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Abstract
Edge computing is essential to handle increasing data volumes and processing 
capacities. It provides real-time and secure data processing near data sources, like 
smart devices, alleviating cloud computing energy use, and saving network band-
width. Specialized accelerators, like GPUs and FPGAs, are vital for low-latency 
edge computing but the requirements to customized code for different hardware and 
vendors suppose important compatibility issues. This paper evaluates the potential 
of SYCL in addressing code portability issues encountered in edge computing. We 
employed the Polybench suite to compare various SYCL implementations, spe-
cifically DPC++ and AdaptiveCpp, with the native solution, CUDA. The disparity 
between SYCL implementations was negligible, at just 5%. Furthermore, we evalu-
ated SYCL in the context of specific edge computing applications such as video pro-
cessing using three different optical flow algorithms. The results revealed a slight 
performance gap of 3% when transitioning from CUDA to SYCL. Upon evaluating 
energy consumption, the observed difference ranged from ±10% , depending on the 
application utilized. These gaps are the price one may need to pay when achieving 
the ability to successfully run the same code on two distinct edge boards. These 
findings underscore SYCL’s capacity to increase productivity in terms of develop-
ment costs and facilitate IoT deployment without being locked into a particular plat-
form or manufacturer.
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1  Introduction

Edge computing has emerged as a crucial technology due to the growing volume of 
data and processing demands. Edge computing operates in close proximity to data 
sources [1, 2], like smart devices, storing and processing data at the network’s edge. 
It offers fast, real-time, and secure data processing [3], addressing issues like energy 
consumption in cloud computing, cost reduction, and network bandwidth relief. 
The increasing prominence of IoT [4] has transformed edge computing into a highly 
discussed subject, presenting ongoing challenges [5–7] such as selecting the most 
suitable platform to achieve among others real-time data processing near the data 
source and ensuring robust data privacy. Nevertheless, one of the foremost chal-
lenges persisting in the deployment of IoT systems is the imperative of achieving 
reduced energy consumption [8] while concurrently upholding robust computational 
capabilities essential for supporting real-time AI or ML applications.

To address these handicaps, there is a growing trend toward the adoption of accel-
erators, collectively referred to as xPU (including GPUs, FPGAs, SoCs, and more), 
which substantially reduce power footprint [9] when compared to general-purpose 
CPUs. However, employing accelerator languages designed for specific hardware 
architectures introduces compatibility obstacles meanwhile a custom code for each 
device (e.g., CUDA, VHDL, etc.) is imperative. The industry’s motivation to pro-
gress in this direction is compounded by two significant challenges: firstly, to select 
the most suitable system from a huge plethora of devices with notable architectural 
differences, and secondly, the absence of a universally accepted programming stand-
ard. Under this premise, we can highlight recent advances with the creation of the 
Unified Acceleration (UXL) Foundation,1 announced by the Linux Foundation on 
September 2023, which proposes oneAPI [10] and SYCL [11] programming as an 
open-source specification to support a common code base capable of running across 
multiple architectures.

Until now, native accelerator languages have empowered programmers to deploy 
code tailored for specialized hardware devices like GPUs, FPGAs, or ASICs. These 
languages mostly proprietary APIs are engineered to enhance the performance and 
efficiency of compute-intensive applications. Nevertheless, a common challenge 
faced by most accelerator languages is their propensity to disrupt compatibility 
among different hardware architectures. For instance, CUDA [12] is tailored for 
NVIDIA GPUs, HIP [13] for AMD GPUs, or VHDL for FPGAs.

In contrast, SYCL [11] is a versatile programming model and standard that 
empowers developers to create heterogeneous parallel code based on ISO C++. 
SYCL streamlines the process by allowing programmers to write code once, which 
can then seamlessly execute across multiple vendor CPUs, GPUs, and FPGAs via 
OpenCL. What sets SYCL apart is its compatibility with modern C++ features like 
templates, lambdas, and exceptions, which facilitate the expression of parallelism 
and data movement. SYCL’s remarkable versatility not only facilitates the develop-
ment of portable applications for diverse heterogeneous edge computing systems 

1  Unified Acceleration (UXL) Foundation: https://​uxlfo​undat​ion.​org/

https://uxlfoundation.org/
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[14], including CPUs, GPUs, and FPGAs, but also serves as a foundational tool for 
implementing cost-effective exploration methodologies aimed at reducing develop-
ment complexity. By employing a unified development approach across multiple 
edge computing platforms, it becomes possible to discern the architecture that best 
suits specific problem domains, especially those reliant on critical factors such as 
power efficiency, cost-effectiveness, and real-time performance requirements.

Moreover, SYCL has been extensively tested on HPC environments and com-
pared with other programming languages such as CUDA, OpenMP, or OpenCL 
[15–17]. While the utilization of SYCL in the realm of edge computing remains rel-
atively unexplored [18] apart from preliminary experiments of porting CUDA codes 
[19]. We believe that its adoption holds significant potential for achieving perfor-
mance portability. In this paper, we assess the effectiveness of SYCL on two edge 
computing boards. We employ a suite of benchmarks to verify SYCL’s compatibil-
ity across different architectures with a special interest in performance and energy 
consumption. Furthermore, we explore the portability of various motion estimation-
based vision algorithms, incorporating accelerators from different vendors.

