
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05957-6

1 3

SYCL in the edge: performance and energy evaluation
for heterogeneous acceleration

Youssef Faqir‑Rhazoui1 · Carlos García1

Accepted: 3 February 2024
© The Author(s) 2024

Abstract
Edge computing is essential to handle increasing data volumes and processing
capacities. It provides real-time and secure data processing near data sources, like
smart devices, alleviating cloud computing energy use, and saving network band-
width. Specialized accelerators, like GPUs and FPGAs, are vital for low-latency
edge computing but the requirements to customized code for different hardware and
vendors suppose important compatibility issues. This paper evaluates the potential
of SYCL in addressing code portability issues encountered in edge computing. We
employed the Polybench suite to compare various SYCL implementations, spe-
cifically DPC++ and AdaptiveCpp, with the native solution, CUDA. The disparity
between SYCL implementations was negligible, at just 5%. Furthermore, we evalu-
ated SYCL in the context of specific edge computing applications such as video pro-
cessing using three different optical flow algorithms. The results revealed a slight
performance gap of 3% when transitioning from CUDA to SYCL. Upon evaluating
energy consumption, the observed difference ranged from ±10% , depending on the
application utilized. These gaps are the price one may need to pay when achieving
the ability to successfully run the same code on two distinct edge boards. These
findings underscore SYCL’s capacity to increase productivity in terms of develop-
ment costs and facilitate IoT deployment without being locked into a particular plat-
form or manufacturer.

Keywords SYCL · CUDA · Edge computing · Polybench · Jetson · Optic flow

 * Youssef Faqir-Rhazoui
 yelfaqir@ucm.es

 Carlos García
 garsanca@ucm.es

1 Department of Computer Architecture and Automatics, Complutense University of Madrid,
Madrid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05957-6&domain=pdf

 Y. Faqir-Rhazoui, C. García

1 3

1 Introduction

Edge computing has emerged as a crucial technology due to the growing volume of
data and processing demands. Edge computing operates in close proximity to data
sources [1, 2], like smart devices, storing and processing data at the network’s edge.
It offers fast, real-time, and secure data processing [3], addressing issues like energy
consumption in cloud computing, cost reduction, and network bandwidth relief.
The increasing prominence of IoT [4] has transformed edge computing into a highly
discussed subject, presenting ongoing challenges [5–7] such as selecting the most
suitable platform to achieve among others real-time data processing near the data
source and ensuring robust data privacy. Nevertheless, one of the foremost chal-
lenges persisting in the deployment of IoT systems is the imperative of achieving
reduced energy consumption [8] while concurrently upholding robust computational
capabilities essential for supporting real-time AI or ML applications.

To address these handicaps, there is a growing trend toward the adoption of accel-
erators, collectively referred to as xPU (including GPUs, FPGAs, SoCs, and more),
which substantially reduce power footprint [9] when compared to general-purpose
CPUs. However, employing accelerator languages designed for specific hardware
architectures introduces compatibility obstacles meanwhile a custom code for each
device (e.g., CUDA, VHDL, etc.) is imperative. The industry’s motivation to pro-
gress in this direction is compounded by two significant challenges: firstly, to select
the most suitable system from a huge plethora of devices with notable architectural
differences, and secondly, the absence of a universally accepted programming stand-
ard. Under this premise, we can highlight recent advances with the creation of the
Unified Acceleration (UXL) Foundation,1 announced by the Linux Foundation on
September 2023, which proposes oneAPI [10] and SYCL [11] programming as an
open-source specification to support a common code base capable of running across
multiple architectures.

Until now, native accelerator languages have empowered programmers to deploy
code tailored for specialized hardware devices like GPUs, FPGAs, or ASICs. These
languages mostly proprietary APIs are engineered to enhance the performance and
efficiency of compute-intensive applications. Nevertheless, a common challenge
faced by most accelerator languages is their propensity to disrupt compatibility
among different hardware architectures. For instance, CUDA [12] is tailored for
NVIDIA GPUs, HIP [13] for AMD GPUs, or VHDL for FPGAs.

In contrast, SYCL [11] is a versatile programming model and standard that
empowers developers to create heterogeneous parallel code based on ISO C++.
SYCL streamlines the process by allowing programmers to write code once, which
can then seamlessly execute across multiple vendor CPUs, GPUs, and FPGAs via
OpenCL. What sets SYCL apart is its compatibility with modern C++ features like
templates, lambdas, and exceptions, which facilitate the expression of parallelism
and data movement. SYCL’s remarkable versatility not only facilitates the develop-
ment of portable applications for diverse heterogeneous edge computing systems

1 Unified Acceleration (UXL) Foundation: https:// uxlfo undat ion. org/

https://uxlfoundation.org/

1 3

SYCL in the edge: performance and energy evaluation for…

[14], including CPUs, GPUs, and FPGAs, but also serves as a foundational tool for
implementing cost-effective exploration methodologies aimed at reducing develop-
ment complexity. By employing a unified development approach across multiple
edge computing platforms, it becomes possible to discern the architecture that best
suits specific problem domains, especially those reliant on critical factors such as
power efficiency, cost-effectiveness, and real-time performance requirements.

Moreover, SYCL has been extensively tested on HPC environments and com-
pared with other programming languages such as CUDA, OpenMP, or OpenCL
[15–17]. While the utilization of SYCL in the realm of edge computing remains rel-
atively unexplored [18] apart from preliminary experiments of porting CUDA codes
[19]. We believe that its adoption holds significant potential for achieving perfor-
mance portability. In this paper, we assess the effectiveness of SYCL on two edge
computing boards. We employ a suite of benchmarks to verify SYCL’s compatibil-
ity across different architectures with a special interest in performance and energy
consumption. Furthermore, we explore the portability of various motion estimation-
based vision algorithms, incorporating accelerators from different vendors.

The following paper is organized as follows. Section 2 introduces the SYCL
language and program architecture. In Sect. 3, the benchmarks used in this study
are discussed. Section 4 focuses on the environment configuration and experiment
methodology used. In Sect. 5, the experiments and results achieved are presented. In
section 6, an experiment discussion is performed. And finally, the Sect. 7 concludes
with the main remarks.

2 The SYCL paradigm in a nutshell

SYCL is a standard (SYCL 2020) developed and maintained by the Khronos Group,
similar to other standards such as OpenMP (e.g., 4.5, 5.1, etc.) or OpenCL (e.g.,
2.1, 3.0, etc.) [20–22]. Its main purpose is to enable developers to use any ISO C++
compiler (e.g., GCC, Clang, NVCC, ICC, etc.), and utilize C++ lambdas to encap-
sulate device kernel execution. SYCL does not aim to replace other parallel models
or backends (e.g., CUDA, HIP, OpenCL, etc.) but rather to complement them. Since
all these models are C++-compatible, SYCL uses C++ lambdas to extend the native
API of different backends. For instance, when allocating memory on an NVIDIA
GPU, a SYCL memory allocation automatically triggers a native CUDA allocation
at background. Then, you can consider SYCL as the facade design pattern, which
serves as a front-facing interface to other backends [23].

