
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-06066-0

1 3

Energy efficiency and performance analysis of a legacy
atomic scale materials modeling simulator (VASP)

Isidoro Nieves‑Pírez1 · Alfonso Muñoz2 · Francisco Almeida1 · Vicente Blanco1

Accepted: 12 March 2024
© The Author(s) 2024

Abstract
This work tackles the performance and energy consumption analysis of a legacy sci-
entific application, the VASP (Vienna Ab-initio Simulation Package), an applica-
tion commonly used by physicists and chemists for modeling materials at the atomic
scale. Many of these scientific applications have been implemented in Fortran, where
energy metrics instrumentation is not straightforward. We obtained performance
figures (execution time and energy consumption) by instrumenting the source code
using EML. This energy measurement library has been modified to introduce For-
tran interfaces for these metrics. The analysis was carried out using different matrix
algebra libraries, parallelization techniques, and hardware platforms, emphasizing
on the MPI, OpenMP, and CUDA parallel implementations of the algorithms used
in VASP. We employ various material specifications (atomic structures) and molec-
ular sizes of a silicon-based crystal to create a set of benchmarks for these speci-
fications, leading to some recommendations for final users regarding performance
improvements. The proposed benchmarking technique assists the user in selecting
the right combination of problem size, compilers, and parallelization options avail-
able in VASP. For a given system platform, the user will be able to determine not
only the architecture to use (GPU or multicore processors), but also the appropriate
library and parallelization according to the atomic structure and molecular size.

Isidoro Nieves-Pírez, Alfonso Muñoz, Francisco Almeida, and Vicente Blanco contributed equally
to this work.

 *	 Vicente Blanco
	 vblanco@ull.es

	 Isidoro Nieves‑Pírez
	 alu0100284829@edu.ull.es

	 Alfonso Muñoz
	 amunoz@ull.es

	 Francisco Almeida
	 fameida@ull.es

1	 Computer Science and Systems Department, Universidad de La Laguna (ULL), San Francisco
de Paula s/n, La Laguna 38270, Spain

2	 Instituto de Materiales y Nanotecnología, Universidad de La Laguna (ULL), La Laguna, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06066-0&domain=pdf

	 I. Nieves‑Pírez et al.

1 3

Keywords  Applied computing physics · Performance · Energy aware computing

1  Introduction

General-purpose graphics processing accelerators (GPGPUs) are designed to run
simulations and scientific applications, which constitute a new low-cost, high-per-
formance computing platform. To take advantage of this new hardware infrastruc-
ture, it is necessary to define paradigms that adapt to the new model. The unified
computer device architecture (CUDA [1]) is the answer to this challenge presented
by NVIDIA. CUDA is both a parallel computing architecture and a programming
model that helps to use the multiple processing cores of the GPGPU to run a vast
number of threads in parallel. Applications designed with and for CUDA will be
able to assign independent tasks to each thread, significantly increasing computa-
tional performance, a transcendental issue for research in computational chemistry,
bioinformatics, and other fields.

This programming model has been incorporated into other parallel program-
ming approaches used in high-performance computing, which involve the construc-
tion of applications with hybrid parallel programming techniques [2], combining
MPI, OpenMP, and CUDA models. It is not simple to program and maintain appli-
cations with a large base code and diverse programming models. Therefore, some
developers opt to write code for GPU architectures using OpenACC [3], a high-
level OpenMP-inspired programming standard for coding applications for these
architectures.

This work focuses on analyzing a scientific application that needs to benefit from
the performance offered by parallel processing, both on multicore CPUs and GPUs,
to obtain efficient and accurate results. We try to analyze the application code to
identify the sections where we apply instrumentation to capture detailed perfor-
mance and energy efficiency measures. Specifically, we study the performance of
VASP (Vienna Ab-initio Simulation Package) [4], a legacy software package written
in Fortran that allows materials to be modeled at the atomic scale. As an instrumen-
tation tool, we use the EML library [5] to measure power consumption. We devel-
oped a specific Fortran interface to communicate EML with VASP and to perform
energy measurements in real time. We obtained performance and energy efficiency
results for several materials and various molecular sizes with parallel CUDA, MPI,
and OMP implementations of VASP.

As objectives, we have proposed characterizing the performance of the VASP appli-
cation in an MPI/OMP and GPU environment. We compile the legacy source code
with the selected matrix algebra libraries and optimization parameters suitable for the
chosen parallel environment. We conducted performance and energy consumption
measurements that allowed us to compare MPI and GPU environments, primarily in
the Verode cluster of the ULL. We used the EML library to instrument the legacy For-
tran code of the VASP application, allowing us to obtain detailed energy consumption
measurements. We analyzed performance and consumption by comparing the results

1 3

Energy efficiency and performance analysis of a legacy atomic…

obtained with the different libraries and configuration parameters, while attempting to
maintain or improve the quality of the results. The results of parallel applications must
be at least as good as those of their sequential counterparts, particularly in terms of
energy and pressure values in the study of solids.

In this paper, we offer three primary contributions.

•	 We conducted a performance analysis of VASP versions 5.4.4 and 6.2.1, focusing
on the most significant configuration parameters, to compare the various parallel
execution capabilities when studying molecules with different numbers of atoms
using the same sampling mesh. We aimed to identify any potential performance
improvements related to the different types of parallelism available.

•	 We conducted an analysis of energy efficiency by integrating a new EML-Fortran
interface into the legacy VASP code. This interface enabled us to measure the
energy consumption of each socket and the GPU. We included calls to the EML
library in the main loop, or ionic loop, of the program so that measurements could
be taken at each iteration.

•	 We propose a working methodology that helps to make decisions about the
hardware architecture and type of parallelism to use with VASP, depending
on the size of the molecular structure to be worked on. For example, when
dealing with molecules of 40 atoms, it is beneficial from both a performance
and energy efficiency standpoint to use a node with two sockets and a GPU.
MPI–OMP yields intermediate results, but requires a proper combination of
MPI threads and OMP tasks.

The paper is organized into six sections: Sect. 2 describes the research problem of ab
initio simulations, Sect. 3 describes the computational platform where we perform the
performance analysis and detail the instrumentation of legacy code using the EML
library, and Sect. 4 collects the most important aspects of the software used and shows
the results obtained. Finally, Sects. 5 and 6 introduce the related work and summarize
the findings reached with this study.

2 � VASP

VASP is a simulation software package that works with plane waves based on den-
sity functional theory (DFT) and solves the Kohn-Sham’s equations. This approach
facilitates the theoretical study of compounds through energy and force calculations,
allowing for optimization of geometry, simulations of molecular dynamics, and deter-
mination of a wide range of physicochemical properties for solids or surfaces for indus-
trial application. The program uses Davidson [6] and RMMDIIS [7, 8] algorithms to
perform these calculations. We address the use of the application in heterogeneous
CPU–GPU systems, optimizing the hardware, libraries, and compiler selection to
improve performance and energy efficiency.

	 I. Nieves‑Pírez et al.

1 3

2.1 � Algorithms in VASP

Several approaches for parallelization of the algorithms used in VASP can be found
in [9], where most of the computational work consists of efficiently solving the
Schrödinger’s equation:

for a system with a large number of electrons, N. Using the lattice periodicity
(Bloch’s theorem) the problem is reduced to working with the primitive crystal cell
and a smaller number of electrons, which decreases the quantum numbers n and
k characterizing the bands and the integration at k is reduced to localized values
within the first Brillouin Zone (1BZ). Density functional theory (DFT) makes this
problem tractable and allows the problem to be solved self-consistently using the
Kohn-Sham’s equations. The Kohn-Sham’s equations are similar to a non-interact-
ing Schrödinger equation for a fictitious system (the "Kohn-Sham system") of non-
interacting electrons that generate the same density as any given system of interact-
ing electrons.