The following paper is organized as follows. Section  2 introduces the SYCL 
language and program architecture. In Sect.  3, the benchmarks used in this study 
are discussed. Section 4 focuses on the environment configuration and experiment 
methodology used. In Sect. 5, the experiments and results achieved are presented. In 
section 6, an experiment discussion is performed. And finally, the Sect. 7 concludes 
with the main remarks.

2 � The SYCL paradigm in a nutshell

SYCL is a standard (SYCL 2020) developed and maintained by the Khronos Group, 
similar to other standards such as OpenMP (e.g., 4.5, 5.1, etc.) or OpenCL (e.g., 
2.1, 3.0, etc.) [20–22]. Its main purpose is to enable developers to use any ISO C++ 
compiler (e.g., GCC, Clang, NVCC, ICC, etc.), and utilize C++ lambdas to encap-
sulate device kernel execution. SYCL does not aim to replace other parallel models 
or backends (e.g., CUDA, HIP, OpenCL, etc.) but rather to complement them. Since 
all these models are C++-compatible, SYCL uses C++ lambdas to extend the native 
API of different backends. For instance, when allocating memory on an NVIDIA 
GPU, a SYCL memory allocation automatically triggers a native CUDA allocation 
at background. Then, you can consider SYCL as the facade design pattern, which 
serves as a front-facing interface to other backends [23].

Up to this point, we have solely addressed the SYCL standard; however, it is 
crucial to recognize that SYCL does not have a singular implementation. The most 
feature-rich implementation is Intel Data Parallel C++ (DPC++) [14], which not 
only conforms to the SYCL 2020 standard but also includes other custom features.2 
The Intel oneAPI DPC++/C++ compiler known as DPC++ is a compiler-based 
implementation, based on the Clang/LLVM project. It is important to remark that 

2  These features are typically incorporated into new SYCL releases. However, we did not use them in 
this paper.
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DPC++ compiler is open source, although Intel also offers a commercial alterna-
tive available on the oneAPI toolkits. The oneAPI includes additional tools such as 
profiler and optimized libraries. While custom features are present in DPC++, we 
opted not to employ them in our study, with the aim of ensuring the portability of 
our developments.

The other noteworthy implementation is AdaptiveCpp previously known as hip-
SYCL, which is a library-based implementation. This means that they have devel-
oped a C++ library and rely on third-party compilers. It is generally recommended 
to use it with the stock Clang/LLVM compiler, which was designed to support 
CUDA, HIP, OpenMP, and OpenCL source codes [24, 25].

The Clang/LLVM compiler is responsible for compiling SYCL code, and it 
performs different steps such as front-end, middle-end, and back-end. In the front-
end phase, the compiler separates the host code from the device code, while in the 
middle-end phase, it transforms the device code into an intermediate representation 
known as LLVM IR. The back-end stage then compiles the LLVM IR representation 
into the device’s native code and combines everything into a final file called “fat 
binary.” This compiler can generate a final binary that can run on multiple devices, 
including multi-vendor GPUs or even FPGAs, as described in [10, 26].

Figure  1 illustrates a basic SYCL program that sums two vectors into a third 
one. The usual SYCL scheme begins by creating a queue associated with the target 
device (step 1). The queue receives the following kernels and is responsible for plac-
ing them on the device based on a policy. Additionally, we can allocate the program 
memory (step 2), which in this particular example is shared between the host and the 
device. This feature allows the host to be able to initialize the memory data on its 
side without any other restrictions (step 3), and later being used by the device with-
out any explicit data movement.

The next step is to invoke the kernel execution on the device (step 4). SYCL sup-
ports multiple parallel patterns, but in this code example, the parallel_for scheme 

Fig. 1   SYCL piece of code performing a vector addition
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is performed, specifying the problem size (length) so the kernel launches length 
instances or threads. In SYCL by default, the kernel launch is asynchronous so it is 
mandatory to add the wait() clause to maintain the execution coherence. Finally, the 
memory is freed with the corresponding call because it is tied to the queue (step 5).

3 � Benchmarking SYCL in edge platforms

SYCL was tested on both conventional and HPC systems, as the next subsection 
highlights. However, there is a dearth of literature regarding the potential use of 
SYCL on the edge. We considered the use of benchmark suites developed for or 
adapted to SYCL, as they would favor direct comparisons with other programming 
models like CUDA, and also permit the compilation with various SYCL implemen-
tations, including DPC++ and AdaptiveCpp.

3.1 � SYCL benchmark suits

When it comes to benchmarks, there are several suites available for SYCL. The 
Rodinia3 benchmarks are implemented in multiple languages, including SYCL, and 
encompass a wide range of field benchmarks, such as medical imaging or image 
compression [15, 27].

XSBench4 is a benchmark suite designed to evaluate the performance of Monte 
Carlo neutron transport codes used in the field of nuclear engineering and reactor 
physics. The benchmark suite provides a set of representative problems that simu-
late the behavior of neutrons in a nuclear reactor. These problems cover a range of 
materials, geometries, and physics phenomena to assess the performance of different 
Monte Carlo codes accurately [28].

On its side, HeCBench5 is a large collection of heterogeneous programming 
models such as (SYCL, OpenCL, CUDA, etc.). HeCBench recollects benchmarks 
from many sources, including many of Rodinia or XSBench [29]. The suit includes 
benchmarks in the area of lineal algebra, AI, or machine learning.

