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Abstract
Fraud detection and prevention has received a lot of attention from the research 
community due to its high impact on financial institutions’ revenues and reputation. 
The increased use of the web and the provision of online services open up the path-
way for exposing these systems to numerous threats and jeopardizing their effective 
functioning. Naturally, financial frauds are increased in number and form impos-
ing various requirements for their efficient and immediate detection. These require-
ments are related to the performance of the adopted models as well as the timely 
response of the decision-making mechanism. Machine learning and data mining are 
two research domains that can provide a number of techniques/algorithms for fraud 
detection and setup the road for mitigation actions. However, these methods still 
need to be improved with respect to the detection of unknown fraud patterns and the 
incorporation of big data processing mechanisms. This paper presents our attempt 
to build a hybrid system, i.e., a sequential scheme for combining two deep learning 
models and efficiently detecting potential financial frauds. We elaborate on the com-
bination of an autoencoder and a Long Short-Term Memory Recurrent Neural Net-
work trained upon datasets which are processed through the use of an oversampling 
technique. Oversampling is adopted to handle heavily imbalanced datasets which is 
the ‘natural’ scenario due to the limited number of frauds compared to the humon-
gous volumes of transactions. The proposed approach tends to capture much more 
fraud events in comparison with other conventional ML techniques. Our experimen-
tal evaluation exposes that our model exhibits a good performance in terms of recall 
and precision.
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1 Introduction

1.1  Motivation

Contemporary studies reveal that the fraud detection and prevention market is esti-
mated to be worth $19.5 billion.1 In parallel to the Consumer Sentinel Network of 
the USA, of the 3.2 million identity theft and fraud reports that were received in 
2019, 1.7 million were fraud-related.

In this total of 1.7 million fraud cases, 23% reported that money was lost expos-
ing the financial damage to institutes and individuals.2 Fraudulent events ought to 
be recognized within the minimum possible time upon the reception of streams that 
convey the relevant financial information of a transaction. Clearly, humongous data-
sets can be formulated within the administration of a financial institution upon the 
discussed streams. Datasets will be also characterized by a high complexity due to 
the multiple features recorded by transactions.

Financial institutions face the critical task of swiftly and effectively identifying 
and isolating fraudulent transactions while ensuring a seamless customer experi-
ence. The term ‘swiftly’ emphasizes the need for a detection model that operates 
with minimal delay, safeguarding both customers and institutions from potential 
issues. Simultaneously, the term ‘effectively’ underscores the importance of accu-
rate fraud detection, as false alerts could result in unnecessary resource allocation.

Traditionally, the methods adopted for fraud detection are related to (i) manual 
intervention or (ii) rule-based models with limited success [1]. The manual detec-
tion suffers by an increased time required to conclude the final outcome, while rule-
based approaches deal with complex rules that should be fired and evaluated before 
a transaction is characterized as suspicious. In both scenarios (i.e., manual detec-
tion and rule-based systems), an increased effort is required to initialize the condi-
tions upon which a transaction may be characterized as fraudulent. In any case, both 
approaches cannot efficiently detect new, unknown, and complicated fraud patterns.

As financial institutions grapple with the formidable task of swiftly identifying 
and meticulously distinguishing fraudulent transactions from legitimate ones, they 
recognize the pivotal role of artificial intelligence (AI) in this critical endeavor. AI-
powered fraud detection systems offer unparalleled speed, efficiency, and adaptabil-
ity. Now, let us delve into the intricate world of machine learning techniques that 
empower banks to proactively combat fraud before it even occurs.

Machine Learning (ML) can provide techniques toward the development of mod-
els that can solve the aforementioned problems. New trends in ML consist of Deep 
ML (DML) schemes that are capable of identifying more complex patterns upon 
huge volumes of data.

The application of ML/DML in fraud detection may allow financial institutions 
to discern genuine transactions from fraudulent events in real-time and through an 

1 https:// www. stati sta. com/ stati stics/ 786778/ world wide- fraud- detec tion- and- preve ntion- market- size.
2 https:// www. ftc. gov/ repor ts/ consu mer- senti nel- netwo rk- data- book- 2019.

https://www.statista.com/statistics/786778/worldwide-fraud-detection-and-prevention-market-size
https://www.ftc.gov/reports/consumer-sentinel-network-data-book-2019
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automated manner. Apart from the temporal aspect, ML/DML can assist in the defi-
nition of models that exhibit higher accuracy than other schemes [2].

Ensemble and sequential models, a powerful class of machine learning tech-
niques, have revolutionized fraud detection in the financial domain. These models 
combine multiple individual algorithms, leveraging their collective intelligence to 
achieve superior performance. Ensemble and sequential models aggregate predic-
tions from diverse base models, such as Decision Trees, Neural Networks, or Sup-
port Vector Machines. By combining their strengths and compensating for indi-
vidual weaknesses, models significantly enhance detection accuracy. This translates 
to identifying more fraudulent transactions while minimizing False Positives. The 
primary goal of fraud detection is to prevent financial losses. Ensemble models play 
a pivotal role here. By capturing subtle patterns and anomalies that individual mod-
els might miss, they reduce the chances of undetected fraud slipping through the 
cracks. As a result, financial institutions can proactively mitigate losses by block-
ing fraudulent transactions promptly. Financial fraud evolves rapidly, with fraud-
sters devising new tactics to exploit vulnerabilities. Ensemble and sequential models 
excel in adaptability. When faced with novel fraud patterns, they adjust dynamically, 
ensuring continued effectiveness. Their robustness stems from diversity—each base 
model contributes a unique perspective, making the ensemble resilient to chang-
ing attack vectors. Financial institutions operate in a tightly regulated environment. 
Ensemble and sequential models aid in risk management by providing accurate risk 
assessments. Whether it is assessing credit risk, detecting insider trading, or identi-
fying money laundering, ensemble models offer a holistic view. Regulators appreci-
ate their transparency and ability to quantify uncertainty, aligning with compliance 
requirements. Efficient fraud detection involves allocating resources judiciously. 
Ensemble and sequential models strike a balance. They optimize computational 
resources by distributing the workload across base models. Moreover, their ability 
to handle large-scale data ensures scalability, crucial for real-time fraud prevention. 
While preventing fraud is paramount, maintaining a positive customer experience 
is equally crucial. Ensemble and sequential models strike this delicate balance. By 
minimizing False Positives, they avoid inconveniencing legitimate customers. This 
seamless experience fosters trust and loyalty, benefiting financial institutions in the 
long run. In summary, ensemble and sequential models are not just theoretical con-
structs; they directly impact the bottom line. Their practical benefits extend beyond 
accuracy—they safeguard financial stability, enhance risk management, and fortify 
regulatory compliance. As the financial landscape evolves, embracing ensemble 
models becomes imperative for staying ahead in the battle against fraud.

