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Abstract
Quantum comparators hold substantial significance in the scientific community as 
fundamental components in a wide array of algorithms. In this research, we present 
an innovative approach where we explore the realm of comparator circuits, specifi-
cally focussing on three distinct circuit designs present in the literature. These cir-
cuits are notable for their use of T-gates, which have gained significant attention in 
circuit design due to their ability to enable the utilisation of error-correcting codes. 
However, it is important to note that T-gates come at a considerable computational 
cost. One of the key contributions of our work is the optimisation of the quantum 
gates used within these circuits. We articulate the proposed circuits employing 
Clifford+T gates, facilitating error correction code implementation. Additionally, 
we minimise T-gate usage, thereby reducing computational costs and fortifying 
circuit robustness against errors and environmental disturbances-essential for miti-
gating the effects of internal and external noise. Our methodology employs a bot-
tom-up examination of comparator circuits, initiating with a detailed study of their 
gates. Subsequently, we systematically dissect the functions of these gates, thereby 
advancing towards a comprehensive understanding of the circuit’s overall function-
ality. This meticulous examination forms the foundation of our research, enabling 
us to identify areas where optimisations can be made to improve their performance.
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1 Introduction

In recent years, quantum computing has been considered one of the most promis-
ing technologies to overcome the physical limitations of current computers, in 
what is known as the post-Moore era. Although it has not been definitively deter-
mined which types of problems can be solved more efficiently through quantum 
computing, more and more examples are emerging that demonstrate the advan-
tages of quantum computing over classical computing [1, 2].

Quantum computing seeks to harness the principles of quantum mechanics 
to gain advantages in the realm of computation. This opens the door to signifi-
cant advancements in various fields such as environmental systems, healthcare, 
energy, and security [3]. However, the programming paradigm of quantum com-
puters differs from the traditional approach and requires the modification of con-
ventional algorithms to adapt to the counterintuitive rules of quantum mechanics. 
The primary model used in quantum computing is based on quantum circuits, 
where traditional logic gates are replaced by quantum gates. These quantum gates 
must abide by the laws of quantum physics and, therefore, are always reversible.

Nowadays, we are in the era of Noisy Intermediate-Scale Quantum (NISQ) 
computing, and the main challenges in the design of quantum circuits and algo-
rithms are the scarcity of resources (numbers of qubits in platforms) and the dif-
ficulty in implementing fault-tolerant circuits [4]. Nowadays, quantum computers 
have a moderate number of qubits but are still not large enough to solve relevant 
problems without being affected by noise. After NISQ era, it is expected that 
we will have access to a greater number of quantum resources, which will put 
emphasis on achieving fast circuits. Therefore, it is essential to build highly opti-
mised circuits.

Time is also a crucial factor, since the longer the circuit’s computation, the 
greater the exposure to noise. In fact, the state of the system becomes less pris-
tine, leading to the degradation of the coherence responsible for phenomena such 
as interference (decoherence) and quantum parallelism, even in the absence of 
operations [5]. Therefore, noise represents a physical challenge that can be par-
tially addressed through careful circuit design. The aim is to reduce both the 
computation time of the circuit and the number of operations. Additionally, error 
detection and correction codes can be employed to mitigate the effects caused by 
noise. It is important to design circuits as compactly as possible.

The circuits used to perform arithmetic operations play a fundamental role in 
many quantum algorithms that achieve significant acceleration compared to well-
known classical methods [6–8]. However, designing the arithmetic component 
requires a thoughtful approach to minimise the number of gates used and reduce 
operational error, especially since the operations must be reversible, making real 
implementations non-trivial [8]. Currently, small circuits for the implementa-
tion of arithmetic operations, such as quantum comparators, the operation under 
study in this work, are of great interest [9]. They can be invoked from much more 
complex circuits, considering the resource limitation on quantum platforms. It 
is important to note that although these circuits may not offer a speed advan-
tage due to the use of quantum computing [10], they remain valuable for various 
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algorithms and applications, including quantum image processing, where quan-
tum comparators play a crucial role in feature extraction and classification of 
quantum images [11], as well as in quantum machine learning.