Polybench6 consists of a set of computationally intensive kernels that represent 
common algorithmic patterns found in scientific and engineering applications, such 
as linear algebra computations, image processing, stencil computations, and more. 
These kernels are implemented in C, CUDA, and OpenMP among other program-
ming languages, and are designed to be representative of real-world workloads [30].

SYCL-Bench7 provides a set of benchmark kernels and applications that cover a 
range of common parallel computing patterns and algorithms. These benchmarks 
are implemented using SYCL and are designed to evaluate the performance of 

3  Rodinia code migrated to SYCL through oneAPI: https://​github.​com/​artecs-​group/​rodin​ia-​dpct-​dpcpp
4  https://​github.​com/​ANL-​CESAR/​XSBen​ch
5  https://​github.​com/​zjin-​lcf/​HeCBe​nch/​tree/​master
6  https://​github.​com/​sgrau​erg/​polyb​enchG​pu
7  https://​github.​com/​unisa-​hpc/​sycl-​bench

https://github.com/artecs-group/rodinia-dpct-dpcpp
https://github.com/ANL-CESAR/XSBench
https://github.com/zjin-lcf/HeCBench/tree/master
https://github.com/sgrauerg/polybenchGpu
https://github.com/unisa-hpc/sycl-bench
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SYCL compilers, runtime systems, and underlying hardware architectures. SYCL-
Bench also integrates fifteen kernels/applications from Polybench. This suite also 
has the possibility to execute on different SYCL implementations, such as DPC++, 
ComputeCpp, triSYCL, and AdaptiveCpp [31].

3.2 � Image processing for optic flow

Optical flow, a crucial component in machine vision systems, calculates a dense field 
of displacement vector which represents the pixel motion [32] of adjacent frames in 
consecutive image frames. It holds a pivotal significance in applications of image 
processing such as video coding, tracking, autonomous driving, or biomedical imag-
ing. It is based on finding the apparent motion of objects in a sequence of images 
from a camera, extracting a two-dimensional vector related to the object’s motion.

In recent decades, significant advancements in optical flow estimation have been 
fueled by two main factors. First, the emergence of advanced-level datasets [33–35] 
has led to continuous improvements in optical flow algorithms. Second, the growing 
computational resources available in modern microchips such as GPUs accelerators 
have pushed the development of novel strategies rooted in deep learning approaches.

Horn and Schunck (HS)[36] pioneered the initial optical flow estimation pro-
posal, employing a variational method that leveraged both brightness constancy 
and spatial smoothness assumptions. It is based on applying spatial and temporal 
derivatives [37] to the intensity of the image to extract the optical flow vector by 
solving a multi-dimensional system of equations. To speedup the convergence, hier-
archy processing techniques can also be applied [37, 38]. An implementation of the 
CUDA Horn–Schunck method can be found in the CUDA toolkit examples,8 and it 
has recently been ported to SYCL using an automatic compatibility tool available on 
the Intel’s oneAPI suite.9

Subsequently, the Lucas and Kanade (LK) method [39], proposed by Bruce D. 
Lucas and Takeo Kanade, is based on the premise that optical flow remains largely 
consistent within the immediate vicinity of the analyzed pixel. This technique 
involves solving the core optical flow equations for all pixels within this local neigh-
borhood through the application of the least squares criterion.

While HS and LK represent the current state of the art in optical flow tech-
niques and have been used as benchmarks to evaluate ad hoc implementations in 
several platforms based on GPUs, FPGAs, or DSPs [40–42], they still are pertinent 
in the embedded system scope. However, it is worth noting that numerous research 
endeavors have since addressed issues such as high-speed object detection, occlu-
sion handling, illumination changes, and noise reduction. This underscores the com-
munity’s commitment to enhancing these techniques [43]. A notable proposal that 
has garnered significant attention from researchers is the TV-L1 method by Zach 
et  al. [44–46], which employs a variational approach to tackle challenges such as 

8  HSOpticalFlow - Optical Flow: https://​github.​com/​NVIDIA/​cuda-​sampl​es/​tree/​master/​Sampl​es/5_​
Domain_​Speci​fic/​HSOpt​icalF​low
9  Migrating the HSOpticalFlow Estimation from CUDA to SYCL: https://​www.​intel.​com/​conte​nt/​www/​
us/​en/​devel​oper/​artic​les/​techn​ical/​migra​ting-​hsopt​icalf​low-​from-​cuda-​to-​sycl.​html

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html
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illumination changes, outliers, and flow discontinuities. Other studies, such as those 
cited in references [47, 48], provide evidence of its advantageous trade-offs on 
embedded hardware.

4 � Methods

This section briefly describes the configuration and methodology used for the 
experimentation.

4.1 � Environment configuration

Table 1 summarizes the main characteristics of the boards used in this research: the 
Nvidia Jetson Orin Nano10 and the UP Squared Pro 7000 Edge.11 While the first 
system is based on a SoC equipped with an ARM CPU (Cortex-A78AE) and an 
NVIDIA Ampere GPU, the second one is based on a SoC equipped with an Intel 
Atom X7425E and a UHD Graphics Gen 12 GPU.