An interesting approach is to mix multiple types of ML models (e.g., supervised 
and unsupervised methods) to create ensemble schemes. It is proven that ensemble 
models can result in increasing the ‘detection’ capability of the system and iden-
tify hidden aspects of data distribution, leading to the recognition of new patterns 
in fraud management [2]. Evidently, any efficient learning methodology that will 
reveal the hidden characteristics of the collected data will be able to lead to the rec-
ognition of new patterns in fraud management. The need for the discussed mod-
els, both simple and ensemble schemes, is imperative due to the financial impact of 
frauds. ML/DML schemes can alleviate users from the manual detection of frauds 
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requiring less intervention by financial institutions employees. This automated 
approach will increase the speed of processing and, consequently, boost the through-
put of the monitoring and detection mechanisms making financial institutions that 
will be capable of dealing with the exponentially growing domain of fraud detection 
and the relevant data. DML has been widely adopted in many research domains like 
image processing, speech recognition, and Natural Language Processing (NLP) [3]. 
Multiple DML models have been proposed with different targets and goals. Some 
example schemes are autoencoders [4], Convolutional Neural Networks (CNNs) [5], 
and Recurrent Neural Networks (RNNs) [6]. All of them incorporate mechanism 
that could be ‘aligned’ with the training data and learn their distribution to be ready 
to be adopted in real scenarios. In recent years, DML attracts tremendous growth 
and attention as the provision of more powerful hardware can facilitate the definition 
and execution of advanced processing mechanisms, the management of larger data-
sets, and the support of fast training activities [7].

1.2  Contribution and novelty

Fraudulent events are crucial as they can affect the reputation of the institution while 
spending resources without any reason. We propose a sequential scheme connecting 
the hidden layer of an autoencoder (Simple or Variational) with a LSTM Recurrent 
Neural Network taking advantage of the dimensionality reduction that the autoen-
coder has performed. In that way, the input of the LSTM model is cleaned from the 
redundant features, not to mention reduced in data space. We adopt the Synthetic 
Minority Oversampling Technique (SMOTE) and its variants utilizing the k-Near-
est Neighbors (kNN) algorithm, in order to identify minority classes in the train-
ing dataset and learn their features. SMOTE can provide a dataset that is balanced 
concerning the desired classes ensuring that data fed to our ML/DML models will 
be more resistant to overfitting [8]. Nevertheless, to expose the performance and a 
comparative assessment of multiple oversampling techniques, we incorporate into 
our scheme the following models: (i) SMOTE; (ii) Borderline-SMOTE (minority 
examples near the borderline are oversampled) [9]; (iii) Support Vector Machine 
(SVM) SMOTE (new minority class instances are generated near borderlines with 
the use of SVM to assist establishing boundary between classes) [10]; (iv) k-Means 
SMOTE (minority class instances are generated in safe and critical areas of the 
input space) [11]; and (v) Adaptive Synthetic (ADASYN) that adopts a weighted 
distribution for different minority class instances based on their level of difficulty in 
the learning process [12].

The differences of our approach when compared with our past efforts [13] are 
(i) first of all, in our experiments, we use both Variational Autoencoder and Sim-
ple Autoencoder. In our previous work, our experiments have included only a 
Simple Autoencoder; (ii) secondly, we test several oversampling techniques such 
as ADASYN, Borderline-SMOTE, K-Means SMOTE, and not only SMOTE; (iii) 
lastly, we use a LSTM Recurrent Neural Network instead of a Convolutional Neural 
Network, as its performance is much better.
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The novelty of our approach when compared with the relevant research efforts in 
the domain is presented by the following list:

• We propose a sequential model that combines (i) an autoencoder (experiments 
have been done using a Deep Autoencoder and a Variational Autoencoder sepa-
rately) for performing dimensionality reduction and the identification of the most 
significant features in the collected dataset and (ii) a LSTM RNN that is respon-
sible for the final classification process. The aim is to deal with scenarios where 
a high number of dimensions are present. The autoencoder efficiently learns the 
representation of data under consideration and generates the reduced encoding as 
a representation as close as possible to the original input. The LSTM is used in 
order to perform the final classification of the task.

• We provide a decision-making mechanism for the detection of frauds applied 
upon the outcome of the aforementioned autoencoder and the LSTM. The pro-
posed LSTM adopts connectivity patterns of the involved neurons that can learn 
the attributes of the distribution of data and, finally, detect potential frauds. 
Additionally, the aforementioned connectivity patterns incorporate data overlaps 
to learn the connections between features.

• We provide an extensive experimental assessment to reveal the pros and cons of 
the proposed scheme. Our evaluation can be considered as a comparative study 
upon the use of multiple DML models and oversampling techniques while per-
forming their combination.

• We present an extensive comparison among five (5) oversampling techniques, 
while in use with our core model

• Finally, we compare our model with a set of recently proposed schemes found in 
the respective literature. We adopt the same datasets and performance metrics to 
secure the fairness of the comparative assessment.

Our work is organized as follows: Section 2 reports on the related work, Sect. 3 dis-
cusses the proposed approach, and Sect. 4 analytically presents the proposed model. 
In Sect.  5, we present the envisioned experimental evaluation of the proposed 
approach, while in Sect. 8, we conclude our paper by exposing our future research 
plans.

2  Related work

Many techniques have been applied to maximize the detection rate of fraudulent 
events through the adoption of ML/DML techniques.

