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Abstract
Sparse matrix-vector multiplication (SpMV) plays a critical role in a wide range of 
linear algebra computations, particularly in scientific and engineering disciplines. 
However, the irregular memory access patterns, extensive memory usage, high 
bandwidth requirements, and underutilization of parallelism hinder the computa-
tional efficiency of SpMV on GPUs. In this paper, we propose a novel approach 
called block-wise dynamic mixed-precision (BDMP) to address these challenges. 
Our methodology involves partitioning the original matrix into uniformly sized 
blocks, with each block’s size determined by considering architectural characteris-
tics and accuracy requirements. Additionally, we dynamically assign precision to 
each block using a precision selection method that takes into account the value dis-
tribution of the original sparse matrix. We develop two distinct SpMV computa-
tion algorithms for BDMP: BDMP-PBP (Precision-based partitioning) and BDMP-
TCKI (Tailored compression and kernel implementation). BDMP-PBP partitions the 
matrix into two independent matrices for separate computations based on block pre-
cision, offering flexibility for integration with other optimization techniques. Mean-
while, BDMP-TCKI focuses on achieving significant thread-level parallelism and 
memory utilization by tailoring an appropriate compressed storage format and ker-
nel implementation for each block. We compare BDMP with NVIDIA’s cuSPARSE 
library and three state-of-the-art SpMV methods, including SELLP, MergeBase, and 
BalanceCSR, using matrices from the University of Florida’s SuiteSparse dataset 
collection. BDMP-PBP and BDMP-TCKI show average speedups up to 2.64× and 
2.91× on Turing RTX 2080Ti, and up to 2.99× and 3.22× on Ampere A100. The 
results demonstrate that BDMP enables the optimization of computation speed with-
out compromising the precision necessary for reliable results.
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1 Introduction

Sparse matrix-vector multiplication holds a great significance in the realm of 
sparse linear algebra. It plays a crucial role in the performance of iterative solv-
ers, especially when dealing with large systems of linear equations and eigenvalue 
problems. Given that iterative methods might need hundreds or even thousands of 
matrix-vector products for convergence, SpMV’s efficiency becomes paramount 
[1].

Optimizing SpMV is of exceptional significance in contemporary high-per-
formance computing environments, particularly for modern applications. Among 
various parallel computing architectures, the graphics processing unit (GPU) 
stands out as the most prevalent and widely utilized [2]. Therefore, ensuring an 
efficient implementation of SpMV on GPUs is of paramount importance in maxi-
mizing the computational capabilities and performance of these applications. 
However, effectively harnessing SpMV operations on GPUs poses significant 
challenges due to irregular memory access patterns, excessive memory utiliza-
tion, high bandwidth demands, and underutilization of parallelism.

Extensive research effort has been dedicated to optimizing SpMV on GPUs, 
including the application of novel sparse matrix formats, architecture-specific 
optimizations to existing formats, and automated performance tuning of matrix 
formats and parameters [3–17]. The emergence of novel sparsity matrix formats 
aims to address the irregular memory access patterns commonly encountered in 
SpMV operations. This entails reorganizing the data arrangement to better align 
with the GPU’s memory access patterns, resulting in improved efficiency. Archi-
tecture-specific optimizations primarily focus on enhancing data proximity, mini-
mizing memory latency, and fully exploiting the inherent parallelism of the GPU. 
Moreover, employing machine learning or heuristic techniques for automated per-
formance enhancement enables the selection of the most suitable matrix format 
and parameter tuning for a given sparse matrix. These approaches are not mutu-
ally exclusive and can complement each other effectively.

Furthermore, recent independent research has focused on implementing mixed-
precision strategies on GPUs to reduce data transfer between the host and device 
and effectively exploit the unique features of GPU hardware architecture, thereby 
enhancing the performance of the SpMV kernel [18–23].

In numerical computation, the cost associated with computation and communica-
tion scales with the size of the floating-point format. Communication includes activ-
ities such as accessing main memory, transferring data within or between computing 
cores. The cost of data transfers consists of a fixed access latency and the transfer 
time, which is determined by the ratio between the message size and the data trans-
fer rate. Ignoring latency, the communication cost increases proportionally with the 
size of the floating-point format in terms of bits. Specifically, considering widely 
used IEEE754 double-precision (64-bit) and single-precision (32-bit) formats, the 
runtime difference for communication operations is approximately a factor of two.

Simultaneously, the cost of conducting arithmetic operations is strongly influ-
enced by the hardware’s support for computations in a particular floating-point 
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format. Beginning with the Turing architecture, NVIDIA introduced Tensor 
Cores, an innovative component designed to enhance performance for half-preci-
sion (FP16) and single-precision (FP32) computations. In subsequent GPU archi-
tectures, such as the Ampere architecture, NVIDIA has continued to optimize and 
refine Tensor Cores, further improving their capabilities for handling lower-pre-
cision computations. For instance, on the Turing RTX 2080 Ti, single-precision 
performance surpasses double-precision performance by a factor of approxi-
mately 32. Notably, Ampere NVIDIA’s A100 GPU goes a step further by offering 
a single-precision performance that is an impressive 22 times higher than that 
of the RTX 2080 Ti. Due to the successive advancements in NVIDIA’s GPUs, a 
notable discrepancy has arisen between the computational capabilities and mem-
ory bandwidth. Consequently, the expense associated with data access and com-
munication has progressively amplified when compared to arithmetic operations. 
As a memory-bound algorithm, SpMV may potentially benefit from compressing 
all data in the cache before initiating communication with remote processors or 
main memory.

Hence, considering the variations in performance for computation and communi-
cation across different precision formats, an essential focus of current research is to 
improve the performance of numerical algorithms by carefully combining precision 
formats. The primary objective of these mixed-precision algorithms is to expedite 
application execution by leveraging lower-precision formats while maintaining high 
accuracy in the output.