The k-points are sampling points in the 1BZ of the material. In periodic calcula-
tions, you want to sample the k-space essentially to consider the effect of neighbor-
ing unit cells: k corresponds to lattice vectors in reciprocal space.

In a previous work, we developed the Bandas [10] desktop application, which
allows visualizing the material’s band structure in a series of points k in high direc-
tions of symmetry of the 1BZ. Iterative matrix diagonalization algorithms, such
as Blocked-Davidson or RMM-DIIS, are used to solve the Schrödinger’s equation.
Because the Hamiltonian H depends on the set of solutions (eigenfunctions Ψ ),
this must be resolved iteratively until convergence is reached through an iterative
matrix diagonalization that requires considerable computational work. To solve the
Schrödinger’s equation, we must perform two large groups of calculations:

(a)	 Hamiltonian The steps to solve the Hamiltonian of the Schrödinger’s equation
for each of its solutions (eigenfunctions Ψ ) in each wave vector k are composed
of the following calculations:

1.	 Fourier Transforms
2.	 PAW projections with matrix-matrix operations
3.	 Computation of the local potential by product of elements in real space
4.	 Computation of the nonlocal potential through matrix-matrix operations
5.	 Computation of kinetic energy by product of elements in reciprocal space
6.	 Sum of results in reciprocal space and Fourier transforms

(b)	 Orthogonalization and diagonalization Once the Hamiltonian is obtained,
the solutions to this equation must be orthonormal by applying Gram-Schmidt
orthogonalization. This group of computations involves global MPI communica-
tion across all logical groups of processes (MPI-ranks).

(1)HΨ
nk

= �
nk
Ψ

nk

1 3

Energy efficiency and performance analysis of a legacy atomic…

The parallelization strategy implemented by VASP using the message passing
interface (MPI) was described by Wende et al in [9]. The hybrid MPI-CUDA imple-
mentation of the VASP was described by [11–13]. VASP can apply three levels of
parallelism, from a basic level to an advanced level, as follows:

1.	 Bloch wave-vectors, k-points (basic-level). To avoid heavy computations, the user
usually decreases the number of k-points when the size of the system increases.
All bands are processed in parallel.

	  VASP tags: KPAR = #Cores. KPAR is the number of k-points that are to be
treated in parallel. Several N = #Cores / KPAR compute cores work together
on an individual k-point where #Cores is the total number of cores. KPAR must
be an integer divisor of the total number of cores. The default value of KPAR
is 1. The NPAR indicates the number of bands processed in parallel. Its default
value is equal to #Cores. This implies that each orbital is processed by a core.
The NCORE parameter, which is easier to use, has taken over from the NPAR.
NCORE = 1 (default). This parameter determines how many cores work on an
orbital (or band) of electrons. Orbitals describe the behavior of an electron within
an atom. For simplicity, in the figures we consider 4 orbitals labeled: n1–n4. See
Fig. 1a.

2.	 The one-electron orbitals at each k-point: n1–n4 (medium-level). In fact, the
Schrödinger’s equation can be solved by working directly on each orbital using the
algorithms of Blocked-Davidson or RMM-DIIS. The number of orbitals increases
proportionally to the size of the system. Several bands are processed in parallel.
We can refer to a medium-sized system as a structure with 50 atoms. VASP tags:
For NCORE > 1 (or NPAR=#cores), #cores is the number of cores selected. The
relationship between both parameters is established as NCORE =#Cores/NPAR,
where #Cores is the total number of cores. As an illustrative example, in Fig. 1b
we have set NCORE=2 and #Cores=16. Because each orbital is processed by
more than one core, it is necessary to intercommunicate the processing performed
by all the cores. That is, among all the MPI-ranks. This communication is carried
out by passing messages. MPI allows you to create logical groups of processes.
In each group, a process is identified by a rank number.

3.	 The plane-wave and local basis set coefficients (or equivalently fast Fourier trans-
forms [FFTs]), that is, over the PAW projections used to represent each orbital in
multiple MPI-ranks (advanced-level). Projector-augmented-wave (PAW) projec-

Fig. 1   VASP MPI parallelization

	 I. Nieves‑Pírez et al.

1 3

tion is a mapping of the set of solutions of the Schrödinger’s equation on a set of
localized functions. Large systems require this level even though it adds overhead
due to the necessary intercommunication between MPI-ranks. MPI message pass-
ing is required to calculate the fast Fourier transforms and PAW projections of the
orbital. All cores work in parallel on a single band. The plane wave coefficients
of each band are distributed among all cores. This level is understood only from
a theoretical point of view, since in practice this way of working is slow.

	  VASP tags: NCORE=#Cores. NPAR=KPAR=1. This is the extreme case for
the basic level. Each orbital to be handled by all cores requires a high MPI mes-
sage to pass between all cores. See Fig. 1c.

For the best results, a mixture of all three levels of parallelism is often applied
at the same time. Starting with version 6, VASP offers the possibility of using
OpenMP [14] to communicate cores via shared memory instead of MPI messages.
The partial or complete replacement of MPI processes by OpenMP (OMP) tasks
redefines the VASP parameters for the medium and advanced levels as follows:

2.	 The one-electron orbitals at each k-point: n1–n4 (medium-level).
	  VASP tags with OpenMP:
	  NCORE = 1. For a fixed value when using OMP and NPAR=#cores, #cores

is the number of selected cores. Additionally, we have to set the following
OMP parameters at runtime: OMP_NUM_THREADS (number of OMP tasks),
OMP_STACKSIZE (stack size used by each task) and OMP_PLACES and OMP_
PROC_BIND (to set the affinity policy of the tasks in relation to the hardware).
Figure 2a graphically shows how the 16 MPI-ranks can be replaced by 16 OMP
tasks.

3.	 The plane-wave and local basis set coefficients (or equivalently fast Fourier trans-
forms—FFTs).

	  VASP tags with OpenMP:
	  NCORE=1. Fixed value when using OMP and NPAR=KPAR=1. In addition,

the OMP parameters described in the previous medium level must be established

Fig. 2   VASP MPI/OMP parallelization

1 3

Energy efficiency and performance analysis of a legacy atomic…

at runtime. Figure 2b illustrates how to replace the n MPI-ranks with n OMP
tasks.

Since VASP 6, the use of OMP parallelism or GPU parallelism involves setting
the parameter NCORE = 1.

Additionally, we can consider other VASP parameters: ALGO = Normal
(default) applies the Blocked-Davidson algorithm, ALGO = Very fast the
RMM-DIIS algorithm or ALGO = Fast for a combination of both (Davidson is
used for the initial phase, and then VASP switches to RMM-DIIS).

The parameter NSIM specifies the number of bands that will be optimally treated
at the same time. Its default value is 4. According to the VASP guide, specifying
NSIM > 1 allows the program to perform matrix-matrix operations, instead of vec-
tor-matrix operations, for evaluations of nonlocal projection operators in real space,
as it is able to speed up calculations on some machines. The article Running VASP
on Nvidia GPUs [15] recommends increasing the value of the parameter to improve
the efficiency of the computation on GPUs, although this increase generates greater
memory allocation on these devices.

3 � Performance and energy analysis

3.1 � Computational environment

We have employed a variety of computing systems composed of multiple pro-
cessor architectures and software components. Experiments were conducted on a
high-performance computing cluster called Verode and two individual machines
with a high number of cores. The final analysis was focused on node Verode21 for
the latest benchmarks due to its powerful CPU, superior GPU, and its ability to
provide results for comparison. We used several compilers and libraries to gener-
ate a VASP executable, beginning with standard libraries and eventually utilizing
optimized libraries from the Intel oneAPI framework [16]. Table 1 summarizes
the main hardware characteristics of all the platforms used.