In the groundbreaking study by Sumanth et al. [14], the primary objective centers 
around the effective detection of credit card fraud instances. As the surge in Valen-
tine’s Day scams coincides with the increased use of debit cards for both in-person 
and online transactions, the urgency to fortify fraud detection mechanisms becomes 
paramount. To achieve this, the researchers meticulously construct an extensive 
credit card dataset for rigorous testing and training. Upon this robust foundation, 
a Deep Neural Network takes the center stage. However, what sets this approach 
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apart is its holistic integration of multiple techniques. Alongside the Neural Net-
work, Support Vector Machine (SVM), Deep Neural Network (DNN), and Naive 
Bayes collaboratively contribute to a comprehensive system. This ensemble method, 
as underscored by the existing literature, yields remarkable precision in identifying 
credit card fraud. In parallel, the research conducted by Alarfaj et  al. [15] delves 
into the pervasive issue of credit card fraud within the realm of online transactions. 
Driven by the ease and popularity of digital payments, this study aims to enhance 
detection accuracy while minimizing losses due to fraud. The arsenal of machine 
learning techniques deployed includes XGBoost, Decision Tree, Random Forest, 
Support Vector Machine, Logistic Regression, and Extreme Learning Method. How-
ever, the true innovation lies in the study’s unwavering focus on deep learning algo-
rithms. By meticulously exploring various Convolutional Neural Network architec-
tures, the researchers dissect layering effects and model configurations. The results 
are nothing short of remarkable: accuracy, F1 score, precision, and AUC meticu-
lously tuned at 99.9, 85.71, 93, and 98%, respectively. Notably, this suggested model 
outperforms existing machine learning and deep learning algorithms in credit card 
fraud detection, as empirically validated.

In the study conducted by Esenogho and colleagues [16], the upswing in both tra-
ditional and online purchases driven by the recognition of Valentine’s Day is attrib-
uted to the expanding domain of electronic commerce and communication systems. 
However, this trend has also resulted in a rise in credit card fraud, leading to sig-
nificant annual financial losses for banks. In response to this challenge, the research 
focuses on the development of precise fraud detection algorithms, a task made intri-
cate by biases inherent in credit card datasets and the dynamic nature of user pur-
chasing behaviors. To surmount these challenges, the authors propose an innova-
tive approach that combines a neural network ensemble classifier with a hybrid data 
resampling strategy. The suggested method involves the use of adaptive boosting 
(AdaBoost) in conjunction with a Long Short-Term Memory (LSTM) neural net-
work as the foundational elements for the ensemble classifier. This study constitutes 
a valuable contribution to credit card fraud detection, utilizing advanced techniques 
to address the complexities associated with evolving purchase patterns and biased 
datasets.

The interested reader can find a relevant survey in [17]. ML models involve Neu-
ral Networks (NNs), Decision Trees, and genetic algorithms, while outlier detection 
techniques can be also adopted for the identification of frauds as exposed by [17]. 
The adoption of the aforementioned schemes requires the modeling of the environ-
ment and the solution space as well as a training phase (it is the common scenario 
for the majority of models). In [18], the authors present an experimental compari-
son of various classification algorithms such as Random Forests and gradient boost-
ing classifiers for unbalanced scoring datasets. The presented research depicts that 
Random Forests and gradient boosting algorithms outperform the remaining mod-
els involved in the comparison (e.g., C4.5, quadratic discriminant and k-Nearest 
Neighbors—kNNs). However, the complexity of these approaches may jeopardize 
the ‘visibility’ of the internal processes and lead to consider them as ‘black boxes’. 
In [19], the authors conclude that Support Vector Machines (SVMs) improve the 
accuracy of events detection compared to Logistic Regression, linear discrimination 
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analysis, and kNNs. A survey on SVMs introduces the application of the technol-
ogy and the techniques adopted to predict frauds using broad and narrow definitions 
[20]. In any case, SVMs are not suitable for the management of large datasets and do 
not perform well when noise is present in data (e.g., overlapping classes). Another 
effort presented in [21] tries to evaluate ML models (SVMs, bagging, boosting, and 
Random Forests) to predict bankruptcies one year prior to the event. The authors 
also compare the performance of the adopted algorithms with results retrieved by 
discriminant analysis, Logistic Regression, and NNs. The aforementioned attempt 
evaluates the strength of ensemble models over single classifiers focusing on the 
accuracy of the outcomes. However, bagging may suffer from high biases if it is not 
modeled properly leading to underfitting while becoming computationally expen-
sive when large-scale data are the case. Boosting cannot, usually, be implemented 
in real-time due to its increased complexity and may result in multiple parameters 
having direct effects on the behavior of the model. In [22], the authors proposed 
the PrecisonRank and the total detection cost as the appropriate metrics for measur-
ing the detection performance in credit datasets. In an additional effort presented 
in [23], the authors focus on an effective learning strategy for addressing the veri-
fication latency and the alert–feedback interaction problem, while they propose a 
formalization of the fraud detection problem that realistically describes the oper-
ating conditions of FDSs that analyze massive streams of credit card transactions 
everyday. A denoising autoencoder for credit risk analysis has been introduced to 
remove the noise from the dataset [24]. Denoising autoencoders often yield better 
representations when trained on corrupted versions of a dataset; thus, they can cap-
ture information and filter out noise more effectively than traditional methods [24]. 
A Deep Autoencoder and a Restricted Boltzmann Machine (RBM) that can recon-
struct normal transactions to finally find anomalies have been applied to a credit 
card dataset for fraud detection [3]. The authors conclude that the combination of 
the autoencoder with the RBM outperforms other techniques when the training 
dataset is large enough to train them efficiently. Sparse autoencoders and Genera-
tive Adversarial Networks (GANs) have been also adopted to detect potential frauds 
[25]. The discussed models can achieve higher performance than other state-of-the-
art one-class methods such as one-class Gaussian Process (GP) and Support Vector 
Data Description (SVDD). In general, autoencoders may be somehow limited in the 
processes that can perform. One potential use may be the pre-training of a model to 
get the dataset latent representation and isolate the most significant features. This 
means that for concluding a classification process, autoencoders should be com-
bined with other schemes. In [26], the authors introduce a hybrid ‘Relief–CNN’ 
model, i.e., a combination of a CNN and the Relief algorithm. The Relief algorithm 
is a filter-method approach to feature selection that is notably sensitive to feature 
interactions. This algorithm calculates a score for each feature which can then be 
applied to rank and select top-scoring features for the final selection. The utiliza-
tion of the Relief algorithm can efficiently reduce the size of an image pixel matrix, 
which can reduce the computational burden of the CNN. The authors in [27] expand 
the labeled data through their social relations to get the unlabeled data and propose 
a semisupervised attentive Graph Neural Network, named SemiGNN, to utilize the 
multiview labeled and unlabeled data for fraud detection. Moreover, they propose a 
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hierarchical attention mechanism to better correlate different neighbors and different 
views. Lastly, in [28], the authors propose a method to combine label propagation 
and Transductive Support Vector Machine (TSVM) with Dempster-Shafer theory 
for accurate default prediction of social lending using unlabeled data. In order to 
train a lot of data effectively, they ensemble semisupervised learning methods with 
different characteristics. Label propagation is performed so that data having similar 
features are assigned to the same class and TSVM makes moving-away data have 
different features. The authors of [29] use various ML algorithms, with and without 
the usage of the AdaBoost and majority voting algorithms in order to detect fraud-
ulent transactions. A recent approach includes the implementation of a LSTM as 
presented by [30]. Another ensemble method has been used in [13] that involves 
a hybrid deep learning scheme that uses an autoencoder and a CNN model, using 
an oversampling technique in order to overcome the problem of the unbalanced 
datasets in the training process. The same authors in [31] have published a paper 
in which they elaborate a multistage deep learning model that targets to efficiently 
manage the incoming streams of transactions and detect the fraudulent ones. They 
propose the use of two autoencoders to perform feature selection and learn the latent 
data space representation based on a nonlinear optimization model. On the delivered 
significant features, they subsequently apply a Deep Convolutional Neural Network 
to detect frauds, thus combining two different processing blocks. In [32], the authors 
suggest to exploit the framework of rough sets for detecting outliers. They propose 
a novel definition of outliers—RMF (Rough Membership Function)-based outliers, 
by virtue of the notion of Rough Membership Function in rough set theory. In [33], 
the authors present the basic concepts of rough set theory, and its possible applica-
tions are briefly discussed. Further research problems conclude the paper. Lastly, the 
authors of [34] aim to investigate and present a thorough review of the most popular 
and effective anomaly detection techniques applied to detect financial fraud, with a 
focus on highlighting the recent advancements in the areas of semisupervised and 
unsupervised learning.

