node then splits into melanocytic and epidermal tumors. 
This taxonomy represents a trade-off between other classification approaches, intro-
duced as medically relevant, complete and well suited to ML classifiers [24]. The 

Fig. 2  Ground truth of the dataset
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first validation uses the primary layer nodes and represents the broadest partition, 
whereas the children layers are disease classes sharing similar clinical treatment 
strategies. Pathologists assigned a category from the taxonomy proposed to each 
epidermal lesion, and they produced a mask highlighting tumor borders [22, 24, 30].

2.3  The vision transformer architecture

Among the different AI solutions proposed in the literature, Vision Transformers 
(ViTs) are a recent method which achieved interesting results in hyperspectral skin 
cancer classification [15]. It is based on the attention mechanism, aiming at the 
imitation of the human behavior of focusing on some parts of an image to make a 
decision. Before the images are given as input to the ViT, preprocessing and bands 
reduction steps are applied. The preprocessing aims at reducing the noise and stand-
ardizing the spectral signature. First, the image is calibrated according to Eq. (1):

where DI is the calibrated image, RI is the raw one and WI and DI are the white and 
dark reference images, respectively. DI was acquired with the camera shutter closed 
and the room lights turned off, while WI was derived targeting a reference tile capa-
ble of reflecting 99% of the incident light. The first step is to remove the first four 
and the last five bands of the calibrated image, thus moving from 125 to 116 hyper-
spectral bands, since the sensor spectral response at these wavelengths is poor. To 
further reduce spectral noise, the remaining bands go through a smooth filter with a 
sample window of 5. The spectral values are then normalized in the range [0,1] with 
the min–max technique since [49] demonstrated that it ensures the best classification 
performance.

The bands reduction step aims at reducing the computational complexity of 
the ViT architecture. It relies on three convolutional blocks connected in cascade. 
Each of them is based on: 3 × 3 filters, normalization and ReLU activation function. 
This step further reduced the bands from 116 to 14, obtaining an image with sizes 
50 × 50 × 14, which represents the input to the ViT architecture. The aim is to extract 
high-level features and to reduce the training and inference times ensuring suitable 
classification performance.

The first operation of the ViT is the patching. It is based on the convolution oper-
ation and transforms the data shape from H × W × C into H × P × P × C where H is 
the height, W is the width, C denotes the channels and P × P is the patch resolu-
tion. Thus, the number of patches given as input to the ViT is equal to N = HW/P2. 
Each patch is unrolled into a 1-D array and projected into a latent space by a Q–D 
array. After this projection, position embedding and class token are integrated into 
the patches to preserve the information of their original position. This new data is 
the input to the transformer encoder which is made up of three main components: 
multi-head self-attention (MSA), multilayer perceptron (MLP) and normalization.

The heart of the processing is performed by the MSA, since it implements the 
attention mechanism. It projects the input data to generate three vectors, namely 

(1)CI =
RI − DI

WI − DI
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Key (K), Query (Q) and Value (V), by multiplying each patch by three matrices 
WK, WQ and WV whose values are defined during the training phase. The projec-
tions are performed by eqs. (2) - (4):

where X is a patch with P × P resolution. The K, Q and V vectors are used by the 
heads of the MSA to compute the attention maps. Each of the heads computes its 
attention map which is then concatenated with the outputs of the other heads to 
generate the input to the next stage. Each attention map is computed according to 
Eq. (5):

where 
√

d is a normalization term.
A ViT architecture includes L transformer encoders whose outputs are fed as 

input to an MLP which produces the final classification. The MLP inside each 
Transformer encoder is used to extract the high-level features from the attention 
maps, while the MLP outside the ViT combines the output of all the transformer 
encoder to produce the final classification.

The main steps of the whole architecture adopted for the classification are 
summarized in Fig. 3, while a pseudo-code in Table 1 shows the main steps of the 
algorithm.