Up to this point, we have solely addressed the SYCL standard; however, it is
crucial to recognize that SYCL does not have a singular implementation. The most
feature-rich implementation is Intel Data Parallel C++ (DPC++) [14], which not
only conforms to the SYCL 2020 standard but also includes other custom features.2
The Intel oneAPI DPC++/C++ compiler known as DPC++ is a compiler-based
implementation, based on the Clang/LLVM project. It is important to remark that

2 These features are typically incorporated into new SYCL releases. However, we did not use them in
this paper.

 Y. Faqir-Rhazoui, C. García

1 3

DPC++ compiler is open source, although Intel also offers a commercial alterna-
tive available on the oneAPI toolkits. The oneAPI includes additional tools such as
profiler and optimized libraries. While custom features are present in DPC++, we
opted not to employ them in our study, with the aim of ensuring the portability of
our developments.

The other noteworthy implementation is AdaptiveCpp previously known as hip-
SYCL, which is a library-based implementation. This means that they have devel-
oped a C++ library and rely on third-party compilers. It is generally recommended
to use it with the stock Clang/LLVM compiler, which was designed to support
CUDA, HIP, OpenMP, and OpenCL source codes [24, 25].

The Clang/LLVM compiler is responsible for compiling SYCL code, and it
performs different steps such as front-end, middle-end, and back-end. In the front-
end phase, the compiler separates the host code from the device code, while in the
middle-end phase, it transforms the device code into an intermediate representation
known as LLVM IR. The back-end stage then compiles the LLVM IR representation
into the device’s native code and combines everything into a final file called “fat
binary.” This compiler can generate a final binary that can run on multiple devices,
including multi-vendor GPUs or even FPGAs, as described in [10, 26].

Figure 1 illustrates a basic SYCL program that sums two vectors into a third
one. The usual SYCL scheme begins by creating a queue associated with the target
device (step 1). The queue receives the following kernels and is responsible for plac-
ing them on the device based on a policy. Additionally, we can allocate the program
memory (step 2), which in this particular example is shared between the host and the
device. This feature allows the host to be able to initialize the memory data on its
side without any other restrictions (step 3), and later being used by the device with-
out any explicit data movement.

The next step is to invoke the kernel execution on the device (step 4). SYCL sup-
ports multiple parallel patterns, but in this code example, the parallel_for scheme

Fig. 1 SYCL piece of code performing a vector addition

1 3

SYCL in the edge: performance and energy evaluation for…

is performed, specifying the problem size (length) so the kernel launches length
instances or threads. In SYCL by default, the kernel launch is asynchronous so it is
mandatory to add the wait() clause to maintain the execution coherence. Finally, the
memory is freed with the corresponding call because it is tied to the queue (step 5).

3 Benchmarking SYCL in edge platforms

SYCL was tested on both conventional and HPC systems, as the next subsection
highlights. However, there is a dearth of literature regarding the potential use of
SYCL on the edge. We considered the use of benchmark suites developed for or
adapted to SYCL, as they would favor direct comparisons with other programming
models like CUDA, and also permit the compilation with various SYCL implemen-
tations, including DPC++ and AdaptiveCpp.

3.1 SYCL benchmark suits

When it comes to benchmarks, there are several suites available for SYCL. The
Rodinia3 benchmarks are implemented in multiple languages, including SYCL, and
encompass a wide range of field benchmarks, such as medical imaging or image
compression [15, 27].

XSBench4 is a benchmark suite designed to evaluate the performance of Monte
Carlo neutron transport codes used in the field of nuclear engineering and reactor
physics. The benchmark suite provides a set of representative problems that simu-
late the behavior of neutrons in a nuclear reactor. These problems cover a range of
materials, geometries, and physics phenomena to assess the performance of different
Monte Carlo codes accurately [28].

On its side, HeCBench5 is a large collection of heterogeneous programming
models such as (SYCL, OpenCL, CUDA, etc.). HeCBench recollects benchmarks
from many sources, including many of Rodinia or XSBench [29]. The suit includes
benchmarks in the area of lineal algebra, AI, or machine learning.

Polybench6 consists of a set of computationally intensive kernels that represent
common algorithmic patterns found in scientific and engineering applications, such
as linear algebra computations, image processing, stencil computations, and more.
These kernels are implemented in C, CUDA, and OpenMP among other program-
ming languages, and are designed to be representative of real-world workloads [30].

SYCL-Bench7 provides a set of benchmark kernels and applications that cover a
range of common parallel computing patterns and algorithms. These benchmarks
are implemented using SYCL and are designed to evaluate the performance of

3 Rodinia code migrated to SYCL through oneAPI: https:// github. com/ artecs- group/ rodin ia- dpct- dpcpp
4 https:// github. com/ ANL- CESAR/ XSBen ch
5 https:// github. com/ zjin- lcf/ HeCBe nch/ tree/ master
6 https:// github. com/ sgrau erg/ polyb enchG pu
7 https:// github. com/ unisa- hpc/ sycl- bench

https://github.com/artecs-group/rodinia-dpct-dpcpp
https://github.com/ANL-CESAR/XSBench
https://github.com/zjin-lcf/HeCBench/tree/master
https://github.com/sgrauerg/polybenchGpu
https://github.com/unisa-hpc/sycl-bench

 Y. Faqir-Rhazoui, C. García

1 3

SYCL compilers, runtime systems, and underlying hardware architectures. SYCL-
Bench also integrates fifteen kernels/applications from Polybench. This suite also
has the possibility to execute on different SYCL implementations, such as DPC++,
ComputeCpp, triSYCL, and AdaptiveCpp [31].

3.2 Image processing for optic flow

Optical flow, a crucial component in machine vision systems, calculates a dense field
of displacement vector which represents the pixel motion [32] of adjacent frames in
consecutive image frames. It holds a pivotal significance in applications of image
processing such as video coding, tracking, autonomous driving, or biomedical imag-
ing. It is based on finding the apparent motion of objects in a sequence of images
from a camera, extracting a two-dimensional vector related to the object’s motion.

In recent decades, significant advancements in optical flow estimation have been
fueled by two main factors. First, the emergence of advanced-level datasets [33–35]
has led to continuous improvements in optical flow algorithms. Second, the growing
computational resources available in modern microchips such as GPUs accelerators
have pushed the development of novel strategies rooted in deep learning approaches.

Horn and Schunck (HS)[36] pioneered the initial optical flow estimation pro-
posal, employing a variational method that leveraged both brightness constancy
and spatial smoothness assumptions. It is based on applying spatial and temporal
derivatives [37] to the intensity of the image to extract the optical flow vector by
solving a multi-dimensional system of equations. To speedup the convergence, hier-
archy processing techniques can also be applied [37, 38]. An implementation of the
CUDA Horn–Schunck method can be found in the CUDA toolkit examples,8 and it
has recently been ported to SYCL using an automatic compatibility tool available on
the Intel’s oneAPI suite.9

Subsequently, the Lucas and Kanade (LK) method [39], proposed by Bruce D.
Lucas and Takeo Kanade, is based on the premise that optical flow remains largely
consistent within the immediate vicinity of the analyzed pixel. This technique
involves solving the core optical flow equations for all pixels within this local neigh-
borhood through the application of the least squares criterion.