Despite the Nvidia Jetson Orin Nano can be configured to operate at either seven 
or fifteen watts, it has been set to fifteen watts. In contrast, the power consumption 
is not configurable at the UP Squared Pro 7000 Edge board, and it works at twelve 
watts. To measure power consumption, we used tegrastats in the Jetson board, while 
turbostats were employed in the other device.

Table 1   Technical specifications of the Jetson Orin Nano and Up Squared Pro 7000 Edge

NVIDIA Jetson Orin Nano UP Squared Pro 7000 Edge

CPU Name ARM Cortex-A78AE Intel Atom X7425E
Frequency up to 1.5 GHz 1.50 GHz (Base)

3.40 GHz (Boost)
Cores 6 4

GPU Name NVIDIA Ampere GPU Intel UHD Graphics Gen 12
Frequency 625MHz 1 GHz
Cores 1,024 CUDA cores 24 execution units
Perf. (FP32) 1,280 GFLOPS 460.8 GFLOPS
Driver JetPack 5.1.2 23.35 (OpenCL)

Memory 8 GB 8 GB
Storage SD Card Slot &

external NVMe
via M.2 Key M
(not included)

64 GB eMMC

Power Consumption 7W / 15W 12W
Price 499$ 399$

10  Orin Nano specs:https://​www.​nvidia.​com/​en-​us/​auton​omous-​machi​nes/​embed​ded-​syste​ms/​jetson-​orin/
11  UP Pro 7000 specs:https://​www.​mouser.​es/​new/​aaeon-​up/​aaeon-​up-​pro-​7000-​boards

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.mouser.es/new/aaeon-up/aaeon-up-pro-7000-boards
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Regarding the software configuration, we utilized two SYCL flavors: DPC++ and 
AdaptiveCpp. DPC++ can be built from scratch following the instructions from the 
Intel public repository.12 As oneAPI is primarily designed for x86/64 architecture, 
we underwent the process of compiling the DPC++ compiler for ARM architecture, 
which was then applied to the Orin Nano board.13 From using AdaptiveCpp,14 it is 
necessary to build from the sources on both boards.

Two more aspects worth mentioning regarding SYCL implementations. Mean-
while, SYCL implementations prioritize the portability of the developed codes for 
running on various devices, SYCL implementation accomplishes this task in dif-
ferent manners. For instance, DPC++ utilizes OpenCL to run on multicore CPUs, 
while AdaptiveCpp exploits parallel facilities by means of OpenMP. It is notewor-
thy to remark that although OpenMP enhances compatibility with non-x86 architec-
tures, it may lead to reduced performance compared to OpenCL [49, 50]. In contrast, 
DPC++ restricts execution on ARM-based CPUs due to the lack of official OpenCL 
support. Lastly, regardless of OpenCL or Intel Level0 backends in the current state 
of AdaptiveCpp makes impossible its support on Intel GPUs.

4.2 � Benchmarking methodology

To assess the performance portability of SYCL, we evaluate both CPU and GPU 
performance, as the same code can run on both devices. Additionally, we compare 
the performance of SYCL against the native CUDA code in the Jetson Orin GPU.

Since SYCL-Bench has a specific SYCL benchmarks suite, we have just 
selected a subset known as the Polybench benchmarks to perform the comparison 
between SYCL and CUDA. In particular, we choose the Polybench suite for CUDA 
evaluation.

In order to make as fair a comparison as possible, we kept all the default param-
eter configurations for the tests. Table  2 provides an overview of the benchmark 
descriptions and the parameters established for the benchmarking.

The assessment of energy consumption utilized common AI algorithms, also 
employed in edge computing, was acquired from the HeCBench suite. Table 3 pro-
vides a description of these algorithms.

With the purpose of evaluating modern embedded systems in a more realistic sce-
nario, we choose a workload associated with computer vision as a case study. This 
experimentation is based on the evaluation of the performance of relevant motion 
estimation algorithms such as LK, HS, and TV-L1.

The LK algorithm was developed from scratch. Although HS CUDA and SYCL 
implementations were inspired from the previously mentioned sources, it was nec-
essary to update them to comply with the SYCL 2020 standard. In the case of the 
TV-L1 algorithm, no sources were found except for the OpenMP implementation15 

12  DPC++ compiler: https://​github.​com/​intel/​llvm/​blob/​sycl/​sycl/​doc/​GetSt​arted​Guide.​md
13  Both boards use oneAPI 2023.2.
14  https://​github.​com/​Adapt​iveCpp/​Adapt​iveCpp/​blob/​devel​op/​doc/​insta​lling.​md
15  https://​www.​ipol.​im/​pub/​art/​2013/​26/

https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/installing.md
https://www.ipol.im/pub/art/2013/26/


1 3

SYCL in the edge: performance and energy evaluation for…

from this work [46]. Both the LK and TV-L1 algorithms were ported to SYCL using 
the SYCLomatic tool and later fine-tuned to enhance performance and readability.

To assess this study, we selected a recognized suite of datasets widely used in the 
field of optical flow. The key characteristics of the datasets used are outlined below:

•	 Schoolgirls with an image resolution of 432 × 240 pixels found at.16

•	 Middlebury dataset [33] includes a twelve scenes with images of 640 × 480.
•	 MPI-Sintel [34] is a synthetic dataset based on an animation film which contains 

frames of 1024 × 436 size.

