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Abstract
This work tackles the performance and energy consumption analysis of a legacy sci-
entific application, the VASP (Vienna Ab-initio Simulation Package), an applica-
tion commonly used by physicists and chemists for modeling materials at the atomic 
scale. Many of these scientific applications have been implemented in Fortran, where 
energy metrics instrumentation is not straightforward. We obtained performance 
figures (execution time and energy consumption) by instrumenting the source code 
using EML. This energy measurement library has been modified to introduce For-
tran interfaces for these metrics. The analysis was carried out using different matrix 
algebra libraries, parallelization techniques, and hardware platforms, emphasizing 
on the MPI, OpenMP, and CUDA parallel implementations of the algorithms used 
in VASP. We employ various material specifications (atomic structures) and molec-
ular sizes of a silicon-based crystal to create a set of benchmarks for these speci-
fications, leading to some recommendations for final users regarding performance 
improvements. The proposed benchmarking technique assists the user in selecting 
the right combination of problem size, compilers, and parallelization options avail-
able in VASP. For a given system platform, the user will be able to determine not 
only the architecture to use (GPU or multicore processors), but also the appropriate 
library and parallelization according to the atomic structure and molecular size.

Isidoro Nieves-Pírez, Alfonso Muñoz, Francisco Almeida, and Vicente Blanco contributed equally 
to this work.

 *	 Vicente Blanco 
	 vblanco@ull.es

	 Isidoro Nieves‑Pírez 
	 alu0100284829@edu.ull.es

	 Alfonso Muñoz 
	 amunoz@ull.es

	 Francisco Almeida 
	 fameida@ull.es

1	 Computer Science and Systems Department, Universidad de La Laguna (ULL), San Francisco 
de Paula s/n, La Laguna 38270, Spain

2	 Instituto de Materiales y Nanotecnología, Universidad de La Laguna (ULL), La Laguna, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06066-0&domain=pdf


	 I. Nieves‑Pírez et al.

1 3

Keywords  Applied computing physics · Performance · Energy aware computing

1  Introduction

General-purpose graphics processing accelerators (GPGPUs) are designed to run 
simulations and scientific applications, which constitute a new low-cost, high-per-
formance computing platform. To take advantage of this new hardware infrastruc-
ture, it is necessary to define paradigms that adapt to the new model. The unified 
computer device architecture (CUDA [1]) is the answer to this challenge presented 
by NVIDIA. CUDA is both a parallel computing architecture and a programming 
model that helps to use the multiple processing cores of the GPGPU to run a vast 
number of threads in parallel. Applications designed with and for CUDA will be 
able to assign independent tasks to each thread, significantly increasing computa-
tional performance, a transcendental issue for research in computational chemistry, 
bioinformatics, and other fields.

This programming model has been incorporated into other parallel program-
ming approaches used in high-performance computing, which involve the construc-
tion of applications with hybrid parallel programming techniques  [2], combining 
MPI, OpenMP, and CUDA models. It is not simple to program and maintain appli-
cations with a large base code and diverse programming models. Therefore, some 
developers opt to write code for GPU architectures using OpenACC  [3], a high-
level OpenMP-inspired programming standard for coding applications for these 
architectures.

This work focuses on analyzing a scientific application that needs to benefit from 
the performance offered by parallel processing, both on multicore CPUs and GPUs, 
to obtain efficient and accurate results. We try to analyze the application code to 
identify the sections where we apply instrumentation to capture detailed perfor-
mance and energy efficiency measures. Specifically, we study the performance of 
VASP (Vienna Ab-initio Simulation Package) [4], a legacy software package written 
in Fortran that allows materials to be modeled at the atomic scale. As an instrumen-
tation tool, we use the EML library [5] to measure power consumption. We devel-
oped a specific Fortran interface to communicate EML with VASP and to perform 
energy measurements in real time. We obtained performance and energy efficiency 
results for several materials and various molecular sizes with parallel CUDA, MPI, 
and OMP implementations of VASP.

As objectives, we have proposed characterizing the performance of the VASP appli-
cation in an MPI/OMP and GPU environment. We compile the legacy source code 
with the selected matrix algebra libraries and optimization parameters suitable for the 
chosen parallel environment. We conducted performance and energy consumption 
measurements that allowed us to compare MPI and GPU environments, primarily in 
the Verode cluster of the ULL. We used the EML library to instrument the legacy For-
tran code of the VASP application, allowing us to obtain detailed energy consumption 
measurements. We analyzed performance and consumption by comparing the results 
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obtained with the different libraries and configuration parameters, while attempting to 
maintain or improve the quality of the results. The results of parallel applications must 
be at least as good as those of their sequential counterparts, particularly in terms of 
energy and pressure values in the study of solids.

In this paper, we offer three primary contributions.

•	 We conducted a performance analysis of VASP versions 5.4.4 and 6.2.1, focusing 
on the most significant configuration parameters, to compare the various parallel 
execution capabilities when studying molecules with different numbers of atoms 
using the same sampling mesh. We aimed to identify any potential performance 
improvements related to the different types of parallelism available.

•	 We conducted an analysis of energy efficiency by integrating a new EML-Fortran 
interface into the legacy VASP code. This interface enabled us to measure the 
energy consumption of each socket and the GPU. We included calls to the EML 
library in the main loop, or ionic loop, of the program so that measurements could 
be taken at each iteration.

•	 We propose a working methodology that helps to make decisions about the 
hardware architecture and type of parallelism to use with VASP, depending 
on the size of the molecular structure to be worked on. For example, when 
dealing with molecules of 40 atoms, it is beneficial from both a performance 
and energy efficiency standpoint to use a node with two sockets and a GPU. 
MPI–OMP yields intermediate results, but requires a proper combination of 
MPI threads and OMP tasks.