While HS and LK represent the current state of the art in optical flow tech-
niques and have been used as benchmarks to evaluate ad hoc implementations in
several platforms based on GPUs, FPGAs, or DSPs [40–42], they still are pertinent
in the embedded system scope. However, it is worth noting that numerous research
endeavors have since addressed issues such as high-speed object detection, occlu-
sion handling, illumination changes, and noise reduction. This underscores the com-
munity’s commitment to enhancing these techniques [43]. A notable proposal that
has garnered significant attention from researchers is the TV-L1 method by Zach
et al. [44–46], which employs a variational approach to tackle challenges such as

8 HSOpticalFlow - Optical Flow: https:// github. com/ NVIDIA/ cuda- sampl es/ tree/ master/ Sampl es/5_
Domain_ Speci fic/ HSOpt icalF low
9 Migrating the HSOpticalFlow Estimation from CUDA to SYCL: https:// www. intel. com/ conte nt/ www/
us/ en/ devel oper/ artic les/ techn ical/ migra ting- hsopt icalfl ow- from- cuda- to- sycl. html

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html

1 3

SYCL in the edge: performance and energy evaluation for…

illumination changes, outliers, and flow discontinuities. Other studies, such as those
cited in references [47, 48], provide evidence of its advantageous trade-offs on
embedded hardware.

4 Methods

This section briefly describes the configuration and methodology used for the
experimentation.

4.1 Environment configuration

Table 1 summarizes the main characteristics of the boards used in this research: the
Nvidia Jetson Orin Nano10 and the UP Squared Pro 7000 Edge.11 While the first
system is based on a SoC equipped with an ARM CPU (Cortex-A78AE) and an
NVIDIA Ampere GPU, the second one is based on a SoC equipped with an Intel
Atom X7425E and a UHD Graphics Gen 12 GPU.

Despite the Nvidia Jetson Orin Nano can be configured to operate at either seven
or fifteen watts, it has been set to fifteen watts. In contrast, the power consumption
is not configurable at the UP Squared Pro 7000 Edge board, and it works at twelve
watts. To measure power consumption, we used tegrastats in the Jetson board, while
turbostats were employed in the other device.

Table 1 Technical specifications of the Jetson Orin Nano and Up Squared Pro 7000 Edge

NVIDIA Jetson Orin Nano UP Squared Pro 7000 Edge

CPU Name ARM Cortex-A78AE Intel Atom X7425E
Frequency up to 1.5 GHz 1.50 GHz (Base)

3.40 GHz (Boost)
Cores 6 4

GPU Name NVIDIA Ampere GPU Intel UHD Graphics Gen 12
Frequency 625MHz 1 GHz
Cores 1,024 CUDA cores 24 execution units
Perf. (FP32) 1,280 GFLOPS 460.8 GFLOPS
Driver JetPack 5.1.2 23.35 (OpenCL)

Memory 8 GB 8 GB
Storage SD Card Slot &

external NVMe
via M.2 Key M
(not included)

64 GB eMMC

Power Consumption 7W / 15W 12W
Price 499$ 399$

10 Orin Nano specs:https:// www. nvidia. com/ en- us/ auton omous- machi nes/ embed ded- syste ms/ jetson- orin/
11 UP Pro 7000 specs:https:// www. mouser. es/ new/ aaeon- up/ aaeon- up- pro- 7000- boards

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.mouser.es/new/aaeon-up/aaeon-up-pro-7000-boards

 Y. Faqir-Rhazoui, C. García

1 3

Regarding the software configuration, we utilized two SYCL flavors: DPC++ and
AdaptiveCpp. DPC++ can be built from scratch following the instructions from the
Intel public repository.12 As oneAPI is primarily designed for x86/64 architecture,
we underwent the process of compiling the DPC++ compiler for ARM architecture,
which was then applied to the Orin Nano board.13 From using AdaptiveCpp,14 it is
necessary to build from the sources on both boards.

Two more aspects worth mentioning regarding SYCL implementations. Mean-
while, SYCL implementations prioritize the portability of the developed codes for
running on various devices, SYCL implementation accomplishes this task in dif-
ferent manners. For instance, DPC++ utilizes OpenCL to run on multicore CPUs,
while AdaptiveCpp exploits parallel facilities by means of OpenMP. It is notewor-
thy to remark that although OpenMP enhances compatibility with non-x86 architec-
tures, it may lead to reduced performance compared to OpenCL [49, 50]. In contrast,
DPC++ restricts execution on ARM-based CPUs due to the lack of official OpenCL
support. Lastly, regardless of OpenCL or Intel Level0 backends in the current state
of AdaptiveCpp makes impossible its support on Intel GPUs.

4.2 Benchmarking methodology

To assess the performance portability of SYCL, we evaluate both CPU and GPU
performance, as the same code can run on both devices. Additionally, we compare
the performance of SYCL against the native CUDA code in the Jetson Orin GPU.

Since SYCL-Bench has a specific SYCL benchmarks suite, we have just
selected a subset known as the Polybench benchmarks to perform the comparison
between SYCL and CUDA. In particular, we choose the Polybench suite for CUDA
evaluation.

In order to make as fair a comparison as possible, we kept all the default param-
eter configurations for the tests. Table 2 provides an overview of the benchmark
descriptions and the parameters established for the benchmarking.

The assessment of energy consumption utilized common AI algorithms, also
employed in edge computing, was acquired from the HeCBench suite. Table 3 pro-
vides a description of these algorithms.

With the purpose of evaluating modern embedded systems in a more realistic sce-
nario, we choose a workload associated with computer vision as a case study. This
experimentation is based on the evaluation of the performance of relevant motion
estimation algorithms such as LK, HS, and TV-L1.

The LK algorithm was developed from scratch. Although HS CUDA and SYCL
implementations were inspired from the previously mentioned sources, it was nec-
essary to update them to comply with the SYCL 2020 standard. In the case of the
TV-L1 algorithm, no sources were found except for the OpenMP implementation15

12 DPC++ compiler: https:// github. com/ intel/ llvm/ blob/ sycl/ sycl/ doc/ GetSt arted Guide. md
13 Both boards use oneAPI 2023.2.
14 https:// github. com/ Adapt iveCpp/ Adapt iveCpp/ blob/ devel op/ doc/ insta lling. md
15 https:// www. ipol. im/ pub/ art/ 2013/ 26/

https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/installing.md
https://www.ipol.im/pub/art/2013/26/

1 3

SYCL in the edge: performance and energy evaluation for…

from this work [46]. Both the LK and TV-L1 algorithms were ported to SYCL using
the SYCLomatic tool and later fine-tuned to enhance performance and readability.

To assess this study, we selected a recognized suite of datasets widely used in the
field of optical flow. The key characteristics of the datasets used are outlined below:

• Schoolgirls with an image resolution of 432 × 240 pixels found at.16

• Middlebury dataset [33] includes a twelve scenes with images of 640 × 480.
• MPI-Sintel [34] is a synthetic dataset based on an animation film which contains

frames of 1024 × 436 size.