The following matrix algebra libraries have been taken into account for the per-
formance analysis: BLAS, LAPACK, ScaLAPACK, OpenBLAS, and MKL. From a
computational standpoint, the VASP workload involves three-dimensional Fast Fou-
rier Transforms (FFTs), matrix-matrix multiplication (BLAS), matrix diagonaliza-
tion, solving eigenvalue problems (LAPACK and ScaLAPACK), and MPI commu-
nications. To be more precise, the two major blocks of calculation needed to solve
the Schrödinger’s equation make use of these algebraic libraries in the following
way:

	 I. Nieves‑Pírez et al.

1 3

a)	� Steps 1) and 6): FFT. Hamiltonian. Steps 2) to 6): BLAS.

b)	� Orthogonalization and diagonalization. FFT, LAPACK, ScaLAPACK, and
communications between MPI–ranks.

Parallel VASP runs have been tested in a Message Passing Interface (MPI)
environment, which is the current standard for communication between processes.
This environment provides the necessary primitives for efficient communications
between processes that, combined with computing tools, such as the matrix libraries
mentioned above, allows the build of efficient supercomputing software. The MPI
implementations tested were OpenMPI [17] version 3.1.5 and IntelMPI [18] oneAPI
version 2021.4. Additionally, VASP version 6 has extended the range of possibilities
for parallelism in CPU cores using shared memory through the OpenMP standard.
OpenMP is included in Intel oneAPI 2021 [16] and Nvidia HPC 23.3 [19].

VASP runs take advantage of GPUs with CUDA runtime and its libraries: cuB-
LAS (a GPU-accelerated version of BLAS) and cuFFT (GPU-accelerated FFT).
We have used CUDA-C 9.1 with VASP 5.4.4 and CUDA-C/OpenACC version 12
with VASP 6.2.1. However, the CUDA-C connection will no longer be supported in
VASP 6.3.0 and later versions.

3.2 � Instrumentation

VASP provides performance metrics for execution times. However, for energy metrics,
the source code must be properly instrumented. For that purpose, we have extended the
Energy Measurement Library (EML) [20] to allow use in Fortran codes.

The utilization of EML requires that applications include the calls to the EML rou-
tines before and after the sections of code being examined. The usage pattern requires
that to recognize all devices supported by EML, the application must first initialize the
library by invoking emlInit. Before each target section, it will initiate monitoring by

Table 1   Platforms used for the evaluation of VASP

(All nodes with two sockets)

Nodes CPU-type Cores GPU-type Cores

Asterix Intel Xeon E5-2699 v3 (Haswell)@2.30 GHz 36 –
Tenerife Intel Xeon E5-2699 v4 (Broadwell)@2.20 GHz 44 –
Marengo Intel Xeon Gold 6152 (Skylake)@ 2.10 GHz 44 –
Verode17 Intel Xeon E5-2660 (Sandy Bridge)@ 2.20 GHz 16 Nvidia Tesla K20 2496
Verode18 Intel Xeon E5-2660 (Sandy Bridge)@ 2.20 GHz 16 Nvidia Tesla K40 2880
Verode20 Intel Xeon E5-2698 v3 (Haswell)@ 2.30 GHz 32 Nvidia Tesla K20 2496
Verode21 Intel®Xeon®Gold 6230N (Cascade Lake)@ 2.30 GHz 40 Nvidia Tesla V100 5120

1 3

Energy efficiency and performance analysis of a legacy atomic…

invoking emlStart, and then it will terminate monitoring by invoking emlStop.
This procedure returns the measurements obtained from each of the identified devices.
Finally, the application can free up resources by invoking emlShutdown.

In our experimentation setting, EML recognizes the RAPL interfaces in Intel pro-
cessors (one for each socket) and the NVML interfaces for NVIDIA GPU devices as
devices.

We have developed an interface module for the EML library to enable C-routines
to be called from a Fortran code such as VASP. This module, which includes other
legacy subroutines, defines the call interfaces to the EML library (see Listing 1).
Additionally, four new subroutines have been added to the VASP Fortran code for
initialization, measurement start, and measurement end (see Listing 2) and dealloca-
tion of resources. These subroutines call their EML counterparts. The EML routine
(emlStop) returns a complex data structure which is simplified by a wrapper rou-
tine (emlWrapperStop). This wrapper routine then returns the consumption data
for each CPU socket and GPU to VASP, which is linked with the wrapper routine
(see Fig. 1). Consumption data, along with original time data, is written in an output
file identified with the EML tag.

1 module c2f_interface
2 ...
3 interface
4 ! legacy routines
5 ...
6 !----interface EML LIB routines
7 ! emlError emlStart ()
8 integer (c_int) function EMLMeter_emlStart ()
9 & bind(c,name="emlStart")

10 import
11 end function EMLMeter_emlStart
12

13 ! emlError_t emlStop(emlData_t *data)
14 integer (c_int) function EMLMeter_emlStop(emlData)
15 & bind(c,name="emlStop")
16 import
17 type (c_ptr), value :: emlData
18 end function EMLMeter_emlStop
19

20 ! int emlWrapperStop(char *s2f)
21 integer (c_int) function EMLMe_emlWrapperStop(s2f)
22 & bind(c,name="emlWrapperStop")
23 import
24 character (c_char) :: s2f
25 end function EMLMeter_emlWrapperStop
26 ...
27 !----end interface EML Lib
28 end interface
29 end module c2f_interface

Listing 1   C to Fortran interface

	 I. Nieves‑Pírez et al.

1 3

1 !-EML Stop measure
2 SUBROUTINE EML_STOP(IU6)
3 USE c2f_interface , ONLY : EMLMeter_emlWrapperStop
4 INTEGER IU6
5

6 INTEGER :: emlError
7 CHARACTER (LEN =120) S2F
8

9 S2F = ’’
10 emlError = EMLMeter_emlWrapperStop(S2F)
11

12 WRITE(IU6 ,’(A)’) S2F
13

14 END SUBROUTINE

Listing 2   Fortran routine to log power consumption

3.3 � VASP instrumentation

We have compiled and tested various configurations of VASP versions 5.4.4 [13, 21]
and 6.2.1. have been compiled and tested. All theese versions are currently employed
by different users according to their necesities or resource capabilities usage, and
they show different performance patterns that must be analyzed. In detail:

–	 VASP 5.4.4 with Intel oneAPI: MPI and MPI-GPU
–	 VASP 6.2.1 with Intel oneAPI: MPI, MPI-OMP, and MPI-GPU
–	 VASP 6.2.1 with Nvidia-HPC: MPI, MPI-OMP, MPI-GPU, and MPI-OMP-

GPU

The MPI-OMP-GPU configuration obtains better performance on the CPU process-
ing side compared to the MPI-GPU configuration, which is reflected in the results.
This version of VASP allows multiple combinations of algebraic libraries. Since the
Verode cluster incorporates Intel processors, we will find it interesting to test this
configuration using the MKL library.

The VASP documentation [22] suggests that when hardware has more than 64
cores sharing the memory, OpenMP should be used. It is essential that MPI pro-
cesses and OMP tasks are allocated to physical cores in a way that allows them to
share the same block of memory within the same socket, so that inter-process com-
munication is optimized. Wende et al. [9] discuss the use of OpenMP in VASP. With
regards to OpenACC and GPUs, VASP version 6 only permits one MPI thread per
GPU due to the use of NVIDIA Collective Communications Library (NCCL). This
limitation can be overcomed by replacing the MPI range with multiple OMP tasks,
which can enhance the parallelization of CPU-side processing. However, if the MPI
range is replaced with a single OMP task, there is no significant benefit.