It is important to note that mixed-precision optimizations and the aforementioned 
methods for enhancing SpMV operations on GPUs are not mutually exclusive but 
can be simultaneously employed to capitalize on their respective strengths and com-
plement each other. By integrating these diverse approaches, we can strive to maxi-
mize the computational capabilities and performance of modern applications that 
heavily rely on SpMV in GPU-based high-performance computing environments.

In this paper, we present a novel approach called block-wise dynamic mixed-
precision (BDMP), aiming to achieve high memory bandwidth utilization, achieve 
high thread-level parallelism, and reduce data transfer overhead. The BDMP method 
involves dividing the original matrix into uniformly sized blocks, strategically deter-
mined considering architectural characteristics and accuracy requirements. We intro-
duce a precision selection method that analyzes the value distribution of the origi-
nal sparse matrix, enabling us to optimize the computation process for increased 
efficiency without compromising the precision necessary for reliable results. Within 
the BDMP framework, we develop two distinct SpMV computation algorithms: 
BDMP-PBP (Precision-based partitioning) and BDMP-TCKI (Tailored compression 
and kernel implementation). BDMP-PBP facilitates partitioning the matrix into two 
independent sub-matrices for separate computations, based on their respective block 
precision. This design offers flexibility for seamless integration with other optimiza-
tion techniques. On the other hand, BDMP-TCKI focuses on achieving significant 
thread-level parallelism and optimal memory utilization. This tailored approach sub-
stantially enhances parallel processing capabilities and memory bandwidth utiliza-
tion, further accelerating the SpMV computations. The main contributions of this 
paper are as follows:
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• We introduce the BDMP method and explore a set of optimizations that reduce 
memory transfer overhead, achieve high memory bandwidth utilization, and 
achieve high thread-level parallelism

• We propose a dynamic precision selection method based on the value distri-
bution of the sparse matrix, determining the optimal precision for each sparse 
block.

• We develop two SpMV algorithms, BDMP-PBP and BDMP-TCKI, to enhance 
flexibility and memory utilization, respectively.

• We find that BDMP can achieve obvious speedups over state-of-the-art SpMV 
algorithms while maintaining a high degree of precision.

The rest of the paper is organized as follows: Section 2 provides a background on 
SpMV. Section 3 presents our proposed BDMP method, which includes a detailed 
explanation of the BDMP-PBP and BDMP-TCKI SpMV algorithms. In Sect. 4, we 
conduct a comprehensive evaluation to assess the performance benefits of our meth-
ods on the GPU. Finally, Sect. 5 concludes the paper by summarizing the findings 
and discussing potential directions for future research.

2  Backgrounds

2.1  Sparse matrix compression storage format

A sparse matrix, mostly filled with zeros, benefits from compressed storage formats, 
saving memory space and enhancing computational efficiency. The mainstream-
compressed storage formats for sparse matrices are coordinate (COO), compressed 
sparse row (CSR), ELLPACK (ELL), and diagonal (DIA). Figure  1 shows these 
mainstream-compressed storage formats. The COO format is the most intuitive and 
simplest format, storing only the non-zero elements along with their correspond-
ing indices and values. The arrays val , row_index , and col_index are responsible for 
storing the values of non-zero elements, their respective row indices, and column 
indices. The size of these arrays is equal to nnz , which represents the total number 
of non-zero elements in the sparse matrix. However, despite its simplicity and intui-
tiveness, the COO format encounters performance issues. These issues arise from 
challenges in thread decomposition and the unpredictability of coefficient usage in 
calculations. Additionally, the format requires increased memory usage due to the 
explicit storage of both the row and column indices for each non-zero element.

The CSR format is another commonly used approach that compresses the 
matrix data by removing zero entries. It consists of three arrays: val , col_index , 
and row_ptr . The val array stores all the non-zero elements in row-major order. 
col_index saves the column index for each non-zero entry, while row_ptr holds the 
starting index in the val array of the first non-zero element in each row. Although 
CSR improves memory usage and access patterns compared to COO, it still faces 
challenges, particularly in regard to inefficient parallelism due to potential load 
imbalance among rows and data locality issues in certain computations.
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The ELL format is known for its regular memory access pattern, enhancing 
performance for vector operations. It consists of two arrays: val and col_index . val 
stores non-zero elements row by row. Each row contains a fixed number of ele-
ments equal to the maximum number of non-zero entries in any row of the matrix. 
col_index stores their corresponding column indices. Despite its efficiency in vec-
tor operations, ELL has a significant limitation: its memory footprint can become 
substantial when dealing with matrices that have rows with widely varying num-
bers of non-zero elements.

The DIA format focuses on the diagonal structure of a sparse matrix, storing 
non-zero elements along diagonals in a dense matrix called val . Additionally, it 
uses another array, offset , to store the relative positions of these diagonals. While 
DIA can be memory-efficient for matrices with a significant number of non-zero 
diagonals, it performs poorly if the matrix lacks a strong diagonal structure, lead-
ing to memory wastage in storing many zero elements.

Besides, the HYB format combines the ELL and COO structures, effectively 
storing the initial K non-zeros per row in ELL (with zero padding for rows with 
fewer non-zeros). The remaining non-zeros are stored using the COO format. The 
parameter K is selected such that at least one-third of the matrix rows contain 
K or more non-zeros. This choice is guided by the distinct advantages of ELL’s 
efficiency and COO’s consistent performance. As a result, the HYB format offers 
significant improvements in kernel execution time across a wide range of sparse 
matrices. However, these advantages come at the cost of increased data organiza-
tion complexity, more intricate program logic.

Fig. 1  Mainstream sparse matrix storage formats
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Advanced storage formats like the quad-tree and block compress formats offer 
unique advantages in handling sparse matrices. The quad-tree format recursively 
divides the matrix into four quadrants, each represented as a node in a tree structure. 
This recursive division continues until a specified criterion is met, such as the quad-
rant reaching a certain size or a level of sparsity. The array node stores information 
about each node, including its position in the matrix and the size of its quadrant. The 
array data contains the sparse matrix data for each leaf node, formatted according 
to specific application requirements, such as CSR. Finally, the array child_indices 
holds the indices of the child nodes for each node, facilitating efficient traversal of 
the tree structure [24–26]. This format is particularly effective for matrices with 
nonuniform sparsity patterns, allowing for adaptive compression based on local 
matrix properties. However, while efficient for matrices with nonuniform sparsity, 
the quad-tree format can lead to overhead in terms of both storage and computa-
tion. The recursive division of the matrix into quadrants adds complexity to the data 
structure, potentially resulting in increased memory usage and computational over-
head, especially for matrices that do not exhibit a clear hierarchical sparsity pattern.