The paper is organized into six sections: Sect. 2 describes the research problem of ab 
initio simulations, Sect. 3 describes the computational platform where we perform the 
performance analysis and detail the instrumentation of legacy code using the EML 
library, and Sect. 4 collects the most important aspects of the software used and shows 
the results obtained. Finally, Sects. 5 and 6 introduce the related work and summarize 
the findings reached with this study.

2 � VASP

VASP is a simulation software package that works with plane waves based on den-
sity functional theory (DFT) and solves the Kohn-Sham’s equations. This approach 
facilitates the theoretical study of compounds through energy and force calculations, 
allowing for optimization of geometry, simulations of molecular dynamics, and deter-
mination of a wide range of physicochemical properties for solids or surfaces for indus-
trial application. The program uses Davidson [6] and RMMDIIS [7, 8] algorithms to 
perform these calculations. We address the use of the application in heterogeneous 
CPU–GPU systems, optimizing the hardware, libraries, and compiler selection to 
improve performance and energy efficiency.
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2.1 � Algorithms in VASP

Several approaches for parallelization of the algorithms used in VASP can be found 
in  [9], where most of the computational work consists of efficiently solving the 
Schrödinger’s equation:

for a system with a large number of electrons, N. Using the lattice periodicity 
(Bloch’s theorem) the problem is reduced to working with the primitive crystal cell 
and a smaller number of electrons, which decreases the quantum numbers n and 
k characterizing the bands and the integration at k is reduced to localized values 
within the first Brillouin Zone (1BZ). Density functional theory (DFT) makes this 
problem tractable and allows the problem to be solved self-consistently using the 
Kohn-Sham’s equations. The Kohn-Sham’s equations are similar to a non-interact-
ing Schrödinger equation for a fictitious system (the "Kohn-Sham  system") of non-
interacting electrons that generate the same density as any given system of interact-
ing electrons.

The k-points are sampling points in the 1BZ of the material. In periodic calcula-
tions, you want to sample the k-space essentially to consider the effect of neighbor-
ing unit cells: k corresponds to lattice vectors in reciprocal space.

In a previous work, we developed the Bandas  [10] desktop application, which 
allows visualizing the material’s band structure in a series of points k in high direc-
tions of symmetry of the 1BZ. Iterative matrix diagonalization algorithms, such 
as Blocked-Davidson or RMM-DIIS, are used to solve the Schrödinger’s equation. 
Because the Hamiltonian H depends on the set of solutions (eigenfunctions Ψ ), 
this must be resolved iteratively until convergence is reached through an iterative 
matrix diagonalization that requires considerable computational work. To solve the 
Schrödinger’s equation, we must perform two large groups of calculations: 

(a)	 Hamiltonian The steps to solve the Hamiltonian of the Schrödinger’s equation 
for each of its solutions (eigenfunctions Ψ ) in each wave vector k are composed 
of the following calculations:

1.	 Fourier Transforms
2.	 PAW projections with matrix-matrix operations
3.	 Computation of the local potential by product of elements in real space
4.	 Computation of the nonlocal potential through matrix-matrix operations
5.	 Computation of kinetic energy by product of elements in reciprocal space
6.	 Sum of results in reciprocal space and Fourier transforms

(b)	 Orthogonalization and diagonalization Once the Hamiltonian is obtained, 
the solutions to this equation must be orthonormal by applying Gram-Schmidt 
orthogonalization. This group of computations involves global MPI communica-
tion across all logical groups of processes (MPI-ranks).

(1)HΨ
nk

= �
nk
Ψ

nk
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The parallelization strategy implemented by VASP using the message passing 
interface (MPI) was described by Wende et al in [9]. The hybrid MPI-CUDA imple-
mentation of the VASP was described by [11–13]. VASP can apply three levels of 
parallelism, from a basic level to an advanced level, as follows: 

1.	 Bloch wave-vectors, k-points (basic-level). To avoid heavy computations, the user 
usually decreases the number of k-points when the size of the system increases. 
All bands are processed in parallel.

	   VASP tags: KPAR = #Cores. KPAR is the number of k-points that are to be 
treated in parallel. Several N = #Cores / KPAR compute cores work together 
on an individual k-point where #Cores is the total number of cores. KPAR must 
be an integer divisor of the total number of cores. The default value of KPAR 
is 1. The NPAR indicates the number of bands processed in parallel. Its default 
value is equal to #Cores. This implies that each orbital is processed by a core. 
The NCORE parameter, which is easier to use, has taken over from the NPAR. 
NCORE = 1 (default). This parameter determines how many cores work on an 
orbital (or band) of electrons. Orbitals describe the behavior of an electron within 
an atom. For simplicity, in the figures we consider 4 orbitals labeled: n1–n4. See 
Fig. 1a.

2.	 The one-electron orbitals at each k-point: n1–n4 (medium-level). In fact, the 
Schrödinger’s equation can be solved by working directly on each orbital using the 
algorithms of Blocked-Davidson or RMM-DIIS. The number of orbitals increases 
proportionally to the size of the system. Several bands are processed in parallel. 
We can refer to a medium-sized system as a structure with 50 atoms. VASP tags: 
For NCORE > 1 (or NPAR=#cores), #cores is the number of cores selected. The 
relationship between both parameters is established as NCORE =#Cores/NPAR, 
where #Cores is the total number of cores. As an illustrative example, in Fig. 1b 
we have set NCORE=2 and #Cores=16. Because each orbital is processed by 
more than one core, it is necessary to intercommunicate the processing performed 
by all the cores. That is, among all the MPI-ranks. This communication is carried 
out by passing messages. MPI allows you to create logical groups of processes. 
In each group, a process is identified by a rank number.