To accelerate experimentation and avoid waiting for long execution times, we
modified the VASP source code to include the NITE parameter. This new feature
enable us to set the number of iterations for the main loop (ionic loop) to be exe-
cuted and allow us to specify the number of iterations below the convergence num-
ber of the main loop that is to be executed. Its default value is zero, so the number

1 3

Energy efficiency and performance analysis of a legacy atomic…

of convergence iterations does not change. The parameter can be included in the
VASP parameter file (INCAR). To obtain precise readings of energy consumption
per iteration, we connected the EML library to the VASP MPI and GPU versions,
as described in the previous section. We added to the VASP code the start and end
measure calls for each iteration of the main loop, which were already linked to the
existing timing start and end calls. We have ensured that all energy measurement
routines are protected from parallel executions, so that the measurement and record-
ing of results in the output file are exclusive to each iteration.

4 � Experimental results

We created the experiment using a combination of VASP application parameters,
architectures, libraries, and optimization parameters. The most important aspects in
terms of performance and energy consumption are the following.

•	 We built the VASP executables using the GCC compiler, Intel Fortran compiler,
and Portland Group, Inc (PGI) compiler included in the Nvidia HPC SDK. The
GCC compiler was used only in pre-testing for the results presented in Table 3.
From this point on, the Intel compiler and the nvHPC compiler have been used.
Additionally, OpenMP and OpenACC options were included when available
(VASP version 6.2.1). However, along the paper, the compiler used on each
computational experiment will be fixed.

•	 The WAVECAR file, generated by VASP, is a binary file that stores the final
wave functions. It contains the number of bands, cut-off energy, basis vectors
defining the supercell, eigenvalues, Fermi-weights, and wave functions. VASP
reads this file as the first input on each main loop iteration to accelerate the com-
putations. At the end of each iteration, the file is replaced. On the first run of
VASP, the WAVECAR file does not exist, so we carry out multiple runs of the
initial two or three iterations to observe their effect on performance and energy
consumption.

•	 VASP GPU runs are managed by a combination of MPI and MPI-OMP paral-
lelism, which helps to divide the workload between cores in the CPU. VASP
utilizes a hybrid programming model to manage parallelism at both the CPU and
GPU level. As discussed in Sect. 2, VASP allows three levels of MPI parallelism:
over k-points, orbitals, and plane wave coefficients. The GPU level of parallelism
is achieved by replacing subroutine calls from standard linear algebra libraries
with faster GPU-accelerated implementations, such as by replacing vector opera-
tions with matrix operations.

•	 Table 2 compiles all input sets used in the experiments carried out, both for pre-
liminary tests and for the final results. Data related to each input material can be
looked at The Materials Project [23, 24] website.

	 I. Nieves‑Pírez et al.

1 3

4.1 � Library acceleration

We analyze the performance of the algebra libraries used in VASP. Several options
were available, OpenBLAS, BLAS, or MKL for basic algebraic operations, and we
needed to determine which one was best suited for our architectures.

First, we conducted experiments on three systems to compare OpenBLAS and
BLAS using the VASP 5.4.4 version compiled with GCC. Table 3 displays the exe-
cution times in seconds for a serial version on the Verode20 system, for an MPI par-
allel version on the Verode18 (16 cores) and Verode20 (32 cores) systems, and for a
GPU version on the Verode18 system (with an NVIDIA GPU K40). For this test we
used a 2-atom molecule of a type II-VI semiconductor (Zinc Selenide). The BLAS
library proved to be more efficient than OpenBLAS in all cases, with the best perfor-
mance being achieved with the 32 cores configuration on Verode20. Consequently,
the GPU version was not considered a viable option for this example.

Next, we focus on comparing the BLAS and MKL libraries. We conducted
a study that varied the number of cores (Fig. 3) using the VASP 5.4.4 version

Table 2   Input sets for VASP
experimentation

∗ Gamma centred mesh

Material # Atoms k-points Input files
(Materials pro-
ject) [25]

ZnSe 2 24/40/60 mp-1190
GdPO

4
24 8/24 mp-3735

Gd
2
P
4
O

13
76 G∗ 2 2 1 mp-779989

Si 4 G∗ 3 3 3 mp-165
Si 16 G∗ 3 3 3 mp-1079297
Si 24 G∗ 3 3 3 mp-1095269
Si 40 G∗ 3 3 3 mp-1196961
Si 46 G∗ 3 3 3 mp-971662
Si 58 G∗ 3 3 3 mp-1202745
Si 68 G∗ 3 3 3 mp-1203790
Si 100 G∗ 3 3 3 mp-1245041
Si 232 G∗ 3 3 3 mp-1201492

Table 3   Preliminary experimentation: ZnSe - OpenBLAS vs BLAS

Time in sec - VASP 5.4.4 GCC​

k-points Serial MPI(16p) MPI(32p) GPU

O.B BLAS O.B BLAS O.B BLAS O.B BLAS

24 68.5 35.9 94.7 7.4 107.3 5.6 47.5 30.9
40 233.4 121.5 315.5 22.7 385.3 16.8 136.8 83.8
60 588.9 304.7 862.3 58.7 971.1 44.2 348.9 210.9

1 3

Energy efficiency and performance analysis of a legacy atomic…

compiled with the Intel oneAPI fortran compiler (labeled IoA in Figures). We col-
lected data to create a VASP MPI plot for a monazite (GdPO

4
 ) with 24 k-points in

different multicore system configurations using all the cores of each node. Specifi-
cally, measurements were taken with Verode18 for the 16 core point, with Verode20
for the 32 core point, with Asterix for the 36 core point, and with Marengo for
44 cores. Regardless of whether machines with more cores have faster architectures
(see Table 1), the performance of the MKL library is always better than the BLAS
library.

From the analysis carried out, we conclude that for all the cases studied we have
obtained the best performance with the MKL library, and, therefore, this will be the
library that we will use for the rest of the experimentation.

4.2 � NSIM and time for iteration (LOOP+)

In order to make a fair comparison between different architectures, we must identify
parameters that require similar resources from the computational systems. Solving
the Schrödinger’s equation necessitates the execution of an iterative algorithm with
a convergence criteria (e.g. different number of iterations for different executions).
The execution time for one of these steps is identified in VASP as LOOP+, which is
often used as a performance metric in many studies [26].

The NSIM parameter has a major impact on performance when using a GPU
implementation in VASP 5.4.4. By default, it is set to 4, but increasing it to more
than 1 allows the program to perform matrix-matrix operations instead of vector-
matrix operations for the evaluation of non-local projection operators in real space,
which can speed up calculations on some machines. According to [15], increasing
the parameter’s value can improve computation efficiency on GPUs, although it also
requires more memory allocation on these devices.

We conducted experiments to validate whether the execution time would improve
when increasing NSIM for the same number of threads in parallel MPI executions.
To carry out these experiments, we used the VASP 5.4.4 version compiled with the
Intel compiler. The results in Table 4 for GdPO

4
 material with the MKL library

show that for the best-performing MPI threads, 32, the execution time does not

Fig. 3   BLAS vs MKL library—
VASP 5.4.4 IoA

15 20 25 30 35 40 45

10

20

30

40

50

#cores

ti
m
e
(m

in
)

BLAS
MKL

	 I. Nieves‑Pírez et al.

1 3

Ta
bl

e 
4  

P
er

fo
rm

an
ce

 e
vo

lu
tio

n
va

ry
in

g
th

e
N

SI
M

 p
ar

am
et

er

Ve
ro

de
21

 n
od

e,
 L

O
O

P+
 in

 se
c

- V
A

SP
 5

.4
.4

 Io
A

Ve
ro

de
21

, L
O

O
P+

 in
 se

c
- V

A
SP

 5
.4

.4
 Io

A

Th
re

ad
s

N
SI

M
8

k-
po

in
ts

24
 k

–p
oi

nt
s

M
PI

G
PU

M
PI

G
PU

(a
) G

d
P
O

4

4
4

7.
6

5.
2

10
1.