3  The proposed approach

3.1  High‑level architecture

Trying to support a high quality solution with increased efficiency, we propose the 
combination of an autoencoder and a LSTM Recurrent Neural Network to conclude 
a system that performs fraud detection. The aforementioned models are connected 
in a ‘sequential’ manner in order to create a scheme. At first, our data become the 
subject of processing by the autoencoder to realize the envisioned dimensionality 
reduction and make our system capable of managing huge volumes of streaming 
data. Through the adoption of the autoencoder, we are able to reveal the statisti-
cal information of data and expose strong correlations between features. The output 
of the hidden layer of the autoencoder (i.e., the compressed representation of the 
initial dataset) is transferred to the LSTM. A second advanced data management is 
performed before the final classification to classes C (for normal transactions), and 
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C (for fraudulent transactions) takes place. Our approach performs much better that 
any other published method in terms of recall, precision, and F1 score. The com-
bination of the two DML models targets to improve the classification recall which 
depicts whether our approach can eliminate False-Negative events (i.e., the propor-
tion of fraudulent transactions that are not detected). As we show later in this paper, 
the proposed model also exhibits a good performance related to the precision which 
is mainly affected by False-Positive events, i.e., normal transactions that are clas-
sified to class C. For financial institutions, recall is more important than precision 
under the condition that precision is below a certain percentage of transactions to 
avoid a negative impact on customers/users experience. Hence, the elimination of 
False-Negative events becomes the motivation for the adoption of the sequential 
DML model that is capable of processing complex datasets as well. False Nega-
tives can be avoided if we enhance the learning process of the hidden aspects of the 
adopted datasets. Compared with other efforts in the respective literature, we go a 
step forward and identify the ‘hidden’ aspects of fraud detection. We can discern the 
features that exhibit strong correlations with the remaining ones. For instance, we 
propose a more efficient dimensionality reduction technique via the Deep Autoen-
coder that could lead to more accurate classification results. PCA (one of the most 
famous dimensionality reduction methods) is not an appropriate technique to use in 
our case, because it is essentially a linear transformation. Autoencoders, on the other 
hand, are capable of modeling complex nonlinear functions, which in our case are 
better to use for dimensionality reduction.

Following [8], we create new instances of the minority class, while, in parallel, 
we reduce the instances of the majority class (i.e., C ) by implementing oversam-
pling techniques (see next sub-section for more details). The reduction of the major-
ity instances is done automatically by the SMOTE algorithm, simply by removing 
the extra instances, until the point that the two classes reach the 50% of the newly 
created dataset. In general, oversampling focuses on the enhancement of the minor-
ity class (i.e., C) to adjust the class distribution of our dataset, thus, to achieve bet-
ter performance. The newly created dataset is adopted to train the autoencoder. For 
the experiments regarding the Simple Autoencoder, we adopt three (3) hidden lay-
ers, and gradually, we reach up to ten (10) nodes (features) from the initial thirty 
(30) features of the dataset. For the experiments that use a Variational Autoen-
coder, we use two (2) hidden layers, and we gradually reach up to ten (10) nodes 
(features) from the initial thirty (30) features of the dataset. The point of using a 
Variational Autoencoder is to perform the dimensionality reduction using the dis-
tribution of the original training set of the dataset. In some problems, a Variational 
Autoencoder seems to perform better that any other kind of autoencoder. Finally, 
we have to notice that the model loss is calculated with the binary cross-entropy 
loss function. After the end of the training process, we get the new feature-reduced 
dataset from the hidden layer and eliminate redundancies in the feature represen-
tation space. For instance, in a dataset with thirty (30) features, we can conclude 
with only ten (10), significantly reducing the data space upon which we deliver the 
final classification outcome. The above approach increases the speed of processing 
with positive impact in our model as we target to support a streaming environment 



 G. Zioviris et al.

1 3

where numerous transactions are collected. After the discussed step, we create a 
new encoded (and reduced) feature dataset which is fed to the LSTM, which have 
an input layer, two (2) hidden layers, and an output layer. In the first two (2) lay-
ers, we adopt the ReLU activation function, and for the output layer, the activation 
process is performed by a sigmoid function. Our decision for adopting the specific 
activation functions is concluded through an extensive experimentation that reveals 
their performance for the specific problem. The model loss is calculated with the 
binary cross-entropy loss function (cross-entropy minimization is frequently used 

Fig. 1  The high-level architecture of the proposed approach using a Deep Autoencoder

Fig. 2  The high-level architecture of the proposed approach using a Deep Variational Autoencoder
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in optimization and rare-event probability estimation). The LSTM is evaluated with 
the assistance of a test set to evaluate its performance. In the following figures, we 
present the architecture of the proposed models, categorized according to the use of 
a Simple Deep Autoencoder or a Deep Variational Autoencoder (Figs. 1 and 2).