In this study, with the aim of achieving an efficient design of quantum compara-
tors, we have examined the implementation of three comparator circuits from existing 
literature. Our goal is to introduce novel comparator circuits composed exclusively of 
gates from the Clifford+T set, leveraging both the inherent advantages of these gates 
and the fact that the Clifford+T set holds the advantage that its constituent gates are 
readily available on current quantum computing platforms. These proposed circuits 
are then compared to the ones previously analysed. Additionally, we propose opti-
misations of various gates to reduce the number of T-gates needed, recognising that 
although T-gates are essential for mitigating the effects of internal and external noise, 
they come at a high cost. These optimised gates (in terms of T-gates) are integrated 
into our implementations. T-gates are advantageous for implementing error detection 
codes, facilitating their use in a quantum environment, albeit at a higher cost com-
pared to other quantum gates [9, 12, 13].

As a result of our efforts, the new comparators have successfully reduced the 
number of T-gates by more than half, representing a significant improvement in 
terms of efficiency and computational cost.

The remainder of the paper is structured as follows. Section 2 introduces funda-
mental concepts related to quantum gates and the metrics we have used to analyse all 
the circuits studied and implemented. Additionally, in this section, we propose new 
optimised versions of the TR, Peres, and GN gates. These enhanced versions are 
designed to address the inherent limitations and challenges of quantum computing. 
These innovative proposals can be seen in the context of their practical application 
in the following section. In Sect. 3, we present the study of three different quantum 
comparators and introduce three new quantum comparators built exclusively with 
Clifford+T gates. Section 4 summarises the results obtained in this paper and offers 
a comparison with three quantum comparators present in the state of the art. Finally, 
in Sect. 5, we present the general conclusions of this research.

2  Quantum gates and metrics

Quantum gates have been intricately designed for utilisation within quantum com-
puters [14]. While some quantum gates perform operations akin to their classical 
counterparts, there are also quantum gates without equivalents in classical circuits. 
Quantum gates can be represented as invertible matrices, serving as unitary oper-
ators on either a single qubit or multiple qubits, thereby transforming their initial 
states into different configurations. It is pertinent to mention that the invertibility of 
quantum gates is a consequence of their nature as unitary operators.

The possibilities offered by quantum computing are vast, with an infinite collec-
tion of quantum gates available for individual qubit manipulation. This consequently 
opens up an infinite spectrum of possibilities for cases involving two or more 
qubits [15]. Fortunately, there are specific sets of quantum gates that enable us to 
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approximate this boundless variety. One of these sets, though not the sole option, is 
commonly referred to as the Clifford+T set [16].

The Clifford group, which is generated by the H, S, and CNOT gates, boasts a broad 
range of applications due to its unique ability to convert Pauli operations into other 
Pauli operations [17]. However, it does not achieve universality, meaning it cannot 
fully encompass any quantum functionality with an arbitrarily small error by itself; it 
requires the inclusion of the T-gate to form the Clifford+T set and achieve universality 
[18].

The T-gate, also known as the �∕8 phase gate (due to the appearance of the RZ 
( �∕4 ) matrix), is widely used in quantum computing to counterbalance the impact of 
both internal and external noise. Nevertheless, it comes at a higher computational cost 
compared to other basic quantum gates, such as the Hadamard gate or Pauli gates [13, 
19–21]. This heightened cost arises from the T-gate’s requirement for more intricate 
operations and a greater number of elementary steps for its implementation. Conse-
quently, its incorporation into quantum circuits can exert a substantial impact on the 
overall computational cost of the circuit, underscoring the need for careful control over 
its usage.

Hence, the primary objective of this study has been to propose novel quantum com-
parator circuits that exclusively use Clifford+T gates. This choice is not solely based 
on its universality but also because various studies have demonstrated that a wide-
spread technique for building fault-tolerant quantum circuits is to design them using 
only Clifford+T gates [22, 23]. Research has shown that a circuit built exclusively with 
these gates allows the incorporation of error correction codes [16, 24, 25], which will 
improve its error tolerance. Additionally, the Clifford+T set holds the advantage that its 
constituent gates are readily available on current quantum computing platforms. Fur-
thermore, there is a deliberate effort to control the utilisation of T-gates to maximise 
circuit efficiency.

