
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-06011-1

1 3

Toward HPC application portability via C++ PSTL: the Gaia
AVU‑GSR code assessment

Giulio Malenza1 · Valentina Cesare2 · Marco Aldinucci1 · Ugo Becciani2 ·
Alberto Vecchiato3

Accepted: 19 February 2024
© The Author(s) 2024

Abstract
The computing capacity needed to process the data generated in modern scientific
experiments is approaching ExaFLOPs. Currently, achieving such performances is
only feasible through GPU-accelerated supercomputers. Different languages were
developed to program GPUs at different levels of abstraction. Typically, the more
abstract the languages, the more portable they are across different GPUs. How-
ever, the less abstract and co-designed with the hardware, the more room for code
optimization and, eventually, the more performance. In the HPC context, portabil-
ity and performance are a fairly traditional dichotomy. The current C++ Parallel
Standard Template Library (PSTL) has the potential to go beyond this dichotomy.
In this work, we analyze the main performance benefits and limitations of PSTL
using as a use-case the Gaia Astrometric Verification Unit-Global Sphere Recon-
struction parallel solver developed by the European Space Agency Gaia mission.
The code aims to find the astrometric parameters of ∼ 10

8 stars in the Milky Way by
iteratively solving a linear system of equations with the LSQR algorithm, originally
GPU-ported with the CUDA language. We show that the performance obtained with
the PSTL version, which is intrinsically more portable than CUDA, is comparable to
the CUDA one on NVIDIA GPU architecture.

Keywords  High-performance computing · Standard parallelism · GPU
programming · Astrometry

1  Introduction

Following technological capabilities, scientific computing data rapidly increase in
size in a broad range of applications, quickly approaching ∼10–100 PB of input
data. To analyze such large datasets, Peta- and ExaFLOPs performance is needed.
Effectively exploiting this performance on large scientific applications (beyond
deeply optimized small benchmarks) requires re-engineering and co-design of

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06011-1&domain=pdf

	 G. Malenza et al.

1 3

hardware and software. Calculations should be performed on growing numbers of
nodes, and the architecture of each node is becoming increasingly heterogeneous
[1]. While the research on alternative computing architectures is ongoing, today, the
mainstream Exascale architecture can be sketched as a large cluster of nodes inter-
connected with a fast Mellanox/Cray network, where each node is an Intel/AMD/
ARM multicore accelerated with multiple NVIDIA/AMD GPUs. Despite this bla-
tant simplicity, each configuration of networking/multicore/GPUs may require re-
coding the applications to reach an acceptable performance and efficiency, whereas
moving from multicore to multicore+GPUs clusters also requires a significant code
redesign.

A fast way to port to GPU existing code bases designed to run on CPU is pro-
vided by adopting high-level and directive-based languages, such as OpenMP [2]
and OpenACC [3], which can allow GPU offload with minimal application rede-
signs [4]. This approach reduces code porting time but might result in poor perfor-
mance since, without a code rearrangement thought for running on GPU, significant
bottlenecks stemming from poor management of host-to-device (H2D) and device-
to-host (D2H) data transfers, as well as inefficient memory access patterns, might
occur. Typically, the application should be redesigned to massively exploit data par-
allelism and this might require a significant effort. Once redesigned, the coding of
the application can also be made using a portable programming framework, such
as OpenMP and OpenACC, providing a portable solution on different architectures.
However, these portable frameworks typically underperform against low-level and
architecture-specific languages, such as CUDA, leaving much room for optimiza-
tion and fine-tuning architecture-dependent parameters, which can entail significant
performance boosts. The performance vs portability dichotomy traditionally affected
and still affects the high-performance computing realm [5, 6].

A potently new trade-off between performance and portability for coding GPU-
accelerated applications can be provided by the class of programming frameworks
where parallel algorithms are first-class programming constructs. Among them, it is
worthwhile to mention C++ PSTL [7] (Parallel Standard Template Library), SYCL
[8] (Standard Parallel Programming for C++), Kokkos [9], Fastflow [10], and HIP
[11] (Heterogeneous-Compute Interface for Portability). Differently from program-
ming frameworks designed to support the transition from sequential to parallel code,
such as OpenMP and OpenACC, typically based on parallelization of loops [4], they
allow programmers to reason about the properties of (data) parallel algorithms and
their memory access patterns, and eventually to design and optimize abstract enough
(thus portable) efficient code. In this work, we specifically focus on C++ PSTL.
This parallel programming model is fascinating for portability because it does
not require explicitly inserting any external directive not included in the standard
of the language, which should be supported by any compiler vendor for supported
architectures.

Starting from C++11, the first set of parallel constructs and concurrency top-
ics have been introduced to the C++ standard. Further iterations of the C++ stand-
ards have progressively introduced new concepts and refined the specifications. In

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

particular, from C++17 onward, the algorithms of the STL were extended by intro-
ducing execution policies to express and exploit parallel computations [12, 13].1
A compiler that generates C++17 executable code is nvc++ [14]. This compiler,
part of the NVIDIA HPC SDK toolbox, can generate assembly code for GPUs
or CPUs with multithreading by adding the compiler flag -stdpar=gpu or
-stdpar=multicore. In recent studies (e.g., [14]), NVIDIA has demonstrated
that clean and portable codes can be written without significant performance losses
compared to CUDA codes.

We apply the C++ PSTL approach to a use-case: the Astrometric Verification
Unit-Global Sphere Reconstruction (AVU-GSR) parallel solver [15]. This solver
finds the astrometric parameters for ∼ 108 stars in the Milky Way by solving a
system of linear equations with the iterative LSQR algorithm [16, 17], which per-
forms two matrix-by-vector products per iteration. The original code is written in
CUDA for optimal performance on NVIDIA GPUs. In this code, we did not employ
an implementation of the LSQR algorithm from an external library (e.g., BLAS,2
LAPACK,3 Intel oneMKL,4 cuSPARSE,5 or MAGMA6), to have full control of all
control knobs to optimize the execution of LSQR according to the specific struc-
ture of the coefficient matrix of the system of equations (see also [18]). This custom
implementation also allowed further optimization of the communications between
the MPI processes and a better use of the memory and, thus, the possibility of solv-
ing larger systems.

Our work aims to demonstrate that the C++ PSTL code version does not
significantly degrade performance concerning the CUDA version of the code by
testing the two versions on three different HPC infrastructures. We chose this code
as a use-case due to its compute-bound rather than MPI communications-bound
nature.

The outline of this paper is as follows. After a description of the usages of the
C++ PSTL to offload HPC applications to the GPU from the literature (Sect. 2), we
briefly present the structure of the Gaia AVU-GSR code (Sect. 3) and of its previ-
ous parallel versions: on CPUs with MPI + OpenMP (Sect. 3.1) and on GPUs with
MPI + OpenACC (Sect. 3.2). In Sect. 4, we describe the two versions of the code
that are compared in this work: a new optimized version of the MPI + CUDA code
(Sect. 4.1), and the new implementation of the code in C++ PSTL (Sect. 4.2). Then,
we present some performance tests to compare the efficiency of the CUDA and C++
codes on different infrastructures and the weak scaling properties of the two codes
on Leonardo CINECA supercomputer (Sect. 5). To execute these performance tests,
we do not run systems that take as input real data but only simulated data. This is
an obliged choice since an amount of real data to test the weak scalability up to a
sufficiently large number of nodes (256 on Leonardo) has not been produced yet.