Table 2   Polybench suite description and the input parameter size used

Area Benchmark Size Description

Convolution 2DConv 4096 2D convolution
3DConv 512 3D convolution

Linear Algebra 2 mm 1024 2 Matrix Multiplications (D=A.B; E=C.D)
3 mm 512 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)
Atax 4096 Matrix Transpose and Vector Multiplication
Bicg 16384 BiCG Sub Kernel of BiCGStab Linear Solver
Gemm 1024 Matrix-multiply C=alpha.A.B+beta.C
Gesummv 16384 Scalar, Vector, and Matrix Multiplication
Gramschmidt 1024 Gram–Schmidt decomposition
Mvt 16384 Matrix Vector Product and Transpose
Syr2k 1024 Symmetric rank-2k operations
Syrk 1024 Symmetric rank-k operations

Datamining Correlation 1024 Correlation Computation
Covariance 1024 Covariance Computation

Stencil Fdtd2d 1024 2D Finite Different Time Domain Kernel

Table 3   HeCBench AI benchmarks description and parameter specification

Benchmark Parameters Description

Attention multi-head P1: 100000 Mechanism to focus on various aspects of input
data to capture diverse relationships and dependencies

Dense embedding P1: 10000
P2: 64
P3: 1000

Refers to the representation of objects, or words
in a continuous vector space, commonly employed in
natural language processing for capturing semantic relationships

ReLU P1: 10000000
P2: 800

Activation function used in neural networks

ResNet P1: 5 P2: 300 Residual network is a type of deep neural network architecture

16  https://​github.​com/​hitac​hinsk/​FGT

https://github.com/hitachinsk/FGT
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5 � Experimental results

This section presents the results achieved from the Polybench suite, optical flow 
methods, and HeCBench AI subset. We have divided this section into three parts, 
each dedicated to one of the experiments.

5.1 � Polybench experiments

Figure  2 illustrates the execution times obtained from Polybench on the Jetson 
Orin Nano board. It includes the execution on GPU devices using the CUDA pro-
gramming model, AdaptiveCpp, and DPC++ for SYCL as well as on the ARM 
A78AE CPU through AdaptiveCpp. It is worth noting that the DPC++ cannot be 
used on the CPU due to the absence support of for OpenCL on ARM processors. 
In more detail, as expected benchmarks such as 2DConvolution, 3DCon-
volution, Atax, Fdtd2d, and Mvt get better performance rates using the 
CUDA implementation, while Covariance, Syr2k, and Syrk for the SYCL 

Fig. 2   Execution time recorded for Polybench suite tests on the Jetson Orin Nano using CUDA and 
SYCL
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version. Furthermore, other benchmarks such as 2mm, 3mm, Bicg, Correla-
tion, Gemm, Gesummv, or Gramschmidt achieved almost equivalent execu-
tion time using different programming models.

Table 4 displays the average performance improvement achieved by each com-
piler. For example, the benchmarks based on CUDA are on average 1.17× faster 
in comparison with their AdaptiveCpp counterpart. In line with expectations, the 
CUDA version outperforms the SYCL versions in all cases, achieving an aver-
age speedup of 1.17× and 1.22× compared to AdaptiveCpp and DPC++. Shifting 
our focus to the SYCL implementations, AdaptiveCpp and DPC++ exhibit simi-
lar performance metrics. Even in cases where they diverge, differences are small 
enough to be encompassed by the standard deviation. Consequently, the dispari-
ties between the versions are not relevant. Although we have also included the 
execution on ARM A78AE CPU by means of AdaptiveCpp implementation, it is 
worth noting that the performance is not particularly favorable when compared to 
GPU times.

Focusing on the UP Squared Pro 7000 Edge board, Fig. 3 depicts the execution 
times. It is noteworthy to mention that the Intel UHD GPU could not be utilized 

Table 4   Average speedup 
obtained from Polybench suit in 
the Jetson Orin Nano

Speedup CUDA AdaptiveCpp DPC++ Adap-
tiveCpp 
(ARM)

CUDA 1 1.17 1.22 5.75
AdaptiveCpp – 1 1.07 5.46
DPC++ – – 1 4.99
AdaptiveCpp (ARM) – – – 1

Fig. 3   Execution time recorded for Polybench suite tests on the UP Squared Pro 7000 Edge
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in conjunction with AdaptiveCpp due to the absence of OpenCL or native bare-
metal support. Moreover, the Correlation and Fdtd2d could not run on the 
DPC++ implementation due to the requirement for double-precision computa-
tions. This issue is motivated by the lack of hardware support for double preci-
sion on Intel UHD GPU, and for the Atom CPU, the reason is associated to the 
current OpenCL driver which does not provide support for double precision.

Table 5 summarizes the speedups obtained by each device and SYCL implemen-
tation. The Atom CPU with the AdaptiveCpp compiler obtains the worst perfor-
mance because SYCL code is translated to OpenMP, while DPC++ is conducted 
by the OpenCL backend. This point makes the difference between both implementa-
tions [31, 50]. When comparing DPC++ performance on both CPU and GPU (UHD 
Graphics), it is noteworthy that the Atom processor even outperforms the GPU. 
Given the utilization of default-sized problem parameters, it does not appear to be 
worthwhile to use the GPU.