Table 2 Polybench suite description and the input parameter size used

Area Benchmark Size Description

Convolution 2DConv 4096 2D convolution
3DConv 512 3D convolution

Linear Algebra 2 mm 1024 2 Matrix Multiplications (D=A.B; E=C.D)
3 mm 512 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)
Atax 4096 Matrix Transpose and Vector Multiplication
Bicg 16384 BiCG Sub Kernel of BiCGStab Linear Solver
Gemm 1024 Matrix-multiply C=alpha.A.B+beta.C
Gesummv 16384 Scalar, Vector, and Matrix Multiplication
Gramschmidt 1024 Gram–Schmidt decomposition
Mvt 16384 Matrix Vector Product and Transpose
Syr2k 1024 Symmetric rank-2k operations
Syrk 1024 Symmetric rank-k operations

Datamining Correlation 1024 Correlation Computation
Covariance 1024 Covariance Computation

Stencil Fdtd2d 1024 2D Finite Different Time Domain Kernel

Table 3 HeCBench AI benchmarks description and parameter specification

Benchmark Parameters Description

Attention multi-head P1: 100000 Mechanism to focus on various aspects of input
data to capture diverse relationships and dependencies

Dense embedding P1: 10000
P2: 64
P3: 1000

Refers to the representation of objects, or words
in a continuous vector space, commonly employed in
natural language processing for capturing semantic relationships

ReLU P1: 10000000
P2: 800

Activation function used in neural networks

ResNet P1: 5 P2: 300 Residual network is a type of deep neural network architecture

16 https:// github. com/ hitac hinsk/ FGT

https://github.com/hitachinsk/FGT

 Y. Faqir-Rhazoui, C. García

1 3

5 Experimental results

This section presents the results achieved from the Polybench suite, optical flow
methods, and HeCBench AI subset. We have divided this section into three parts,
each dedicated to one of the experiments.

5.1 Polybench experiments

Figure 2 illustrates the execution times obtained from Polybench on the Jetson
Orin Nano board. It includes the execution on GPU devices using the CUDA pro-
gramming model, AdaptiveCpp, and DPC++ for SYCL as well as on the ARM
A78AE CPU through AdaptiveCpp. It is worth noting that the DPC++ cannot be
used on the CPU due to the absence support of for OpenCL on ARM processors.
In more detail, as expected benchmarks such as 2DConvolution, 3DCon-
volution, Atax, Fdtd2d, and Mvt get better performance rates using the
CUDA implementation, while Covariance, Syr2k, and Syrk for the SYCL

Fig. 2 Execution time recorded for Polybench suite tests on the Jetson Orin Nano using CUDA and
SYCL

1 3

SYCL in the edge: performance and energy evaluation for…

version. Furthermore, other benchmarks such as 2mm, 3mm, Bicg, Correla-
tion, Gemm, Gesummv, or Gramschmidt achieved almost equivalent execu-
tion time using different programming models.

Table 4 displays the average performance improvement achieved by each com-
piler. For example, the benchmarks based on CUDA are on average 1.17× faster
in comparison with their AdaptiveCpp counterpart. In line with expectations, the
CUDA version outperforms the SYCL versions in all cases, achieving an aver-
age speedup of 1.17× and 1.22× compared to AdaptiveCpp and DPC++. Shifting
our focus to the SYCL implementations, AdaptiveCpp and DPC++ exhibit simi-
lar performance metrics. Even in cases where they diverge, differences are small
enough to be encompassed by the standard deviation. Consequently, the dispari-
ties between the versions are not relevant. Although we have also included the
execution on ARM A78AE CPU by means of AdaptiveCpp implementation, it is
worth noting that the performance is not particularly favorable when compared to
GPU times.

Focusing on the UP Squared Pro 7000 Edge board, Fig. 3 depicts the execution
times. It is noteworthy to mention that the Intel UHD GPU could not be utilized

Table 4 Average speedup
obtained from Polybench suit in
the Jetson Orin Nano

Speedup CUDA AdaptiveCpp DPC++ Adap-
tiveCpp
(ARM)

CUDA 1 1.17 1.22 5.75
AdaptiveCpp – 1 1.07 5.46
DPC++ – – 1 4.99
AdaptiveCpp (ARM) – – – 1

Fig. 3 Execution time recorded for Polybench suite tests on the UP Squared Pro 7000 Edge

 Y. Faqir-Rhazoui, C. García

1 3

in conjunction with AdaptiveCpp due to the absence of OpenCL or native bare-
metal support. Moreover, the Correlation and Fdtd2d could not run on the
DPC++ implementation due to the requirement for double-precision computa-
tions. This issue is motivated by the lack of hardware support for double preci-
sion on Intel UHD GPU, and for the Atom CPU, the reason is associated to the
current OpenCL driver which does not provide support for double precision.

Table 5 summarizes the speedups obtained by each device and SYCL implemen-
tation. The Atom CPU with the AdaptiveCpp compiler obtains the worst perfor-
mance because SYCL code is translated to OpenMP, while DPC++ is conducted
by the OpenCL backend. This point makes the difference between both implementa-
tions [31, 50]. When comparing DPC++ performance on both CPU and GPU (UHD
Graphics), it is noteworthy that the Atom processor even outperforms the GPU.
Given the utilization of default-sized problem parameters, it does not appear to be
worthwhile to use the GPU.

Table 5 Average speedup
obtained from Polybench suit in
the UP Squared Pro 7000 Edge

Speedup Adap-
tiveCpp
(Atom)

DPC++(Atom) DPC++(UHD)

AdaptiveCpp (Atom) 1 0.55 0.79
DPC++ (Atom) – 1 1.35
DPC++ (UHD) – – 1

Table 6 Frames Per Second (FPS) achieved during the execution of optic flow algorithms on various
datasets and devices. The table shows the median and the standard deviation of each measure

Dataset Device Lucas–Kanade Horn–Schunck TV-L1

Schoolgirls
(432×240)

Ampere GPU
(CUDA)

x ∼ = 458 FPS
�
X
 = 119.4

x ∼ = 19.8 FPS
�
X
 = 0.13

x ∼ = 36.5 FPS
�
X
 = 0.44

Ampere GPU
(DPC++)

x ∼ = 583 FPS
�
X
 =49.1

x ∼ = 21.8 FPS
�
X
 = 0.11

x ∼ = 31.2 FPS
�
X
 = 0.37

UHD Graphics
(DPC++)

x ∼ = 528 FPS
�
X
 = 46.9

x ∼ = 16.24 FPS
�
X
 = 0.19

x ∼ = 12.1 FPS
�
X
 = 0.15

Middlebury
(640×480)

Ampere GPU
(CUDA)

x ∼ = 168 FPS
�
X
 = 2.42

x ∼ = 8.92 FPS
�
X
 = 0.10

x ∼ = 19.2 FPS
�
X
 = 0.47

Ampere GPU
(DPC++)

x ∼ = = 147 FPS
�
X
 = 9.44

x ∼ = 8.66 FPS
�
X
 = 0.10

x ∼ = 15.17 FPS
�
X
 = 0.37

UHD Graphics
(DPC++)

x ∼ = 250 FPS
�
X
 = 2.79

x ∼ = 5.01 FPS
�
X
 = 0.08

x ∼ = 7.61 FPS
�
X
 = 0.32

MPI-Sintel
(1024×436)

Ampere GPU
(CUDA)

x ∼ = 136 FPS
�
X
 = 1.27

x ∼ = 6.36 FPS
�
X
 = 0.03

x ∼ = 14.6 FPS
�
X
 = 0.12

Ampere GPU
(DPC++)

x ∼ = 150 FPS
�
X
 = 6.61

x ∼ = 6.98 FPS
�
X
 = 0.07

x ∼ = 12.8 FPS
�
X
 = 0.1

UHD Graphics
(DPC++)

x ∼ = 214 FPS
�
X
 = 2.42

x ∼ = 2.98 FPS
�
X
 = 0.03

x ∼ = 6.09 FPS
�
X
 = 0.17

1 3

SYCL in the edge: performance and energy evaluation for…

5.2 Optic flow experiments

Table 6 collects the performance (measured in Frame Per Second-FPS) achieved
by varying video resolution, GPU device, accelerator implementation, and algo-
rithm. We have also highlighted in bold type the best result fulfilled in each dataset
and algorithm. In order to avoid execution variability test was run 10 times, so the
table shows the average and standard deviation. We would like to clarify that we
decided to omit the results on CPU devices since either the ARM Cortex-A78E or
the Intel Atom X7425E are far away from the GPU counterpart execution times.
Furthermore, for the sake of clarity, we have also removed from the final results
AdaptiveCpp, due to the similar times achieved with DPC++.