3.	 The plane-wave and local basis set coefficients (or equivalently fast Fourier trans-
forms [FFTs]), that is, over the PAW projections used to represent each orbital in 
multiple MPI-ranks (advanced-level). Projector-augmented-wave (PAW) projec-

Fig. 1   VASP MPI parallelization
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tion is a mapping of the set of solutions of the Schrödinger’s equation on a set of 
localized functions. Large systems require this level even though it adds overhead 
due to the necessary intercommunication between MPI-ranks. MPI message pass-
ing is required to calculate the fast Fourier transforms and PAW projections of the 
orbital. All cores work in parallel on a single band. The plane wave coefficients 
of each band are distributed among all cores. This level is understood only from 
a theoretical point of view, since in practice this way of working is slow.

	   VASP tags: NCORE=#Cores. NPAR=KPAR=1. This is the extreme case for 
the basic level. Each orbital to be handled by all cores requires a high MPI mes-
sage to pass between all cores. See Fig. 1c.

For the best results, a mixture of all three levels of parallelism is often applied 
at the same time. Starting with version 6, VASP offers the possibility of using 
OpenMP [14] to communicate cores via shared memory instead of MPI messages. 
The partial or complete replacement of MPI processes by OpenMP (OMP) tasks 
redefines the VASP parameters for the medium and advanced levels as follows: 

2.	 The one-electron orbitals at each k-point: n1–n4 (medium-level).
	   VASP tags with OpenMP:
	   NCORE = 1. For a fixed value when using OMP and NPAR=#cores, #cores 

is the number of selected cores. Additionally, we have to set the following 
OMP parameters at runtime: OMP_NUM_THREADS (number of OMP tasks), 
OMP_STACKSIZE (stack size used by each task) and OMP_PLACES and OMP_
PROC_BIND (to set the affinity policy of the tasks in relation to the hardware). 
Figure 2a graphically shows how the 16  MPI-ranks can be replaced by 16 OMP 
tasks.

3.	 The plane-wave and local basis set coefficients (or equivalently fast Fourier trans-
forms—FFTs).

	   VASP tags with OpenMP:
	   NCORE=1. Fixed value when using OMP and NPAR=KPAR=1. In addition, 

the OMP parameters described in the previous medium level must be established 

Fig. 2   VASP MPI/OMP parallelization
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at runtime. Figure 2b illustrates how to replace the n MPI-ranks with n OMP 
tasks.

Since VASP 6, the use of OMP parallelism or GPU parallelism involves setting 
the parameter NCORE = 1.

Additionally, we can consider other VASP parameters: ALGO = Normal 
(default) applies the Blocked-Davidson algorithm, ALGO = Very fast the 
RMM-DIIS algorithm or ALGO = Fast for a combination of both (Davidson is 
used for the initial phase, and then VASP switches to RMM-DIIS).

The parameter NSIM specifies the number of bands that will be optimally treated 
at the same time. Its default value is 4. According to the VASP guide, specifying 
NSIM > 1 allows the program to perform matrix-matrix operations, instead of vec-
tor-matrix operations, for evaluations of nonlocal projection operators in real space, 
as it is able to speed up calculations on some machines. The article Running VASP 
on Nvidia GPUs [15] recommends increasing the value of the parameter to improve 
the efficiency of the computation on GPUs, although this increase generates greater 
memory allocation on these devices.

3 � Performance and energy analysis

3.1 � Computational environment

We have employed a variety of computing systems composed of multiple pro-
cessor architectures and software components. Experiments were conducted on a 
high-performance computing cluster called Verode and two individual machines 
with a high number of cores. The final analysis was focused on node Verode21 for 
the latest benchmarks due to its powerful CPU, superior GPU, and its ability to 
provide results for comparison. We used several compilers and libraries to gener-
ate a VASP executable, beginning with standard libraries and eventually utilizing 
optimized libraries from the Intel oneAPI framework  [16]. Table 1 summarizes 
the main hardware characteristics of all the platforms used.

The following matrix algebra libraries have been taken into account for the per-
formance analysis: BLAS, LAPACK, ScaLAPACK, OpenBLAS, and MKL. From a 
computational standpoint, the VASP workload involves three-dimensional Fast Fou-
rier Transforms (FFTs), matrix-matrix multiplication (BLAS), matrix diagonaliza-
tion, solving eigenvalue problems (LAPACK and ScaLAPACK), and MPI commu-
nications. To be more precise, the two major blocks of calculation needed to solve 
the Schrödinger’s equation make use of these algebraic libraries in the following 
way: 
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a)	� Steps 1) and 6): FFT. Hamiltonian. Steps 2) to 6): BLAS.

b)	� Orthogonalization and diagonalization. FFT, LAPACK, ScaLAPACK, and 
communications between MPI–ranks.

Parallel VASP runs have been tested in a Message Passing Interface (MPI) 
environment, which is the current standard for communication between processes. 
This environment provides the necessary primitives for efficient communications 
between processes that, combined with computing tools, such as the matrix libraries 
mentioned above, allows the build of efficient supercomputing software. The MPI 
implementations tested were OpenMPI [17] version 3.1.5 and IntelMPI [18] oneAPI 
version 2021.4. Additionally, VASP version 6 has extended the range of possibilities 
for parallelism in CPU cores using shared memory through the OpenMP standard. 
OpenMP is included in Intel oneAPI 2021 [16] and Nvidia HPC 23.3 [19].