3.2  Oversampling the minority class

An unbalanced dataset could be a common problem when applying ML/DML algo-
rithms. The reason is that training a ML/DML algorithm with such a dataset often 
results in a particular bias toward the majority class. The purpose of using an over-
sampling method is to create new instances for the minority class in order to have 
more data to train your model. If a model is trained with few instances for one class, 
it is likely for the model not to be able to detect new data which belong to the par-
ticular class. To tackle the problem of imbalance in the training dataset, the authors 
of [8] have introduced SMOTE which is one of the most popular oversampling 
techniques. SMOTE is based on a kNNs upon the Euclidean distance between data 
points in the feature space. For every instance that belongs to the minority class, k 
of Nearest Neighbors is detected, such that they belong to the same class where C is 
oversampled. We take each sample in C and introduce synthetic instances along the 
line segments joining any/all of the k minority class Nearest Neighbors [8]. Depend-
ing on the required number of oversamples, instances from the k-Nearest Neighbors 
are randomly chosen. We incorporate into our decision-making multiple oversam-
pling techniques to reveal their performance when combined with the proposed 
autoencoder and the LSTM. Hence, apart from the SMOTE technique, we also study 
the adoption of additional schemes for the management of the unbalanced datasets. 
Another method for oversampling is the K-Means SMOTE technique. This tech-
nique avoids the generation of noise and effectively overcomes imbalances between 
and within classes, by employing the K-Means clustering algorithm in combination 
with SMOTE oversampling [11]. In Borderline-SMOTE technique, for every minor-
ity instance, its k-Nearest Neighbors of the same class are extracted, and some of 
them are randomly selected based on the oversampling rate [9]. In SVM-SMOTE 
technique, the method first pre-processes the data by oversampling the minority 
instances in the feature space, and then, the pre-images of the synthetic samples are 
found based on a distance relation between feature and input spaces. Finally, these 
pre-images are appended to the original dataset [10]. The last oversampling tech-
nique that is tested in this paper is the ADASYN [12]. ADASYN is based on the 
idea of using a weighted distribution of the instances in C according to their level 
of difficulty in learning. Synthetic data are generated for C being harder to learn 
than to C instances that are easier to learn. ADASYN improves the learning abil-
ity with respect to data distributions and reduces the biases introduced by the class 
imbalance problem. The final target is to adaptively shift the classification decision 
boundary toward the space of the ‘difficult’ instances. Before the use of the over-
sampling technique, our dataset had 594.643 observations, with the training data-
set constitutes 70% of them that are used for oversampling. The 587.443 of them 
are normal payments and 7.200 fraudulent transactions. After the oversampling 
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technique the fraudulent transactions and the normal ones, constitutes 50% of the 
newly created dataset, halved with 587.443 in each category. It is clarified that the 
dataset that has been through oversampling is used solely for training purposes and 
is not added to the testing set. The testing set remains original, consisting of data 
that have not been manipulated or oversampled.

4  Intelligent fraud detection

4.1  Feature selection for dimensionality reduction

Autoencoders are Neural Networks that are, traditionally, used for dimensionality 
reduction. Autoencoders are trained to be capable of reproducing their inputs to out-
puts [7]. They adopt a hidden layer h(x�) trained to depict the provided input. An 
autoencoder may be viewed as a model containing two parts: (i) the encoder func-
tion f(x) (x is the input into the autoencoder) and (ii) a decoder scheme that produces 
a reconstruction of the initial input g(h). The following equations hold true:

The encoder function, denoted by f(x), maps the original data x to a latent space h(x�) 
present at the hidden layer before they are reproduced by the decoder. The decoder 
function, denoted by g(h), maps the latent space h(x�) at the hidden layer to the out-
put which is the same as the input. The discussed encoding network can be repre-
sented by a standard NN function transferred through the activation function, where 
l is the latent dimension, i.e., W and b are the weights and biases of the layers.

Similarly, the decoder can be depicted in the same way, however, with different 
weights, biases, and potentially activation functions. The decoding phase can be rep-
resented by the following equation ( W ′ and b′ are the weights and biases of the hid-
den layer):

In the proposed autoencoder, we adopt a loss function written in terms of the afore-
mentioned functions. The loss function is utilized to affect the training of the NN 
through the backpropagation algorithm, i.e., our model is continuously seeking to 

(1)f (x) → h(x�)

(2)h(x�) → g(h) = x

(3)f (x), h(x�) = argmin
f (x),h(x�)

‖x − (f (x) o h(x�))x‖2

(4)l = �(Wx + b)

(5)x
�

= �
�

(W
�

l + b
�

)
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limit the error between the calculated values and target outputs. This forces the hid-
den layer to ‘perform’ dimensionality reduction and eliminate noise while recon-
structing inputs, especially when the number of neurons in the hidden layer is low. 
The following equation holds true:

We implement our autoencoder adopting three (3) hidden layers and the Exponen-
tial Linear Unit (ELU) as the activation function, and gradually, we reach up to ten 
(10) nodes (features) from the initial thirty (30) features of the dataset. We consider 
ELU as it performs better than other activation functions like the Rectified Linear 
Unit (ReLU), the sigmoid, or the hyperbolic tangent function (tanh). For conclud-
ing the activation function, we rely on a high number of experiments to reveal their 
performance. The activation function ELU tends to converge the cost to zero more 
quickly (it can derive negative values allowing the network to push the mean acti-
vation closer to zero) than other functions while being capable of producing more 
accurate results. In general, the ELU activation function decreases the gap between 
the normal gradient and the unit natural gradient and, thereby, speeds up the learn-
ing process [35]. The dataset that is used to train the autoencoder constitutes the 
70% of the entire dataset, without using a batch size, while the model is trained in 
100 epochs.