2
42

.0
4

8
6.

3
4.

8
81

.3
39

.8
4

16
7.

9
4.

5
10

9.
1

42
.4

8
4

4.
6

6.
4

60
.8

65
.2

8
8

4.
5

4.
6

50
.0

50
.2

8
16

4.
8

5.
2

65
.3

52
.7

16
4

3.
6

6.
7

49
.4

82
.5

16
8

3.
5

6.
7

40
.0

81
.1

16
16

3.
7

6.
3

51
.7

68
.8

32
4

2.
6

10
.2

38
.7

11
2.

6
32

8
3.

3
10

.4
34

.6
12

0.
4

32
16

3.
3

9.
9

45
.7

11
0.

7

N
SI

M
M

PI
(3

2t
hr

ea
ds

)
G

PU
(4

th
re

ad
s)

(b
) G

d
2
P
4
O

1
3

4
21

.5
9.

4
8

32
.2

7.
6

16
31

.1
6.

9
32

32
.3

6.
6

1 3

Energy efficiency and performance analysis of a legacy atomic…

decrease as NSIM increases. However, for four threads, better GPU results indicate
that execution time can be improved by increasing NSIM.

Previously, in [27], we studied a molecule of 24 atoms and found that the best
performance was achieved with MPI. However, GPU performance was slower as a
result of the large amount of communication between the CPU and GPU for a com-
pound of this size or smaller. In another gadolinium phosphate with a structure of 76
atoms, Gd

2
P
4
O

13
 , Table 4b shows that the GPU execution has the best performance

with NSIM=32. If this parameter is increased too much, it will cause a CUDA mem-
ory error on the GPU.

Using the time-per-iteration (LOOP+) as a reference, we have tested the influ-
ence of the NSIM parameter in MPI and GPU executions. We conclude that this
parameter improves performance for large molecules using GPU parallelism.

4.3 � Performance evaluation

To assess the speedup of using MPI and GPU, we performed time measurements on
the sockets and the GPU for each iteration of the main loop (ionic loop) of VASP.
We ran the first ten iterations of the loop for seven silicon molecules of varying
sizes (4, 16, 24, 40, 46, 58, and 68 atoms) and obtained the data from the VASP
silicon input files from the The Materials Project website. This website provides
open-access information on materials and tools used by physicists and chemists.
Generally, when the number of atoms in the molecule being studied increases,
smaller sampling grids (k-points) are employed. We have chosen a fixed mesh (3 3
3) to make a valid comparison. This mesh is Gamma centered, i.e., a k-point mesh
(grid) that is centered around the gamma point of the Brillouin Zone. All tests were
carried out on the Verode21 node for two versions of the application: VASP 5.4.4
and VASP 6.2.1, which introduces new parallel execution modes facilitated by
OpenMP and OpenACC and the support of a new compiler (Nvidia-HPC). In what
follows, the experimental results have been obtained by compiling the VASP 5.4.4
code using the Intel oneAPI fortran compiler and the nvHPC compiler for the 6.2.1
version.

The graph in Fig. 4 illustrates the speedup in relation to the number of cores used
in the execution. To calculate the speedup values, we used a reference sequential
execution time, which was determined by measuring the first two MPI iterations of
a thread with the parameters NCORE=NSIM=1. Figure 4a reveals that the speedup
obtained up to 16 cores is quite substantial for most molecule sizes (e.g., 11.26 for
46 atoms and 16 cores). However, with 32 cores, the improvement becomes neg-
ligible (e.g., 10.97 for 46 atoms). This is likely due to increased communication
between sockets. A similar pattern can be seen for VASP 6.2.1 in Fig. 4b.

We examined the speedup generated on GPU runs by increasing the NSIM
parameter, which allows the program to substitute vector products for matrix prod-
ucts, thereby increasing the degree of parallelism. We calculate the reference time
for GPU by averaging the first two iterations executed with one thread and the
parameter NSIM=1. GPU executions were conducted with 4 MPI threads. Figure 5a
shows the GPU acceleration relative to the NSIM parameter for the same silicon

	 I. Nieves‑Pírez et al.

1 3

molecules used in speedup MPI test for VASP 5.4.4. We can see that for molecules
with more than four atoms, the increase of NSIM up to a value of 16 produces a
significant acceleration (e.g., 1.88 for 46 atoms and NSIM=16). NSIM=32 does
not improve the results due to increased communications between CPU and GPU
(e.g., 1.87 for 46 atoms). In the case of VASP 6.2.1, GPU acceleration with respect
to increase of the NSIM parameter is observed to improve with Intel oneAPI, but
surprisingly, it does not improve performance with Nvidia-HPC (Fig. 5b). We have
depicted in Fig. 6a the time per iteration of the ionic loop after including the mol-
ecule sizes of 100 and 232. The aim is to compare the performance of MPI and GPU
when working with the exact sizes of silicon molecules and the same k-points. The
best MPI times, obtained with 32 threads, and the best GPU times, with four threads
and NSIM=32, are shown. Experimentally, it was found that performance decreased
when using less than four threads with a GPU. With more than 4, the performance
was hindered due to overhead in communications. Regarding the time per iteration

1 4 8 16 32

1
4

8

16

32

#cores

sp
ee
du

p
Si4
Si16
Si24
Si40
Si46
Si58
Si68

(a) MPI version. VASP 5.4.4 IoA

1 4 8 16 32

1
4

8

16

32

#cores

sp
ee
du

p

Si4
Si16
Si24
Si40
Si46
Si58
Si68

(b) MPI version. VASP 6.2.1 nvHPC

Fig. 4   Speedup for Si structure simulations

1 4 8 16 32

1

1.2

1.4

1.6

1.8

NSIM

ac
ce
le
ra
ti
on

Si4
Si16
Si24
Si40
Si46
Si58
Si68

(a) VASP 5.4.4 IoA

1 4 8 16 32

1

1.02

1.04

1.06

1.08

1.1

NSIM

ac
ce
le
ra
ti
on

Si4
Si16
Si24
Si40
Si46
Si58
Si68

(b) VASP 6.2.1 nvHPC

Fig. 5   NSIM acceleration impact for GPU version

1 3

Energy efficiency and performance analysis of a legacy atomic…

in VASP 6.2.1, OMP provides intermediate performance between MPI and GPU
(Fig. 6b).

The figure demonstrates that the performance of MPI and GPU is equivalent to
up to 40 atoms. After this point, GPU executions are more effective than MPI ones.
The MPI–OMP–GPU combination offers the best results from a size of 24 atoms,
presenting itself as the fastest option from a practical point of view (Fig. 6b). More
in detail, in Fig. 7a we can see the acceleration that GPU and GPU–OMP bring to
MPI execution.