(2)K = XWK

(3)Q = XWQ

(4)K = XWV

(5)attention map(Q,K,V) = softmax

�

QKT

√

d

�

V

Fig. 3  Processing workflow adopted in this paper. The hyperspectral image is acquired and pre-pro-
cessed. Then, the number of bands is reduced adopting three convolutional layers. The resulting image is 
the input to the Vision Transformer, whose operations are detailed in the dashed box. The output of the 
Vision Transformer is then given as input to a Multi-Layer Perceptron to produce the final classification
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3  Cloud vs edge computing

The US National Institute for Standards and Technologies (NIST) defines Cloud 
Computing as a model for enabling convenient, on-demand network access to 
a shared pool of configurable computing resources that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action [50]. This definition comprehends five essential characteristics, three ser-
vice models and four deployment models [51]. Concerning the main features of 
such solutions, these are: on-demand self-service access to computing resources, 
which include processing power, storage and virtual machines; broad network 
access from different devices like laptops or mobiles telephones; resource pooling 
among numerous clients (multi-tenure management); elasticity (resources scaling 

Table 1  Pseudo-code of the ViT methodology
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out and scaling back); and resources utilization monitoring (storage, CPU hours, 
bandwidth). Each Cloud provides different levels of abstraction.

Cloud services can be provided through three main models: Software as a Ser-
vice (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). 
In the SaaS model, the user accesses services from the web browser and does not 
have knowledge nor control of the underlying framework. PaaS allows control only 
over applications and correlated environment arrangements, providing the ability to 
deploy customized applications, produced using programming languages and tools 
supported by the provider. Users in IaaS models can manage processing, storage, 
networks and other computing resources and also deploy and run any software (even 
operating systems, services and applications). The client has control potentially over 
every aspect of the system.

There are four Cloud deployment models, varying in scalability, reliability, secu-
rity and cost: private (used exclusively by a single user, offering increased security 
at higher costs), public (used by the general public), community (shared by two or 
more users for specific purposes, e.g., a university) and hybrid Cloud (a combination 
of the previous types)). Since public Cloud is potentially open to everyone, security 
issues could arise; however, it offers the advantages of a Cloud solution at the low-
est costs. Examples of public Cloud vendors are Microsoft Azure, Google Cloud or 
Amazon AWS.

Cloud Computing could be a convenient alternative when moving applications 
from expensive internal data centers to economic and resourceful solutions. In fact, 
it comes with several advantages, among which scalability (that can be manual as 
well as automatic) and virtualization.

According to the International Data Corporation (IDC) prediction, by 2025 
global data will reach 180 zettabytes (ZB) and 70% of those generated by IoT will 
be processed on the edge of the network [10, 52]. Therefore, the centralized process-
ing model based on Cloud Computing would not be efficient enough. Edge Com-
puting is a new paradigm in which its resources are at the edge of the Internet, on 
downstream data on behalf of Cloud services and upstream data on behalf of IoT 
services, in close proximity to devices, sensors and users [11]. It is characterized by 
low latency to support applications in the fields of augmented reality, public safety, 
smart manufacturing and health care. New challenges and opportunities arise as 
the consolidation of Cloud Computing meets the dispersion of Edge Computing. In 
Edge Computing, end devices are both data consumers and data producers. Devices 
can not only request service and content from the Cloud but they can also perform 
computing tasks from it. Computing offloading, data storage, caching, processing, 
distributing requests and delivering services from the Cloud are all activities that 
can be performed in an Edge Computing system. Hence, crucial requirements to be 
met are efficiency, security and privacy protection.

From this scenario, a three-tier Edge Computing model has been defined: IoT, 
Edge and Cloud [10]. Several communication protocols are used to connect IoT to 
the Edge tier, with low power consumption and short-distance features. For exam-
ple, drones can connect to a cellular tower by 5G/4G/LTE, and sensors in the smart 
home can communicate with the home gateway through Wi-Fi. Instead, since this 
second layer requires Cloud Computing and storage capabilities, its protocols with 
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the Cloud are characterized by a large throughput and a high speed. Ethernet, optical 
fibers and 5G are the preferred communication protocols between the Edge and the 
Cloud.