VASP runs take advantage of GPUs with CUDA runtime and its libraries: cuB-
LAS (a GPU-accelerated version of BLAS) and cuFFT (GPU-accelerated FFT). 
We have used CUDA-C 9.1 with VASP 5.4.4 and CUDA-C/OpenACC version 12 
with VASP 6.2.1. However, the CUDA-C connection will no longer be supported in 
VASP 6.3.0 and later versions.

3.2 � Instrumentation

VASP provides performance metrics for execution times. However, for energy metrics, 
the source code must be properly instrumented. For that purpose, we have extended the 
Energy Measurement Library (EML) [20] to allow use in Fortran codes.

The utilization of EML requires that applications include the calls to the EML rou-
tines before and after the sections of code being examined. The usage pattern requires 
that to recognize all devices supported by EML, the application must first initialize the 
library by invoking emlInit. Before each target section, it will initiate monitoring by 

Table 1   Platforms used for the evaluation of VASP

(All nodes with two sockets)

Nodes CPU-type Cores GPU-type Cores

Asterix Intel Xeon E5-2699 v3 (Haswell)@2.30 GHz 36 –
Tenerife Intel Xeon E5-2699 v4 (Broadwell)@2.20 GHz 44 –
Marengo Intel Xeon Gold 6152 (Skylake)@ 2.10 GHz 44 –
Verode17 Intel Xeon E5-2660 (Sandy Bridge)@ 2.20 GHz 16 Nvidia Tesla K20 2496
Verode18 Intel Xeon E5-2660 (Sandy Bridge)@ 2.20 GHz 16 Nvidia Tesla K40 2880
Verode20 Intel Xeon E5-2698 v3 (Haswell)@ 2.30 GHz 32 Nvidia Tesla K20 2496
Verode21 Intel®Xeon®Gold 6230N (Cascade Lake)@ 2.30 GHz 40 Nvidia Tesla V100 5120
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invoking emlStart, and then it will terminate monitoring by invoking emlStop. 
This procedure returns the measurements obtained from each of the identified devices. 
Finally, the application can free up resources by invoking emlShutdown.

In our experimentation setting, EML recognizes the RAPL interfaces in Intel pro-
cessors (one for each socket) and the NVML interfaces for NVIDIA GPU devices as 
devices.

We have developed an interface module for the EML library to enable C-routines 
to be called from a Fortran code such as VASP. This module, which includes other 
legacy subroutines, defines the call interfaces to the EML library (see Listing 1). 
Additionally, four new subroutines have been added to the VASP Fortran code for 
initialization, measurement start, and measurement end (see Listing 2) and dealloca-
tion of resources. These subroutines call their EML counterparts. The EML routine 
(emlStop) returns a complex data structure which is simplified by a wrapper rou-
tine (emlWrapperStop). This wrapper routine then returns the consumption data 
for each CPU socket and GPU to VASP, which is linked with the wrapper routine 
(see Fig. 1). Consumption data, along with original time data, is written in an output 
file identified with the EML tag.

1 module c2f_interface
2 ...
3 interface
4 ! legacy routines
5 ...
6 !----interface EML LIB routines
7 ! emlError emlStart ()
8 integer (c_int) function EMLMeter_emlStart ()
9 & bind(c,name="emlStart")

10 import
11 end function EMLMeter_emlStart
12

13 ! emlError_t emlStop(emlData_t *data)
14 integer (c_int) function EMLMeter_emlStop(emlData)
15 & bind(c,name="emlStop")
16 import
17 type (c_ptr), value :: emlData
18 end function EMLMeter_emlStop
19

20 ! int emlWrapperStop(char *s2f)
21 integer (c_int) function EMLMe_emlWrapperStop(s2f)
22 & bind(c,name="emlWrapperStop")
23 import
24 character (c_char) :: s2f
25 end function EMLMeter_emlWrapperStop
26 ...
27 !----end interface EML Lib
28 end interface
29 end module c2f_interface

Listing 1   C to Fortran interface
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1 !-EML Stop measure
2 SUBROUTINE EML_STOP(IU6)
3 USE c2f_interface , ONLY : EMLMeter_emlWrapperStop
4 INTEGER IU6
5

6 INTEGER :: emlError
7 CHARACTER (LEN =120) S2F
8

9 S2F = ’’
10 emlError = EMLMeter_emlWrapperStop(S2F)
11

12 WRITE(IU6 ,’(A)’) S2F
13

14 END SUBROUTINE

Listing 2   Fortran routine to log power consumption

3.3 � VASP instrumentation

We have compiled and tested various configurations of VASP versions 5.4.4 [13, 21] 
and 6.2.1. have been compiled and tested. All theese versions are currently employed 
by different users according to their necesities or resource capabilities usage, and 
they show different performance patterns that must be analyzed. In detail:

–	 VASP 5.4.4 with Intel oneAPI: MPI and MPI-GPU
–	 VASP 6.2.1 with Intel oneAPI: MPI, MPI-OMP, and MPI-GPU
–	 VASP 6.2.1 with Nvidia-HPC: MPI, MPI-OMP, MPI-GPU, and MPI-OMP-

GPU

The MPI-OMP-GPU configuration obtains better performance on the CPU process-
ing side compared to the MPI-GPU configuration, which is reflected in the results. 
This version of VASP allows multiple combinations of algebraic libraries. Since the 
Verode cluster incorporates Intel processors, we will find it interesting to test this 
configuration using the MKL library.