The block compress format groups non-zero elements of a sparse matrix into 
blocks, each stored as a dense sub-matrix, offering an efficient way to handle matri-
ces with clustered non-zero elements. This format includes several critical arrays to 
manage the data effectively [3, 27–29]. The array block_data holds the dense matrix 
data for each block, containing all non-zero elements within that block. The array 
block_position indicates the starting position of each block in the original matrix, 
similar to the row_ptr in CSR format. Additionally, the array block_col_ind stores 
the column indices for each block, specifying the column location of the block in the 
matrix. This format is particularly beneficial when non-zero elements of a matrix are 
clustered in small regions, combining the storage efficiency of CSR for sparse areas 
with the computational efficiency of dense matrix operations for non-zero blocks. 
However, the block compress format excels primarily when non-zero elements 
exhibit block-like sparsity patterns. Its performance can degrade if the matrix does 
not show such patterns, as blocks may include many zero elements, leading to ineffi-
cient memory use. Additionally, determining the optimal block size can be challeng-
ing and often requires domain-specific knowledge, since the block size significantly 
affects both performance and storage efficiency.

2.2  Accuracy differences

In the realm of scientific computation, understanding the distinction between single 
and double precision is paramount, as it involves delving into the IEEE 754 standard 
for floating-point arithmetic. A single-precision floating-point number occupies 32 
bits, comprising a sign bit, 8 bits dedicated to the exponent, and 23 bits for the sig-
nificand. On the other hand, a double-precision floating-point number necessitates 
64 bits, accommodating a sign bit, 11 bits for the exponent, and 52 bits for the sig-
nificand. The larger bit allocation in double precision permits a broader spectrum of 
representable numbers with enhanced precision.
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Accuracy evaluation often starts with the assessment of relative and absolute 
errors. The absolute error, denoted as Eabs , is the unaltered disparity between the 
true value ( T  ) and the approximated value ( A ). This discrepancy is mathematically 
expressed in Eq. (1).

Despite its straightforwardness, the absolute error does not consider the scale of the 
values under comparison. For instance, an absolute error of 1 × 10−3 might be incon-
sequential if the true value is approximately 1 × 106 , but crucial if the true value is 
merely 1 × 10−3 . Hence, the absolute error does not always offer a precise portrayal 
of the accuracy of an approximation.

Similarly, the relative error, expressed in Eq. (2) and calculated as the absolute 
difference between the true value and the approximation divided by the true value, 
can also be misleading.

Although the relative error considers the magnitude of the numbers being compared, 
it may still lead to misleading interpretations due to its sensitivity to the magnitudes 
of T  and A.

Given these limitations, the concept of significant digits becomes crucial [30]. 
The significant digits of a numerical value provide meaningful information about its 
precision, independent of the magnitudes of the values. The criterion for significant 
digits can be formulated as Eq. (3).

Here, n represents the number of significant digits, which is usually rounded down 
to the nearest whole number

By considering Eqs. (2) and (3), we can infer that a single-precision float typi-
cally has approximately 6 to 7 significant digits, while a double-precision float offers 
approximately 15 to 17 significant digits. Consequently, significant digits are often 
the preferred method for quantifying accuracy differences between single-precision 
and double-precision numbers in scientific computation.

2.3  GPU architecture

In GPU architecture, the fundamental unit is the streaming multiprocessor (SM), 
with each GPU composed of a variable number of these SMs. Within each SM 
is several CUDA cores, the critical computational units are responsible for 
executing instructions and facilitating parallel computing. SMs utilize the sin-
gle instruction, multiple data (SIMD) execution paradigm, managing groups of 
threads-termed warps that concurrently execute identical instructions on distinct 
data elements. Notably, a warp typically contains 32 threads and represents the 
basic unit for scheduling and task execution within an SM. The count of both 

(1)Eabs = |T − A|

(2)Erel =
|T − A|
|T|

(3)Erel < 5 × 10−n
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CUDA cores within each SM and the overall number of SMs varies across dif-
ferent GPU models and generations.

The memory architecture of GPUs plays a pivotal role in their design, incor-
porating various memory classifications with different levels of accessibility 
and speed. These categories include global, shared, local, constant, and tex-
ture memory. Global memory, while offering the most storage capacity, is the 
slowest in terms of access speed. It serves as the primary data repository for 
GPU computations and is accessible to all threads. In contrast, shared memory, 
despite its limited size, surpasses global memory in terms of speed. It is shared 
among a block of threads, facilitating efficient data exchange and interaction. 
Local memory is allocated on a per-thread basis and is used to store private vari-
ables and function call stacks. Constant memory is designed for frequent access 
to constants during GPU computations, acting as read-only memory. Texture 
memory, specifically tailored for texture mapping operations, enables high-effi-
ciency texture sampling. To enhance GPU application performance, it is essen-
tial to effectively utilize these different memory types. Doing so ensures efficient 
data access, distribution, and caching, which in turn reduces memory latency 
and maximizes memory bandwidth utilization.

NVIDIA’s Turing and Ampere architectures bring several advancements to 
GPU memory architecture, with Turing notably integrating L1 cache and shared 
memory for enhanced efficiency and adopting GDDR6 technology for higher 
bandwidth. Ampere furthered this evolution, improving both single- and dou-
ble-precision floating-point performance and enlarging the L2 cache size, thus 
reducing memory access latency and enhancing computational performance.