We can see that speedup with MPI has improved significantly in VASP version
6.2.1 compared to the previous version, 5.4.4. In version 6.2.1, no better results are
obtained by increasing the NSIM parameter beyond 8. Hybrid MPI/OMP implemen-
tation obtains better performance than the MPI-only version, but far from the GPU
implementation with molecules larger than 40 atoms. The best performance results

4 24 40 5868 100 232

0

1

2

3

4

·104

#atoms

ti
m
e
L
O
O
P
+

(s
ec
)

MPI
GPU

(a) VASP 5.4.4 IoA

4 24 40 58 68 100 232

0

1

2

3

·104

#atoms

ti
m
e
L
O
O
P
+

(s
ec
)

MPI IoA
OMP IoA
GPU IoA
MPI nvHPC
GPU nvHPC
GPU-OMP nvHPC

(b) VASP 6.2.1

Fig. 6   LOOP+ execution time

4 16 24 40 68 100 232

0

10

20

30

40

#atoms

ac
ce
le
ra
ti
on

GPU
GPU-OMP

(a) GPU acceleration relative to MPI

4 16 24 40 68 100 232

1

10

50
100

500

#atoms

E
ne
rg
y
co
ns
um

pt
io
n
(W

h)

MPI(cores)
MPI(gpu)
GPU(cores)
GPU(gpu)
GPU-OMP(cores)
GPU-OMP(gpu)

(b) Energy consumption in gpu and cores

Fig. 7   VASP 6.2.1 build with Nvidia HPC SDK framework

	 I. Nieves‑Pírez et al.

1 3

are obtained with GPU–OMP parallelism with molecule sizes greater than about 24
atoms, notably improving the GPU results.

4.4 � Energy consumption measures

The increasing attention to measure the energy consumed by the calculations nec-
essary to get the VASP results has been addressed by using the EML library. This
library is able to obtain the power consumption on each socket and GPU device. We
measure the energy consumption and computation time simultaneously using VASP
linked with the EML library. We obtain the energy consumption on the sockets and
GPU at each iteration of the main VASP loop. We conducted experiments with dif-
ferent sample times from the EML library: 1ms, 10ms, 100ms, and 1s. And we find
that with a low sampling rate (1s), we can maintain precision without significantly
impacting performance measurement.

The experiments were designed to measure the energy consumption of the same
silicon structures studied in the previous subsection. Our aim was to compare the
energy consumption of MPI, OMP, and GPU executions for different sizes of Si
molecules. We obtain the average total consumption of the two sockets and the GPU
for the first ion loop iteration of each silicon structure ten times. As mentioned in the
last paragraph of the 4.3 section, 32 threads were used for the best MPI performance
results and four threads and NSIM=32 for the best GPU results. Therefore, we
obtained the dissipated power and energy consumption measurements for the exe-
cutions with these parameters. These experiments were carried out with the VASP
5.4.4 version compiled with Intel oneAPI and the 6.2.1 version compiled with Intel
oneAPI and Nvidia HPC SDK frameworks.

Figure 8a represents the instantaneous power dissipated by the calculations of
the selected silicon molecules and Fig. 9a their energy consumption measured
on node Verode21 with VASP 5.4.4. For each molecule size, we have used the
same k-points and input parameters in the MPI and GPU calculations. For both
MPI and GPU tests, we add the total energy of both sockets and that of the GPU,

4 24 40 58 68 100 232

140

160

180

200

220

240

#atoms

P
ow

er
(w

at
ts
)

MPI
GPU

(a) VASP 5.4.4 IoA

4 24 40 5868 100 232

150

200

250

#atoms

w
at
ts

MPI IoA
OMP IoA
GPU IoA
MPI nvHPC
GPU nvHPC
GPU OMP nvHPC

(b) VASP 6.2.1

Fig. 8   Dissipated power

1 3

Energy efficiency and performance analysis of a legacy atomic…

which is not operational in the case of MPI runs (but has an impact on power
consumption). In Fig. 8a, we can see that the power dissipated by the calcula-
tions in the GPU for any molecule size is lower than that obtained using MPI
parallelism. From the point of view of energy efficiency, we can see in Fig. 9a
that the use of a GPU with VASP represents a clear advantage over MPI/OMP
parallelism from molecular structures of about 40 atoms and beyond.

VASP 6.2.1 addresses similar power dissipation (Fig. 8b) and energy con-
sumption (Fig. 9b) of various sizes of silicon molecules. In this case, we can
compare MPI, OMP, and GPU implementations compiled with Intel oneAPI, and
MPI, GPU and GPU–OMP implementations compiled with Nvidia HPC SDK
framework. Figure 7b displays a comparison of energy consumption between
CPU cores and GPU for MPI, GPU, and GPU-OMP, depicted on a logarith-
mic scale to facilitate visualization across various molecular sizes. In general,
the multicore processor consumes more energy for all structures, while GPU-
OMP version consumes less power for large molecule sizes.

From an energy perspective, OpenMP (OMP) has slightly higher instantane-
ous power values than MPI. For large molecules, GPU computations result in
very low power values. The Nvidia HPC SDK framework brings to VASP 6.2.1
lower power dissipation (Fig. 8b) compared to VASP 5.4.4, as well as lower
energy consumption (Fig. 9b), which highlights the importance of assessing
VASP’s performance with different compilers.

Research on energy consumption has yielded similar results in the work of
Stegailov [28–30]. The energy consumption of GPU calculations is lower than
MPI for molecules larger than 40 atoms. OMP improves energy efficiency com-
pared with MPI-only implementation, but GPU–OMP combination brings us the
best performance in terms of energy consumption.

4 24 40 5868 100 232

0

1

2

#atoms

E
ne

rg
y
co
ns
um

pt
io
n
(k
W

h)
MPI
GPU

(a) VASP 5.4.4 IoA

4 24 40 5868 100 232

0

0.5

1

1.5

2

#atoms

E
ne

rg
y
co
ns
um

pt
io
n
(k
W

h)

MPI IoA
OMP IoA
GPU IoA
MPI nvHPC
GPU nvHPC
GPU OMP nvHPC

(b) VASP 6.2.1

Fig. 9   Energy consumption

	 I. Nieves‑Pírez et al.

1 3

5 � Related work

HPC systems are becoming more and more popular due to the increasing use in var-
ious areas of knowledge of simulation techniques. According to the global energy
development policy, these systems must optimize their performance and, at the same
time, make efficient use of the energy consumed. Simulations and scientific applica-
tions for computational chemistry have taken advantage of the increase in perfor-
mance offered by new generations of supercomputers.

The article by Hacene et al. [21] presents a way to improve the performance of
the VASP program in material simulations using ab initio methods. The authors
discuss how systems equipped with GPUs can greatly reduce program computa-
tion time. Yasuda [31] and Genovese [32] studied how to speed up these calcula-
tions using GPUs. Since VASP version 6, OMP parallelism combined with MPI and
GPU can be used. Wende et al. [9] describe different parallelization strategies for
ab initio algorithms in multicore systems using MPI/OMP communications between
processes. Zhao et al. [33] add to these aspects various memory access methods.
Several authors discuss MPI communications [34] and the binding of processes to
cores in VASP [12, 35]. According to Peter Larsson [36], one of the most important
parameters to improve performance with GPUs is NSIM. This parameter manages
the number of bands1 that are optimized in parallel using matrix-matrix operations.
The author recommends increasing its value as long as possible and avoiding con-
suming the memory of these devices. Maniopoulou et al. [11] present a paralleli-
zation strategy for k-point workload distribution using KPAR (number of k-points
treated in parallel) and NPAR (number of bands treated in parallel) parameters. In
other articles, more parameters for performance improvement are considered [13,
37]. Articles [38–40] introduce performance improvements using certain libraries,
reducing MPI communications, and moving computation to the GPU. Although
other metrics have been presented to make performance results independent of the
different HPC architectures used [41], the measurement of the time per iteration
(LOOP+) of the main loop of the Kohn-Sham equation resolution algorithm is con-
sidered an accepted reference. Articles [9, 26, 28–30, 33] consider this measurement
as a reference to measure performance. As in the mentioned articles, we perform our
performance measurements using LOOP+ with different molecule sizes using the
same k-point mesh.