1  https://​en.​cppre​feren​ce.​com/w/​cpp/​17.
2  https://​www.​netlib.​org/​blas/.
3  https://​www.​netlib.​org/​lapack/.
4  https://​www.​intel.​com/​conte​nt/​www/​us/​en/​devel​oper/​tools/​oneapi/​onemkl.​html.
5  https://​docs.​NVIDIA.​com/​cuda/​cuspa​rse/.
6  https://​icl.​utk.​edu/​magma/.

https://en.cppreference.com/w/cpp/17
https://www.netlib.org/blas/
https://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://docs.NVIDIA.com/cuda/cusparse/
https://icl.utk.edu/magma/

	 G. Malenza et al.

1 3

However, real and simulated data are distributed in the same way in the system of
equations and, thus, simulated data are as representative to study the weak scalabil-
ity of the code as the real data. Section 6 concludes the paper and presents future
directions for this work.

2 � Related works

Developing applications in C++ using the PSTL compiled to offload computations
to GPUs is a new approach in the HPC scenario. To the authors’ knowledge, there
are very few preceding examples of this approach.

Lin et al. [14] ported many representative HPC mini-applications employing
standard C++17 to the GPU. These mini-applications are both compute- and mem-
ory-bound to span all possible cases. With proper benchmarks, they compared the
performance of these mini-applications with other porting of the same codes per-
formed in OpenMP, CUDA, and SYCL. The C++17 applications resulted in compa-
rable performances with their previous porting versions on different platforms with
diverse architectures, which indicates the high portability of this method besides its
good performance.

Malenza et al. [19] ported to GPU with C++11 a mini-application built from
the open-source software OpenFOAM7 which computes the Gauss-Green gradient.
The performance of this mini-application was tested on an ARM-multicore architec-
ture with NVIDIA GPUs, obtaining a speedup from 1.66x to 5.11x compared to the
same application running on the CPU. Given this promising result, the authors aim
to port other sections of the OpenFOAM software to GPU with the same approach.

Asahi et al. [20] built a mini-application of a kinetic plasma simulation code
based on the Vlasov equation. The mini-application is written in standard C++ and
runs on multi-CPU and multi-GPU systems. They demonstrate that this method
does not impair the readability and productivity of the mini-application and provides
a performant portable solution with a certain speedup over a previous version writ-
ten in Kokkos on Intel Icelake, NVIDIA V100, and A100 GPU architectures.

Among other works which exploit standard C++ to offload their codes to GPU,
notice:

1.	 the work of Latt, et al. [12], who ported to GPU with C++ the Palabos software
library for complex fluid flow simulations;

2.	 the work of Bhattacharya, et al. [21], which investigated different portable parallel
solutions (Kokkos, SYCL, OpenMP, C++ standard) for high energy physics use
cases on accelerators (such as GPUs) architectures and compared them according
to a set of metrics, concluding that the C++ standard could provide the best solu-
tion. A follow-up is the work of Atif, et al. [22], that also considered the Alpaka
language as a possible portable parallel solution;

7  https://​www.​openf​oam.​com.

https://www.openfoam.com

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

3.	 the work of Gomez et al. [13], who described the C++ porting of the ExaHyPE
code, a solver engine for hyperbolic partial differential equations for complex
wave phenomena;

4.	 the work of Kang, et al. [23], who wrote cuGraph primitives in standard C++ and
tested algorithms using these primitives over 1000 GPUs.

Unlike the related works that adopt this method in mini-applications, we apply it to a
complete and real-world scientific application.

3 � The Gaia AVU‑GSR code

The Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) paral-
lel solver [15] is a code developed by the European Space Agency (ESA) mission
Gaia [24],8 launched in late 2013 and expected to end in mid-2025, whose aim is
to map the positions and proper motions of ∼ 1% ( ∼ 109 ) stars in our Galaxy. The
AVU-GSR code finds these astrometric parameters for ∼ 108 of these stars, the so-
called “primary” stars [25], besides the attitude and the instrumental settings of the
Gaia satellite and the Parametrized Post Newtonian (PPN) � global parameter, by
solving an overdetermined system of linear equations [15]:

In Eq. (1), the coefficient matrix A is large and sparse and contains
∼ (1011) × (5 × 108) elements. This matrix has high sparsity: of the 5 × 108 elements
per row, only 24 at most are different from zero, and to fit it in the (distributed)
main memory, it is encoded as a dense matrix �d , which only contains the nonzero
coefficients of A . The dense matrix �d has at most ∼ (1011) × (24) elements ( ∼ 19
TB), reducing the problem by 7 orders of magnitude. The known terms array b⃗ is
as long as the number of rows of the matrix A ( ∼ 1011 elements, ∼800 GB) and the
solution array x⃗ is as long as the number of columns of the original sparse matrix A
( ∼ 5 × 108 elements, ∼ 4 GB). These numbers refer to a case for a system at the end
of the Gaia mission, that is, with a complete dataset.

The solution x⃗ has to be iteratively found in the least-squares sense with the
LSQR algorithm [16, 17], which represents ∼95% of the computation time of the
entire AVU-GSR code.

Before the LSQR iterations start, the data are either imported in binary format, if
we consider real data, or generated within the code, if we consider simulated data.
Then, the system is preconditioned to improve the convergence speed of the LSQR.
The system is de-preconditioned after the LSQR convergence (for more details see
[15, 18, 26]. Since the system is overdetermined, several constraint equations are set
at the bottom of the system.

(1)A × x⃗ = b⃗.

8  https://​sci.​esa.​int/​web/​gaia.

https://sci.esa.int/web/gaia

	 G. Malenza et al.

1 3

The majority of the computation time of the LSQR algorithm and of the entire
AVU-GSR code basically consists in the call of the aprod function in the modes
1 and 2 (see Algorithm 1), where aprod 1 provides the iterative estimate of the
known terms array b⃗:

and aprod 2 provides the iterative estimate of the solution array x⃗:

computing two matrix-by-vector products.

Algorithm 1   LSQR algorithm implemented for the Gaia mission

The solution is iterated in a while loop up to the algorithm’s convergence, in
the least-squares sense, or when a maximum number of iterations, set at runtime,
is reached.

The AVU-GSR code was firstly parallelized on CPUs with a hybrid MPI +
OpenMP approach [15] (Sect. 3.1), and then the LSQR part was ported to GPUs
by replacing OpenMP firstly with OpenACC [18, 27, 28] (Sect. 3.2) and then
with CUDA [26, 29] (Sect. 4.1). The MPI part is common to all versions of the
code.

Algorithm 1 summarizes the main steps of the LSQR part of the AVU-GSR
code common to all code implementations. After setting the initial condition with
the aprod 2 function, the solution x⃗ is reduced with a MPI_SUM operation among
the MPI processes with the MPI_Allreduce() collective and blocking com-
munication operation. Then, the LSQR while loop starts and, after the end of
each aprod region, a MPI_Allreduce() operation is performed. This function
sums the partial results of the known terms array b⃗ found by each MPI process
with aprod 1 and of the solution array x⃗ found by each MPI process with aprod 2.