Edge Computing and Cloud Computing are complementary paradigms. The huge 
distribution of smart devices and rapid development of Cloud technologies have 
brought Edge Computing to the foreground.

Edge servers are both physically and logically closer to the end user compared to 
Cloud servers. As a consequence, even if the processing speed of an Edge server is 
slower, it will provide a better quality of service [53]. In fact, Edge Computing has 
several advantages: large amounts of temporary data are processed at the edge of 
the network, but only a portion is uploaded to the Cloud, which greatly reduces data 
center power consumption and the requirements in terms of network bandwidth. 
Moreover, this kind of data processing greatly reduces system latency and improves 
service response capability, since Cloud Computing resources are not involved. In 
addition, Edge Computing keeps sensitive information on the Edge devices, thus 
assuring better security and privacy [53].

Various technologies can be used to deploy an Edge or a Cloud Computing sys-
tem. In certain cases, the same family of devices could be part of both system types; 
on the contrary, specific tools can be used in only one of the two contexts.

GPUs are many-core architectures that represent the dominant type of device for 
parallel computing purposes in both Edge Computing (as portable devices or desk-
top solutions) and Cloud Computing (as single elements of a bigger cluster). Many 
GPU architectures are produced, compared to CPUs. The latter maximize sequen-
tial programs’ performance and distribute the workload maintaining a serial setting, 
while GPUs increase memory bandwidth, speeding up data and instruction transfers 
and maximizing computational throughput. To program GPUs, NVIDIA’s propri-
etary language CUDA (Computer Unified Device Architecture) has been used.

The technological HPC growth drives also healthcare innovation, in particular for 
experimenting with new approaches for gathering, managing and transmitting data 
[6]. Two main factors are necessary to their continuous improvement, namely fast 
data availability and technological infrastructure. Multi-GPU systems or supercom-
puters are also employed to increase the number of available cores, thus reducing 
execution time. Fast or even real-time reaction is essential in healthcare and compu-
tational complexity demands efficient many-core technologies to grow and manage 
big data in constrained computational times.

4  The parallel algorithm

The ViT architecture described in Sect. 2.2 mainly relies on matrix–matrix opera-
tions. The most intensive operations are those described by Eqs.  (2)–(5), together 
with the convolutions related to bands reduction. All these operations feature an 
intrinsically parallel nature that can be well mapped on a GPU device to lower the 
processing times. Nowadays, GPU computing exploits both Edge and Cloud solu-
tions. Among the different possibilities, NVIDIA GPUs represent an interesting 
solution since they adopt CUDA as a programming language. Indeed, a CUDA 
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program can run on both a low-power GPU and a board designed for a Cloud solu-
tion. Besides, the CUDA ecosystem includes optimized libraries for linear algebra 
operations (cuBLAS) and for deep learning layers (cuDNN).

The algorithm described in Sect. 2.2 can be developed using the cuDNN library 
for the bands’ reduction and the cuBLAS routines for Eqs. (2)–(5). The other parts 
can be developed using handwritten CUDA code.

The parallel algorithm flow starts by allocating the GPU memory to store the 
input raw hyperspectral image, which is then transferred onto this memory area. The 
hypercube is stored as a linearized 1D array, adopting the NCHW data layout where 
N is the number of images, C is the channels number (i.e., the bands) and H and W 
are the image height and width, respectively. It is worth noting that N is equal to 1 
since a single image at a time is acquired. This data layout has been chosen for two 
main reasons. The first is that it makes some preprocessing steps efficient concern-
ing memory access patterns, while the latter is that it is supported by both the linear 
algebra and deep learning libraries (cuBLAS and cuDNN, respectively).

Together with the raw image, also the white and dark references are transferred 
to the GPU memory. After that, each thread computes Eq. (1) for a single spectral 
pixel. The result overwrites the original input image in the GPU memory space. The 
first four and the last five noisy bands are then removed by a simple memory trans-
fer into another GPU memory location, through a proprietary optimized function 
(the cudamemcpy routine, specifying as copy direction cudaMemcpyDeviceToDe-
vice). The next steps are the smoothing filtering and the normalization, which are 
performed in parallel, like the image calibration.