Regarding the LK algorithm, it is noteworthy that the Intel UHD Graphics is the
most suitable device when resolution increases. For the HS algorithm, the Ampere
GPU is prominent, but distinguishing between CUDA and DPC++ implementations
in terms of performance is challenging, as in most instances, both implementations
yield nearly identical fps. Using the TV-L1 algorithm as a benchmark, once again,
we observe that the Ampere GPU reports the best performance rates. Diving deeper
into the comparison of implementations on the Ampere GPU, an average difference
of approximately 2.9% is observed between CUDA and DPC++. When examin-
ing each algorithm individually, we find that LK exhibits a 5.4% improvement with
DPC++, HS favors DPC++ by 5%, and the TV-L1 implementation performs 19%
better with CUDA.

On the UHD Graphics side, a direct comparison is made with the Ampere GPU
along DPC++. The overall difference is 60.9% in favor of the Orin GPU. When
looking at each algorithm individually, we observe a 20.2% improvement for the
UHD Graphics in the LK algorithm, an 80.4% advantage for the Ampere GPU in the
HS algorithm, and 122% for the Ampere GPU in the TV-L1 algorithm.

Fig. 4 Jetson Orin Nano’s GPU power and energy consumption by language. The bars represent energy
consumption in Joules, while the scatter plot illustrates the average power consumption in watts

 Y. Faqir-Rhazoui, C. García

1 3

5.3 Energy consumption results

The following subsection attempts to address the energy and power consumption
associated with each language and board. In this case, we have transitioned to AI
typical benchmarks widely used in the edge area.

Fig. 4 depicts to Ampere GPU power and energy consumption. The bars rep-
resent the average energy consumption by each benchmark, while the scatter plot
represents the average and standard deviation of the power consumption. At first
glance, SYCL reduces the energy consumption in Dense Embedding and Relu
benchmarks, while CUDA does in Attention Multi-Head and Resnet
tests. In those that SYCL beats, we found that the overall consumption was less than
CUDA’s, but not the time performance. Dense Embedding gives 3.11s vs 3.24s,
and Relu through 4.32s vs 4.37s for CUDA and SYCL, respectively. However, the
average power consumption was 2.1 watts vs 1.31 watts for the Dense Embed-
ding test, while in the Resnet was 2.33 watts vs 1.62 watts. Hence, the overall
energy consumption makes SYCL less energy consumption than CUDA.

Across the mentioned benchmarks, the total energy consumption in CUDA was
31.8J, whereas in SYCL, it was 28.3J. These numbers indicate that SYCL is 12%
more energy-efficient than CUDA. The CUDA binary exhibits power over-consump-
tion to enhance performance, but this increase does not proportionally scale with the
overall energy consumption.

On the other hand, Fig. 5 illustrates the power and energy consumption of the
Intel GPU. In this instance, we only measured the DPC++ implementation due to
the aforementioned issues with AdaptiveCpp. The overall consumption was 56J. A
direct comparison with the NVIDIA board is not feasible due to the differences in
measurement tools. While Jetson’s tegrastats provides the watt consumption of the
combined CPU+GPU package, the Squared Pro’s turbostat disaggregates the CPU
and GPU consumption. When we aggregate the CPU and GPU power consumption,
the overall energy consumption increases to 194J. This is 6.33 times higher than the
consumption of the Jetson SoC. It is worth noting that, while the Jetson features an

Fig. 5 UP Squared Pro 7000 Edge’s GPU power and energy consumption in DPC++. The bars represent
energy consumption in Joules, while the scatter plot illustrates the average power consumption in watts

1 3

SYCL in the edge: performance and energy evaluation for…

Arm CPU, known for its energy efficiency, the UP Squared employs an Intel Atom,
an x86-64 architecture which is generally more energy-demanding [51].

6 Discussion

SYCL showed the benefits of using as programming model in the edge market seg-
ment. In fact, we could successfully run the same code on different devices with-
out an important performance degradation: Two edge boards from different vendors
were employed for the same task.

In the initial phase, we tested SYCL along with the aforementioned boards using
the Polybench suite. This part of the experiment aimed to demonstrate the ability to
run the same SYCL code on various architectures, the differences between the most
commonly used SYCL implementations, and the minimal performance differences
when compared to native implementations, such as CUDA. Polybench results help
shed light on these objectives. First and foremost, thanks to SYCL, the Polybench
suite was able to run on x86/64 CPU, ARM CPU, NVIDIA GPU, and Intel GPU.
This is the primary advantage of SYCL when compared to native implementations,
as it simplifies development across various architectures. It is evident that employ-
ing the SYCL language to articulate an application’s parallelism not only ensures
portability across various architectures and vendors but also enhances productivity.

On one hand, it is also important to mention that regarding to DPC++ and Adap-
tiveCpp, both encountered difficulties in running on all the architectures tested.
DPC++ failed to operate on ARM CPUs, while AdaptiveCpp encountered issues
with Intel GPUs. Nonetheless, these problems could be addressed through improved
documentation on how to compile AdaptiveCpp for Intel GPUs using OpenCL or
Level0 backends, or by employing open-source OpenCL implementations for ARM
CPUs such as pocl.17 Regarding their performance, the CUDA GPU architectures
exhibited minimal variation, approximately 7%, which depended on the specific
benchmark being observed. Conversely, on x86/64 CPUs, AdaptiveCpp failed to
achieve comparable results to DPC++ with a notable 45% drop in performance
based on the underlying OpenMP conversion for CPU architectures. However, it
is important to note that OpenMP compatibility can be advantageous for emerging
architectures like the promising RISC-V.

On the other hand, it is important to consider the comparison between SYCL
implementations and CUDA. The overall metric indicates that CUDA outperforms
SYCL by approximately 17-22%, depending on the specific implementation. Nev-
ertheless, when examined on a benchmark-by-benchmark basis, the superiority
of CUDA is not consistently clear-cut. Out of the five tests performed better with
CUDA, while SYCL excelled in the other three, and the remaining eight showed
similar performance. In light of these results, it can be inferred that utilizing SYCL
does not significantly degrade performance at all.