The VASP documentation  [22] suggests that when hardware has more than 64 
cores sharing the memory, OpenMP should be used. It is essential that MPI pro-
cesses and OMP tasks are allocated to physical cores in a way that allows them to 
share the same block of memory within the same socket, so that inter-process com-
munication is optimized. Wende et al. [9] discuss the use of OpenMP in VASP. With 
regards to OpenACC and GPUs, VASP version 6 only permits one MPI thread per 
GPU due to the use of NVIDIA Collective Communications Library (NCCL). This 
limitation can be overcomed by replacing the MPI range with multiple OMP tasks, 
which can enhance the parallelization of CPU-side processing. However, if the MPI 
range is replaced with a single OMP task, there is no significant benefit.

To accelerate experimentation and avoid waiting for long execution times, we 
modified the VASP source code to include the NITE parameter. This new feature 
enable us  to set the number of iterations for the main loop (ionic loop) to be exe-
cuted and allow us to specify the number of iterations below the convergence num-
ber of the main loop that is to be executed. Its default value is zero, so the number 
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of convergence iterations does not change. The parameter can be included in the 
VASP parameter file (INCAR). To obtain precise readings of energy consumption 
per iteration, we connected the EML library to the VASP MPI and GPU versions, 
as described in the previous section. We added to the VASP code the start and end 
measure calls for each iteration of the main loop, which were already linked to the 
existing timing start and end calls. We have ensured that all energy measurement 
routines are protected from parallel executions, so that the measurement and record-
ing of results in the output file are exclusive to each iteration.

4 � Experimental results

We created the experiment using a combination of VASP application parameters, 
architectures, libraries, and optimization parameters. The most important aspects in 
terms of performance and energy consumption are the following.

•	 We built the VASP executables using the GCC compiler, Intel Fortran compiler, 
and Portland Group, Inc (PGI) compiler included in the Nvidia HPC SDK. The 
GCC compiler was used only in pre-testing for the results presented in Table 3. 
From this point on, the Intel compiler and the nvHPC compiler have been used. 
Additionally, OpenMP and OpenACC options were included when available 
(VASP version 6.2.1). However, along the paper, the compiler used on each 
computational experiment will be fixed.

•	 The WAVECAR file, generated by VASP, is a binary file that stores the final 
wave functions. It contains the number of bands, cut-off energy, basis vectors 
defining the supercell, eigenvalues, Fermi-weights, and wave functions. VASP 
reads this file as the first input on each main loop iteration to accelerate the com-
putations. At the end of each iteration, the file is replaced. On the first run of 
VASP, the WAVECAR file does not exist, so we carry out multiple runs of the 
initial two or three iterations to observe their effect on performance and energy 
consumption.

•	 VASP GPU runs are managed by a combination of MPI and MPI-OMP paral-
lelism, which helps to divide the workload between cores in the CPU. VASP 
utilizes a hybrid programming model to manage parallelism at both the CPU and 
GPU level. As discussed in Sect. 2, VASP allows three levels of MPI parallelism: 
over k-points, orbitals, and plane wave coefficients. The GPU level of parallelism 
is achieved by replacing subroutine calls from standard linear algebra libraries 
with faster GPU-accelerated implementations, such as by replacing vector opera-
tions with matrix operations.

•	 Table 2 compiles all input sets used in the experiments carried out, both for pre-
liminary tests and for the final results. Data related to each input material can be 
looked at The Materials Project [23, 24] website.
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4.1 � Library acceleration

We analyze the performance of the algebra libraries used in VASP. Several options 
were available, OpenBLAS, BLAS, or MKL for basic algebraic operations, and we 
needed to determine which one was best suited for our architectures.

First, we conducted experiments on three systems to compare OpenBLAS and 
BLAS using the VASP 5.4.4 version compiled with GCC. Table 3 displays the exe-
cution times in seconds for a serial version on the Verode20 system, for an MPI par-
allel version on the Verode18 (16 cores) and Verode20 (32 cores) systems, and for a 
GPU version on the Verode18 system (with an NVIDIA GPU K40). For this test we 
used a 2-atom molecule of a type II-VI semiconductor (Zinc Selenide). The BLAS 
library proved to be more efficient than OpenBLAS in all cases, with the best perfor-
mance being achieved with the 32 cores configuration on Verode20. Consequently, 
the GPU version was not considered a viable option for this example.

Next, we focus on comparing the BLAS and MKL libraries. We conducted 
a study that varied the number of cores (Fig.  3) using the VASP 5.4.4 version 

Table 2   Input sets for VASP 
experimentation

∗ Gamma centred mesh

Material # Atoms k-points Input files 
(Materials pro-
ject) [25]

ZnSe 2 24/40/60 mp-1190
GdPO

4
24 8/24 mp-3735

Gd
2
P
4
O

13
76 G∗ 2 2 1 mp-779989

Si 4 G∗ 3 3 3 mp-165
Si 16 G∗ 3 3 3 mp-1079297
Si 24 G∗ 3 3 3 mp-1095269
Si 40 G∗ 3 3 3 mp-1196961
Si 46 G∗ 3 3 3 mp-971662
Si 58 G∗ 3 3 3 mp-1202745
Si 68 G∗ 3 3 3 mp-1203790
Si 100 G∗ 3 3 3 mp-1245041
Si 232 G∗ 3 3 3 mp-1201492

Table 3   Preliminary experimentation: ZnSe - OpenBLAS vs BLAS

Time in sec - VASP 5.4.4 GCC​

k-points Serial MPI(16p) MPI(32p) GPU

O.B BLAS O.B BLAS O.B BLAS O.B BLAS

24 68.5 35.9 94.7 7.4 107.3 5.6 47.5 30.9
40 233.4 121.5 315.5 22.7 385.3 16.8 136.8 83.8
60 588.9 304.7 862.3 58.7 971.1 44.2 348.9 210.9
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compiled with the Intel oneAPI fortran compiler (labeled IoA in Figures). We col-
lected data to create a VASP MPI plot for a monazite (GdPO

4
 ) with 24 k-points in 

different multicore system configurations using all the cores of each node. Specifi-
cally, measurements were taken with Verode18 for the 16 core point, with Verode20 
for the 32 core point, with Asterix for the 36 core point, and with  Marengo for 
44 cores. Regardless of whether machines with more cores have faster architectures 
(see Table 1), the performance of the MKL library is always better than the BLAS 
library.