To develop the bands reduction algorithm, based on the convolutional operator, 
the cuDNN library is exploited, which is initialized by a proper handle (through the 
cudnnCreate routine) and requires enriching the input data with special variables, 
called descriptors. At this first stage of the parallel algorithm, both the cuDNN con-
text creation and the cuBLAS library are initialized before activating all the neces-
sary routines.

The cuDNN descriptors store different information, such as the data layout, the 
numeric representation, the stride, the padding and the convolution algorithm to use. 
Finally, the cuDNN routines require to specify a workspace, which is a GPU mem-
ory location used to store temporary data during the computation. The workspace 
size is computed by a custom function which should be activated before the convo-
lutional one. It is worth noticing that also this routine is included within the cuDNN 
library. This workspace needs to be allocated on the GPU memory before execut-
ing the forward convolution (by activating the corresponding cudnnConvolutionFor-
ward routine). Once this operation is completed, the descriptors are destroyed and 
the workspace must be deallocated. These steps, except for the cuDNN context crea-
tion, are repeated three times with different descriptors’ parameters, according to the 
values reported in [15].

The output of the third convolutional layer is given as input to the ViT architec-
ture. At this stage, linear algebra operations are performed exploiting the signature 
optimization features of the cuBLAS library, like the adoption of the column-major 
format to store the array, together with the 1-based indexing. It is worth noticing that 
this is the opposite of the C language standard, which states that the array should 



1 3

Edge and cloud computing approaches in the early diagnosis…

be stored in the row-major format adopting the 0-based indexing. In particular, the 
matrix–matrix multiplications of Eqs. (2)–(4) have been parallelized through the 
cublasSgemm routine, which also solves the different data layout issue by appropri-
ately setting its parameters to consider the two input matrices as transposed. Indeed, 
by exploiting the matrix–matrix multiplication properties, the resulting matrix 
stored in the row-major format can be easily obtained.

Moreover, the same kind of routines allow the computation of the argument of 
the softmax nonlinear function, as well as the implementation of all the MLP layers, 
since they can be written as matrix–matrix multiplications. The final MLP stage pro-
duces the final classification. In this case, the class to which the image is assigned 
corresponds to the perceptron with the maximum values. This is computed using an 
ad hoc function (the cublasIsamax routine) that maximizes computing performances 
and, at the same time, makes the code more compact, which finds the index of the 
maximum element within an array. This value is copied back to the host and decre-
mented by 1 to convert it into the 0-based indexing. The obtained value corresponds 
to the label assigned to the class by the classifier. After that, GPU memory is deal-
located, the descriptors, the cuDNN, the cuBLAS contexts are destroyed and the pro-
gram ends. Figure 4 summarizes the flow of the parallel algorithm.

Fig. 4  The flow of the parallel algorithm. The red arrows denote data transfers from CPU to GPU mem-
ory spaces and vice versa. The most important steps of the bands reduction and Vision Transformer are 
detailed in the dashed boxes
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5  Experimental setup

The ViT architecture described in Sect.  2.3 has been validated on different archi-
tectures, covering a wide range of serial and parallel architectures. In particular, the 
architectures considered in the experiments are:

1. NVIDIA Jetson Nano Developer Kit featuring a 128 CUDA cores Maxwell GPU, 
a Quad core ARM A57 running at 1.43 GHz CPU and 4 GB 64-bit LPDDR4 
RAM;

2. An Avenger 96 board equipped with an ARM A7 CPU working at 650 MHz and 
equipped with 1 GB of RAM;

3. Intel-i5 CPU for Mac Pro (2.3 GHz, 8 GB of RAM);
4. A desktop system equipped with an Intel-i9-9900X CPU (3.5 GHz, 128 GB of 

RAM) and two 2944 CUDA cores NVIDIA RTX 2080 GPUs;
5. On-premise university cluster composed of five computing nodes, each equipped 

with three NVIDIA A16 boards and two Intel Xeon Silver CPUs working at 
2.4 GHz with 768 GB of RAM;

6. A desktop system equipped with an Intel-i9-13900 K CPU (3.0 GHz, 64 GB of 
RAM) and a 16,348 CUDA cores NVIDIA RTX 4090 GPU.