Beginning with NVIDIA’s Fermi architecture, GPUs have progressively 
included distinct pathways for single-precision (FP32) and double-precision 
(FP64) floating-point compute units, with significant advancements in parallel 
execution capabilities. This design evolution is evident in architectures like Pas-
cal, Volta, Turing, and Ampere. Notably, the Volta architecture introduced sepa-
rate FP32 and FP64 cores within the streaming multiprocessors (SMs), enabling 
simultaneous execution of single- and double-precision tasks without interfer-
ence [31].

The Turing and Ampere architectures further refined this approach. For 
instance, the Turing architecture’s 2080 Ti GPU demonstrates this capability 
with theoretical peak performances of 14.2 TFLOPS in FP32 and 0.44 TFLOPS 
in FP64. Meanwhile, the Ampere architecture’s A100 GPU boasts 19.5 TFLOPS 
and 9.7 TFLOPS in FP32 and FP64 performances, respectively. This segregation 
of floating-point units enhances parallel efficiency in mixed-precision comput-
ing tasks and optimizes resource utilization, significantly boosting GPU perfor-
mance in various computing environments [32, 33].

We target two NVIDIA platforms in this work: the RTX 2080 Ti (an older, 
but widely adopted GPU) and the A100 (a current GPU used in many high-per-
formance computing centers). The architectural parameters for these GPUs can 
be found in Table 1.
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2.4  Related work

To address the irregular storage access patterns in sparse matrices, a block strat-
egy is employed. This approach involves partitioning the sparse matrix into smaller, 
more manageable blocks. Subsequently, these blocks are rearranged to align more 
favorably with the memory access architecture of the GPU. This effective reduc-
tion in overall memory latency, combined with the efficient utilization of the GPU’s 
parallel computing capabilities, is evident in various formats, including Sliced ELL-
PACK, SELL-C-� , SELLP, BCCOO, BCCOO+ , Merge, BalanceCSR, BRCSD, 
RBDCS, and DIA-adaptive [5, 16, 34–40]. Nevertheless, a challenge that remains 
is determining the optimal size for the row piece in these formats, which calls for 
further research to enhance their performance.

The hybrid compression strategy amalgamates multiple compression tech-
niques to efficiently represent the sparse matrix. By applying diverse compres-
sion approaches to different matrix sections, a higher overall compression ratio is 
achieved. Consequently, this not only diminishes the memory footprint but also 
enhances memory access efficiency. Frequently, the hybrid compression strategy 
is combined with the block strategy to further optimize performance. Examples of 
such combinations include HDC, HYB-R, BCE, and TileSpMV [8, 41–43].

The index compression method aims to reduce the size of indices in sparse matri-
ces. It utilizes encoding techniques to compress row and column indices, resulting 
in a noteworthy reduction in memory demands. These compressed indices can be 
processed more efficiently by the GPU, leading to decreased memory access latency 
and improved overall SpMV performance. DCSR, RPCSR, Delta coding, BRO, and 
BCOO serve as exemplars of index compression formats [7, 44–46].

The mixed-precision strategy is an effective approach for managing and optimiz-
ing the storage and computation of sparse matrices. This method employs varying 
numerical precision levels for different components of the matrix, thereby opti-
mizing both storage and computation. It effectively reduces memory usage while 
maintaining sufficient precision for computations and takes advantage of the GPU’s 
ability to process lower-precision data at higher speeds, enhancing computational 

Table 1  Architectural 
parameters for RTX 2080 Ti 
and A100

Device RTX 2080 Ti A100

GPU architecture Turing Ampere
Compute capability 7.5 8.0
Memory size (GB) 11 40
Memory bandwidth (GB/s) 616 1555
Theoretical peak FP16 (TFLOPS) 125 312
Theoretical peak FP32 (TFLOPS) 14.2 19.5
Theoretical peak FP64 (TFLOPS) 0.44 9.7
SMs 68 108
CUDA cores per SM 64 64
Tensor cores per SM 8 4
L1 size (KB) 64 192
L2 size (MB) 5.5 40
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efficiency. Mixed-precision strategies find extensive applications in numerical lin-
ear algebra, including operations like matrix multiplication, factorization, linear sys-
tems, least squares, and eigenvalue and singular value decomposition. They incor-
porate key algorithmic ideas such as iterative refinement, precision adaptation to 
data, and exploiting mixed-precision block-fused multiply-add (FMA) operations. 
These algorithms strike a balance between lower-precision performance and higher-
precision accuracy, achieving results comparable to fixed precision algorithms but 
at lower cost, or using slightly higher precision for improved accuracy. Signifi-
cant works in this area include data-driven methodologies, the tSparse algorithm, 
research on mixed-precision block FMA operations, multiple-precision SpMV ker-
nels in various matrix storage formats, and row-wise mixed-precision SpMV meth-
ods [18, 19, 21, 23, 47]. A survey highlights the performance benefits and insights 
into the numerical stability of these algorithms, marking a significant contribution to 
the field of numerical analysis and computation [48, 49].

It is worth noting that these strategies can, and often are, combined to further 
optimize both memory and computational performances in GPU-based sparse 
matrix operations.

3  Methodology

In this section, we present an extensive exposition of our BDMP method, which 
aims to minimize data transfer overhead and optimize memory bandwidth utili-
zation. The BDMP methodology consists of two fundamental components: block 
partitioning and dynamic precision selection. Block partitioning is a process that 
divides the original matrix into uniformly sized blocks. This segmentation strategi-
cally considers two key factors: the architectural characteristics of the GPU and the 
accuracy requirements of the computation. Section 3.1.1 will provide a comprehen-
sive introduction to the block partitioning process. On the other hand, dynamic pre-
cision selection allocates precision to each block dynamically, adjusting it based on 
the data characteristics in the sparse matrix. This approach aims to strike a balance 
between the computational accuracy offered by double-precision data types and the 
memory and computational efficiency of single-precision data types. Section 3.1.2 
will provide detailed elaboration on the dynamic precision selection method.