The left part of Fig. 1 schematically represents how the coefficients are dis-
tributed in the original sparse matrix A . The rows of A ( ∼ 1011 in the final Gaia

(2)b⃗i+ = A × x⃗i−1,

(3)x⃗i+ = A
T
× b⃗i,

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

dataset) are the system equations, and they represent the observations of the pri-
mary stars. Each star is observed ∼ 103 times on average. After these rows, an
additional number of constraint equations is set. The columns of A ( ∼ 5 × 108 in
the final Gaia dataset) represent the number of unknowns to solve.

The matrix is vertically structured in four sections: astrometric, attitude, instru-
mental, and global. The astrometric section represents ∼90% of the entire matrix.
The nonzero astrometric coefficients are organized in a block-diagonal structure,
where each block represents a single star (gray blocks in the left part of Fig. 1). Each
row has a limited number of nonzero astrometric parameters NAstro between 0 and 5.
We always set NAstro to 5 for our simulations.

In the considered modelization, the attitude part counts NAtt = 12 nonzero param-
eters per row, structured in NAxes = 3 blocks (representing the attitude axes) of
NParAxis = 4 coefficients. Between two consecutive blocks, NDFA elements are equal
to zero, where NDFA is the number of degrees of freedom carried by each attitude
axis.

The instrumental part has a number of nonzero coefficients, NInstr , between 0 and
6, which do not follow a regular pattern. The global part only contains NGlob = 1
global coefficient, the � parameter of the PPN formalism. In our simulations, we

Fig. 1   Parallelization scheme of the system of equations (Eq. 1) on four MPI processes in a single node
of a computer cluster. Left panel: coefficient matrix A . Middle panel: unknowns array x⃗ . Right panel:
known terms array b⃗ . Different colors (yellow, orange, red, and brown) refer to different MPI processes
or processing elements (PE). The block-diagonal part on the left side of the coefficient matrix illustrates
its nonzero astrometric section. In the middle panel, the four square blocks diagonally placed and labeled
as “Astrometric” represent the astrometric part of the solution array distributed among the MPI pro-
cesses. All the light blue parts are replicated on all the MPI processes. These are the constraints equa-
tions (the narrow light blue bands at the end of each process in the coefficient matrix and the known
terms array) and the attitude, instrumental, and global portions of the solution array (the four light blue
aligned blocks, labeled as “Att+Instr+Glob”). At each iteration i, the replicated portions of b⃗ and x⃗ are
reduced

	 G. Malenza et al.

1 3

always set NInstr = 6 and we do not consider the global section of the system, i.e.,
having 23 nonzero elements per row of �d.

Figure 1 represents a system of equations parallelized over four MPI processes
in one compute node. The computation assigned to each MPI process is high-
lighted in yellow, orange, red, and brown. The computation replicated on each
MPI process is marked in light blue. The computation referred to a horizontal
section of the coefficient matrix, i.e., a portion of the total number of observa-
tions, is related to a single MPI process. Instead, the computation of the con-
straint equations is replicated in each process. This replication does not carry a
significant overhead since the constraint equations represent a negligible fraction
of the total number of equations. This solution avoids a complicated reorganiza-
tion of the code. Given this schema, after aprod 1, only the fraction of the b⃗ array
related to the constraints equations has to be reduced.

Given the regular block-diagonal organization of the astrometric section, this
part is distributed among the MPI processes. This operation was less intuitive
for the other three sections, which show a less regular structure and are, thus,
replicated in each process. This replication does not entail a substantial loss of
performance given that the attitude + instrumental + global sections only repre-
sent ∼10% of the entire matrix. Given this schema, after aprod 2, only the frac-
tion of the x⃗ array related to the attitude + instrumental + global sections has to
be reduced.

In this work, we only compare the performances of the CUDA and C++ PSTL
codes. However, a brief description of the other two code versions (OpenMP and
OpenACC) is provided below to give a more profound background and show the
code versions from which the currently employed versions were derived.

3.1 � The OpenMP parallelization

The MPI + OpenMP version ran in production on CINECA infrastructure Mar-
coni100 from 2014 to 2022. The computation related to each MPI process (colored
portions in Fig. 1) is further parallelized on the CPU over the OpenMP threads. List-
ing 1 shows the astrometric part of aprod 1. Aprod 1 performs the matrix-by-vector
product Ad[i × Npar + j] × x[offsetMi[i] + j] and saves the result in the scalar variable
sum. The index i iterates along the observations within a single MPI process with
rank pid, N[pid], and the index j iterates along the number of nonzero astrometric
coefficients per row, where NAstro = 5 . The for loop that iterates on i is parallelized
with the #pragma omp for OpenMP directive, enclosed within a #pragma
omp parallel region. Then, the result sum is cumulated in the known terms
array, b[i], as the index i advances. The variable offsetMi[i] depends on the array
M⃗i , called “matrix index array,” whose elements at even positions are the indexes
of the first nonzero astrometric coefficients of each row of the original matrix A .

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

The odd indexes of M⃗i contain the same information for the attitude indexes. The
variable offset is an offset local to the MPI process pid.

The elements of Ad at line 10 are not read contiguously in memory when each
j-loop concludes. At the beginning of every j-loop, the element of Ad “jumps”
Npar = 23 elements, since this code section only refers to the astrometric vertical
portion of the coefficient matrix (see Fig. 1), and the attitude + instrumental +
global sections have to be jumped. The attitude, instrumental, and global sections of
aprod 1 and the four sections of aprod 2 follow an analogous logic (see Algorithms
2 and 3 of [26] to see the complete pseudocodes of aprod 1 and 2 in the MPI +
OpenMP, MPI + OpenACC, and MPI + CUDA versions of Gaia AVU-GSR code).

	 G. Malenza et al.

1 3

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

3.2 � The OpenACC parallelization

The first GPU porting of the AVU-GSR code was performed with OpenACC
[18, 27, 28]. It consisted in a preliminary study, to explore the feasibility of a
GPU porting of the application, which required a minimal code rearrange-
ment. The code runs on multiple GPUs per node, where the MPI processes are
assigned to the GPUs of the node in a round-robin fashion. The optimal way to
run the OpenACC code is to set the number of MPI processes per node equal to
the number of GPUs of the node. This feature is also shared with the CUDA and
C++ PSTL codes.

Listing 2 shows the astrometric part of aprod 1 ported with OpenACC. We
can see that the structure of the code is the same as for OpenMP, with the differ-
ence that the #pragma omp parallel and #pragma omp for directives
are now replaced by #pragma acc parallel and #pragma acc loop
directives, respectively. The H2D and D2H data transfers were explicitly man-
aged through specific directives.

With this first-order parallelization approach, the speedup over the OpenMP
version was of ∼1.5 [18, 28].

4 � The CUDA and C++ implementations

4.1 � The CUDA parallelization

The OpenACC porting paved the way to a more extensive optimization, where
OpenACC was replaced by CUDA [26, 29]. This new porting required a substantial
redesign. The grid of blocks of GPU threads where the different GPU regions are
running has been customized to match the topology of the matrix-by-vector opera-
tions to solve. In this work, we compare the performance of our novel C++ PSTL
version of the code (Sect. 4) with a version of the CUDA code that was further opti-
mized compared to the original [26, 29]. Below, we describe this new optimized
version, which preserves the general structure of the original CUDA code.