The algorithm has been tested on different systems, characterized by specific 
configurations and designed for various purposes. In particular, the most important 
GPU models are covered. This kind of architecture also inherits the enhancements 
introduced in the Volta family of devices: independent thread scheduling, hardware 
accelerated multi-process service (MPS) with address space isolation for multiple 
applications and cooperative groups.

CPUs like Intel’s i5 for Mac Pro, Intel-i9-9900X and ARM processors have been 
used to characterize different behaviors among various serial architectures regarding 
both processing time and power consumption, related to their diverse characteris-
tics. Furthermore, these solutions serve as reference to evaluate GPU acceleration 
performances.

All these elements concur to the evaluation of the applicability of such method-
ologies using various technologies and paradigms. The portability, but also the per-
formance in terms of processing times, power and energy consumption, among the 
possible parameters are in fact crucial factors in determining the most appropriate 
architecture for a specific context and goal.

5.1  GPU Turing architecture

This technology provides advances in efficiency and performance in the contexts of 
PC gaming, professional graphics applications and deep learning through an inno-
vative streaming multiprocessor (SM) architecture with improved shader execution 
efficiency and a new memory system architecture that includes support for the latest 
GDDR6 memory technology [54]. Moreover, its tensor cores (TC) power a suite of 
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new DL-based neural services for graphics effects, in addition to fast AI inferencing 
for Cloud-based systems.

The Turing SM is a new streaming multiprocessor architecture that increases 
shading efficiency, incrementing by 50% the delivered performance per CUDA 
core, compared to the previous generation. This is possible by introducing a new 
independent integer data path that can execute instructions concurrently with the 
floating-point math data path. In addition, SM memory path has been redesigned to 
unify shared memory, texture caching and memory load caching into one unit. This 
brings twice more bandwidth and more than double the capacity available for L1 
cache for common workloads [54].

Tensor cores are new specialized execution units designed specifically for tensor 
and matrix operations (core functions in DL). Turing GPUs include a new version of 
the design that has been enhanced for inferencing workloads that can tolerate quan-
tization and do not require 16-bit floating-point (FP16) precision. The Deep Learn-
ing Super-Sampling (DLSS) technique is powered by these cores, which leverages 
a deep neural network to extract multi-dimensional features of a scene and com-
bine details from multiple frames for higher-quality images. Indeed, this architec-
ture is specifically designed to improve inference performance, by integrating TCs, 
NVIDIA’s run-time inferencing framework TensorRT, CUDA and CuDNN libraries. 
TCs also support fast 8-bit integer (INT8) matrix operations to accelerate inference 
throughput with minimal accuracy loss.

The fourth system listed makes use of two GPUs with this architecture.

5.2  GPU Ampere architecture

Released in 2020, the Ampere architecture runs 1.7 times faster than Turing GPUs 
[55]. It has been developed for AI training and inference, HPC workloads and data 
analytics applications and it is twice more power efficient than the previous genera-
tion. Three GPUs belonging to this family are used in the fifth experimental system 
used in this paper. GPUs of the Ampere family have 28.3 billion transistors with 
a processor that contains three types of compute resources: programmable shading 
cores (NVIDIA CUDA cores); RT cores, accelerating Bounding Volume Hierarchy 
(BVH) and third-generation tensor cores, for speedup in AI neural network training 
and inferencing. They incorporate 10,752 CUDA cores, 84  s-generation RT cores 
and 336 third-generation tensor cores. New Tensor Float 32 (TF32) precision pro-
vides five times the training to accelerate AI and data science code, specifically for 
AI denoising, super-resolution, enhanced video and voice communications.