The quantum gates used in this work are as follows:

• The Hadamard gate or H gate is used to put the qubit into a superposition state [26]. 
The matrix that defines its behaviour is given by: 

• The CNOT gate performs an operation on two qubits, referred to as the control 
qubit and the target qubit. If the control qubit is in state �0⟩ , the target qubit remains 
unchanged; however, if the control qubit is in the state �1⟩ , the CNOT gate flips the 
state of the target qubit [12, 27]. Its behaviour is determined by the matrix presented 
as follows: 

(1)H =
1√
2

�
1 1

1 − 1

�

(2)CNOT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
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• The Pauli-X gate is equivalent to the classical NOT-gate, flipping the base state 
of a qubit. The matrix delineating its behaviour is specified as follows: 

• The T-gate induces a phase shift of �∕4 and provides universality to the Clifford 
group. However, it is computationally expensive due to its complex operations, 
which can significantly affect circuit costs, necessitating cautious utilisation. The 
matrix outlining its behaviour is given by: 

 Adjacent to this gate is its inverse, denoted as T† [28]. This gate induces a phase 
change of −�∕4 and shares the same characteristics of high cost and the inability 
to be efficiently simulated in a classical environment, similar to the T gate [13]. 
Its behaviour is defined by the matrix: 

• The S gate is equivalent to applying two consecutive T-gates. The defining 
matrix for its behaviour is given by: 

• The Pauli-Z gate leaves the initial state �0⟩ unchanged and assigns �1⟩ to −�1⟩ . Its 
behaviour is defined by the matrix: 

• The Peres gate, given three qubits A, B, and C, returns A,B⊕ A , and C⊕ AB . 
The most standard implementation requires one CNOT gate, two Controlled-V 
gates, and one Controlled-V† gate [29]. However, it is important to note that this 
implementation will be optimised, and the details of this optimisation will be 
explained in the following subsection (see Subsection 2.1.2).

• The TR gate, presented in [30], given three qubits A, B, and C, returns A,A⊕ B , 
and AB̄⊕ C . An optimised version was proposed in [31] and can be seen 
in Fig. 1. This optimised version, also working with three qubits A, B, and C, 
produces outputs B,A⊕ C , and AB̄⊕ C . However, it is important to note that 
in [32], a different implementation of the TR gate is used. This version consists 
of two Controlled-V gates, one Controlled-V† gate, and one CNOT gate, and it is 
this particular version of the TR gate that we propose optimising to reduce it cost 
in terms of T-gates.

(3)Pauli X =

(
0 1

1 0

)

(4)T =

(
1 0

0 e
i�

4

)

(5)T† =

(
1 0

0 e
−

i�

4

)

(6)S =

(
1 0

0 i

)

(7)Pauli Z =

(
1 0

0 − 1

)
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• The Temporary logical-AND gate is an alternative to the Toffoli gate, introduced 
in [33], focused on reducing the cost of T-gates. It performs the AND operation 
on two qubits and stores the result in an auxiliary qubit. It uses four T-gates, 
while the Toffoli gate uses seven T-gates, achieving an optimised converter. 
However, it should be noted that, unlike the Toffoli gate, the Temporary logical-
AND gate cannot be applied to just any qubit C when one wants to perform the 
operation C⊕ AB . Instead, this gate can only perform the AB operation on a 
qubit that has previously been prepared in a specific state of 1√

2

�
�0⟩ + e

i�

4 �1⟩
�
 , 

called �T⟩ . The aim of preparing the qubits in the state �T⟩ is to minimise the 
impact of the T gate on the overall circuit time. This is because the T gate is not 
only more resource-intensive than other gates but also takes longer to execute 
[13, 33]. The Temporary logical-AND gate functions on qubits that have already 
been readied in this specific state, ensuring these states are ready right from the 
beginning of the circuit. This accelerates the preparation of qubits in the required 
state, reducing the workload at the moment the gate is applied and ultimately 
enhancing the efficiency of the quantum circuit. Its implementation can be seen 
in Fig. 2.

• The Controlled-V and Controlled-V† gates [14] have the same properties as the V 
and V† gates, but they represent a controlled version of the V gates. Taking into 
account that in this work, standard bases �0⟩ and �1⟩ will be used, and the possible 
outcomes of the gates V and V† are shown below: 

(8)V(0) =
1 + i

2

(
1 − i

−i 1

)(
1

0

)
=

1 + i

2

(
1

−i

)

Fig. 1  Most standard version of the TR gate proposed in [31]

Fig. 2  Implementation of Temporary logical-AND gate
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 Taking these possibilities into account, there are three important properties that 
can be derived from the gates V and V†:

– V(A) × V(A) = Ā

– V†(A) × V†(A) = Ā

– V(A) × V†(A) = V†(A) × V(A) = A

   These properties are widely used in various works to simplify and reduce 
quantum circuits [7, 34, 35]. The matrices that define the behaviour of the Con-
trolled-V and Controlled-V† gates are given by: 

• The GN gate was proposed in [36] and is made up of two Controlled-V gates, one 
Controlled-V† gate, and one CNOT gate. This gate returns A⊕ C , AC⊕ B , and 
C. This implementation will be optimised and the details of this optimisation will 
be explained in the following subsection (see Sect. 2.1.3).