Building on the BDMP framework, we introduce two SpMV algorithms: BDMP-
PBP (precision-based partitioning) and BDMP-TCKI (tailored compression and ker-
nel implementation). Within the BDMP-PBP algorithm, the original matrix is parti-
tioned into two independent sub-matrices based on the block precision. This method 
allows for computations to be performed separately based on varying precision 
needs, subsequently reducing data transfer overhead and enabling smooth integra-
tion with other optimization techniques. A more detailed explanation of the BDMP-
PBP algorithm will provide in Sect. 3.2.1. On the other hand, BDMP-TCKI focuses 
on enhancing parallelism and maximizing memory bandwidth utilization through 
tailored compression and kernel implementation. It employs a tailored compres-
sion strategy that selects the most suitable compression format for each block and 
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a specialized kernel implementation that utilizes warp-level kernel for different for-
mats. Section 3.2.2 will provide detailed elaboration on the BDMP-TCKI algorithm.

3.1  BDMP method

3.1.1  Block partitioning

In the BDMP methodology, block partitioning involves dividing the original matrix 
into uniformly sized blocks, where the block height � and block width � are cru-
cially important. These blocks are then stored in either single or double precision.

From a computational accuracy standpoint, both � and � should not exceed 32 as 
their maximum value. The primary reason for this limitation is the balance between 
parallelism and accuracy. While larger blocks offer more opportunities for parallel 
processing, they can also introduce numerical instability and increased errors, espe-
cially in sparse matrix operations [48].

When blocks are stored in single precision, the accuracy of each computation within 
the block may decrease due to the restricted precision of this format. This reduction 
in accuracy is due to the accumulation of round-off errors in floating-point computa-
tions, which become more pronounced with larger block sizes. Therefore, maintain-
ing small block dimensions can help alleviate this accumulation of errors [49]. The 
degree of accuracy loss can be expressed in Eq. (4).

Where Ablock and Aexact represent the results of the block-based computation and 
the exact computation, respectively. This ratio � indicates the relative error, demon-
strating the extent of precision loss with larger blocks.

From a hardware architecture perspective, when selecting block dimensions � 
and � , it is essential to take into account considerations related to memory access 
and computational efficiency. For memory access, the goal is to consolidate memory 
operations as much as possible to minimize overhead. Typically, the memory access 
unit is either 64B or 128B for NVIDIA GPUs. As a result, both the block height 
� and block width � should ideally be multiples of 16, regardless of whether the 
blocks are stored in single or double precision. This is because each floating-point 
number in single precision occupies 4B, and each double occupies 8B. Ensuring that 
both � and � are multiples of 16 enables coalesced memory requests, thus reducing 
the number of memory operations. Moreover, opting for excessively large values for 
� and � can result in a significant amount of redundant memory access, which can 
ultimately compromise computational efficiency.

Regarding computational considerations, it is crucial to take into account the 
SIMD execution unit of a GPU, known as a warp, which typically has a size of 32. 
Therefore, choosing block dimensions that are multiples of 16 ensures that each 
block can be efficiently processed by a warp. This approach helps prevent thread 
divergence and contributes to the overall improvement of computational effi-
ciency. Additionally, large values for � and � can result in considerable redundant 

(4)� =

|Ablock − Aexact|
|Aexact|
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computation, which wastes computational resources and diminishes the overall 
performance.

In summary, both the block height � and width � are critical in determining com-
putational accuracy and addressing hardware considerations. From an accuracy 
standpoint, it is recommended that neither � nor � exceeds 32, ensuring precise 
block computations and minimizing error accumulation in floating-point operations. 
From a hardware perspective, to optimize memory access and computational effi-
ciency, both � and � should ideally be multiples of 16. This alignment allows effi-
cient processing by the GPU’s SIMD execution unit. Considering all these factors, 
this article recommends selecting a block size of 16 × 16 to achieve both computa-
tional precision and efficiency.

3.1.2  Dynamic precision selection

After introducing the concept of block partitioning and its advantages in the BDMP 
methodology, we explore further into the precision of the data stored within these 
blocks. The choice between storing elements within the blocks as single-precision 
or double-precision values significantly affects the balance between computational 
accuracy and memory usage. This decision is based on whether the value of an ele-
ment in a block lies within a range of (− � , � ). If it does, the element is stored in 
single precision; otherwise, it is stored in double precision. Consequently, the deter-
mination of the � threshold emerges as a central component in the BDMP approach.

Building on this premise, we consider the traditional fixed threshold method, 
widely adopted in the field. This method sets a constant value for � , typically � = 1 , 
regardless of the characteristics of the matrix value distribution. Although this 
method is straightforward and easy to implement, it exhibits inherent limitations. 
For matrices with a small value distribution range, the fixed threshold method could 
lead to storing all elements in single precision, compromising the overall computa-
tional accuracy. Conversely, for matrices with a larger value distribution range, all 
elements could be stored in double precision, needlessly increasing memory usage 
and impairing computational efficiency. The key limitation of the fixed threshold 
method is its inability to adapt to the specific characteristics of different matrices, 
lacking flexibility to handle diverse computational scenarios of various matrices. 
Hence, a more adaptive, flexible approach is needed to determine the precision of 
the elements stored in the blocks.

To address these limitations, we propose the dynamic threshold method. In con-
trast to the fixed threshold approach, this method derives the value of � from the 
characteristics of the matrix value distribution itself. Specifically, � is calculated as 
expressed in Eq. (5).

Here, mean(|A|) and std(|A|) represent the mean and standard deviation of the abso-
lute values of the elements in matrix A, respectively, and f  is a scaling factor.

The dynamic threshold method offers two key advantages. Firstly, it pro-
vides flexibility in adapting to matrices with diverse value distribution ranges, 

(5)� = f × (mean(|A|) + 3 × std(|A|))
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overcoming the limitations associated with the fixed threshold method. Secondly, 
the threshold is adjustable, catering to computational applications that require 
either high precision or high speed.

In this work, we employ the dynamic threshold method with selected param-
eters f = 0.5 . Our observation indicates that these chosen thresholds can achieve 
a high degree of precision while maintaining a high level of computational effi-
ciency, as detailed in Sect. 4.3.