Table 5   Average speedup 
obtained from Polybench suit in 
the UP Squared Pro 7000 Edge

Speedup Adap-
tiveCpp 
(Atom)

DPC++(Atom) DPC++(UHD)

AdaptiveCpp (Atom) 1 0.55 0.79
DPC++ (Atom) – 1 1.35
DPC++ (UHD) – – 1

Table 6   Frames Per Second (FPS) achieved during the execution of optic flow algorithms on various 
datasets and devices. The table shows the median and the standard deviation of each measure

Dataset Device Lucas–Kanade Horn–Schunck TV-L1

Schoolgirls
(432×240)

Ampere GPU
(CUDA)

x ∼ = 458 FPS
�
X
 = 119.4

x ∼ = 19.8 FPS
�
X
 = 0.13

x ∼ = 36.5 FPS
�
X
 = 0.44

Ampere GPU
(DPC++)

x ∼ = 583 FPS
�
X
 =49.1

x ∼ = 21.8 FPS
�
X
 = 0.11

x ∼ = 31.2 FPS
�
X
 = 0.37

UHD Graphics
(DPC++)

x ∼ = 528 FPS
�
X
 = 46.9

x ∼ = 16.24 FPS
�
X
 = 0.19

x ∼ = 12.1 FPS
�
X
 = 0.15

Middlebury
(640×480)

Ampere GPU
(CUDA)

x ∼ = 168 FPS
�
X
 = 2.42

x ∼ = 8.92 FPS
�
X
 = 0.10

x ∼ = 19.2 FPS
�
X
 = 0.47

Ampere GPU
(DPC++)

x ∼ = = 147  FPS 
�
X
 = 9.44

x ∼ = 8.66 FPS
�
X
 = 0.10

x ∼ = 15.17 FPS
�
X
 = 0.37

UHD Graphics
(DPC++)

x ∼ = 250 FPS
�
X
 = 2.79

x ∼ = 5.01 FPS
�
X
 = 0.08

x ∼ = 7.61 FPS
�
X
 = 0.32

MPI-Sintel
(1024×436)

Ampere GPU
(CUDA)

x ∼ = 136 FPS
�
X
 = 1.27

x ∼ = 6.36 FPS
�
X
 = 0.03

x ∼ = 14.6 FPS
�
X
 = 0.12

Ampere GPU
(DPC++)

x ∼ = 150 FPS  
�
X
 = 6.61

x ∼ = 6.98 FPS
�
X
 = 0.07

x ∼ = 12.8 FPS
�
X
 = 0.1

UHD Graphics
(DPC++)

x ∼ = 214 FPS
�
X
 = 2.42

x ∼ = 2.98 FPS
�
X
 = 0.03

x ∼ = 6.09 FPS
�
X
 = 0.17
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5.2 � Optic flow experiments

Table  6 collects the performance (measured in Frame Per Second-FPS) achieved 
by varying video resolution, GPU device, accelerator implementation, and algo-
rithm. We have also highlighted in bold type the best result fulfilled in each dataset 
and algorithm. In order to avoid execution variability test was run 10 times, so the 
table shows the average and standard deviation. We would like to clarify that we 
decided to omit the results on CPU devices since either the ARM Cortex-A78E or 
the Intel Atom X7425E are far away from the GPU counterpart execution times. 
Furthermore, for the sake of clarity, we have also removed from the final results 
AdaptiveCpp, due to the similar times achieved with DPC++.

Regarding the LK algorithm, it is noteworthy that the Intel UHD Graphics is the 
most suitable device when resolution increases. For the HS algorithm, the Ampere 
GPU is prominent, but distinguishing between CUDA and DPC++ implementations 
in terms of performance is challenging, as in most instances, both implementations 
yield nearly identical fps. Using the TV-L1 algorithm as a benchmark, once again, 
we observe that the Ampere GPU reports the best performance rates. Diving deeper 
into the comparison of implementations on the Ampere GPU, an average difference 
of approximately 2.9% is observed between CUDA and DPC++. When examin-
ing each algorithm individually, we find that LK exhibits a 5.4% improvement with 
DPC++, HS favors DPC++ by 5%, and the TV-L1 implementation performs 19% 
better with CUDA.

On the UHD Graphics side, a direct comparison is made with the Ampere GPU 
along DPC++. The overall difference is 60.9% in favor of the Orin GPU. When 
looking at each algorithm individually, we observe a 20.2% improvement for the 
UHD Graphics in the LK algorithm, an 80.4% advantage for the Ampere GPU in the 
HS algorithm, and 122% for the Ampere GPU in the TV-L1 algorithm.

Fig. 4   Jetson Orin Nano’s GPU power and energy consumption by language. The bars represent energy 
consumption in Joules, while the scatter plot illustrates the average power consumption in watts
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5.3 � Energy consumption results

The following subsection attempts to address the energy and power consumption 
associated with each language and board. In this case, we have transitioned to AI 
typical benchmarks widely used in the edge area.

Fig.  4 depicts to Ampere GPU power and energy consumption. The bars rep-
resent the average energy consumption by each benchmark, while the scatter plot 
represents the average and standard deviation of the power consumption. At first 
glance, SYCL reduces the energy consumption in Dense Embedding and Relu 
benchmarks, while CUDA does in Attention Multi-Head and Resnet 
tests. In those that SYCL beats, we found that the overall consumption was less than 
CUDA’s, but not the time performance. Dense Embedding gives 3.11s vs 3.24s, 
and Relu through 4.32s vs 4.37s for CUDA and SYCL, respectively. However, the 
average power consumption was 2.1 watts vs 1.31 watts for the Dense Embed-
ding test, while in the Resnet was 2.33 watts vs 1.62 watts. Hence, the overall 
energy consumption makes SYCL less energy consumption than CUDA.