To assess the efficiency of the circuits analysed and proposed, the following 
established metrics will be followed:

• T-count: total number of T-gates used in a quantum circuit. A lower T-count is 
generally considered better because it implies that fewer of these gates are being 
used in the circuit.

• T-depth: the number of layers of T-gates in the circuit, where a layer consists 
of quantum operations that can be performed simultaneously. Therefore, a lower 
T-depth implies that the circuit can be executed in fewer stages, which can be 
beneficial in reducing execution time. In general, a lower T-depth is more effi-

(9)V(1) =
1 + i

2

(
1 − i

−i 1

)(
0

1

)
=

1 + i

2

(
−i

1

)

(10)V†(0) =
1 − i

2

(
1 i

i 1

)(
1

0

)
=

1 − i

2

(
1

i

)

(11)V†(1) =
1 − i

2

(
1 i

i 1

)(
0

1

)
=

1 − i

2

(
i

1

)

(12)Controlled V =
1 + i

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 − i

0 0 − i 1

⎞⎟⎟⎟⎠

(13)Controlled V† =
1 − i

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 i

0 0 i 1

⎞⎟⎟⎟⎠
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cient in terms of quantum resources and can execute more quickly on quantum 
hardware.

• Ancillary qubits: inputs that have a constant value (for example, 0) used for aux-
iliary operations.

The metrics of the gates mentioned above are presented in Table 1. Furthermore, the 
gates belonging to the Clifford+T set have been indicated.

2.1  Proposed implementations of quantum gates

In our work, we introduce innovative implementations for three fundamental quan-
tum gates: the Peres gate, the TR gate, and the GN gate. These proposed optimisa-
tions aim to reduce the number of T-gates needed.

2.1.1  TR Gate

A new implementation of the TR gate is proposed to minimise the utilisation of 
T-gates. This innovative approach is based on the use of a Temporary logical-AND 
gate, along with two Pauli-X gates and two CNOT gates (see Fig. 3).

In this version, the following can be observed:

• The first Pauli-X gate negates qubit B before the Temporary logical-AND gate 
performs the qubit multiplication.

• Next, the Temporary logical-AND gate performs the AB multiplication and 
stores the result in the ancillary qubit.

• A CNOT gate acts on the ancillary qubit, that is, AB performing an ⊕ operation 
with qubit C, resulting in AB⊕ C.

Table 1  Metrics of the described gates and membership in the Clifford+T set

Gate T-count T-depth  Ancillary qubits In 
Clifford+T 
set

Pauli-X 0 0 0 Yes
Pauli-Z 0 0 0 Yes
CNOT 0 0 0 Yes
T 1 1 0 Yes
Hadamard 0 0 0 Yes
C-V y C-V† 3 2 0 No
S 0 0 0 Yes
TR [31] 7 4 0 No
TR [32] 9 6 0 No
Peres 9 6 0 No
Temporary logical-AND 4 2 1 No

GN 9 6 0 No



1 3

Lowering the cost of quantum comparator circuits  

• The second Pauli-X gate restores qubit B to its non-negated state so that the sec-
ond CNOT gate can perform the A⊕ B operation.

2.1.2  Peres gate

The new version of the Peres gate uses a Temporary logical-AND gate and two 
CNOT gates (see Fig. 4).

In this version, it can be observed that:

• The Temporary logical-AND gate performs the multiplication operation AB and 
stores the result in the ancillary qubit.

• A CNOT gate acts on the ancillary qubit, that is, on AB performing an ⊕ 
operation with qubit C, resulting in AB⊕ C.

• The second CNOT gate performs the A⊕ B operation.

Fig. 3  New implementation of the TR gate, where A, B, and C are the qubits on which the operation is 
performed, and T is the auxiliary qubit initialised with the special state for the Temporary logical-AND 
gate

Fig. 4  Proposed new optimised version of the Peres gate, where A, B, and C are the qubits on which the 
operations are performed, and T is the auxiliary qubit initialised with the special state for the Temporary 
logical-AND gate
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2.1.3  GN Gate

An improved version of the GN gate is proposed, which reduces the T-count and 
T-depth. This version uses a Temporary logical-AND gate, two CNOT gates, and 
two Pauli-X gates. The implementation of this proposal can be seen in Fig. 5.