5.3  GPU Ada Lovelace architecture

This is the newest and fastest architecture developed, with focus on graphics, AI 
and compute workloads [56]. The sixth experimental setup used is equipped with 
an RTX 4090 model. These GPUs have 76.3 billion transistors and 18,432 CUDA 
cores capable of running at clocks over 2.5 GHz. They support Shader Execution 
Reordering to dynamically organize shading workloads and deliver frame rates over 
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100 frames/s at 4  K resolution. This architecture doubles the raw FP32 compute 
performance and almost triples the rendering performance, allowing also to execute 
724 TFLOPs of tensor operation performance at 300W power envelope. This is 
combined with the lowest power consumption for AI, graphics and video workloads 
in datacenters [56]. Therefore, it is the ideal solution for applications in the fields 
of generative AI, autonomous vehicles, High-Performance Computing (HPC), vir-
tual workstations and single-GPU AI training and inferencing and can be used in 
regional datacenters, Edge Computing systems and outdoor locations.

5.4  GPU Maxwell architecture

This architecture differs from the previous ones, since it has been designed with the 
aim of maximizing power and energy efficiency, as well as performance per watt 
consumed, making them ideal for power-limited environments like embedded sys-
tems [57]. It introduces a new design for the streaming multiprocessor that also 
improves control logic partitioning, workload balancing, clock-gating granularity, 
compiler-based scheduling and number of instructions issued per clock cycle. More-
over, it enhances CUDA programming compared to previous architectures, thus pro-
ducing speedups without modifying original codes designed for Fermi and Kepler 
devices.

In this paper, the first system listed above has been considered using two dif-
ferent development board functioning modes, respectively: FULL-POWER™ and 
ECO-MODE™.

6  Experimental results

The technologies described in Sect.  4 can be used to implement the Edge or the 
Cloud paradigms. In the Edge paradigm, images are acquired and locally processed 
by a parallel device. On the other hand, considering the Cloud environment, images 
are locally acquired by a hyperspectral camera and sent to a processing center adopt-
ing 5G communication. This protocol ensures low latency and a bandwidth suitable 
to upload big data amounts. Moreover, this technology has already been used in the 
medical field for remote data transmission [58].

Concerning the GPUs, the parallel code described in Sect. 2 has been compiled 
enabling all the code optimization flags and specifying the compute capability of the 
target board. Also, for the ARM processors the code has been compiled enabling all 
the code optimization flags.

For both approaches, the input is given by a single hyperspectral image, which is 
acquired by the snapshot camera described in [15]. The system targets the process-
ing of a single image since the portable device was designed in [30, 48] to acquire 
and process one image at a time. All the results have been validated against the orig-
inal code developed in [15] considering all the 76 hyperspectral images included in 
the dataset.
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Table  2 shows the classification performance of the ViT, which are also 
reported in [15]. It is worth noticing that the classification performance is the 
same for all the proposed devices. Indeed, the outputs of all serial and parallel 
codes have been validated against the original results of [15].

The processing times have been obtained as the mean value of the execution 
on the dataset described in Sect.  2.2. Table  3 summarizes the processing time 
obtained by all the systems.

Concerning the data transfer time in the Edge Computing paradigm, the litera-
ture reports that the typical bandwidth of the 5G technology is 75  Mb/s, while 
the work in [58] measured a bandwidth of about 50 Mb/s. Thus, we evaluated the 
data transmission time adopting not only these two values, but also a lower one of 
30 Mb/s, to show the impact of the communication on the Cloud approach.

Table  4 shows the data transfer time, assuming that a single image is trans-
ferred. The input image has a size of 50 × 50 pixels × 125 bands and is represented 
using the IEEE 754 single-precision floating-point standard. Thus, the image fea-
tures a size of 1.22 MB. Moreover, we analyzed transfer times between host and 
device, always showing values in the range of only 7–10% of the total processing 
time, considering the sum of all the CPU–GPU and GPU–CPU transfers.