Across the mentioned benchmarks, the total energy consumption in CUDA was 
31.8J, whereas in SYCL, it was 28.3J. These numbers indicate that SYCL is 12% 
more energy-efficient than CUDA. The CUDA binary exhibits power over-consump-
tion to enhance performance, but this increase does not proportionally scale with the 
overall energy consumption.

On the other hand, Fig.  5 illustrates the power and energy consumption of the 
Intel GPU. In this instance, we only measured the DPC++ implementation due to 
the aforementioned issues with AdaptiveCpp. The overall consumption was 56J. A 
direct comparison with the NVIDIA board is not feasible due to the differences in 
measurement tools. While Jetson’s tegrastats provides the watt consumption of the 
combined CPU+GPU package, the Squared Pro’s turbostat disaggregates the CPU 
and GPU consumption. When we aggregate the CPU and GPU power consumption, 
the overall energy consumption increases to 194J. This is 6.33 times higher than the 
consumption of the Jetson SoC. It is worth noting that, while the Jetson features an 

Fig. 5   UP Squared Pro 7000 Edge’s GPU power and energy consumption in DPC++. The bars represent 
energy consumption in Joules, while the scatter plot illustrates the average power consumption in watts
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Arm CPU, known for its energy efficiency, the UP Squared employs an Intel Atom, 
an x86-64 architecture which is generally more energy-demanding [51].

6 � Discussion

SYCL showed the benefits of using as programming model in the edge market seg-
ment. In fact, we could successfully run the same code on different devices with-
out an important performance degradation: Two edge boards from different vendors 
were employed for the same task.

In the initial phase, we tested SYCL along with the aforementioned boards using 
the Polybench suite. This part of the experiment aimed to demonstrate the ability to 
run the same SYCL code on various architectures, the differences between the most 
commonly used SYCL implementations, and the minimal performance differences 
when compared to native implementations, such as CUDA. Polybench results help 
shed light on these objectives. First and foremost, thanks to SYCL, the Polybench 
suite was able to run on x86/64 CPU, ARM CPU, NVIDIA GPU, and Intel GPU. 
This is the primary advantage of SYCL when compared to native implementations, 
as it simplifies development across various architectures. It is evident that employ-
ing the SYCL language to articulate an application’s parallelism not only ensures 
portability across various architectures and vendors but also enhances productivity.

On one hand, it is also important to mention that regarding to DPC++ and Adap-
tiveCpp, both encountered difficulties in running on all the architectures tested. 
DPC++ failed to operate on ARM CPUs, while AdaptiveCpp encountered issues 
with Intel GPUs. Nonetheless, these problems could be addressed through improved 
documentation on how to compile AdaptiveCpp for Intel GPUs using OpenCL or 
Level0 backends, or by employing open-source OpenCL implementations for ARM 
CPUs such as pocl.17 Regarding their performance, the CUDA GPU architectures 
exhibited minimal variation, approximately 7%, which depended on the specific 
benchmark being observed. Conversely, on x86/64 CPUs, AdaptiveCpp failed to 
achieve comparable results to DPC++ with a notable  45% drop in performance 
based on the underlying OpenMP conversion for CPU architectures. However, it 
is important to note that OpenMP compatibility can be advantageous for emerging 
architectures like the promising RISC-V.

On the other hand, it is important to consider the comparison between SYCL 
implementations and CUDA. The overall metric indicates that CUDA outperforms 
SYCL by approximately 17-22%, depending on the specific implementation. Nev-
ertheless, when examined on a benchmark-by-benchmark basis, the superiority 
of CUDA is not consistently clear-cut. Out of the five tests performed better with 
CUDA, while SYCL excelled in the other three, and the remaining eight showed 
similar performance. In light of these results, it can be inferred that utilizing SYCL 
does not significantly degrade performance at all.

In a subsequent analysis, we utilized an AI subset comprising four benchmarks 
of common algorithms widely employed in edge computing. The objective of this 

17  https://​github.​com/​pocl/​pocl

https://github.com/pocl/pocl
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assessment was to evaluate the energy consumption when transitioning from CUDA 
to SYCL and to compare the energy efficiency between boards. The initial analy-
sis indicated that SYCL exhibited lower performance in those benchmarks, but it 
was also less power-demanding, resulting in overall lower energy consumption com-
pared to CUDA (approximately 12% less). However, we warn the reader that the 
energy efficiency observed depends on the specific application and workload tested. 
Since other algorithms and workloads tested change observed behavior, take as a 
rule of thumb that approximately ±10% of the energy consumption would vary by 
moving from CUDA to SYCL and how well the application was tuned.

The other phase of the experiment aimed to test SYCL in real-world scenarios. 
One common application in the edge computing sphere is computer vision, with 
a specific focus on optical flow in this case. We evaluated three different datasets-
Schoolgirls, Middlebury, and MPI-Sintel-using three optical flow algorithms: LK, 
HS, and TV-L1 . There are two points that need to be addressed: the performance dif-
ference between CUDA-SYCL and the SYCL comparison between boards.