Currently, it is essential to align high performance computing with contained
energy consumption. Calore et al. [42] study the power consumption and perfor-
mance of mobile processors running HPC applications. They study the power
performance of a Tegra K1 mobile processor that runs an HPC application on the
CPU and GPU. They analyze current measurements obtained through a customized
monitor.

Stegailov et al. make several comparisons between different Intel and AMD
CPUs [29, 30] for HPC solutions related to efficiency and energy consumption with

1  In VASP, the bands represent the energy levels of the electrons in a material, while the orbitals repre-
sent the individual electron wavefunctions that contribute to those energy levels.

1 3

Energy efficiency and performance analysis of a legacy atomic…

VASP. Also, Stegailov et al. [28] use a reference metric that makes it possible to
compare different types of Intel, AMD and ARM processors together with GPUs.
They compared the efficiency of VASP taking a GaAs molecule of 80 atoms. To
do this, they use a metric based on the balance between maximum floating point
performance and memory bandwidth that allows them to compare different systems
with CPUs and GPUs. In addition, they measure energy consumption using digital
wattmeters.

Most of these research studies focus on analyzing the performance or energy
consumption of a specific version, typically with a fixed size. However, our study
takes an integrated approach by analyzing different versions, varying parameter
values, and jointly examining both performance and energy consumption. We also
include an analysis of version 6, which has not been previously considered, due
in part to installation difficulties and significant changes to the GPU version that
has now migrated from CUDA-C to OpenACC. Our research group has extensive
experience in analyzing and modeling the performance of large applications such
as Linpack [43], as well as assessing energy efficiency in heterogeneous architec-
tures multicore-GPU [44]. We have developed a Fortran interface for EML to meas-
ure the energy consumption of VASP. Our experiments involve different molecule
sizes with the same sampling mesh from the VASP code itself, without the need for
external physical instrumentation. We explore a range of parallelism models used
in VASP, including Message Passing with MPI, OpenMP, and GPU, with CUDA-C
and OpenACC implementations. The methodology used to plan our experiments can
provide guidance to other researchers looking to optimize the performance of VASP
for their specific hardware.

6 � Conclusions

An energy and performance analysis of the VASP legacy application has been devel-
oped for a single two-socket HPC node. The results of our study are valuable to
developers and researchers looking to select the best combination of compilers, par-
allelism model, and hardware for a high-performance and energy-efficient comput-
ing of VASP.

The VASP code has been compiled using Intel and Nvidia (Portland Group)
compilers and several other libraries that provide different performance. It was also
instrumented with the EML library for energy efficiency measurements.

Initial experiments carried out with Intel processors showed that the best execu-
tion times were achieved with the MKL library, so it was used for the following
tests. Furthermore, it was found that the main factor in improving MPI performance
is increasing the number of threads executed, but exceeding the number of threads
in a socket leads to a decrease in performance due to communications between sock-
ets. In GPU calculations, increasing the value of the NSIM parameter significantly
improves performance with Intel oneAPI in VASP version 5.4.4, but a high value
can cause memory failure on the GPU. For version 6.2.1 of VASP, the OpenACC
implementation does not use the NSIM parameter anymore. Problems that benefit

	 I. Nieves‑Pírez et al.

1 3

from computing with GPUs are those with the highest workload caused by the size
of the molecule and/or the number of k-points.

Our findings indicate that the combination of MPI, OpenMP, and OpenACC for
GPUs shows the best performance and energy efficiency if the number of atoms in
the structure is high enough. For small molecules, using multicore-only hardware
with MKL and the Intel compiler will provide similar performance, and using a
GPU is not necessary in such cases. Ultimately, our overarching objective is to thor-
oughly examine the different parallel implementations and to pinpoint areas where
each can be improved, ultimately contributing to greater energy efficiency.

Ab initio algorithms in the VASP code are CPU bounded and energy consump-
tion values are related to execution times. Therefore, structure sizes greater than 40
atoms suggest the use of GPU for this node. Experiments to collect energy con-
sumption showed that the energy consumption of the MPI and OMP code versions
increases significantly with the size of the molecule, while high-performance GPU
executions have a much lower prolonged energy consumption against increasing
molecular size, especially with version 6.2.1.

Author Contributions  These authors contributed equally to this work.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been partially funded by the Ministry of Science and Innovation of Spain through the pro-
jects PID2019-107228RB-I00, TED2021-131019B-I00, and PDC2022-134013-I00; and by the Spanish
Network CAPAP-H.

Availability of Data and Materials  The datasets generated during and/or analyzed during the current study
are available from the corresponding author on reasonable request.

Declarations 

Conflict of interest  The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Ethical Approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Corporation N (2023) CUDA Nvidia parallel computing and programming platform. http://​www.​
nvidia.​com/​object/​cuda_​home_​new.​html

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

1 3

Energy efficiency and performance analysis of a legacy atomic…

	 2.	 Diaz J, Muñoz-Caro C, Niño A (2012) A survey of parallel programming models and tools in the
multi and many-core era. IEEE Trans Parall Distrib Syst 23(8):1369–1386. https://​doi.​org/​10.​1109/​
TPDS.​2011.​308

	 3.	 Developer N (2023) OpenACC. https://​devel​oper.​nvidia.​com/​opena​cc
	 4.	 Kresse G, Furthmüler J (2016) VASP the Guide. http://​cms.​mpi.​univie.​ac.​at/​vasp/​vasp/​vasp.​html
	 5.	 Cabrera A, Almeida F, Arteaga J, Blanco V (2014) Measuring energy consumption using eml

(energy measurement library). Comput Sci Res Develop. https://​doi.​org/​10.​1007/​s00450-​014-​0269-5
	 6.	 Davidson ER (1983) Methods in computational molecular physics. G.H.F. Diercksen and S. Wilson,

p 95
	 7.	 Wood DM, Zunger A (1985) A new method for diagonalising large matrices. J Phys A 18:1343
	 8.	 Pulay P (1980) Convergence acceleration in iterative sequences: the case of SCF iteration. Chem

Phys 73:393
	 9.	 Wende F, Marsman M, Kim J, Vasilev F, Zhao Z, Steinke T (2019) OpenMP in VASP: threading

and SIMD. Int J Quantum Chem 119:25851
	10.	 Alfonso Muñoz ULL pages: Bandas. A Program for Teaching Solid State Physics (2018). http://​

amunoz.​webs.​ull.​es/​index​en.​htm
	11.	 Maniopoulou A, Davidson ERM, Grau-Crespo R, Walshd A, Busha IJ, Catlow CRA, Woodley SM

(2012) Introducing k-point parallelism into VASP. Comput Phys Commun 183:1696–1701
	12.	 Shainer G, Lui P, Hilgeman M, Layton J, Stevens C, Stemple W, Schultz S, Ludden G, Mora J,

Kresse G (2013) Maximizing application performance in a multi-core, NUMA-aware compute clus-
ter by multi-level tuning. Lect Notes Comput Sci 7905

	13.	 Hutchinson M, Widom M (2012) VASP on a GPU: application to exact-exchange calculations of the
stability of elemental boron. Comput Phys Commun 183:1422–1426