Listing 3 shows the astrometric part of aprod 1 ported with CUDA, composed
by the definition of a CUDA kernel later called from the program’s main function.
We define the global index of the GPU thread within the grid of blocks of threads,
i =blockIdx.x × blockDim.x + threadIdx.x, where blockIdx.x is
the block index inside the grid, blockDim.x is the block size in threads unit, and
threadIdx.x is the thread index local to each block. The GPU thread index i is
directly mapped to the index of the observation local to the MPI process pid.

The “dev” suffix to the arrays name indicates that the arrays are allocated on the
GPU device. The for loop-statement for (i = 0; i < N[pid]); i++ is replaced
by the while loop while (i < N[pid]). The thread index i cannot be larger than
N[pid], since it would cause a memory overflow. The kernel runs on a grid of
threads having size gridDim × blockDim, where gridDim is the number of
blocks in the grid, and gridDim and blockDim are passed as parameters within
the angle brackets “ <<<>>> ” in the kernel call inside the main of the code. This

	 G. Malenza et al.

1 3

grid is generally smaller than the maximum size of the problem, N[pid], and, thus,
the problem is divided in tiles of size gridDim × blockDim which are covered
by all the GPU threads until the thread index i < N[pid] . The quantities gridDim
and blockDim were empirically found kernel by kernel to customize each of them.
This approach provides better performance compared to a single tile case, as adopted
in the original CUDA code of [26, 29], where the number of blocks of threads was
set such that the thread index i can cover the entire for (i = 0; i < N[pid]); i++
for loop, and the number of threads in a block was always set to 1024 (the maximum
value allowed on a NVIDIA V100 GPU present on Marconi100).

In Listing 3, the quantity MiAstro_dev represents only the astrometric part
of the M⃗i array, that is, its even indexes. This provides a slight optimization in
GPU programming since, with MiAstro_dev, the indexes can be contiguously
read in memory, whereas in M⃗i a jump of one element must be performed for
every memory access. An analogous MiAtt_dev array was defined in the code
to contain the attitude (odd) indexes of M⃗i.

The unsigned int types u_int16_t, u_int32_t, and u_int64_t were
used to guarantee greater portability compared to correspondent signed int types.

Besides porting the code with CUDA, we also dealt better with the H2D and
D2H data transfers, and more code regions were GPU-ported compared to the
OpenACC version. With these optimizations, the percentages of time fraction in
one LSQR iteration due to GPU computation, data transfers, and CPU computa-
tion are ≳90%, ∼ 3 %, and ∼ 3% [26, 29]. Moreover, the speedup over the CPU
OpenMP code increases from ∼1.5 [18], as obtained for the OpenACC code, to ∼
14, [26, 29] for the original CUDA code [26, 29] and even further for this current
optimized CUDA version. These speedups are calculated for the same problem,
which maps differently depending on whether the code runs on the CPU and the
GPU. The speedup of ∼ 14 presents an increasing trend with the memory occu-
pied by the system and with the number of employed GPU resources [26, 29].

4.2 � The C++ parallelization

The main issue with the CUDA code is its reduced portability since CUDA is
limited to run on GPUs with NVIDIA architecture. Moreover, some optimization
parameters need to be tuned even to run on different NVIDIA GPUs. On the one
hand, this is not particularly problematic for the Gaia code, which is close to its mis-
sion end and likely needs to migrate only once from Marconi100 to Leonardo. On
the other hand, the class of applications based on the LSQR algorithm will definitely
benefit from more portable and comparably performant solutions in the perspective
of running on different (pre-)Exascale platforms. For this purpose, the code was
rewritten in C++20 PSTL and compiled with the nvc++ compiler.

Originally, the STL mainly consisted of three components: iterators, contain-
ers, and algorithms. Algorithms can be subdivided into different classes. There
are algorithms to iterate and transform container elements (std::for_each
and std::transform), algorithms useful to perform summary operations
(std::reduce), algorithms to select containers elements (std::search and

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

std::find), algorithms to copy and fill containers (std::copy and std::fill),
algorithms to sort containers (std::sort), and so on. The main CUDA functions
of LSQR were rewritten using these algorithms.

As stated in Sect. 3, the system comprises four parts: the astrometric, the atti-
tude, the instrumental, and the global ones. The CUDA version of the code treats
the aprod 1 and 2 computation of each of these four parts in a different function.
Listings 3 and 4 show how the astrometric section of aprod 1 transform from CUDA
to C++ PSTL.

To provide another example, we show how the dscal function, employed in
several points of the code to scale an array to a specific factor “ ���� ∗ ��� ”, was
transformed from CUDA to C++. The original CUDA code is:

where “array_dev” can be either b⃗dev or x⃗dev.
This function was rewritten in standard C++ code in the following way:

In Listings 4 and 6, POL is a macro specifying the execution policy, defined in
the header <execution> , which can be:

•	 std::execution::seq → The sequenced policy (since C++17). This
policy forces the execution of an algorithm to run sequentially on the CPU.

•	 std::execution::unseq → The unsequenced policy (since C++20).
This policy executes the calling algorithm using vectorization on the calling
thread.

	 G. Malenza et al.

1 3

•	 std::execution::par → The parallel policy (since C++17). This pol-
icy tells the compiler that the algorithm could be run in parallel.

•	 std::execution::par_unseq → The parallel unsequenced policy
(since C++20). This policy allows the algorithm to be run in parallel on mul-
tiple threads each able to vectorize the calculation.

In the C++ version, H2D and D2H data transfers cannot be dealt with explicit
directives, as in OpenACC and CUDA. These are handled indirectly via the Uni-
fied Memory mechanism. Limiting data transfers is fundamental to saving perfor-
mance. On the Gaia AVU-GSR code, the system matrix, which represents most
of the data, is transferred to GPUs before the start of the iteration phase. Dur-
ing iterations, only a couple of vectors are updated between GPUs. For this rea-
son, we do not expect a significant overhead deriving from H2D and D2H data
movements.

5 � Results

To compare the performance of the CUDA and C++ codes, we perform two classes
of tests: (1) we compare their efficiency on a single node of three different infra-
structures, Leonardo, Karolina (IT4I), and EPITO@HPC4AI [30], whose hardware
and software features are detailed in Table 1; (2) we investigate their weak scalabil-
ity up to 256 nodes (1024 GPUs) on the Leonardo CINECA supercomputer.

To evaluate the efficiency, we measure the average time (that includes every code
section, e.g., MPI communications, GPU kernels execution, H2D and D2H data
transfers, and CPU execution per iteration) of 100 iterations of the LSQR for a sys-
tem that occupies 95% of the total GPU memory of the node (244 GB on Leonardo,
304 GB on Karolina, and 76 GB on EPITO). We take the maximum value among all
the MPI processes to estimate the average iteration time. To increase the statistical
significance of the measurement, we execute three runs per code and infrastructure
and estimate the average iteration time as the mean of the mean values resulting
from the three simulations. The maximum average iteration time error is the stand-
ard deviation of the values obtained from the three simulations.

The histogram in Fig. 2 shows the efficiency of the C++ PSTL code on Leon-
ardo, Karolina, and EPITO clusters, calculated as the ratio of the maximum aver-
age iteration time of the CUDA and C++ codes to compare the performance of
the C++ code concerning the CUDA code. The efficiency of the C++ code is of
0.808 ± 0.003 , 0.6417 ± 0.0008 , and 0.691 ± 0.003 on EPITO, Karolina, and Leon-
ardo, where the error bars on the efficiencies are calculated by propagating the errors
on the average iteration time of the CUDA and C++ codes, appearing at numera-
tor and denominator, respectively. The larger efficiency on EPITO could be because
there are only 2 GPUs per node on this infrastructure; the unified memory mecha-
nism works better than on a Leonardo and Karolina node, where there are 4 and 8
GPUs, respectively.