3.2  SpMV algorithm for DBMP BDMP

Before delving into the intricate details of the algorithms, we shall examine the 
storage demands of mixed-precision computation and compare them with those 
of single-precision and double-precision computation. To maintain a comprehen-
sive perspective, we assume that the matrix A is stored in the compressed sparse 
row (CSR) format.

Table 2 provides an overview of the storage requirements for single-precision, 
double-precision, and mixed-precision matrices, including the X-vector in both 
single-precision and double-precision formats, as well as the y vector. In this con-
text, N represents the number of rows, NNZ stands for the total number of nonze-
ros, and NNZS and NNZD denote the single-precision and double-precision non-
zeros, respectively.

It is apparent from the table that when a significant proportion of the non-zeros 
can be represented using single precision, the amount of data transmitted through 
the memory system, when compared to a pure double-precision approach, is 
reduced by 4NNZs − 8N − 4 bytes. As the number of NNZs increases, the savings 
in memory space become even more considerable.

Furthermore, Table 1 shows that GPUs have significantly higher single-preci-
sion computational prowess than double-precision capabilities. For example, the 
RTX 2080 Ti graphics card, based on the Turing architecture, displays a single-
precision computational power that is 32 times greater than its double-precision 
performance. Similarly, the Ampere A100 graphics card exhibits a single-preci-
sion computational capacity twice that of its double-precision capacity. Conse-
quently, by employing mixed-precision computation, we can fully leverage the 
single-precision computational capabilities of GPUs, thus enhancing computa-
tional efficiency.

Table 2  Comparison of matrix 
storage requirements including 
X and Y-vectors

Storage format Storage cost

Single 8NNZ + 12N + 4 bytes
Double 12NNZ + 20N + 4 bytes
Mixed 8NNZ

s
+ 12NNZ

d
+ 28N + 8 bytes



 Z. Zhao et al.

1 3

3.2.1  BDMP‑PBP algorithm

The BDMP-PBP algorithm partitions the original matrix into single-precision 
and double-precision sub-matrices based on block precision. SpMV computation 
is performed independently on these two sub-matrices, and the results are added 
together to obtain the final outcome.

One of the primary advantages of this approach is the improved parallelism, as 
the computations for single-precision and double-precision are completely inde-
pendent, enhancing parallelism between single-precision and double-precision 
floating-point units. Moreover, it offers strong flexibility as, based on the charac-
teristics of the two resulting sub-matrices, it can be integrated into any existing 
storage format or computation method.

Figure  2 shows an example of a 16 × 16 sparse matrix. This matrix is parti-
tioned into two distinct sub-matrices: one highlighted in green, represented 
in single precision, and another in yellow, represented in double precision. As 
detailed in Sect. 2.1, the green sub-matrix exhibits a significant number of non-
zero along its diagonals, making the DIA format the optimal choice for its stor-
age. In contrast, the yellow sub-matrix has a uniform distribution of non-zero ele-
ments across its rows; thus, it is best stored using the ELL format.

Algorithm 1  CSR-vector algorithm for BDMP-PBP 

Fig. 2  BDMP-PBP partition-
ing of a sparse matrix of size 
16 × 16
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Given the extensive research on optimal storage formats, this paper refrains from 
exhaustive exploration of the most advantageous storage and computational methods 
for the resulting sub-matrices. For illustrative purposes, we opt for the widely recog-
nized CSR-vector algorithm. We chose this due to its inherent generality, ensuring that 
the highlighted advantages stem from the mixed-precision approach and not from opti-
mizations specific to storage formats. Algorithm 1 shows pseudocode for CSR-vector.

3.2.2  BDMP‑TCKI algorithm

While the BDMP-PBP algorithm effectively reduces memory transfer costs, enhances 
parallelism, and improves both computational efficiency and versatility, there exists an 
opportunity for additional optimization. To further this effort, we introduce the BDMP-
TCKI algorithm. The BDMP-TCKI algorithm is intricately designed to not only aug-
ment parallel processing capabilities but also ensure exceptional data locality and maxi-
mize memory bandwidth utilization.

We adopt a tailored compression strategy, selecting the optimal format for each 
matrix block. This selection process involves choosing from a range of formats includ-
ing COO, CSR, ELL, and HYB (CSR and ELL), based on the distinctive characteris-
tics of each block.

Specifically, we assess the block’s sparsity using its density ( D ), which represents 
the proportion of non-zero elements to the total element count. The density of a 
block can be calculated as expressed in Eq. (6).

Additionally, to evaluate the balance of non-zero distribution across rows, we utilize 
the coefficient of variation ( CV ), which is the ratio of standard deviation to the average 
row length ( ANZ).

The average row length can be calculated as expressed in Eq. (7). Here, nnzi repre-
sents the number of non-zero elements in row i.

The coefficient of variation as expressed in Eq. (8).

(6)D =
nnz

� × �

(7)ANZ =
1

�

�−1∑

i=0

nnzi
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The metric CV  provides a normalized measure of the dispersion in the distribution 
of non-zero elements across rows. In essence, a lower CV  indicates a more uniform 
distribution of non-zero values, suggesting that rows have similar counts of these 
values. Conversely, a higher CV  indicates that some rows may have significantly 
more non-zero values than others, implying a less balanced distribution.

For highly sparse blocks, the COO format undoubtedly offers the smallest 
memory footprint. Therefore, if the density D of the block falls below 0.02 , the 
COO format is promptly considered the most optimal choice for that specific 
block.

If the density D is greater than 0.02, we rely on the CV  values to identify the 
optimal compression format. We use the threshold values tl (lower threshold) and 
tu (upper threshold) to guide this selection process. If CV  is below tl , indicating that 
the number of non-zero entries in rows is relatively balanced, the ELL format is cho-
sen for its better space efficiency. If CV  exceeds tu , indicating that the distribution of 
non-zero entries is irregular, the HYB format, consisting of ELL and CSR parts, is 
selected for potential efficiency. Between the thresholds tl and tu , we favor the CSR 
format, given that its general pattern typically provides superior performance.