In a subsequent analysis, we utilized an AI subset comprising four benchmarks
of common algorithms widely employed in edge computing. The objective of this

17 https:// github. com/ pocl/ pocl

https://github.com/pocl/pocl

 Y. Faqir-Rhazoui, C. García

1 3

assessment was to evaluate the energy consumption when transitioning from CUDA
to SYCL and to compare the energy efficiency between boards. The initial analy-
sis indicated that SYCL exhibited lower performance in those benchmarks, but it
was also less power-demanding, resulting in overall lower energy consumption com-
pared to CUDA (approximately 12% less). However, we warn the reader that the
energy efficiency observed depends on the specific application and workload tested.
Since other algorithms and workloads tested change observed behavior, take as a
rule of thumb that approximately ±10% of the energy consumption would vary by
moving from CUDA to SYCL and how well the application was tuned.

The other phase of the experiment aimed to test SYCL in real-world scenarios.
One common application in the edge computing sphere is computer vision, with
a specific focus on optical flow in this case. We evaluated three different datasets-
Schoolgirls, Middlebury, and MPI-Sintel-using three optical flow algorithms: LK,
HS, and TV-L1 . There are two points that need to be addressed: the performance dif-
ference between CUDA-SYCL and the SYCL comparison between boards.

The primary distinction among the implementations is evident in the TV-L1 algo-
rithm. HS demonstrates similar processing times in both versions, while LK stands
out as an exceptionally lightweight algorithm worth considering. The variances in
TV-L1 processing times—16% for Schoolgirls, 26% for Middlebury, and 14% for
MPI-Sintel—should be viewed as the price for achieving code portability. Main-
taining different versions of the same algorithm, even if it outperforms, inevitably
raises development costs. Therefore, SYCL for edge computing, like in other plat-
forms such as HPC, is no exception and also incurs a "minor" cost of 19% to ensure
portability.

Lastly, employing SYCL could also be a sensible choice when comparing across
various boards. This is because it helps narrow the gap between the software and
the algorithm’s implementation, which can vary depending on the programming
language used. To demonstrate this premise, the theoretical performance of the Jet-
son Orin Nano GPU is 1,280 GFLOPS; meanwhile, the UP Squared Pro 7000 Edge
GPU offers 460 GFLOPS (a 178% difference). The respective board prices are $499
and $399 (a 25% variance). Therefore, given the performance results and the actual
performance achieved in optical flow, a comparison based on cost is warranted.
Table 7 presents an assessment of the monetary cost (in dollars) per performance
unit (FPS). SYCL is used to conduct the results.

Table 7 USD per minute and frame computed by the GPUs and datasets

Lucas–Kanade Horn–Schunck TV-L1

Shoolgirls
(432 x 240)

Ampere GPU $0.01 per frame $0.38 per frame $0.27 per frame
UHD Graphics $0.01 per frame $0.41 per frame $0.55 per frame

Basketball
(640 x 480)

Ampere GPU $0.06 per frame $0.96 per frame $0.55 per frame
UHD Graphics $0.03 per frame $1.33 per frame $0.87 per frame

MPI-Sintel
(1024 x 436)

Ampere GPU $0.06 per frame $1.19 per frame $0.64 per frame
UHD Graphics $0.03 per frame $2.23 per frame $1.09 per frame

1 3

SYCL in the edge: performance and energy evaluation for…

When analyzing the algorithms, we observed the following cost differences: For
LK, the UHD GPU is 4.5% less expensive, while for HS is 27% more cost-effective
than the Orin GPU. In the case of TV-L1 , the Orin board’s cost is 43% lower.

On the consumption side, Table 8 presents the millijoules (mJ) consumed by
each processed frame. The table results depict the most demanding dataset, the
MPI-Sintel. It is important to note that energy consumption measures not only the
GPU power but also that of the SoC, which includes the CPU. Remarkably, the Jet-
son board demonstrates significantly greater energy efficiency compared to the UP
Squared, with differences ranging from 1.5 to 4.5 times greater energy efficiency.
The main issue with the UP Squared is that its CPU consumes more power in idle
states than the Arm’s CPU.

These comparative analyses allow us to select the most suitable board based on
specific priorities like cost, power consumption, performance, or real-time demands.
The ability to use a single, portable code greatly enhances decision-making effi-
ciency and promotes the widespread deployment of IoT applications on various
architectures and vendors, eliminating the need for maintaining multiple develop-
ment efforts or dependency on the commercial policies of a specific manufacturer.

7 Conclusion

The rapid growth of edge computing has introduced various solutions, many of
which incorporate low-power accelerators to enhance performance. Accelerators
are typically designed to work with specific custom languages such as CUDA, HIP,
VHDL, and others. However, this approach creates compatibility issues, as it neces-
sitates customizing the code for each architecture.

This work demonstrated the ability of edge computing to execute and leverage
SYCL code on different boards and custom accelerators. We employed the Poly-
bench suite to evaluate various SYCL implementations on the same hardware, and
the performance gap was found to be negligible. On the energy side, we utilized a
HeCBench subset, and no differences were observed.

Additionally, we utilized a realistic computer vision application based on optical
flow algorithms to assess the practical application of SYCL in edge computing sce-
narios. The experiments revealed a performance disparity between native solutions
like CUDA and SYCL. Nevertheless, we deliberated on the significance of SYCL’s
portability in development tasks and the trade-off in performance that developers
may encounter. Utilizing a single, portable code streamlines decision-making and

Table 8 Energy consumed by frame processed in DPC++ and multiple optic flow algorithms. MPI-Sin-
tel dataset was used to conduct the results

Lucas–Kanade Horn–Schunck TV-L1

Jetson Orin Nano 5.59 mJ per frame 414 mJ per frame 231 mJ per frame
UP Squared 8.42 mJ per frame 1,599 mJ per frame 1,041 mJ per frame

 Y. Faqir-Rhazoui, C. García

1 3

enables broad IoT deployment across different architectures and vendors, reducing
the reliance on multiple development efforts and specific manufacturer policies. To
the best of the author’s knowledge, this work represents one of the earliest efforts
focused on edge computing and code portability utilizing SYCL.

Future work should focus on incorporating performance portability metrics to
facilitate a comparison with the native version. Given the prevalent use of edge com-
puting in image processing and real-time applications, further investigations could
explore the advantages of employing SYCL in image processing frameworks such
as OpenCV. Moreover, extending the research to encompass other edge devices
and evaluating their performance and power consumption would provide valuable
insights.

Author Contributions All authors contributed to the research in the main concepts and design. The soft-
ware was developed by Y. FR. Y. FR also performed experiments. C. G. analyzed the results and pro-
posed methodology in the experimentation phase. All authors write and approve the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
paper has been supported by the EU (FEDER), the Spanish MINECO under grants PID2021-126576NB-
I00 and TED2021-130123B-I00 funded by MCIN/AEI/10.13039/501100011033 and by European Union
“ERDF A way of making Europe" and the NextGenerationEU/PRT.

Data availability statement Some datasets employed for the current study are available in the artecs-
group/sycl-optic-flow repository, https:// github. com/ artecs- group/ sycl- optic- flow/ tree/ main/ datas et. The
full datasets can be found in [43].

Code availability The code supporting the results of this article is available in the artecs-group/sycl-
optic-flow repository, https:// github. com/ artecs- group/ sycl- optic- flow

Declarations

Conflict of interest Do not have any conflicts of interest with your journal and no mutual conflicts of inter-
est among the authors.