To investigate the weak scalability of the codes, we measure the total time of a
complete simulation, run for 100 LSQR iterations, also considering the time before

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

and after LSQR of the CUDA and C++ codes from 1 to 256 nodes (from 4 to 1024
GPUs) on Leonardo. The systems occupy 95% of the total GPU memory of one
node multiplied by the number of nodes (244 GB on one node, 488 GB on two
nodes, up to 62464 GB = 62.464 TB on 256 nodes). As already mentioned in the
introduction, we do not have such an amount of real data, and thus, we employed
simulated data. Yet, simulated data are as representative as real data to investigate
the weak scalability of the code since both real and simulated data are distributed in
the same way in the system of equations, following the schema of Fig. 1.

We again run three simulations per selected number of GPUs to increase the sta-
tistical significance of the measurement. We also measure the total time of the simu-
lations due to the MPI communications alone. We take the maximum value from all
the MPI processes for the total time and communication time. As before, each time
measurement is the mean of the times (either total or of MPI communications alone)
resulting from the three simulations for each number of GPUs, and its uncertainty is
estimated as the standard deviation of the same three values.

Figure 3 shows the weak scaling of the CUDA (blue curves) and C++ (red
curves) codes on Leonardo, where Fig. 3a and 3b represent the maximum MPI com-
munication and maximum total times, respectively, as a function of the number of
nodes (bottom axis) and of GPUs (top axis). Figure 3c represents instead the com-
putation-over-communication ratio, given by the ratio between the maximum com-
putation time and the maximum MPI communication time. We estimate the maxi-
mum computation time as the difference between the maximum total and maximum
communication time. The uncertainty on the computation-over-communication ratio
is calculated by propagating the errors on the numerator and the denominator. The
dashed lines in each panel represent the ideal cases: the values of the represented

Table 1   Hardware features and software specifications of the infrastructures employed for our analyses

Name Hardware Software

Leonardo 1 x CPU Intel Xeon 8358 32 cores, 2.6 GHz gcc−12.2.0
4 x GPU NVIDIA A200, 256 GB HBM2 NVHPC 23.5
512 (8 x 64) GB RAM DDR4 3200 MHz HPCX (OMPI 4.1.5rc2)
4x 200 Gb/s IB port CUDA 11.8
4x PCIe Gen 4.0 CPU-GPU, 32GB/s
NVLink GPU-GPU, 600 GB/s

Karolina 2x AMD EPYCTM 7763, 64 cores, 2.45 GHz gcc−12.2.0
8 NVIDIA A100 GPUs, 320 GB HBM2 NVHPC 23.5
1024 GB DDR4 3200MT/s RAM HPCX (OMPI 4.1.5)
4x 200 Gb/s IB port CUDA 12.0
NVLink GPU-GPU, 600 GB/s
8x PCIe Gen 4.0 CPU-GPU

EPITO
@HPC4AI

1 ARM Ampere Altra CPU (80 cores) gcc−12.2.0
2 NVIDIA A100 GPUs, 80GB HBM2 NVHPC 23.5
2x 100Gb/s IB port HPCX (OMPI 4.1.5rc2)
2x PCIe Gen 4.0 CPU-GPU CUDA 11.7

	 G. Malenza et al.

1 3

quantities measured on one node. The code is compute-bound; computation domi-
nates communication even on 256 nodes (1024 MPI processes) when the number of
MPI communications substantially increases. The computation-over-communication
ratio passes from 32 ± 3 to 12.5744 ± 0.0008 , for the C++ code, and from 89 ± 23
to 17.02 ± 0.13 , for the CUDA code, from 1 to 256 nodes. The MPI communication
time grows as the number of nodes increases, but it seems to follow a logarithmic
trend, as expected. In this way, the code remains compute-bound even on 256 nodes,
which is sufficient to solve a system with a size produced at the end of the Gaia
mission.

Figure 4a represents the maximum average iteration time for the C++ (red) and
CUDA (blue) codes as a function of the number of nodes (bottom axis) and of GPUs
(top axis). Figure 4b reflects what is shown in Fig. 4a but in terms of the efficiency.
As in Fig. 2, the efficiency of the C++ code is calculated as the ratio between the
maximum average iteration time of the CUDA and C++ codes. The bars of the his-
togram related to 1 node correspond to the Leonardo bar of histogram 2. The effi-
ciency of the C++ code is nearly constant along the entire range of nodes (GPUs),
with a maximum of 0.717 ± 0.002 , on 4 nodes (16 GPUs), and a minimum of
0.6142 ± 0.0005 , on 256 nodes (1024 GPUs).

In summary, computation is mainly given by three matrix-by-vector products
(two within the LSQR cycle and one before it), and communication is mainly given
by three MPI_Allreduce operations (two within the LSQR cycle and one before
it). The MPI communications are subdominant concerning the total, also for a large
number of MPI processes, because, despite the global synchronization operations,
the reduced data are much smaller than the problem assigned per node, which

Fig. 2   Efficiency of the C++ code on EPITO, Karolina, and Leonardo infrastructures. The efficiencies
are calculated as the ratio of the maximum average iteration time of the CUDA and C++ codes to com-
pare the performance of the C++ code concerning the CUDA code

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

guarantees good weak scalability of both CUDA and C++ codes up to 256 nodes
(1024 GPUs) on Leonardo.

6 � Conclusions

We present a new approach in perspective of the performance portability of HPC
applications suitable for large-scale systems. The approach is based on C++ PSTL,
which provides a good trade-off between performance and portability. We apply this
methodology to a use-case, that is, the Gaia AVU-GSR solver, previously parallel-
ized on the CPU with MPI+OpenMP and then ported to the GPU firstly by replac-
ing OpenMP with OpenACC and then directly by coding with CUDA (that is the
version currently used for production). Since the Gaia AVU-GSR solver implements
a LSQR iterative algorithm, widely employed in HPC codes [31–37], and has a
computation-dominated, instead of communication-dominated, nature, we consid-
ered this use case paradigmatic for showcasing the benefits of PSTL for a broad
class of scientific applications.

The primary objective of this work was to demonstrate that the C++ PSTL ver-
sion of the application is not significantly slower than its CUDA counterpart. For
this, we compared the performance of the CUDA and C++ codes on a single node
of three different accelerated architectures, EPITO (ARM+NVidia), Karolina
(AMD+NVIDIA), and Leonardo (Intel+NVIDIA), and we explored their weak
scalability on the Leonardo supercomputer. The two codes present comparable per-
formance and scaling behaviors (using C++ we achieved about 70% of the CUDA
performance), which indicates that C++ PSTL is a suitable approach to parallelize
the Gaia AVU-GSR code in perspective of the future Gaia Data Releases. More gen-
erally, it points to C++ PSTL as a more portable and comparably performant solu-
tion for other HPC applications.