4.2  A Variational Autoencoder for feature selection

Unlike typical autoencoders, Variational Autoencoders (VAEs) are generative models 
that exhibit different mathematical formulations if compared with autoencoders. VAEs 
focus on probabilistic graphical models with posterior probabilities being approximated 
by a NN, thus formulating the architecture of an autoencoder [7]. VAEs try to emulate 
how data are generated to reveal the underlying causal relations. This approach dif-
fers with discriminating models that aim to learn a predictor-given specific observa-
tions. VAEs rely on strong assumptions for the distribution of latent features using a 
variational approach. This approach results in additional loss components and a specific 
estimator for training purposes, i.e., the Stochastic Gradient Variational Bayes (SGVB) 
estimator. The assumption is that data are generated by a directed graphical model, 
i.e., p�(x|h) , and that the encoder learns the following approximation q�(h|x) to the 
posterior distribution p�(h|x) where � and � denote the parameters of the encoder and 
decoder, respectively. The probability distribution of the latent vector of a VAE typi-
cally matches that of the training data much closer than a standard autoencoder. The 
loss function of VAE has the following form:

(6)L(x, x
�

) = ‖x − x
�‖2 = ‖x − �

�

(W
�

(�(Wx + b)) + b
�

)‖2

(7)L(�, �, x) = DKL(q�(h�x)‖p�(h)) − �q�(h�x)
�
log p�(x�h))
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In the above equation, DKL depicts the Kullback–Leibler divergence. The prior over 
the latent features is usually set to be the centered isotropic multivariate Gaussian, 
i.e.,

Commonly, the shape of the variational and the likelihood distributions are chosen 
such that they are factorized Gaussian distributions:

where �(x) and �2(x) are the encoder outputs, while �(h) and �2(h) are the decoder 
outputs. These formulations are justified by the rationale of simplifying the final 
outcomes in the evaluation process of both the Kullback–Leibler divergence and the 
likelihood term in the variational objective defined above. We implement the pro-
posed VAE adopting two (2) hidden layers, and we gradually reach up to ten (10) 
nodes (features) from the initial thirty (30) features of the dataset. As the activation 
function, we adopt ELU in every layer relying on a set of simulations to reveal the 
performance of multiple activation functions and choose the best one. Finally, we 
have to notice that the model loss is calculated with the binary cross-entropy loss 
function. The dataset that is used to train the autoencoder constitutes the 70% of the 
entire dataset, without using a batch size, while the model is trained in 100 epochs.

4.3  The proposed LSTM for detecting fraudulent events

As of this writing, the most effective sequence models used in practical applica-
tions are called gated RNNs. These include the LSTM network and networks based 
on the gated recurrent unit [7]. The idea of introducing self-loops to produce paths 
where the gradient can flow for long durations is a core contribution of the initial 
LSTM model [36]. A crucial addition has been to make the weight on this self-loop 
conditioned on the context, rather than fixed [37]. By making the weight of this 
self-loop gated (controlled by another hidden unit), the time scale of integration can 
be changed dynamically. In this case, we mean that even for an LSTM with fixed 
parameters, the time scale of integration can change based on the input sequence, 
because the time constants are outputs of the model itself. Instead of a unit that 
simply applies an element-wise nonlinearity to the transformation of inputs and 
recurrent units, LSTM recurrent networks have ‘LSTM cells’ that have an internal 
recurrence (a self-loop), in addition to the outer recurrence of the RNN. Each cell 
has the same inputs and outputs as an ordinary recurrent network but also has more 
parameters and a system of gating units that controls the flow of information. The 
most important component is the state unit s(t)

i
 which has a linear self-loop. Here, the 

self-loop weight (or the associated time constant) is controlled by a forget gate unit 

(8)p�(h) = N(0, I)

(9)q�(h|x) = N(�(x),�2(x)I)

(10)p�(x|h) = N(�(h),�2(h)I)
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f
(t)

i
 (for time step t and cell i), which sets this weight to a value in the unity interval 

through the adoption of a sigmoid unit:

where x(t) is the current input vector, h(t) is the current hidden layer vector containing 
the outputs of all the LSTM cells, and bf  , Uf  , and Wf  are, respectively, biases, input 
weights, and recurrent weights for the forget gates. The LSTM cell’s internal state is 
updated as follows, but with a conditional self-loop weight f t

i
:

where b, U, and W denote the biases, input weights, and recurrent weights into the 
LSTM cell, respectively. The external input gate unit g(t)

i
 is computed similarly to the 

forget gate (with a sigmoid unit to obtain a gating value in the unity interval), but 
with its own parameters:

The output h(t)
i

 of the LSTM cell can also be eliminated through q(t)
i

 which also uses 
a sigmoid unit for gating:

which has parameters bo , Uo , and Wo for its biases, input weights, and recurrent 
weights, respectively. Among the variants, one can choose to use s(t)

i
 as an extra 

input (with its weight) into the three gates of the i-th unit.
In our sequential model, we use a LSTM, which has an input layer, two (2) hidden 

layers, and an output layer. In the first two (2) layers, we adopt the ReLU activation 
function, and for the output layer, the activation process is performed by a sigmoid 
function. Our decision for adopting the specific activation functions is concluded 
through an extensive experimentation that reveals their performance for the specific 
problem. The model loss is calculated with the binary cross-entropy loss function 
(cross-entropy minimization is frequently used in optimization and rare-event prob-
ability estimation). The dataset that is used to train the autoencoder constitutes the 
70% of the entire dataset, without using a batch size, while the model is trained in 
100 epochs.
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5  Experimental evaluation

5.1  Experimental setup and performance metrics

We report on the evaluation of the proposed model upon a real dataset. This 
dataset has been generated using BankSim, a bank simulator for a Spanish bank. 
BankSim is an agent-based simulator of bank payments based on a sample of 
aggregated transactional data provided by a bank in Spain. The main purpose of 
BankSim is the generation of synthetic data that can be used for fraud detection 
research. Statistical and a Social Network Analysis (SNA) of relations between 
merchants and customers were used to develop and calibrate the model. Our ulti-
mate goal is for BankSim to be usable to model relevant scenarios that combine 
normal payments and injected known fraud signatures. The datasets generated by 
BankSim contain no personal information or disclosure of legal and private cus-
tomer transactions. BankSim was run for 180 steps (approximately six months), 
several times, and calibrated the parameters in order to obtain a distribution that 
get close enough to be reliable for testing. There were collected several log files 
and selected the most accurate. There were simulated thieves that aim to steal an 
average of three cards per step and perform about two fraudulent transactions per 
day producing 594.643 records in total where 587.443 are normal payments and 
7.200 fraudulent transactions. Since this is a randomized simulation, the values 
are, of course, not identical to original data. Therefore, it can be shared by aca-
demia, and others, to develop and reason about fraud detection methods. Syn-
thetic data have the added benefit of being easier to acquire, faster, and at less 
cost, for experimentation even for those that have access to their own data. We 
argue that BankSim generates data that usefully approximate the relevant aspects 
of the real data [38]. In our experiments, we used Python in a Jupyter Notebook, 
in a laptop that has a processor of 2.40 GHz and a RAM memory of 12.0 GB. 
The detailed model described in this paper is readily available for exploration 
and implementation through its corresponding GitHub repository. Researchers, 
developers, and enthusiasts alike can access the complete source code, documen-
tation, and related resources by visiting the provided link https:// github. com/ ziovi 
ris/ Credit- card- fraud- detec tion- using-a- deep- learn ing- multi stage- model.