Ethical approval Not applicable for this item.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Cao K, Liu Y, Meng G, Sun Q (2020) An overview on edge computing research. IEEE Access
8:85714–85728. https:// doi. org/ 10. 1109/ ACCESS. 2020. 29917 34

https://github.com/artecs-group/sycl-optic-flow/tree/main/dataset
https://github.com/artecs-group/sycl-optic-flow
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.2991734

1 3

SYCL in the edge: performance and energy evaluation for…

 2. Mansouri Y, Babar MA (2021) A review of edge computing: features and resource virtualization. J
Parallel Distribut Comput 150:155–183. https:// doi. org/ 10. 1016/j. jpdc. 2020. 12. 015

 3. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39. https:// doi.
org/ 10. 1109/ MC. 2017.9

 4. Kong X, Wu Y, Wang H, Xia F (2022) Edge computing for internet of everything: a survey. IEEE
Int Things J 9(23):23472–23485. https:// doi. org/ 10. 1109/ JIOT. 2022. 32004 31

 5. Tripathy B, Anuradha J (2018) Internet of Things (IoT): Technologies, Applications, Challenges and
Solutions, p. 358. CRC press, USA. https:// www. routl edge. com/ Inter net- of- Things- IoT- Techn ologi
es- Appli catio ns- Chall enges- and- Solut ions/ Tripa thy- Anura dha/p/ book/ 97803 67572 921

 6. Afzal B, Umair M, Shah GA, Ahmed E (2019) Enabling iot platforms for social iot applications:
vision, feature mapping, and challenges. Future Gener Comput Syst 92:718–731

 7. Tavana M, Hajipour V, Oveisi S (2020) Iot-based enterprise resource planning: Challenges, open
issues, applications, architecture, and future research directions. Internet of Things 11:100262

 8. Himeur Y, Alsalemi A, Al-Kababji A, Bensaali F, Amira A, Sardianos C, Dimitrakopoulos G, Var-
lamis I (2021) A survey of recommender systems for energy efficiency in buildings: principles, chal-
lenges and prospects. Inf Fusion 72:1–21. https:// doi. org/ 10. 1016/j. inffus. 2021. 02. 002

 9. Ramachandran P, Ranganath S, Bhandaru MK, Tibrewala S (2021) A survey of ai enabled edge
computing for future networks. In: 2021 IEEE 4th 5G World Forum (5GWF), 459–463

 10. Intel: oneAPI DPC++ Compiler and Runtime architecture design. https:// intel. github. io/ llvm- docs/
design/ Compi lerAn dRunt imeDe sign. html (2023)

 11. Keryell R, Reyes R, Howes L (2015) Khronos sycl for opencl: a tutorial. In: Proceedings of the 3rd
International Workshop on OpenCL, pp. 1–1

 12. Buck I (2007) Gpu computing with nvidia cuda. In: ACM SIGGRAPH 2007 Courses, p. 6
 13. Bauman P, Chalmers N, Curtis N, Freitag C, Greathouse J, Malaya N, McDougall D, Moe

S, van Oostrum R, Wolfe N, et al (2019) Introduction to amd gpu programming with hip. Pres-
entation at Oak Ridge National Laboratory. Online at: https://www. olcf. ornl. gov/calendar/
intro-to-amd-gpu-programming-with-hip

 14. Reinders J, Ashbaugh B, Brodman J, Kinsner M, Pennycook J, Tian X (2023) Data Parallel C++:
Mastering DPC++ for Programming of Heterogeneous Systems Using C++ and SYCL. Second
Edition, Springer, USA. https:// doi. org/ 10. 1007/ 978-1- 4842- 9691-2

 15. Castaño G, Faqir-Rhazoui Y, García C, Prieto-Matías M (2022) Evaluation of intel’s dpc++ com-
patibility tool in heterogeneous computing. J Parallel Distribut Comput 165:120–129. https:// doi.
org/ 10. 1016/j. jpdc. 2022. 03. 017

 16. Deakin T, McIntosh-Smith S (2020) Evaluating the performance of hpc-style sycl applications. In:
Proceedings of the International Workshop on OpenCL. IWOCL ’20. Association for Computing
Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 33883 33. 33886 43

 17. Breyer M, Van Craen A, Pflüger D (2022) A comparison of sycl, opencl, cuda, and openmp for
massively parallel support vector machine classification on multi-vendor hardware. In: International
Workshop on OpenCL. IWOCL’22. Association for Computing Machinery, New York, NY, USA.
https:// doi. org/ 10. 1145/ 35295 38. 35299 80

 18. Kang P (2023) Programming for high-performance computing on edge accelerators. Mathematics.
https:// doi. org/ 10. 3390/ math1 10410 55

 19. Angus D, Georgiev S, Arroyo Gonzalez H, Riordan J, Keir P, Goli M (2023) Porting sycl acceler-
ated neural network frameworks to edge devices. In: Proceedings of the 2023 International Work-
shop on OpenCL. IWOCL ’23. Association for Computing Machinery, New York, NY, USA.
https:// doi. org/ 10. 1145/ 35853 41. 35853 46

 20. Khronos SYCL working group: SYCL Specification. https:// regis try. khron os. org/ SYCL/ (2023)
 21. OpenMP: The OpenMP Specification. https:// www. openmp. org/ (2023)
 22. Khronos SYCL working group: The OpenCL Specification. https:// regis try. khron os. org/ OpenCL/

(2023)
 23. Ludwig K (2021) Performance portability and evaluation of heterogeneous components of seissol

targeted to upcoming intel hpc gpus
 24. LLVM-Project: User Guide for AMDGPU Backend. https:// www. llvm. org/ docs/ AMDGP UUsage.

html (2023)

https://doi.org/10.1016/j.jpdc.2020.12.015
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/JIOT.2022.3200431
https://www.routledge.com/Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/Tripathy-Anuradha/p/book/9780367572921
https://www.routledge.com/Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/Tripathy-Anuradha/p/book/9780367572921
https://doi.org/10.1016/j.inffus.2021.02.002
https://intel.github.io/llvm-docs/design/CompilerAndRuntimeDesign.html
https://intel.github.io/llvm-docs/design/CompilerAndRuntimeDesign.html
https://doi.org/10.1007/978-1-4842-9691-2
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.3390/math11041055
https://doi.org/10.1145/3585341.3585346
https://registry.khronos.org/SYCL/
https://www.openmp.org/
https://registry.khronos.org/OpenCL/
https://www.llvm.org/docs/AMDGPUUsage.html
https://www.llvm.org/docs/AMDGPUUsage.html

 Y. Faqir-Rhazoui, C. García

1 3

 25. Marangoni M, Wischgoll T (2016) Togpu: automatic source transformation from C++ to cuda
using clang/llvm. Electron Imag 2016(1):1–9

 26. illuhad (2021) AdaptiveCpp design and architecture. https:// github. com/ OpenS YCL/ OpenS YCL/
blob/ devel op/ doc/ archi tectu re. md

 27. Jin Z (2020) The rodinia benchmark suite in sycl. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States). Argonne Leadership ..