Table 2  ViT classification 
performance

Class Accuracy (%) Precision (%)

Benign epithelia 63 90
Benign melanocytic 84 100
Malignant epithelia 41 5
Malignant melanocytic 91 99

Table 3  Processing time of all 
the test systems

Board Processing time (s)

CPU Intel i5 207.000
Avenger 96 868.324
Jetson Nano ARM A57 354.569
Jetson Nano Full Power Mode 2.415
Jetson Nano Eco Mode 3.340
RTX 2080 0.956
RTX 4090 0.552
A 16 0.751

Table 4  Transfer time for a 
single image vs the upload band

Upload band (Mb/s) Transfer time (s)

75 0.130
50 0.195
30 0.325
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To evaluate the impact of the transfer times, they should be added to the pro-
cessing times of Table 2. For the Edge Computing devices, namely the Jetson and 
the Avenger 96 boards, the total processing times are related only to the elabora-
tion of the ViT algorithm (i.e., the values reported in Table 1). On the other hand, 
for the Cloud solution, i.e., the RTX 2080, the RTX 4090, the A16 GPUs and the 
Intel i5 processor, the total processing times should also consider the time taken by 
the data transfer from the acquisition point to the elaboration facility. Thus, the val-
ues reported in Table 4 should be added to the one reported in Table 3. The impact 
of the different upload bands on the total processing time of the Cloud solution is 
reported in Table 5.

The results obtained by all the systems are also compared in Fig.  5 where the 
best- and worst-case scenarios are considered for the Cloud-based solutions. Moreo-
ver, the energy dissipated by the computation is shown in Table 6.

The analysis of the processing times and of the dissipated energy clearly high-
lights that the parallel processing is the most suitable to develop the targeting 

Table 5  Impact on the transfer 
time of the total processing time 
for the Cloud solutions

Board Total processing time (s)

75 Mb/s 50 Mb/s 30 Mb/s

CPU Intel i5 207.130 207.195 207.325
RTX 2080 1.086 1.151 1.281
RTX 4090 0.682 0.747 0.877
A 16 0.881 0.946 1.076

Fig. 5  Processing time for all the proposed systems. The processing times are reported in seconds and 
the logarithmic scale is adopted. For the cloud solutions, the best and worst cases processing times are 
shown
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application. Indeed, the Intel i5 and the ARM-based solutions feature the highest 
computational times. On the other hand, among the parallel solutions, the Cloud 
GPUs obtain the lowest processing times with the RTX 4090 as the most performant 
board. The reason is that the RTX 4090 is the GPU featuring the highest number 
of SMXs, thus capable of executing more thread blocks in parallel than the other 
GPUs. Indeed, the A16 GPU is a quad-chip device, meaning that a standard CUDA 
code written for a single GPU only exploits one-fourth of the total computational 
power. On the other hand, the data dimensionality of the images considered in this 
work and the algorithm structure does not justify the development of a parallel code 
targeting multi-GPU systems.

The GPU-based Edge solutions have processing times which are six times slower 
than the Cloud GPUs but two orders of magnitude faster than the ARM and Intel i5 
processors. Moreover, considering the dissipated energy, the Edge boards based on 
GPU achieve the best performance. The worst performance is obtained by the Edge 
ARM and the Cloud Intel, which perform a serial processing. Finally, Cloud GPUs 
have an energy dissipation which is an order of magnitude greater than the Edge 
solution, even if the contribution of the data transfer is not considered. Jetson Nano 
boards are more effective in terms of energy consumption with a range of processing 
times between 2.4 and 3.3 s, which take much longer than the RTX/A16 boards.

Therefore, Edge solutions based on GPUs can be considered a good trade-
off between the energy dissipation and the processing time. Since skin cancer has 
a temporal evolution that does not imply the need for real-time processing, it can 
be stated that Jetson GPUs represent an innovative solution regarding energy dis-
sipation. Indeed, both the Full Power and Eco Mode feature the best performances. 
Moreover, the value obtained with the Jetson boards for skin cancer classification is 
one order of magnitude lower than the best cloud-based solutions while maintaining 
adequate processing times.

A direct comparison between the proposed work and the state of the art is a chal-
lenging task since there are some critical issues that are addressed in the following.