Six performance metrics are adopted to evaluate our model, i.e., precision ( � ), 
recall ( � ), the F1 score ( � ), the Area Under Curve or simply (AUC), the Mean 
Squared Error or MSE ( � ), and the Mean Absolute Error or MAE ( � ). � is the 
fraction of true events (i.e., frauds) among all samples which are classified as 
frauds, while � is the fraction of frauds which have been classified correctly over 
the total amount of frauds. � is a performance metric that combines both, � and �.

AUC provides an aggregate measure of performance across all possible clas-
sification thresholds. The Area Under the Curve (often referred to as simply the 
AUC) is equal to the probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative one (assuming ’posi-
tive’ ranks higher than ’negative’). It is also common to calculate the Area Under 
the ROC convex as any point on the line segment between two prediction results 

https://github.com/zioviris/Credit-card-fraud-detection-using-a-deep-learning-multistage-model
https://github.com/zioviris/Credit-card-fraud-detection-using-a-deep-learning-multistage-model
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that can be achieved by randomly using one or the other system with probabilities 
proportional to the relative length of the opposite component of the segment. The 
following equations hold true:

In the above equations, TP (True Positive) is the number of frauds which have been 
classified correctly. FP (False Positive) is the number of normal transactions which 
have been classified as frauds. FN (False Negatives) is the number of frauds which 

(16)� =
TP

TP + FP

(17)� =
TP

TP + FN

(18)� = 2 ⋅
� ⋅ �

� + �

(19)� =
1
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Table 1  Group of experiments implementing a Simple Autoencoder

Models � (%) � (%) � (%) � � AUC (%)

SMOTE - AE - LSTM 99.83 98.85 99.39 0.0029 0.0054 99.54
Borderline-SMOTE - AE - LSTM 99.86 98.17 99.01 0.0031 0.0062 99.58
SVM-SMOTE - AE - LSTM 99.93 98.59 99.26 0.0033 0.0062 99.60
ADASYN - AE - LSTM 99.72 98.16 98.93 0.0033 0.0065 98.94
K-Means SMOTE - AE - LSTM 99.89 98.94 99.14 0.0028 0.0060 99.61

Table 2  Group of experiments implementing a Variational Autoencoder

Models � (%) � (%) � (%) � � AUC (%)

SMOTE - VAE - LSTM 99.69 98.75 99.22 0.0027 0.0058 99.22
Borderline-SMOTE - VAE - LSTM 99.71 97.64 98.66 0.0026 0.0055 98.68
SVM-SMOTE - VAE - LSTM 99.76 98.55 99.15 0.0026 0.0057 99.16
ADASYN - VAE - LSTM 98.70 98.35 98.53 0.0032 0.0061 98.53
K-Means SMOTE - VAE - LSTM 99.47 99.00 99.23 0.0033 0.0059 99.24
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have been classified as normal ones. TN (True Negatives) is the number of normal 
transactions that have been classified as normal.

5.2  Performance assessment

Our set of experiments involve the implementation of a stratified validation tech-
nique with five folds to ensure that the separations of the adopted dataset are rela-
tively unbiased. Our results are shown in Tables 1, 2, and 3, respectively.

In any case, we can clearly state that our proposed models perform better than the 
traditional machine learning algorithms that we tested.

In the following figures, we present our experimental evaluation outcomes of the 
main aforementioned models, i.e., SMOTE - AE - LSTM, SMOTE - VAE - LSTM.

In Fig.  3, we observe the performance of the SMOTE - AE - LSTM, while in 
Fig. 4, we observe the performance of the SMOTE - VAE - CNN model.

6  Results

Our investigation into the performance of various sequential models that include 
oversampling technique, autoencoder architectures, specifically the Simple Autoen-
coder and the Variational Autoencoder (VAE), and an LSTM model has yielded 
valuable insights. We evaluated both autoencoder variants using various metrics. 
The Simple Autoencoder consistently outperformed the VAE in all three metrics. 
Its deterministic encoding and straightforward reconstruction contribute to this 

Table 3  Group of experiments 
implementing conventional 
machine learning algorithms

Models � (%) � (%) � (%) � � AUC (%)

SVM 95.56 78.51 88.45 0.0065 0.0087 86.73
XGBoost 91.39 95.78 94.31 0.0055 0.0083 94.94
Random Forest 97.44 96.34 96.33 0.0037 0.0065 95.32

Fig. 3  The performance of SMOTE - AE - LSTM (left: SMOTE - Autoencoder - LSTM performance - 
right: ROC curve)
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advantage. By compressing input data into a lower-dimensional latent space and 
then faithfully reconstructing the original data, the Simple Autoencoder provides 
reliable representations for downstream tasks. The VAE introduces probabilistic 
modeling, assuming that the latent space follows a specific probability distribution 
(often Gaussian). While the VAE lags behind the Simple Autoencoder in precision 
and recall, its probabilistic nature provides valuable uncertainty estimates. These 
estimates can be particularly useful in scenarios where uncertainty quantification 
matters. Surprisingly, both autoencoder variants exhibited exceptional performance. 
This finding underscores the significance of incorporating any autoencoder architec-
ture to enhance the predictive abilities of the LSTM. While the Simple Autoencoder 
excels in performance, the VAE’s probabilistic nature introduces trade-offs. Practi-
tioners must weigh the deterministic reliability of the Simple Autoencoder against 
the uncertainty-aware capabilities of the VAE. In summary, autoencoders play a piv-
otal role as pre-processing steps for sequence models like LSTMs, whether one opts 
for simplicity or embraces probabilistic modeling, integrating an autoencoder can 
elevate model performance. As researchers, let us continue exploring autoencoder 
variants tailored to specific problem domains.