 28. Tramm JR, Siegel AR, Islam T, Schulz M (2014) Xsbench-the development and verification of a
performance abstraction for monte carlo reactor analysis. The Role of Reactor Physics toward a Sus-
tainable Future (PHYSOR)

 29. Alpay A, Soproni B, Wünsche H, Heuveline V (2022) Exploring the possibility of a hipsycl-based
implementation of oneapi. In: International Workshop on OpenCL. IWOCL’22. Association for
Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 35295 38. 35300 05

 30. Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-level lan-
guage targeted to gpu codes. In: 2012 Innovative Parallel Computing (InPar), pp. 1–10. https:// doi.
org/ 10. 1109/ InPar. 2012. 63395 95

 31. Lal S, Alpay A, Salzmann P, Cosenza B, Hirsch A, Stawinoga N, Thoman P, Fahringer T, Heuveline
V (2020) Sycl-bench: a versatile cross-platform benchmark suite for heterogeneous computing. In:
Euro-Par 2020: Parallel Processing: 26th International Conference on Parallel and Distributed Com-
puting, Warsaw, Poland, August 24–28, 2020, Proceedings 26, pp. 629–644. https:// doi. org/ 10. 1007/
978-3- 030- 57675-2_ 39. Springer

 32. Stiller C, Konrad J (1999) Estimating motion in image sequences. IEEE Signal Process Mag
16(4):70–91. https:// doi. org/ 10. 1109/ 79. 774934

 33. Baker S, Roth S, Scharstein D, Black MJ, Lewis JP, Szeliski R (2007) A database and evaluation
methodology for optical flow. In: 2007 IEEE 11th International Conference on Computer Vision,
pp. 1–8. https:// doi. org/ 10. 1109/ ICCV. 2007. 44089 03

 34. Butler DJ, Wulff J, Stanley GB, Black MJ (2012) A naturalistic open source movie for optical flow
evaluation. In: Computer Vision–ECCV 2012: 12th European Conference on Computer Vision,
Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12, pp. 611–625. Springer

 35. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the KITTI dataset. Int J Robot
Res 32(11):1231–1237. https:// doi. org/ 10. 1177/ 02783 64913 491297

 36. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Int 17(1):185–203. https:// doi. org/
10. 1016/ 0004- 3702(81) 90024-2

 37. Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2432–2439.
https:// doi. org/ 10. 1109/ CVPR. 2010. 55399 39

 38. Borzì A, Schulz V (2009) Multigrid methods for PDE optimization. SIAM Rev 51(2):361–395.
https:// doi. org/ 10. 1137/ 06067 1590

 39. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo
vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume
2. IJCAI’81, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

 40. Botella G, Garcia A, Rodriguez-Alvarez M, Ros E, Meyer-Baese U, Molina MC (2010) Robust
bioinspired architecture for optical-flow computation. IEEE Trans Very Large Scale Integrat VLSI
Syst 18:616–629

 41. Gong Y, Zhang J, Liu X, Li J, Lei Y, Zhang Z, Yang C, Geng L (2023) A real-time and efficient
optical flow tracking accelerator on fpga platform. In: IEEE Transactions on Circuits and Systems I:
Regular Papers, 1–14. https:// doi. org/ 10. 1109/ TCSI. 2023. 32989 69

 42. Jaiswal D, Kumar P (2022) A survey on parallel computing for traditional computer vision. Concurr
Comput : Pract Exp 34(4):6638

 43. Zhai M, Xiang X, Lv N, Kong X (2021) Optical flow and scene flow estimation: a survey. Pattern
Recog 114:107861. https:// doi. org/ 10. 1016/j. patcog. 2021. 107861

 44. Zach C, Pock T, Bischof H (2007) A duality based approach for realtime tv-l1 optical flow. In: Pro-
ceedings of the 29th DAGM Conference on Pattern Recognition, Springer, Berlin, Heidelberg

 45. Wedel A, Pock T, Zach C, Bischof H, Cremers D (2009) An improved algorithm for tv-l1 optical
flow. In: Statistical and Geometrical Approaches to Visual Motion Analysis: International Dagstuhl
Seminar, Dagstuhl Castle, Germany, July 13-18, 2008. Revised Papers, Springer, Berlin, Heidel-
berg. https:// doi. org/ 10. 1007/ 978-3- 642- 03061-1_2

 46. Sánchez Pérez J, Meinhardt-Llopis E, Facciolo G (2013) TV-L1 optical flow estimation. Image Pro-
cess On Line 3:137–150. https:// doi. org/ 10. 5201/ ipol. 2013. 26

https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1007/978-3-030-57675-2_39
https://doi.org/10.1007/978-3-030-57675-2_39
https://doi.org/10.1109/79.774934
https://doi.org/10.1109/ICCV.2007.4408903
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/CVPR.2010.5539939
https://doi.org/10.1137/060671590
https://doi.org/10.1109/TCSI.2023.3298969
https://doi.org/10.1016/j.patcog.2021.107861
https://doi.org/10.1007/978-3-642-03061-1_2
https://doi.org/10.5201/ipol.2013.26

1 3

SYCL in the edge: performance and energy evaluation for…

 47. Romera T, Petreto A, Lemaitre F, Bouyer M, Meunier Q, Lacassagne L, Etiemble D (2023) Optical
flow algorithms optimized for speed, energy and accuracy on embedded Qpus. J Real-Time Image
Process 20(2):32. https:// doi. org/ 10. 1007/ s11554- 023- 01288-6

 48. Romera T, Petreto A, Lemaitre F, Bouyer M, Meunier Q, Lacassagne L (2021) Implementations
impact on iterative image processing for embedded gpu. In: 2021 29th European Signal Processing
Conference (EUSIPCO), pp. 736–740. https:// doi. org/ 10. 23919/ EUSIP CO545 36. 2021. 96159 47

 49. Alpay A, Heuveline V (2020) Sycl beyond opencl: The architecture, current state and future direc-
tion of hipsycl. In: Proceedings of the International Workshop on OpenCL. IWOCL ’20. Associa-
tion for Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 33883 33. 33886 58

 50. Alpay A, hipSYCL 0.9.2 - compiler-accelerated CPU backend, nvc++ support and more. https://
adapt ivecpp. github. io/ hipsy cl/ relea se/ cpu/ exten sion/ nvc++/ hipsy cl-0. 9.2/

 51. Jarus M, Varrette S, Oleksiak A, Bouvry P (2013) Performance evaluation and energy efficiency of
high-density HPC platforms based on intel, Amd and arm processors. In: Pierson J-M, Da Costa G,
Dittmann L (eds) Energy Eff Large Scale Distribut Syst. Springer, Berlin, Heidelberg, pp 182–200

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/s11554-023-01288-6
https://doi.org/10.23919/EUSIPCO54536.2021.9615947
https://doi.org/10.1145/3388333.3388658
https://adaptivecpp.github.io/hipsycl/release/cpu/extension/nvc++/hipsycl-0.9.2/
https://adaptivecpp.github.io/hipsycl/release/cpu/extension/nvc++/hipsycl-0.9.2/

	SYCL in the edge: performance and energy evaluation for heterogeneous acceleration
	Abstract
	1 Introduction
	2 The SYCL paradigm in a nutshell
	3 Benchmarking SYCL in edge platforms
	3.1 SYCL benchmark suits
	3.2 Image processing for optic flow

	4 Methods
	4.1 Environment configuration
	4.2 Benchmarking methodology

	5 Experimental results
	5.1 Polybench experiments
	5.2 Optic flow experiments
	5.3 Energy consumption results

	6 Discussion
	7 Conclusion
	References