Fig. 3   Weak scaling properties of the C++ (red) and CUDA (blue) codes from 1 to 256 nodes (i.e., from
4 to 1024 GPUs) of Leonardo, as a function of the number of nodes (bottom) and of GPUs (top axis).
Error bars are present in each panel, but some are not visible since they are smaller than the point mark-
ers. The dashed lines in each panel are shown as a reference, and they represent the ideal cases, i.e., the
quantities measured on one node for the C++ (dashed red) and the CUDA (dashed blue) codes

	 G. Malenza et al.

1 3

Unlike the CUDA code, where H2D and D2H data transfers are explicitly han-
dled by the programmer, in C++ PSTL, they are automatically managed by the
compiler with the Unified Memory mechanism. We structured the Gaia AVU-GSR
code to minimize data transfers during iteration. The results of [26, 29] show that
data transfers only represent the ∼ 3% of one iteration. For this reason, using Unified
Memory in C++ PSTL did not produce a relevant overhead, which could be even
more reduced by further developing the C++ PSTL approach on the AVU-GSR
code in the future.

We have to point out that rewriting the code in C++ PSTL to make it more port-
able while maintaining its performance does not necessarily come for free. Compar-
ing Listing 4 with Listings 1 and 2, which show the aprod 1 function in C++ PSTL,
OpenMP, and OpenACC, we can see that the parallelization with C++ PSTL might
be less intuitive than the one of OpenMP and OpenACC, obtained with high-level
directives, by a non-expert programmer. As for CUDA (Listing 3), the time-to-solu-
tion to obtain a version of the code in C++ PSTL might be longer than in OpenMP
and OpenACC since a code rearrangement is required. However, the advantages of
this effort can be seen in the long term. C++ PSTL porting produces a single version
of the code that can run on different platforms without significantly losing perfor-
mance, as will be tested in future work. Moreover, it is essential to note that, being
C++ PSTL a standard, it guarantees more straightforward code maintainability.

Since with C++ PSTL we do not significantly loose in performance compared
to CUDA, in the near future, we aim to bring this analysis to a next level, i.e., to
test the performance portability of the C++ PSTL Gaia AVU-GSR code on differ-
ent GPU architectures such as NVIDIA and AMD. Moreover, we aim to extend this
study to other code versions, which have to be either optimized or built, parallelized

Fig. 4   Figure 4a: maximum average iteration time of the C++ (red) and CUDA (blue) codes from 1 to
256 nodes (i.e., from 4 to 1024 GPUs) of Leonardo, as a function of the number of nodes (bottom axis)
and of GPUs (top axis). The error bars on the maximum average iteration time, calculated as the standard
deviation from the three simulations, are smaller than the point markers. The dashed lines are shown as
a reference and represent the ideal cases, i.e., the maximum average iteration time measured on one node
for the C++ (dashed red) and the CUDA (dashed blue) codes. Figure 4b: efficiency of the C++ PSTL
code calculated as the ratio between the maximum average iteration time of the CUDA and C++ codes,
from 1 to 256 nodes (i.e., from 4 to 1024 GPUs) of Leonardo

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

with OpenACC, OpenMP that allows GPU offload, HIP, SYCL, and Kokkos. We
plan to test the scalability properties of these codes compiled with different com-
pilers (i.e., llvm and clang besides nvc) on several architectures, such as RISC-V,
and accelerators, such as AMD GPUs, running for example on Setonix, located at
the Pawsey Supercomputing Center and ranked in the Top500 list. A more detailed
study can be performed, evaluating the FLOPs of each operation on the CPU and
GPU and how each MPI communication operation would increase in time as the
number of nodes increases. This would provide a theoretical scalability study to be
compared with the experimental results.

Besides scalability, we will also aim to investigate the numerical stability of
the system solution at increasing model sizes executed on an increasing number of
compute resources. Moreover, we plan to compare the energy consumption of the
diverse application versions on different platforms to address “Green Computing”
(i.e., the ability to build infrastructures and applications to execute calculations that
involve large data volumes without excessively increasing the energetic consump-
tion), another important target of HPC, besides performance portability. For the lat-
ter point, Setonix would be a suitable platform, being classified as the world’s fourth
“greenest” supercomputer as ranked in the Green5009 list.

Acknowledgements  We thank the referees for improving this work. The results reported in this work
are part of foreground knowledge of the project “Investigation of Scalability, Numerical Stability, and
Green Computing of LSQR-based applications involving Big Data in perspective of Exascale systems:
the ESA Gaia mission case study” minigrant awarded to Dr. Valentina Cesare by INAF. We acknowl-
edge EuroHPC JU for the access to the Karolina supercomputer at IT4Innovations (Czech Republic). We
acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance
computing resources and support. We acknowledge the University of Torino for the access to EPITO@
HPC4AI cluster. This work has been also partially supported by the Spoke 1 “FutureHPC & BigData” of
the ICSC–Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Com-
puting and hosting entity, funded by European Union-Next GenerationEU; by the Italian Space Agency
(ASI) (Grant No. 2018-24-HH.0) as part the Gaia mission; by EuroHPC JU under the project EUPEX
(grant n. 101033975).

Funding  Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

9  https://​www.​top500.​org/​lists/​green​500/​2023/​11/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.top500.org/lists/green500/2023/11/

	 G. Malenza et al.

1 3

References

	 1.	 Carpenter P, Utz U-H, Narasimhamurthy S, Suarez E (2022) Heterogeneous high performance com-
puting. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​60904​25

	 2.	 Dagum L, Menon R (1998) Openmp: an industry-standard api for shared-memory programming.
IEEE Comput Sci Eng 5(1):46–55. https://​doi.​org/​10.​1109/​99.​660313

	 3.	 Farber R (2016) Parallel programming with OpenACC, 1st edn. Morgan Kaufmann Publishers Inc.,
San Francisco

	 4.	 Aldinucci M, Cesare V, Colonnelli I, Martinelli AR, Mittone G, Cantalupo B, Cavazzoni C, Drocco
M (2021) Practical parallelization of scientific applications with OpenMP, OpenACC and MPI. J
Parallel Distrib Comput 157:13–29. https://​doi.​org/​10.​1016/j.​jpdc.​2021.​05.​017

	 5.	 Reed DA, Gannon D, Dongarra JJ (2022) Reinventing high performance computing: challenges and
opportunities. arXiv:​abs/​2203.​02544, https://​doi.​org/​10.​48550/​arXiv.​2203.​02544

	 6.	 Amaral V, Norberto B, Goulão M, Aldinucci M, Benkner S, Bracciali A, Carreira P, Celms E, Cor-
reia L, Grelck C, Karatza H, Kessler C, Kilpatrick P, Martiniano H, Mavridis I, Pllana S, Respício
A, Simão J, Veiga L, Visa A (2019) Programming languages for data-intensive HPC applications: a
systematic mapping study. Parallel Comput. https://​doi.​org/​10.​1016/j.​parco.​2019.​102584

	 7.	 open-std.org. https://​www.​open-​std.​org/​jtc1/​sc22/​wg21/​docs/​papers/​2013/​n3724.​pdf. Accessed
15-01-2024 (2013)

	 8.	 Group TKSW (2021) SYCL 2020 Specification (revision 4). Rev. 8. https://​regis​try.​khron​os.​org/​
SYCL/​specs/​sycl-​2020/​pdf/​sycl-​2020.​pdf