In this optimised version, it can be observed that:

• The first Pauli-X gate negates qubit A before the Temporary logical-AND gate 
performs the multiplication of the qubits.

• Next, the Temporary logical-AND gate performs the multiplication AC and 
stores the result in the auxiliary qubit.

• A CNOT gate acts on the ancillary qubit, i.e., on AC , performing an ⊕ operation 
with qubit B, resulting in AC⊕ B.

• The second Pauli-X gate returns the qubit A to its non-negated state so that the 
CNOT gate can perform the operation A⊕ C.

The T-count for all proposed gates is 4, with a consistent T-depth of 2 for each gate. 
This uniformity arises because the Temporary logical-AND gate is the sole contrib-
utor to the T-gate cost. Moreover, it is important to observe that the number of auxil-
iary qubits has increased by one in all cases.

3  Proposed comparator circuits

In the realm of quantum computing, various quantum comparators have been 
explored in the literature [9, 31, 32, 36–40]. In [9], two comparators have been 
developed as part of their work. The first comparator focuses on reducing the 
T-count, while the second one is oriented towards minimising the T-depth. In pur-
suit of these objectives, authors make use of the Temporary logical-AND gate to 
diminish the number of involved T-gates. In [37–39], Toffoli gates are employed. 
However, these circuits are not considered in this study, as their optimisation is 
straightforward (replacing the Toffoli gate with a Temporary logical-AND gate and 

Fig. 5  Proposed version of the GN gate, where A, C, and B are the qubits on which the operations are 
performed, and T is the auxiliary qubit initialised with the special state for the Temporary logical-AND 
gate
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adding auxiliary qubits). We have focused on the comparator circuits presented in 
[31, 32, 36, 40]. These comparators utilise three specific gates (GN, Peres, and TR 
gates) with a high cost in terms of T-gates. These gates have not undergone opti-
misation in terms of T-gates or could potentially benefit from various optimisation 
techniques. Specifically, we have selected three of them [32, 36, 40], because they 
employ several types of gates from the others and best illustrates the methodology 
being followed. Furthermore, it is worth noting that reference [31] could be opti-
mised using the same techniques applied to the others. Based on the studies of these 
three selected comparator circuits found in the literature, in this work, three new 
comparator circuits are presented. These circuits serve two primary objectives: first, 
to construct them by exclusively utilising Clifford+T gates, and second, to minimise 
the dependence on T-gates, thereby optimising overall circuit efficiency. Further-
more, it is worth noting that all of these circuits, both those that have been analysed 
and those newly proposed, have been successfully implemented in IBM Quantum 
Platform (https:// quant um- compu ting. ibm. com/). These implementations are avail-
able upon request to the authors, allowing for on-demand access to the circuits for 
further study and experimentation.

These new implementations follow the same methodology, which involves a thor-
ough analysis of the circuits and the use of the newly proposed gates outlined in 
Sect. 2.1.

3.1  Thapliyal et al. comparator and optimised proposal

The first circuit on which we have based our proposal is the one described in [32]. 
This 2-bit half-comparator is made up of two R-Bcomps modules, two CNOT gates, 
and two TR gates (see Fig.  6). In Fig.  6a, it can be observed the gates that form 
each module R-Bcomp, which are two TR gates and one CNOT gate. The relevant 

Fig. 6  Implementation of a an R-Bcomp module and b a 2-bit half-comparator proposed by Thapliyal 
et al.  [32]

https://quantum-computing.ibm.com/
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outputs of this circuit are Z and Y, Y becomes 1 when the condition x > y is satisfied, 
and Z becomes 1 when x < y.

Following the implementation outlined in [32] and the metrics of the gates pre-
sented in Table 1, the resulting metrics for both the R-Bcomp modules and the over-
all circuit are consolidated in Table 2. The table provides a comprehensive overview, 
including T-count, T-depth, and ancillary qubits for each R-Bcomp module as well 
as the 2-bit half-comparator.