From the analysis carried out, we conclude that for all the cases studied we have 
obtained the best performance with the MKL library, and, therefore, this will be the 
library that we will use for the rest of the experimentation.

4.2 � NSIM and time for iteration (LOOP+)

In order to make a fair comparison between different architectures, we must identify 
parameters that require similar resources from the computational systems. Solving 
the Schrödinger’s equation necessitates the execution of an iterative algorithm with 
a convergence criteria (e.g. different number of iterations for different executions). 
The execution time for one of these steps is identified in VASP as LOOP+, which is 
often used as a performance metric in many studies [26].

The NSIM parameter has a major impact on performance when using a GPU 
implementation in VASP 5.4.4. By default, it is set to 4, but increasing it to more 
than 1 allows the program to perform matrix-matrix operations instead of vector-
matrix operations for the evaluation of non-local projection operators in real space, 
which can speed up calculations on some machines. According to [15], increasing 
the parameter’s value can improve computation efficiency on GPUs, although it also 
requires more memory allocation on these devices.

We conducted experiments to validate whether the execution time would improve 
when increasing NSIM for the same number of threads in parallel MPI executions. 
To carry out these experiments, we used the VASP 5.4.4 version compiled with the 
Intel compiler. The results in Table  4 for GdPO

4
 material with the MKL library 

show that for the best-performing MPI threads, 32, the execution time does not 

Fig. 3   BLAS vs MKL library—
VASP 5.4.4 IoA
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decrease as NSIM increases. However, for four threads, better GPU results indicate 
that execution time can be improved by increasing NSIM.

Previously, in  [27], we studied a molecule of 24 atoms and found that the best 
performance was achieved with MPI. However, GPU performance was slower as a 
result of the large amount of communication between the CPU and GPU for a com-
pound of this size or smaller. In another gadolinium phosphate with a structure of 76 
atoms, Gd

2
P
4
O

13
 , Table 4b shows that the GPU execution has the best performance 

with NSIM=32. If this parameter is increased too much, it will cause a CUDA mem-
ory error on the GPU.

Using the time-per-iteration (LOOP+) as a reference, we have tested the influ-
ence of the NSIM parameter in MPI and GPU executions. We conclude that this 
parameter improves performance for large molecules using GPU parallelism.

4.3 � Performance evaluation

To assess the speedup of using MPI and GPU, we performed time measurements on 
the sockets and the GPU for each iteration of the main loop (ionic loop) of VASP. 
We ran the first ten iterations of the loop for seven silicon molecules of varying 
sizes (4, 16, 24, 40, 46, 58, and 68 atoms) and obtained the data from the VASP 
silicon input files from the The Materials Project website. This website provides 
open-access information on materials and tools used by physicists and chemists. 
Generally, when the number of atoms in the molecule being studied increases, 
smaller sampling grids (k-points) are employed. We have chosen a fixed mesh (3 3 
3) to make a valid comparison. This mesh is Gamma centered, i.e., a k-point mesh 
(grid) that is centered around the gamma point of the Brillouin Zone. All tests were 
carried out on the  Verode21 node for two versions of the application: VASP 5.4.4 
and VASP 6.2.1, which introduces new parallel execution modes facilitated by 
OpenMP and OpenACC and the support of a new compiler (Nvidia-HPC). In what 
follows, the experimental results have been obtained by compiling the VASP 5.4.4 
code using the Intel oneAPI fortran compiler and the nvHPC compiler for the 6.2.1 
version.

The graph in Fig. 4 illustrates the speedup in relation to the number of cores used 
in the execution. To calculate the speedup values, we used a reference sequential 
execution time, which was determined by measuring the first two MPI iterations of 
a thread with the parameters NCORE=NSIM=1. Figure 4a reveals that the speedup 
obtained up to 16 cores is quite substantial for most molecule sizes (e.g., 11.26 for 
46 atoms and 16 cores). However, with 32 cores, the improvement becomes neg-
ligible (e.g., 10.97 for 46 atoms). This is likely due to increased communication 
between sockets. A similar pattern can be seen for VASP 6.2.1 in Fig. 4b.

We examined the speedup generated on GPU runs by increasing the NSIM 
parameter, which allows the program to substitute vector products for matrix prod-
ucts, thereby increasing the degree of parallelism. We calculate the reference time 
for GPU by averaging the first two iterations executed with one thread and the 
parameter NSIM=1. GPU executions were conducted with 4 MPI threads. Figure 5a 
shows the GPU acceleration relative to the NSIM parameter for the same silicon 
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molecules used in speedup MPI test for VASP 5.4.4. We can see that for molecules 
with more than four atoms, the increase of NSIM up to a value of 16 produces a 
significant acceleration (e.g., 1.88 for 46 atoms and NSIM=16). NSIM=32 does 
not improve the results due to increased communications between CPU and GPU 
(e.g., 1.87 for 46 atoms). In the case of VASP 6.2.1, GPU acceleration with respect 
to increase of the NSIM parameter is observed to improve with Intel oneAPI, but 
surprisingly, it does not improve performance with Nvidia-HPC (Fig. 5b). We have 
depicted in Fig. 6a the time per iteration of the ionic loop after including the mol-
ecule sizes of 100 and 232. The aim is to compare the performance of MPI and GPU 
when working with the exact sizes of silicon molecules and the same k-points. The 
best MPI times, obtained with 32 threads, and the best GPU times, with four threads 
and NSIM=32, are shown. Experimentally, it was found that performance decreased 
when using less than four threads with a GPU. With more than 4, the performance 
was hindered due to overhead in communications. Regarding the time per iteration 
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in VASP 6.2.1, OMP provides intermediate performance between MPI and GPU 
(Fig. 6b).