The primary distinction among the implementations is evident in the TV-L1 algo-
rithm. HS demonstrates similar processing times in both versions, while LK stands 
out as an exceptionally lightweight algorithm worth considering. The variances in 
TV-L1 processing times—16% for Schoolgirls, 26% for Middlebury, and 14% for 
MPI-Sintel—should be viewed as the price for achieving code portability. Main-
taining different versions of the same algorithm, even if it outperforms, inevitably 
raises development costs. Therefore, SYCL for edge computing, like in other plat-
forms such as HPC, is no exception and also incurs a "minor" cost of 19% to ensure 
portability.

Lastly, employing SYCL could also be a sensible choice when comparing across 
various boards. This is because it helps narrow the gap between the software and 
the algorithm’s implementation, which can vary depending on the programming 
language used. To demonstrate this premise, the theoretical performance of the Jet-
son Orin Nano GPU is 1,280 GFLOPS; meanwhile, the UP Squared Pro 7000 Edge 
GPU offers 460 GFLOPS (a 178% difference). The respective board prices are $499 
and $399 (a 25% variance). Therefore, given the performance results and the actual 
performance achieved in optical flow, a comparison based on cost is warranted. 
Table 7 presents an assessment of the monetary cost (in dollars) per performance 
unit (FPS). SYCL is used to conduct the results.

Table 7   USD per minute and frame computed by the GPUs and datasets

Lucas–Kanade Horn–Schunck TV-L1

Shoolgirls
(432 x 240)

Ampere GPU $0.01 per frame $0.38 per frame $0.27 per frame
UHD Graphics $0.01 per frame $0.41 per frame $0.55 per frame

Basketball
(640 x 480)

Ampere GPU $0.06 per frame $0.96 per frame $0.55 per frame
UHD Graphics $0.03 per frame $1.33 per frame $0.87 per frame

MPI-Sintel
(1024 x 436)

Ampere GPU $0.06 per frame $1.19 per frame $0.64 per frame
UHD Graphics $0.03 per frame $2.23 per frame $1.09 per frame
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When analyzing the algorithms, we observed the following cost differences: For 
LK, the UHD GPU is 4.5% less expensive, while for HS is 27% more cost-effective 
than the Orin GPU. In the case of TV-L1 , the Orin board’s cost is 43% lower.

On the consumption side, Table  8 presents the millijoules (mJ) consumed by 
each processed frame. The table results depict the most demanding dataset, the 
MPI-Sintel. It is important to note that energy consumption measures not only the 
GPU power but also that of the SoC, which includes the CPU. Remarkably, the Jet-
son board demonstrates significantly greater energy efficiency compared to the UP 
Squared, with differences ranging from 1.5 to 4.5 times greater energy efficiency. 
The main issue with the UP Squared is that its CPU consumes more power in idle 
states than the Arm’s CPU.

These comparative analyses allow us to select the most suitable board based on 
specific priorities like cost, power consumption, performance, or real-time demands. 
The ability to use a single, portable code greatly enhances decision-making effi-
ciency and promotes the widespread deployment of IoT applications on various 
architectures and vendors, eliminating the need for maintaining multiple develop-
ment efforts or dependency on the commercial policies of a specific manufacturer.

7 � Conclusion

The rapid growth of edge computing has introduced various solutions, many of 
which incorporate low-power accelerators to enhance performance. Accelerators 
are typically designed to work with specific custom languages such as CUDA, HIP, 
VHDL, and others. However, this approach creates compatibility issues, as it neces-
sitates customizing the code for each architecture.

This work demonstrated the ability of edge computing to execute and leverage 
SYCL code on different boards and custom accelerators. We employed the Poly-
bench suite to evaluate various SYCL implementations on the same hardware, and 
the performance gap was found to be negligible. On the energy side, we utilized a 
HeCBench subset, and no differences were observed.

Additionally, we utilized a realistic computer vision application based on optical 
flow algorithms to assess the practical application of SYCL in edge computing sce-
narios. The experiments revealed a performance disparity between native solutions 
like CUDA and SYCL. Nevertheless, we deliberated on the significance of SYCL’s 
portability in development tasks and the trade-off in performance that developers 
may encounter. Utilizing a single, portable code streamlines decision-making and 

Table 8   Energy consumed by frame processed in DPC++ and multiple optic flow algorithms. MPI-Sin-
tel dataset was used to conduct the results

Lucas–Kanade Horn–Schunck TV-L1

Jetson Orin Nano 5.59 mJ per frame 414 mJ per frame 231 mJ per frame
UP Squared 8.42 mJ per frame 1,599 mJ per frame 1,041 mJ per frame
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enables broad IoT deployment across different architectures and vendors, reducing 
the reliance on multiple development efforts and specific manufacturer policies. To 
the best of the author’s knowledge, this work represents one of the earliest efforts 
focused on edge computing and code portability utilizing SYCL.

Future work should focus on incorporating performance portability metrics to 
facilitate a comparison with the native version. Given the prevalent use of edge com-
puting in image processing and real-time applications, further investigations could 
explore the advantages of employing SYCL in image processing frameworks such 
as OpenCV. Moreover, extending the research to encompass other edge devices 
and evaluating their performance and power consumption would provide valuable 
insights.
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