In particular, the work in [59] targets hyperspectral images classification on low-
power GPUs through CNN. To reduce data dimensionality, the authors adopted the 
principal component analysis (PCA) as a preprocessing step, similarly to the chan-
nels reduction block proposed in this paper. However, it is important to highlight 
that PCA is a classical data reduction technique, which is not based on the convo-
lutional operator as the channel reduction block adopted in this research. Moreover, 
CNNs have already been exploited for hyperspectral data classification and cannot 
be considered a novel approach as the ViT.

In [60], the authors adopted a spatial–spectral CNN to improve classification 
performance with respect to standard CNN. They also proposed a parallel imple-
mentation on high-end GPUs, achieving reduced processing times. Again, a direct 
comparison would not be fair since the algorithm structure is very different and 
they focused on reducing processing times without considering power consumption 
constraints.

Another interesting work is [61], where a novel U-shaped pansharpening net-
work with channel cross-concatenation and spatial–spectral attention mechanism 
for hyperspectral image super-resolution is proposed. The authors developed this 
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network using PyTorch and exploiting an NVIDIA RTX 3090 GPU. They classi-
fied three hyperspectral images with processing times of about 47 s, which is higher 
than the ones obtained by the parallel technology proposed in this paper. However, a 
direct comparison would not be fair since the hyperspectral images feature a diverse 
number of bands from the skin cancer dataset and the classification network struc-
ture is also different.

To the best of the authors’ knowledge, this is the first time that a work evaluates 
the Cloud paradigm to analyze hyperspectral medical images. On the other hand, 
parallel implementations based on GPU boards have already been proposed in the 
literature [60, 62–65]. However, these algorithms have different structures and com-
putational complexities, making direct comparisons not feasible.

7  Conclusions and future developments

This paper described and compared the adoption of Edge and Cloud paradigm to 
analyze medical hyperspectral images, targeting skin cancer detection.

The proposed work uses a novel ViT architecture which has been trained on a 
small-size dataset. Even if data augmentation techniques were adopted in the origi-
nal ViT development, the model can be further enhanced by acquiring additional 
data. Indeed, a larger dataset can be used to fine tune the model and improve its 
generalization capabilities. Another possibility is to consider a pre-trained architec-
ture and to apply the transfer learning methodology to partially retrain the network 
on the actual problem. However, this method cannot be applied at the time of writ-
ing, since, to the best of the authors’ knowledge, no previous ViT architecture was 
trained on medical hyperspectral images.

Concerning possible future research lines, a step that has not been covered by the 
proposed work is data visualization. Indeed, medical doctors should have at their 
disposal a user-friendly interface to start data acquisition and to clearly visualize the 
results, for example with a false color image representing the classification of the 
acquired lesion.

A wide range of Edge and Cloud devices have been considered, ranging from 
serial ARM and Intel processors to many-core GPUs.

A parallel version of the ViT architecture has been developed using CUDA lan-
guage targeting GPU boards. The parallel algorithm relies on both custom CUDA 
code and highly optimized libraries, such as cuBLAS and cuDNN. Moreover, a serial 
version of the ViT algorithm has been developed to exploit the serial CPUs and to 
serve as reference for the parallel implementation.

These code versions have been tested on different Edge and Cloud devices, 
recording the processing time and the power consumption. The comparison showed 
that Cloud GPU solutions perform better than the other devices from the process-
ing times perspective. However, they featured an energy consumption which is 
an order of magnitude greater than Edge GPUs. Indeed, Edge solutions based on 
GPUs emerged as the best trade-off between the processing time and the energy 
consumption. Focusing on the development of a portable instrument for skin cancer 
detection, the most important metric is the energy dissipated by the device. In this 



 M. La Salvia et al.

1 3

context, the best choice is represented by the Jetson boards, since their values are 
one order of magnitude lower than the best cloud-based solutions.

Possible future research lines are related to developing other classification algo-
rithms and to evaluate their different performance in the Cloud and Edge paradigms, 
with data dimensionality playing a critical role in the choice of the best trade-off.
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