The figure demonstrates that the performance of MPI and GPU is equivalent to 
up to 40 atoms. After this point, GPU executions are more effective than MPI ones. 
The MPI–OMP–GPU combination offers the best results from a size of 24 atoms, 
presenting itself as the fastest option from a practical point of view (Fig. 6b). More 
in detail, in Fig. 7a we can see the acceleration that GPU and GPU–OMP bring to 
MPI execution.

We can see that speedup with MPI has improved significantly in VASP version 
6.2.1 compared to the previous version, 5.4.4. In version 6.2.1, no better results are 
obtained by increasing the NSIM parameter beyond 8. Hybrid MPI/OMP implemen-
tation obtains better performance than the MPI-only version, but far from the GPU 
implementation with molecules larger than 40 atoms. The best performance results 
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are obtained with GPU–OMP parallelism with molecule sizes greater than about 24 
atoms, notably improving the GPU results.

4.4 � Energy consumption measures

The increasing attention to measure the energy consumed by the calculations nec-
essary to get the VASP results has been addressed by using the EML library. This 
library is able to obtain the power consumption on each socket and GPU device. We 
measure the energy consumption and computation time simultaneously using VASP 
linked with the EML library. We obtain  the energy consumption on the sockets and 
GPU at each iteration of the main VASP loop. We conducted experiments with dif-
ferent sample times from the EML library: 1ms, 10ms, 100ms, and 1s. And we find 
that with a low sampling rate (1s), we can maintain precision without significantly 
impacting performance measurement.

The experiments were designed to measure the energy consumption of the same 
silicon structures studied in the previous subsection. Our aim was to compare the 
energy consumption of MPI, OMP, and GPU executions for different sizes of Si 
molecules. We obtain the average total consumption of the two sockets and the GPU 
for the first ion loop iteration of each silicon structure ten times. As mentioned in the 
last paragraph of the 4.3 section, 32 threads were used for the best MPI performance 
results and four threads and NSIM=32 for the best GPU results. Therefore, we 
obtained the dissipated power and energy consumption measurements for the exe-
cutions with these parameters. These experiments were carried out with the VASP 
5.4.4 version compiled with Intel oneAPI and the 6.2.1 version compiled with Intel 
oneAPI and Nvidia HPC SDK frameworks.

Figure 8a represents the instantaneous power dissipated by the calculations of 
the selected silicon molecules and Fig.  9a their energy consumption measured 
on node Verode21 with VASP 5.4.4. For each molecule size, we have used the 
same k-points and input parameters in the MPI and GPU calculations. For both 
MPI and GPU tests, we add the total energy of both sockets and that of the GPU, 
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which is not operational in the case of MPI runs (but has an impact on power 
consumption). In Fig. 8a, we can see that the power dissipated by the calcula-
tions in the GPU for any molecule size is lower than that obtained using MPI 
parallelism. From the point of view of energy efficiency, we can see in Fig. 9a 
that the use of a GPU with VASP represents a clear advantage over MPI/OMP 
parallelism from molecular structures of about 40 atoms and beyond.

VASP 6.2.1 addresses similar power dissipation (Fig.  8b) and energy con-
sumption (Fig.  9b) of various sizes of silicon molecules. In this case, we can 
compare MPI, OMP, and GPU implementations compiled with Intel oneAPI, and 
MPI, GPU and GPU–OMP implementations compiled with Nvidia HPC SDK 
framework. Figure  7b displays a comparison of energy consumption between 
CPU cores and GPU for MPI, GPU, and GPU-OMP, depicted on a logarith-
mic scale to facilitate visualization across various molecular sizes. In general, 
the multicore processor consumes more energy for all structures, while  GPU-
OMP version consumes less power for large molecule sizes.

From an energy perspective, OpenMP (OMP) has slightly higher instantane-
ous power values than MPI. For large molecules, GPU computations result in 
very low power values. The Nvidia HPC SDK framework brings to VASP 6.2.1 
lower power dissipation (Fig.  8b) compared to VASP 5.4.4, as well as lower 
energy consumption (Fig.  9b), which highlights the importance of assessing 
VASP’s performance with different compilers.

Research on energy consumption has yielded similar results in the work of 
Stegailov  [28–30]. The energy consumption of GPU calculations is lower than 
MPI for molecules larger than 40 atoms. OMP improves energy efficiency com-
pared with MPI-only implementation, but GPU–OMP combination brings us the 
best performance in terms of energy consumption.
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5 � Related work

HPC systems are becoming more and more popular due to the increasing use in var-
ious areas of knowledge of simulation techniques. According to the global energy 
development policy, these systems must optimize their performance and, at the same 
time, make efficient use of the energy consumed. Simulations and scientific applica-
tions for computational chemistry have taken advantage of the increase in perfor-
mance offered by new generations of supercomputers.