Upon examination of the circuit, it can be seen that the large number of T-gates 
comes from the TR gate. Therefore, using the new version of the TR gate proposed 
in Sect. 2.1.1, a new comparator circuit is proposed, as shown in Fig. 7. Changes 
made to the TR gates in the R-Bcomp modules and the comparator circuit, which 
have been replaced by the new proposed version of the gate, can be observed.

To calculate the metrics of this circuit, it has been considered that two consecu-
tive identical gates cancel each other (as shown in Fig. 7). It is important to note 
that this cancellation property holds specifically for Hermitian gates. Therefore, 
when TR gates are replaced with the proposed implementation, several Pauli-X and 
CNOT gates are eliminated, given that they are Hermitian gates [41]. After reducing 
the circuit, we have:

• Six TR gates, in which the duplicate sequential gates have been removed when 
substituted in the original circuit.

• Four H gates that initialise the qubits that form the numbers to be compared.
• One CNOT gate.

Table 2  Quantum circuit 
metrics for the R-Bcomp 
module and Thapliyal’s 2-bit 
half-comparator [32]

Circuit T-count T-depth Ancillary 
qubits

R-Bcomp module 18 12 2
2-bit half-comparator 54 24 4

Fig. 7  Optimised proposed circuit, labelled optimised proposed circuit 1, where x1 and x0 represent a 
two-bit number, as well as y1 and y0, while the qubits labelled with T represent ancillary qubits with the 
specific initial state for the Temporary logical-AND gate
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Looking at Fig. 7, it can be determined that the circuit contains 6 TR gates, result-
ing in a total of 6 × 4 = 24 T-gates. To calculate the T-depth, we need to observe the 
number of T-gates that are performed in parallel. It is evident that the two TR gates 
are executed in parallel two times, resulting in a T-depth of 4 (sequential TR gates) 
×2 = 8 . However, it should be noted that the initialisation of the auxiliary qubit for 
the Temporary logical-AND gate was performed only once; thus, the T-depth of the 
circuit is 5.

The metrics can be observed in Table  3. When comparing these results with 
Table 2 (2-bit half-comparator), it can be observed that both the T-count and T-depth 
are reduced significantly.

3.2  Maity’s comparator and optimised proposal

The next comparator that has been studied was proposed by Maity [40]. This full 
2-qubit comparator uses several Peres gates. This comparator can be seen in Fig. 8. 
The relevant outputs of this circuit are X, Y and Z, X becomes 1 when the condition 
x < y is met, Y becomes 1 when x = y, and Z becomes 1 when x > y.

Thus, the metrics of this comparator can be observed in Table 4.
Following the version of the Peres gate proposed in Sect. 2.1.2, the optimised cir-

cuit proposed can be seen in Fig. 9.

Table 3  Metrics calculated of 
the half-comparator Optimised 
proposed circuit 1

Circuit T-count T-depth Ancillary qubits

Optimised proposed circuit 1 24 5 10

Fig. 8  Full 2-bit comparator proposed by Maity in [40]

Table 4  Metrics calculated of 
full 2-bit comparator proposed 
by Maity [40]

Circuit T-count T-depth Ancillary qubits

Maity’s comparator 36 16 4
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Regarding T-count and T-depth, each Peres gate has a T-count of 4, so the num-
ber of T-gates in this circuit is 4 × 4 = 16 , while the T-depth is 4 × 2 = 8 . Neverthe-
less, it is important to note that the auxiliary qubit initialisation for the Temporary 
logical-AND gate occurred only on a single occasion, resulting in a T-depth of 4 for 
the circuit. The metrics of the proposed comparator can be summarised in Table 5.

Comparing these results with Table 4, once again, the T-count and T-depth are 
reduced by more than half.

3.3  Kalita et al. comparator and optimised proposal

The last comparator on which we rely is the one proposed by Kalita et al. [36], spe-
cifically their 1-bit version (see Fig. 10).

The metrics of this comparator can be observed in Table 6.
Following the implementation of the GN gate proposed in Sect. 2.1.3, we propose 

a new circuit that uses this gate, as shown in Fig. 11.