Figure 3 presents the flowchart that elucidates the procedure for selecting the 
most suitable compression format based on the sparsity pattern of the block.

In our work, for selecting the optimal compression format, we set the thresh-
old values tu and tl to 0.9 and 0.2, respectively. These threshold values were cho-
sen based on extensive preliminary experiments and empirical observations, as 
detailed in Sect. 4.4.2.

(8)
CV =

√
1

�

∑�−1

i=0
(nnzi − ANZ)2

ANZ

Fig. 3  The flowchart of the for-
mat selection for BDMP-TCKI
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Moreover, we employ bit compression for row and column indices to minimize 
memory consumption. Our bit compression approach leverages the insight that the 
row and column indices of non-zero elements within a block are integers that fall 
below 16. Therefore, we can use 4 bits to represent the row and column indices of 
each non-zero element. To enhance load balancing in SpMV, each warp is assigned 
a fixed number of blocks. For elongated block rows, they are distributed among mul-
tiple warps. Subsequently, results are consolidated using atomic addition.

Additionally, we have meticulously designed the kernel implementations at the 
warp level to ensure that they align seamlessly with the compression format of 
each respective block. In the warp-level COO-SpMV algorithm tailored for highly 
sparse blocks, a warp, consisting of 32 threads, is responsible for all non-zero ele-
ments. These threads use atomic operations to ensure accurate result updates. After 
this, partial sums are atomically aggregated within the shared memory, as shown in 
Algorithm 2.

Algorithm 2  COO warp-level kernel for BDMP-TCKI 

In the warp-level CSR-SpMV algorithm, a warp, composed of 32 threads, pro-
cesses a block of 16 rows. Each pair of consecutive threads is assigned to a unique 
row. Before computation, a 16-entry segment of the vector x is loaded into the on-
chip scratchpad shared memory to optimize data locality. After calculations, partial 
values of y are combined. This aggregation employs the shuffle operation, which is a 
warp-level instruction that allows data exchange among threads within the warp, as 
shown in Algorithm 3.

Algorithm 3  CSR warp-level kernel for BDMP-TCKI 
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In the warp-level ELL-SpMV algorithm, 32 threads manage non-zero entries 
in a column-major format. Every thread in a half warp (comprising 16 threads) is 
assigned a row and completes its task once the ELL width is reached. To optimize 
memory access of the x vector, its segment is loaded into registers and accessed 
via register shuffle commands. In post computation, the results from each thread are 
aggregated, producing the final result for the block, as shown in Algorithm 4.

Algorithm 4  ELL warp-level kernel for BDMP-TCKI 

4  Evaluation

4.1  Experimental setup

Our experimental platform includes two NVIDIA GPUs: a GeForce RTX 2080 
Ti (Turing architecture) and an A100 (Ampere architecture). Table 1 provides the 
architectural parameters of these GPUs. We expect that our results would generalize 
to most GPU systems.

To evaluate the effectiveness of the BDMP method, we compare it with NVID-
IA’s cuSPARSE library package and three other state-of-the-art methods: SELLP, 
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MergeBase, and BalanceCSR [35, 37, 50, 51]. To provide a summary, we averaged 
the results across 50 runs for each suite.

The evaluation dataset comprises all 2,851 sparse matrices in the SuiteSparse 
Matrix Collection [52], which is a comprehensive set of sparse matrices that is con-
tinuously updated and arises in numerous real-world applications. The numerical 
linear algebra community extensively uses this collection for developing and evalu-
ating sparse matrix algorithms. From this collection, we excluded 35 matrices due to 
their large memory requirements. We also take a deeper look at a subset of matrices 
commonly used in performance evaluation in other works [3].

4.2  Accuracy evaluation method

In this study, we adopt significant digits (detailed in Sect. 2.2) as a metric to assess 
the accuracy of the BDMP algorithms.

For the general scenario where an m × n sparse matrix multiplies an n-element 
dense vector, we ascertain the number of significant digits in the resultant m-sized 
vector y . The number of significant digits for each element yi is determined using 
Eq. (3). Subsequently, we calculate the proportion of elements that have more than 
seven significant digits relative to the total element count. As seven significant digits 
are considered to yield adequately precise computational outcomes, this proportion 
serves as a metric for gauging the accuracy of the SpMV computation, elucidated 
further in Eq. (9).

where I(x)represents the indicator function, as defined in Eq. (10), and NumSD(yi) 
signifies the number of significant digits for the element yi.

In this study, we establish a threshold of seven significant digits. This decision 
stems from the observation that computational accuracy is deemed high when the 
number of significant digits exceeds seven [18]. A superior accuracy ratio signifies 
enhanced computational precision. We deem a computation as adequately accurate 
if the accuracy ratio surpasses 95%.

4.3  Scaling factor threshold

We examine the influence of f  on the performance and accuracy of the BDMP algo-
rithms on 55 sparse matrices. Figure 4 illustrates the average speedup of BDMP-
PBP and BDMP-TCKI compared to cuSPARSE CSR-SpMV across two GPUs. 
It also presents the compliance rate of BDMP-PBP on the A100 GPU for various 
threshold values of f .

(9)Accuracy Ratio =

∑m

i=1
I(NumSD(yi) >= 7)

m

(10)I(x) =

{
1, if x is true,

0, otherwise.
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This compliance rate represents the proportion of matrices achieving an accuracy 
ratio above 95%. Both BDMP-PBP and BDMP-TCKI produce identical accuracy 
outcomes since they utilize the same precision selection methodology. Given that 
both GPUs exhibit architectural consistency and rigorously conform to IEEE float-
ing-point standards, we opted to exclusively present the accuracy metrics of BDMP-
PBP on the A100 GPU for conciseness.

From Fig.  4, we can observe an effect from alterations in the scaling factor f  . 
Both GPUs experience an increase in speedup and a decrease in accuracy ratio as f  
increases from 0.1 to 0.9. This trend aligns with our predictions.