The article by Hacene et al. [21] presents a way to improve the performance of 
the VASP program in material simulations using ab initio methods. The authors 
discuss how systems equipped with GPUs can greatly reduce program computa-
tion time. Yasuda  [31] and Genovese  [32] studied how to speed up these calcula-
tions using GPUs. Since VASP version 6, OMP parallelism combined with MPI and 
GPU can be used. Wende et  al.  [9] describe different parallelization strategies for 
ab initio algorithms in multicore systems using MPI/OMP communications between 
processes. Zhao et  al.  [33] add to these aspects various memory access methods. 
Several authors discuss MPI communications [34] and the binding of processes to 
cores in VASP [12, 35]. According to Peter Larsson [36], one of the most important 
parameters to improve performance with GPUs is NSIM. This parameter manages 
the number of bands1 that are optimized in parallel using matrix-matrix operations. 
The author recommends increasing its value as long as possible and avoiding con-
suming the memory of these devices. Maniopoulou et  al.  [11] present a paralleli-
zation strategy for k-point workload distribution using KPAR (number of k-points 
treated in parallel) and NPAR (number of bands treated in parallel) parameters. In 
other articles, more parameters for performance improvement are considered  [13, 
37]. Articles  [38–40] introduce performance improvements using certain libraries, 
reducing MPI communications, and moving computation to the GPU. Although 
other metrics have been presented to make performance results independent of the 
different HPC architectures used  [41], the measurement of the time per iteration 
(LOOP+) of the main loop of the Kohn-Sham equation resolution algorithm is con-
sidered an accepted reference. Articles [9, 26, 28–30, 33] consider this measurement 
as a reference to measure performance. As in the mentioned articles, we perform our 
performance measurements using LOOP+ with different molecule sizes using the 
same k-point mesh.

Currently, it is essential to align high performance computing with contained 
energy consumption. Calore et  al.  [42] study the power consumption and perfor-
mance of mobile processors running HPC applications. They study the power 
performance of a Tegra K1 mobile processor that runs an HPC application on the 
CPU and GPU. They analyze current measurements obtained through a customized 
monitor.

Stegailov et  al. make several comparisons between different Intel and AMD 
CPUs [29, 30] for HPC solutions related to efficiency and energy consumption with 

1  In VASP, the bands represent the energy levels of the electrons in a material, while the orbitals repre-
sent the individual electron wavefunctions that contribute to those energy levels.
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VASP. Also, Stegailov et  al.  [28] use a reference metric that makes it possible to 
compare different types of Intel, AMD and ARM processors together with GPUs. 
They compared the efficiency of VASP taking a GaAs molecule of 80 atoms. To 
do this, they use a metric based on the balance between maximum floating point 
performance and memory bandwidth that allows them to compare different systems 
with CPUs and GPUs. In addition, they measure energy consumption using digital 
wattmeters.

Most of these research studies focus on analyzing the performance or energy 
consumption of a specific version, typically with a fixed size. However, our study 
takes an integrated approach by analyzing different versions, varying parameter 
values, and jointly examining both performance and energy consumption. We also 
include an analysis of version 6, which has not been previously considered, due 
in part to installation difficulties and significant changes to the GPU version that 
has now migrated from CUDA-C to OpenACC. Our research group has extensive 
experience in analyzing and modeling the performance of large applications such 
as Linpack  [43], as well as assessing energy efficiency in heterogeneous architec-
tures multicore-GPU [44]. We have developed a Fortran interface for EML to meas-
ure the energy consumption of VASP. Our experiments involve different molecule 
sizes with the same sampling mesh from the VASP code itself, without the need for 
external physical instrumentation. We explore a range of parallelism models used 
in VASP, including Message Passing with MPI, OpenMP, and GPU, with CUDA-C 
and OpenACC implementations. The methodology used to plan our experiments can 
provide guidance to other researchers looking to optimize the performance of VASP 
for their specific hardware.

6 � Conclusions

An energy and performance analysis of the VASP legacy application has been devel-
oped for a single two-socket HPC node. The results of our study are valuable to 
developers and researchers looking to select the best combination of compilers, par-
allelism model, and hardware for a high-performance and energy-efficient comput-
ing of VASP.

The VASP code has been compiled using Intel and Nvidia (Portland Group) 
compilers and several other libraries that provide different performance. It was also 
instrumented with the EML library for energy efficiency measurements.

Initial experiments carried out with Intel processors showed that the best execu-
tion times were achieved with the MKL library, so it was used for the following 
tests. Furthermore, it was found that the main factor in improving MPI performance 
is increasing the number of threads executed, but exceeding the number of threads 
in a socket leads to a decrease in performance due to communications between sock-
ets. In GPU calculations, increasing the value of the NSIM parameter significantly 
improves performance with Intel oneAPI in VASP version 5.4.4, but a high value 
can cause memory failure on the GPU. For version 6.2.1 of VASP, the OpenACC 
implementation does not use the NSIM parameter anymore. Problems that benefit 
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from computing with GPUs are those with the highest workload caused by the size 
of the molecule and/or the number of k-points.

Our findings indicate that the combination of MPI, OpenMP, and OpenACC for 
GPUs shows the best performance and energy efficiency if the number of atoms in 
the structure is high enough. For small molecules, using multicore-only hardware 
with MKL and the Intel compiler will provide similar performance, and using a 
GPU is not necessary in such cases. Ultimately, our overarching objective is to thor-
oughly examine the different parallel implementations and to pinpoint areas where 
each can be improved, ultimately contributing to greater energy efficiency.

Ab initio algorithms in the VASP code are CPU bounded and energy consump-
tion values are related to execution times. Therefore, structure sizes greater than 40 
atoms suggest the use of GPU for this node. Experiments to collect energy con-
sumption showed that the energy consumption of the MPI and OMP code versions 
increases significantly with the size of the molecule, while high-performance GPU 
executions have a much lower prolonged energy consumption against increasing 
molecular size, especially with version 6.2.1.
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