	 9.	 Edwards HC, Trott CR, Sunderland D (2014) Kokkos: enabling manycore performance portability
through polymorphic memory access patterns. J Parallel Distrib Comput 74(12):3202–3216. https://​
doi.​org/​10.​1016/j.​jpdc.​2014.​07.​003

	10.	 Aldinucci M, Ruggieri S, Torquati M (2010) Porting decision tree algorithms to multicore using
FastFlow. In: Balcázar JL, Bonchi F, Gionis A, Sebag M (eds) Proceedings of European Conference
in Machine Learning and Knowledge Discovery in Databases (ECML PKDD). LNCS, vol 6321.
Springer, Barcelona, pp 7–23. https://​doi.​org/​10.​1007/​978-3-​642-​15880-3_7

	11.	 AMD (2021) AMD HIP Programming Guide. Rev. 1210. https://​raw.​githu​buser​conte​nt.​com/​Radeo​
nOpen​Compu​te/​ROCm/​rocm-4.​5.2/​AMD_​HIP_​Progr​amming_​Guide.​pdf

	12.	 Latt J, Coreixas C, Marson F, Thyagarajan K, Santana Neto JP, S S, Brito G (2021) Porting a sci-
entific application to GPU using C++ standard parallelism. https://​doi.​org/​10.​13140/​RG.2.​2.​27117.​
92647

	13.	 Gomez U, Brito Gadeschi G, Weinzierl T (2023) GPU offloading in ExaHyPE through C++ stand-
ard algorithms, pp 2302–09005 https://​doi.​org/​10.​48550/​arXiv.​2302.​09005, arXiv:​2302.​09005 [cs.
MS]

	14.	 Lin W-C, Deakin T, McIntosh-Smith S (2022) Evaluating iso c++ parallel algorithms on heteroge-
neous hpc systems. In: 2022 IEEE/ACM International Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS), pp 36–47. https://​doi.​
org/​10.​1109/​PMBS5​6514.​2022.​00009

	15.	 Becciani U, Sciacca E, Bandieramonte M, Vecchiato A, Bucciarelli B, Lattanzi MG (2014) Solving
a very large-scale sparse linear system with a parallel algorithm in the gaia mission. In: 2014 Inter-
national Conference on High Performance Computing Simulation (HPCS), pp 104–111. https://​doi.​
org/​10.​1109/​HPCSim.​2014.​69036​75

	16.	 Paige CC, Saunders MA (1982) Lsqr: an algorithm for sparse linear equations and sparse least
squares. ACM Trans Math Softw (TOMS) 8(1):43–71. https://​doi.​org/​10.​1145/​355984.​355989

	17.	 Paige CC, Saunders MA (1982) Algorithm 583: Lsqr: sparse linear equations and least squares
problems. ACM Trans Math Softw (TOMS) 8(2):195–209. https://​doi.​org/​10.​1145/​355993.​356000

	18.	 Cesare V, Becciani U, Vecchiato A, Lattanzi MG, Pitari F, Raciti M, Tudisco G, Aldinucci M, Buc-
ciarelli B (2022) The Gaia AVU-GSR parallel solver: preliminary studies of a LSQR-based applica-
tion in perspective of exascale systems. Astron Comput 41:100660. https://​doi.​org/​10.​1016/j.​ascom.​
2022.​100660. arXiv:​2212.​11675 [astro-ph.IM]

	19.	 Malenza G, et al (2022) Analysis of openfoam performance obtained using modern c++ paralleliza-
tion techniques. https://​hdl.​handle.​net/​20.​500.​11767/​130796

	20.	 Asahi Y, Padioleau T, Latu G, Bigot J, Grandgirard V, Obrejan K (2022) Performance port-
able vlasov code with c++ parallel algorithm. In: 2022 IEEE/ACM international workshop on

https://doi.org/10.5281/zenodo.6090425
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/j.jpdc.2021.05.017
http://arxiv.org/2203.02544
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.1016/j.parco.2019.102584
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3724.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1007/978-3-642-15880-3_7
https://raw.githubusercontent.com/RadeonOpenCompute/ROCm/rocm-4.5.2/AMD_HIP_Programming_Guide.pdf
https://raw.githubusercontent.com/RadeonOpenCompute/ROCm/rocm-4.5.2/AMD_HIP_Programming_Guide.pdf
https://doi.org/10.13140/RG.2.2.27117.92647
https://doi.org/10.13140/RG.2.2.27117.92647
https://doi.org/10.48550/arXiv.2302.09005
http://arxiv.org/abs/2302.09005
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1109/PMBS56514.2022.00009
https://doi.org/10.1109/HPCSim.2014.6903675
https://doi.org/10.1109/HPCSim.2014.6903675
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355993.356000
https://doi.org/10.1016/j.ascom.2022.100660
https://doi.org/10.1016/j.ascom.2022.100660
http://arxiv.org/abs/2212.11675
https://hdl.handle.net/20.500.11767/130796

1 3

Toward HPC application portability via C++ PSTL: the Gaia AVU‑GSR…

performance, portability and productivity in HPC (P3HPC), pp 68–80. https://​doi.​org/​10.​1109/​
P3HPC​56579.​2022.​00012

	21.	 Bhattacharya M, Calafiura P, Childers T, Dewing M, Dong Z, Gutsche O, Habib S, Ju X, Kirby M,
Knoepfel K, Kortelainen M, Kwok M, Leggett C, Lin M, Pascuzzi VR, Strelchenko A, Viren B, Yeo
B, Yu H (2022) Portability: a necessary approach for future scientific software. https://​doi.​org/​10.​
48550/​arXiv.​2203.​09945, arXiv:​2203.​09945 [physics.comp-ph]

	22.	 Atif M, Battacharya M, Calafiura P, Childers T, Dewing M, Dong Z, Gutsche O, Habib S, Knoepfel
K, Kortelainen M, Kwok KHM, Leggett C, Lin M, Pascuzzi V, Strelchenko A, Tsulaia V, Viren
B, Wang T, Yeo B, Yu H (2023) Evaluating portable parallelization strategies for heterogeneous
architectures in high energy physics. https://​doi.​org/​10.​48550/​arXiv.​2306.​15869, arXiv:​2306.​15869
[hep-ex]

	23.	 Kang S, Hastings C, Eaton J, Rees B (2023) cugraph c++ primitives: vertex/edge-centric building
blocks for parallel graph computing. In: 2023 IEEE international parallel and distributed process-
ing symposium workshops (IPDPSW), pp 226–229 . https://​doi.​org/​10.​1109/​IPDPS​W59300.​2023.​
00045

	24.	 Gaia Collaboration, Vallenari A, Brown AGA, Prusti T, et al (2023) Gaia Data Release 3. Summary
of the content and survey properties. Astron Astrophys 674, 1 https://​doi.​org/​10.​1051/​0004-​6361/​
20224​3940, arXiv:​2208.​00211 [astro-ph.GA]

	25.	 Vecchiato A, Bucciarelli B, Lattanzi MG, Becciani U, Bianchi L, Abbas U, Sciacca E, Messineo R,
De March R (2018) The global sphere reconstruction (GSR). Demonstrating an independent imple-
mentation of the astrometric core solution for Gaia. Astron Astrophys 620:40. https://​doi.​org/​10.​
1051/​0004-​6361/​20183​3254, arXiv:​1809.​05145 [astro-ph.IM]