Fig. 9  Proposed optimised circuit, labelled optimised proposed circuit 2 where x1 and x2 represent a 
2-bit number, same as y1 and y2, while the qubits labelled T represent ancillary qubits that have the spe-
cific initial state for the Temporary logical-AND gate

Table 5  Metrics calculated of 
the proposed full-comparator 
Optimised proposed circuit 2

Circuit T-count T-depth Ancillary Qubits

Optimised proposed circuit 2 16 4 8

Fig. 10  Full 1-bit comparator proposed in [36], where A and C are the qubits to be compared
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Regarding the calculation of the metrics of this circuit, the only gate that includes 
T-gates is the proposed GN gate, so the total T-count is 4, while the T-depth is 2. 
The metrics of the proposed comparator can be seen in Table 7. When these results 
are compared to Table 6, it can be observed that both the T-count and the T-depth 
are reduced by more than half.

4  Results

Table 8 presents a summary of the metrics associated with the various circuits stud-
ied and proposed. These metrics encompass the T-count, T-depth, the number of 
ancillary qubits employed in each circuit, the comparator type, and the number of 
digits being compared.

As shown in Table 8, the proposed circuits, namely Optimised proposed circuit 
1, Optimised proposed circuit 2, and Optimised proposed circuit 3, demonstrate sig-
nificant improvements in terms of both T-count and T-depth when compared to their 
original counterparts. This clear reduction in the T-count and T-depth metrics indi-
cates a substantial enhancement in the efficiency and computational performance of 
these circuits.

Optimised proposed circuit 1 exhibits the most remarkable improvements, with 
a T-count reduction from 54 to 24 and a T-depth reduction from 24 to 5 compared 
to the circuit by Thapliyal and Ranganathan [34]. Similarly, Optimised proposed 
circuit 2 and Optimised proposed circuit 3 also show significant reductions in both 

Table 6  Metrics of full-
comparator proposed in [36]

Circuit T-count T-depth Ancillary qubits

Kalita et al. comparator 9 6 2

Fig. 11  Proposed optimised circuit, labelled Optimised proposed circuit 3, where x and y are the digits to 
be compared

Table 7  Metrics calculated of 
the full-comparator Optimised 
proposed circuit 3

Circuit T-count T-depth Ancillary qubits

Optimised proposed circuit 3 4 2 2
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T-count and T-depth when compared to the circuits by Maity [40] and Kalita and 
Saikia [36], respectively. These improvements suggest that the optimisations intro-
duced for the TR, Peres, and GN gates have had a highly positive impact on the 
overall performance of the circuits.

Significant improvements in computational efficiency are achieved by optimising 
circuits to reduce both T-count and T-depth. While the optimised circuits do require 
a slightly increased number of ancillary qubits, the trade-off between the utilisation 
of auxiliary qubits and the improved computational efficiency is apparent. These 
enhancements are exclusively implemented using Clifford+T gates, emphasising a 
focus on efficiency and precision in quantum computations. This underscores the 
potential practical applications of our proposed optimisations in the field of quantum 
circuit design.

5  Conclusions

In this study, we delve into the exploration of three distinct quantum comparator 
circuit designs from existing literature, focusing on their reliance on T-gates, which 
are currently receiving considerable attention in the design of quantum circuits. It is 
crucial to acknowledge that T-gates are associated with substantial computational 
costs.

One of the primary contributions of our work lies in optimising the quantum gates 
employed within these circuits (the TR, Peres and GN gates), as we propose three 
new quantum comparators using them. This approach allows us to use a methodol-
ogy to design quantum circuits that can be transpiled onto real quantum platforms. 
In doing so, we harness the inherent advantages in the Clifford+T set. This entails 
efficiently using the available gates on current quantum computing platforms and, 
notably, acknowledging their potential to be converted into fault-tolerant configura-
tions through the implementation of error-correcting codes, harnessing the potential 
of future quantum hardware capable of supporting such fault-tolerant designs. Fur-
thermore, we have taken into account the cost of T-gates to avoid the computational 
overhead associated with their usage.

As part of our future work, we plan to scale up the proposed circuits so that they 
can effectively compare the number of desired digits. This expansion will contribute 

Table 8  Comparison of the studied circuits and proposed circuits in terms of T-count, T-depth, ancillary 
qubits, comparator type, and the number of digits being compared

Circuit T-count T-depth Anc. qubits Type No digits

Thapliyal et al. [32] 54 24 4 Half 2
Optimised proposed circuit 1 24 5 10 Half 2
Maity [40] 36 16 4 Full 2
Optimised proposed circuit 2 16 4 8 Full 2
Kalita and Saikia [36] 9 6 2 Full 1
Optimised proposed circuit 3 4 2 2 Full 1
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to practical applications in quantum computing, allowing for more complex and 
meaningful computations.
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