	14.	 OpenMP: OpenMP ARB (Architecture Review Boards) (2023). https://​www.​openmp.​org/
	15.	 at Linköping University, N.-N.S.C.: Running VASP on Nvidia GPUs (2018). https://​nsc.​liu.​se/​pla/​

blog/​2015/​11/​16/​vaspg​pu/
	16.	 Zone ID (2022) Intel Fortran Compiler for oneAPI. https://​www.​intel.​com/​conte​nt/​www/​us/​en/​devel​

oper/​artic​les/​relea​se-​notes/​oneapi-​fortr​an-​compi​ler-​relea​se-​notes.​html
	17.	 Computing OSHP (2018) Open MPI. https://​open-​mpi.​org/
	18.	 Zone ID (2021) Intel MPI Library - OneAPI. https://​softw​are.​intel.​com/​conte​nt/​www/​us/​en/​devel​

op/​tools/​oneapi/​compo​nents/​mpi-​libra​ry.​html#​gs.​1sth91
	19.	 22.11 NH (2023) Nvidia HPC SDK documentation. https://​docs.​nvidia.​com/​hpc-​sdk/​archi​ve/​22.​11/​

compi​lers/​hpc-​compi​lers-​user-​guide/​index.​html
	20.	 ULL HPCG-(2021) Energy Measurement Library. https://​github.​com/​HPC-​ULL/​eml
	21.	 Hacene M, Anciaux-Sedrakian A, Rozanska X, Klahr D, Guignon T, Fleurat-Lessard P (2012)

Accelerating VASP electronic structure calculations using graphic processing units. J Comput Chem
33(32):2581

	22.	 Combining MPI and OpenMP (2023). https://​www.​vasp.​at/​wiki/​index.​php/​Combi​ning_​MPI_​and_​
OpenMP

	23.	 Jain A, Ong SP (2022) The Materials Project. https://​mater​ialsp​roject.​org/
	24.	 Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder

G, Ka Persson (2013) The Materials Project: a materials genome approach to accelerating materials
innovation. APL Mater 1(1):011002. https://​doi.​org/​10.​1063/1.​48123​23

	25.	 The Materials Project: Data retrieved from the Materials Project for various materials (mp-#) from
database version v2023.11.1 (2024). https://​mater​ialsp​roject.​org/

	26.	 Wende F, Marsman M, Zhao Z, Kim J (2017) Porting VASP from MPI to MPI + OpenMP [SIMD].
ResearchGate 319138405

	27.	 Marqueño T, Pellicer-Porres J, Errandonea D, Santamaria-Perez D, Martinez-Garcia D, Rodríguez-
Hernández P, Muñoz A, Nieves-Pérez I, Achary S, Betinelli M (2022) Lattice dynamics of zircon-
type NdVO4 and Scheelite-type PrVO4 under high-pressure. J Phys: Condens Matter 34:025404

	28.	 Stegailov V, Smirnov G, Vecher V (2019) VASP hits the memory wall: processors efficiency com-
parison. Wiley, Hoboken, p 31

	29.	 Stegailov V, Vecher V (2018) Efficiency analysis of intel, AMD and Nvidia 64-Bit hardware for
memory-bound problems: a case study of ab initio calculations with VASP. Springer International
Publishing AG 10778:81–90

	30.	 Stegailov V, Vecher V (2017) Efficiency analysis of intel and AMD x86 64 architectures for Ab ini-
tio calculations: a case study of VASP. Springer International Publishing AG 793:430–441

https://doi.org/10.1109/TPDS.2011.308
https://doi.org/10.1109/TPDS.2011.308
https://developer.nvidia.com/openacc
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
https://doi.org/10.1007/s00450-014-0269-5
http://amunoz.webs.ull.es/indexen.htm
http://amunoz.webs.ull.es/indexen.htm
https://www.openmp.org/
https://nsc.liu.se/pla/blog/2015/11/16/vaspgpu/
https://nsc.liu.se/pla/blog/2015/11/16/vaspgpu/
https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-fortran-compiler-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-fortran-compiler-release-notes.html
https://open-mpi.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.1sth91
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.1sth91
https://docs.nvidia.com/hpc-sdk/archive/22.11/compilers/hpc-compilers-user-guide/index.html
https://docs.nvidia.com/hpc-sdk/archive/22.11/compilers/hpc-compilers-user-guide/index.html
https://github.com/HPC-ULL/eml
https://www.vasp.at/wiki/index.php/Combining_MPI_and_OpenMP
https://www.vasp.at/wiki/index.php/Combining_MPI_and_OpenMP
https://materialsproject.org/
https://doi.org/10.1063/1.4812323
https://materialsproject.org/

	 I. Nieves‑Pírez et al.

1 3

	31.	 Yasuda K (2008) Accelerating density functional calculations with graphics processing unit. J Chem
Theory Comput 4:1230–1236

	32.	 Genovese L, Ospici M, Deutsch T, Méhaut J-FM, Neelov A, Goedecker S (2009) Density functional
theory calculation on many-cores hybrid central processing unit-graphic processing unit architec-
tures. J Chem Phys 131:034103

	33.	 Zhao Z, Marsman M, Wende F, Kim J (2017) Performance of hybrid MPI/OpenMP VASP on cray
XC40 based on intel knights landing many integrated core architecture. In: Proceedings, vol 134s2

	34.	 Dinan J, Balaji P, Goodell D, Miller D, Snir M, Thakur R (2013) Enabling MPI interoperability
through flexible communication endpoints. In: Proceedings of the 20th European MPI Users’ Group
Meeting, EuroMPI ’13, pp 13–18

	35.	 Sun G, Kürtia J, Rajczy P, Kertesz M, Hafner J, Kresse G (2002) Performance of the Vienna ab ini-
tio simulation package (VASP) in chemical applications. J Mol Struct (Theochem) 624:37–45

	36.	 Larsson P (2015) Running VASP on Nvidia GPUs. National Supercomputer Centre at Linköping
University

	37.	 Maintz S, Eck B, Dronskowski R (2011) Speeding up plane-wave electronic-structure calculations
using graphics-processing units. Comput Phys Commun 182:1421–1427

	38.	 Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W, Wang L-W (2012) The analysis of a plane wave pseudo-
potential density functional theory code on a GPU machine. Comput Phys Commun 184:9–18

	39.	 Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L-W (2013) Fast plane wave density functional
theory molecular dynamics calculations on multi-GPU machines. J Comput Phys 251:102–115

	40.	 Borzilov V, Lozhnikov V, Prudnikov P, Mamonova M, Mamonov A, Sorokin A, Baksheev G (2019)
Ab initio calculation of multilayer magnetic structures by VASP on OpenPOWER high performance
system. International Conference on Computer Simulation in Physics and Beyond, vol 1163

	41.	 Stegailov V, Orekhov ND, Smirnov GS (2015) HPC hardware efficiency for quantum and classical
molecular dynamics. Springer International Publishing Switzerland 9251:469–473

	42.	 Calore E, Schifano SF, Tripiccione R (2015) Energy-performance tradeoffs for HPC applications on
low power processors. Springer International Publishing Switzerland 9523:737–748

	43.	 Cabrera A, Acosta A, Almeida F, Blanco V (2020) A dynamic multi-objective approach for
dynamic load balancing in heterogeneous systems. IEEE Trans Parallel Distrib Syst 31(10):2421–
2434. https://​doi.​org/​10.​1109/​TPDS.​2020.​29898​69

	44.	 Cabrera A, Almeida F, Blanco V, Giménez D (2013) Analytical modeling of the energy consump-
tion for the high performance linpack. In: 21st Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2013, Belfast, United Kingdom, February 27–March
1, 2013. IEEE Computer Society, USA, pp 343–350. https://​doi.​org/​10.​1109/​PDP.​2013.​56

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TPDS.2020.2989869
https://doi.org/10.1109/PDP.2013.56

	Energy efficiency and performance analysis of a legacy atomic scale materials modeling simulator (VASP)
	Abstract
	1 Introduction
	2 VASP
	2.1 Algorithms in VASP

	3 Performance and energy analysis
	3.1 Computational environment
	3.2 Instrumentation
	3.3 VASP instrumentation

	4 Experimental results
	4.1 Library acceleration
	4.2 NSIM and time for iteration (LOOP+)
	4.3 Performance evaluation
	4.4 Energy consumption measures

	5 Related work
	6 Conclusions
	References