	26.	 Cesare V, Becciani U, Vecchiato A, Lattanzi MG, Pitari F, Aldinucci M, Bucciarelli B (2023) The
MPI + CUDA Gaia AVU-GSR parallel solver toward next-generation Exascale infrastructures. Publ
Astron Soc Pac 135(1049):074504. https://​doi.​org/​10.​1088/​1538-​3873/​acdf1e. arXiv:​2308.​00778
[astro-ph.IM]

	27.	 Cesare V, Becciani U, Vecchiato A, Lattanzi MG, Pitari F, Raciti M, Tudisco G, Aldinucci M, Buc-
ciarelli B (2021) Gaia AVU-GSR parallel solver towards exascale infrastructure. In: Astronomical
Data Analysis Software and Systems XXXI, Astronomical Society of the Pacific Conference Series.
Astronomical Society of the Pacific Conference Series, vol 527, p 457 (in Press)

	28.	 Cesare V, Becciani U, Vecchiato A, Pitari F, Raciti M, Tudisco G (2022) The Gaia AVU-GSR paral-
lel solver: preliminary porting with OpenACC parallelization language of a LSQR-based application
in perspective of exascale systems. INAF Technical Reports 163. https://​doi.​org/​10.​20371/​INAF/​
TechR​ep/​163

	29.	 Cesare V, Becciani U, Vecchiato A (2022) The MPI+CUDA Gaia AVU-GSR parallel solver in per-
spective of next-generation Exascale infrastructures and new green computing milestones. INAF
Technical Reports 164. https://​doi.​org/​10.​20371/​INAF/​TechR​ep/​164

	30.	 Aldinucci M, Rabellino S, Pironti M, Spiga F, Viviani P, Drocco M, Guerzoni M, Boella G, Mel-
lia M, Margara P, Drago I, Marturano R, Marchetto G, Piccolo E, Bagnasco S, Lusso S, Vallero S,
Attardi G, Barchiesi A, Colla A, Galeazzi F (2018) HPC4AI, an AI-on-demand federated platform
endeavour. In: ACM computing frontiers, Ischia, Italy. https://​doi.​org/​10.​1145/​32032​17.​32053​40

	31.	 Naghibzadeh S, van der Veen A-J (2017) Radioastronomical least squares image reconstruction with
iteration regularized krylov subspaces and beamforming-based prior conditioning. In: 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 3385–
3389.https://​doi.​org/​10.​1109/​ICASSP.​2017.​79527​84

	32.	 Joulidehsar F, Moradzadeh A, Doulati Ardejani F (2018) An improved 3d joint inversion method
of potential field data using cross-gradient constraint and lsqr method. Pure Appl Geophys
175(12):4389–4409. https://​doi.​org/​10.​1007/​s00024-​018-​1909-7

	33.	 Liang S-X, Jiao Y-J, Fan W-X, Yang B-Z (2019) 3d inversion of magnetic data based on lsqr
method and correlation coefficient self constrained. Prog Geophys 34(4):1475–1480. https://​doi.​org/​
10.​6038/​pg201​9CC02​75

	34.	 Liang S-X, Wang Q, Jiao Y-J, Liao G-Z, Jing G (2019) Lsqr-analysis and evaluation of the poten-
tial field inversion using lsqr method. Geophys Geochem Explor 43(2):359–366. https://​doi.​org/​10.​
11720/​wtyht.​2019.​1261

	35.	 Bin G, Wu S, Shao M, Zhou Z, Bin G (2020) Irn-mlsqr: an improved iterative reweight norm
approach to the inverse problem of electrocardiography incorporating factorization-free precondi-
tioned lsqr. J Electrocardiol 62:190–199. https://​doi.​org/​10.​1016/j.​jelec​troca​rd.​2020.​08.​017

https://doi.org/10.1109/P3HPC56579.2022.00012
https://doi.org/10.1109/P3HPC56579.2022.00012
https://doi.org/10.48550/arXiv.2203.09945
https://doi.org/10.48550/arXiv.2203.09945
http://arxiv.org/abs/2203.09945
https://doi.org/10.48550/arXiv.2306.15869
http://arxiv.org/abs/2306.15869
https://doi.org/10.1109/IPDPSW59300.2023.00045
https://doi.org/10.1109/IPDPSW59300.2023.00045
https://doi.org/10.1051/0004-6361/202243940
https://doi.org/10.1051/0004-6361/202243940
http://arxiv.org/abs/2208.00211
https://doi.org/10.1051/0004-6361/201833254
https://doi.org/10.1051/0004-6361/201833254
http://arxiv.org/abs/1809.05145
https://doi.org/10.1088/1538-3873/acdf1e
http://arxiv.org/abs/2308.00778
https://doi.org/10.20371/INAF/TechRep/163
https://doi.org/10.20371/INAF/TechRep/163
https://doi.org/10.20371/INAF/TechRep/164
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.1109/ICASSP.2017.7952784
https://doi.org/10.1007/s00024-018-1909-7
https://doi.org/10.6038/pg2019CC0275
https://doi.org/10.6038/pg2019CC0275
https://doi.org/10.11720/wtyht.2019.1261
https://doi.org/10.11720/wtyht.2019.1261
https://doi.org/10.1016/j.jelectrocard.2020.08.017

	 G. Malenza et al.

1 3

Authors and Affiliations

Giulio Malenza1 · Valentina Cesare2 · Marco Aldinucci1 · Ugo Becciani2 ·
Alberto Vecchiato3

 *	 Giulio Malenza
	 giulio.malenza@unito.it

	 Valentina Cesare
	 valentina.cesare@inaf.it

	 Marco Aldinucci
	 marco.aldinucci@unito.it

	 Ugo Becciani
	 ugo.becciani@inaf.it

	 Alberto Vecchiato
	 alberto.vecchiato@inaf.it

1	 Department of Computer Science, University of Turin, Corso Svizzera 185, 10149 Turin, TO,
Italy

2	 Astrophysical Observatory of Catania, INAF, Via Santa Sofia 78, 95123 Catania, CT, Italy
3	 Astrophysical Observatory of Turin, INAF, Via Osservatorio 20, 10025 Pino Torinese, TO, Italy

	36.	 Jaffri NR, Shi L, Abrar U, Ahmad A, Yang J (2020) Electrical resistance tomographic image
enhancement using mrnsd and lsqr. In: Proceedings of the 2020 5th International Conference on
Multimedia Systems and Signal Processing, pp 16–20. https://​doi.​org/​10.​1145/​34047​16.​34047​22

	37.	 Guo H, Zhao H, Yu J, He X, He X, Song X (2021) X-ray luminescence computed tomography using
a hybrid proton propagation model and lasso-lsqr algorithm. J Biophotonics 14:202100089. https://​
doi.​org/​10.​1002/​jbio.​20210​0089

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/3404716.3404722
https://doi.org/10.1002/jbio.202100089
https://doi.org/10.1002/jbio.202100089

	Toward HPC application portability via C++ PSTL: the Gaia AVU-GSR code assessment
	Abstract
	1 Introduction
	2 Related works
	3 The Gaia AVU-GSR code
	3.1 The OpenMP parallelization
	3.2 The OpenACC parallelization

	4 The CUDA and C++ implementations
	4.1 The CUDA parallelization
	4.2 The C++ parallelization

	5 Results
	6 Conclusions
	Acknowledgements
	References