7  Comparative assessment

In this section, we compare our models with the results that the authors of [30] pre-
sent in their work, considering that the same dataset is used, so the comparison is 
easier to implement. The authors use a LSTM Recurrent Neural Network, in order 
to perform the classification of the transactions of the dataset as fraudulent or not. In 
this study, the authors set the LSTM memory cell to 15, with 100 epochs, while the 
loss function that is used is the cross-entropy, and the optimizer that the authors use 
is the Adam optimizer. They used one hidden layer with 15 neurons.

The only metrics that are available in the particular study are the Area Under 
Curve (AUC), the Mean Squared Error (MSE), and the Root Mean Squared Error 
(RMSE).

Fig. 4  The performance of SMOTE - VAE - CNN (left: SMOTE - Autoencoder - LSTM Performance - 
right: ROC curve)
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7.1  Comparison between our models’ results and the results from [30]

From this comparison, we can see that the majority of our models perform better 
than the model of the authors of [30]. The best of our models in terms of AUC’s 
score performs a score of 99.64% with a MSE of 0.0028 and a RMSE of 0.0060. 
Once again, we state that this paper did not provide sufficient information about pre-
cision, recall, F1 score of any other metric besides AUC’s score, MSE, and RMSE 
(Table 4).

From this comparison, we can see that the majority of our models with the Deep 
Autoencoder perform better than the models of the authors of [30]. The best of our 
models performs a score of 99.61% in terms of Area Under Curve (AUC), a score 
of 0.0028 in terms of MSE, and a score of 0.0060 in terms of RMSE, while the best 
performance in [30] has a score of 99.56% in AUC, a score of 0.0034 in terms of 
MSE, and a score of 0.0063 in terms of RMSE. Once again, we state that the authors 
of [30] did not provide sufficient information about precision, recall, F1 score, or 
any other metric.

8  Conclusions

In this study, we propose the combination of multiple deep learning technologies 
like autoencoders (AE and VAE) and LSTM Recurrent Neural Networks to pre-
dict fraud cases in financial interactions. The discussed autoencoder is adopted for 
dimensionality reduction, while the LSTM is utilized to perform the final classifica-
tion of the type of each transaction (fraudulent or not). We also meet the challenges 
coming from highly unbalanced datasets when the training process of deep learning 
models is the case. We adopt various oversampling techniques to deal with the lim-
ited number of the positive class. In addition, the results of our models are compared 
with the results of algorithms that use the same dataset and are recently published. 

Table 4  Comparison between 
our models’ results and the 
results from [30], i.e., LSTM

Models AUC (%) MSE RMSE

SMOTE - AE - LSTM 99.54 0.0029 0.0054
Borderline-SMOTE - AE - LSTM 99.58 0.0031 0.0062
SVM-SMOTE - AE - LSTM 99.60 0.0033 0.0062
ADASYN - AE - LSTM 98.94 0.0033 0.0065
K-Means SMOTE - AE - LSTM 99.61 0.0028 0.0060
SMOTE - VAE - LSTM 99.22 0.0027 0.0058
Borderline-SMOTE - VAE - LSTM 98.68 0.0026 0.0055
SVM-SMOTE - VAE - LSTM 99.16 0.0026 0.0057
ADASYN - VAE - LSTM 98.53 0.0032 0.0061
K-Means SMOTE - VAE - LSTM 99.24 0.0033 0.0059
LSTM ([39]) 99.56 0.0034 0.0063
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The result of this comparison is that the majority of our models perform better than 
the proposed ones in that paper. This aspect gains our attention and becomes one of 
our targets for future research activities, i.e., the incorporation into our model of the 
temporal axis and the study of the seasonality detected in fraudulent events. While 
our comparative study sheds light on the performance of autoencoder architectures 
within the context of LSTM models, several avenues remain unexplored. Here are 
potential directions for future research:

Hybrid architectures Investigate hybrid approaches that combine the strengths of 
both the Simple Autoencoder and the VAE. Can we design an architecture that 
leverages deterministic encoding while incorporating probabilistic uncertainty 
estimates? Such hybrid models could strike a balance between reliability and 
adaptability.
Dynamic latent spaces Explore adaptive latent spaces that adjust dynamically 
based on input data characteristics. Can we design autoencoders that learn to 
adapt their latent representations during training? Dynamic latent spaces could 
enhance model robustness across varying contexts.
Task-specific autoencoders Tailor autoencoder architectures to specific problem 
domains. For instance, consider specialized autoencoders for natural language 
processing, image analysis, or time-series data. Customized architectures may 
yield better feature representations.
Regularization techniques Investigate novel regularization methods for autoen-
coders. Regularization can prevent overfitting and improve generalization. Tech-
niques such as dropout, weight decay, or adversarial training could be adapted to 
autoencoder training.
Interpretable latent representations Develop techniques to interpret latent repre-
sentations. Can we visualize what specific features or patterns each dimension of 
the latent space captures? Interpretable representations enhance model transpar-
ency.
Transfer learning with autoencoders Explore transfer learning scenarios where 
pre-trained autoencoders serve as feature extractors for downstream tasks. Fine-
tuning the encoder on task-specific data could accelerate convergence.
Ensemble approaches Combine multiple autoencoders to form an ensemble. 
Ensemble methods often improve robustness and generalization. Investigate how 
ensemble autoencoders impact LSTM performance.
Hyperparameter optimization Systematically tune hyperparameters for autoen-
coder architectures. Grid search, Bayesian optimization, or evolutionary algo-
rithms can help identify optimal settings.
Autoencoder regularization Extend the study to include other autoencoder vari-
ants, such as denoising autoencoders, contractive autoencoders, or sparse autoen-
coders. Each variant introduces unique regularization mechanisms.
Benchmarking on diverse datasets Our experiments focused on specific datasets. 
Future work should explore diverse data sources, including real-world applica-
tions. Robustness across different domains is essential.
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In summary, the field of autoencoders continues to evolve, and there is ample 
room for innovation. By addressing these research directions, we can enhance the 
synergy between autoencoders and sequence models, ultimately advancing the 
state-of-the art in deep learning.
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