A higher f  value signifies a larger threshold. This results in fewer elements in 
double precision, leading to a decrease in computational accuracy. However, an 
increasing f  also means more elements are stored in single precision. This change 
encourages a rise in single precision floating-point operations and reduces memory 
transfer overheads, leading to enhanced performance.

In contrast, a lower f  value results in more elements in double precision, which 
improves computational accuracy. However, this change also increases memory 
transfer overheads, leading to a decline in performance. Besides, the compliance rate 
for accuracy surpasses 95% when f  is less than 0.5. This suggests a high level of 
computational accuracy for the majority of matrices.

Given these observations, we recommend setting the scaling factor threshold at 
0.5. This value offers an equilibrium between accuracy and performance, and we 
employ it in subsequent experiments.

4.4  Performance evaluation

4.4.1  Evaluation of accuracy

We evaluated the accuracy of the BDMP method, focusing specifically on the 
BDMP-PBP algorithm on the A100 GPU, as detailed in Sect. 4.3. For this analysis, 
we selected the 23 matrices from a subset of matrices, as these matrices have suf-
ficient computation to fully engage the floating-point units and involve significant 

Fig. 4  Impact of scaling factor f  on performance and accuracy
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data movement. To demonstrate accuracy, we employed the concept of significant 
digits, as elaborated in Sect. 2.2.

Our findings are presented in Tables 3 and 4. Table 3 illustrates the number of 
significant decimal digits achieved using single precision, compared to double preci-
sion, for computing CSR-vector SpMV on the A100 GPU. Similarly, Table 4 shows 
the significant decimal digits achieved using mixed precision, relative to double pre-
cision, in the same context.

In both Tables 3 and 4, accuracy is quantified in terms of significant decimal 
digits, with each column representing a level of accuracy in significant decimals. 
Considering that single precision inherently limits accuracy to a maximum of 
six decimal digits compared to double precision, and mixed precision typically 
falls between single and double precision in accuracy, our analysis extends up to 
seven significant decimal digits. The ’ge8’ column denotes instances where accu-
racy exceeds seven significant decimal digits, thereby indicating a higher accu-
racy level than single precision. A higher value in this column signifies greater 

Table 3  Comparing significant digits in single versus double precision

ge8 represents greater than or equal to eight

Matrix 0 1 2 3 4 5 6 7 ge8

wiki-Vote 0 0 0 5 89 146 367 5263 2427
pdb1HYS 0 0 0 0 1.246 3343 15,264 12,830 3734
rma10 0 0 0 0 0 499 32,903 7943 5490
cant 0 0 0 0 76 393 45,096 9956 6930
consph 0 0 0 0 318 3286 58,493 12,398 8839
2cubes_sphere 0 0 34 146 1381 6328 70,889 14,031 8683
filter3D 0 0 11 247 1492 11,381 78,691 7376 7239
cage12 0 0 0 0 459 1334 89,083 17,997 21,355
shipsec1 0 0 2 285 1298 27,402 83,493 16,822 11,572
G2_circuit 0 0 437 4376 6372 8481 15,502 78,721 36,213
crashbasis 0 1 1294 3592 7310 8238 12,466 96,373 30,726
scircuit 0 0 0 0 539 8296 125,497 33,930 2736
cont-300 0 0 1 784 11,309 9403 118,230 18,709 22,459
hvdc2 0 0 0 0 0 2941 101,358 76,070 9491
co2010 0 0 0 0 0 753 125,447 65,481 9381
mac_econ_fwd500 0 0 0 0 529 2135 135,481 65,974 2381
bmw3_2 0 0 0 0 0 4218 135,391 76,161 11,592
Si87H76 0 0 0 0 0 7391 124,491 77,095 31,392
Lin 0 0 0 0 481 8293 151,392 85,540 10,294
offshore 0 0 0 0 0 1348 151,481 94,006 12,954
web-Stanford 0 0 0 0 84 4128 189,569 72,430 15,692
coAuthorsDBLP 0 0 0 21 1815 9634 173,568 102,628 11,401
ins2 0 0 0 0 0 2462 201,582 89,887 15,481



 Z. Zhao et al.

1 3

accuracy. Additionally, the sum of values across each row in these tables corre-
sponds to the total number of rows in the respective sparse matrix.

The data in Tables 3 and 4 reveal that the BDMP method consistently provides 
a higher number of decimal digits of accuracy compared to single precision across 
all matrices. In the last column of Table 4, the accuracy of the BDMP method is 
quantified using the compliance rate, as defined in Eq. (9). It is observed that the 
compliance rate exceeds 95% for 20 of the 23 matrices, with three matrices fall-
ing below 95%. The lowest compliance rate is 86%. This decrease in accuracy is 
directly associated with the distribution of non-zero elements within the matrices. 
Specifically, the number of single-precision storage blocks in each matrix, deter-
mined by the distribution of non-zero elements, impacts the overall precision 
accuracy. A higher number of single-precision storage blocks in a matrix tends to 
decrease the accuracy of the results. Therefore, by examining the distribution of 
non-zero elements in matrices, we can predict, to a certain extent, the accuracy of 
the BDMP method.

Table 4  Comparing significant digits in BDMP versus double precision

ge8 represents greater than or equal to eight; CR represents compliance rate

Matrix 0 1 2 3 4 5 6 7 ge8 CR (%)

wiki-Vote 0 0 0 1 47 101 234 4963 2951 95.38
pdb1HYS 0 0 0 0 397 1085 309 21,661 12,965 95.08
rma10 0 0 0 0 0 0 0 21,903 24,932 100
cant 0 0 0 0 0 1 2956 25,096 34,398 95.27
consph 0 0 0 0 0 0 2398 38,493 42,443 97.12
2cubes_sphere 0 0 0 0 151 2984 927 49,031 48,399 95.99
filter3D 0 0 0 1 342 1984 983 69,230 33,897 96.89
cage12 0 0 0 0 0 24 3593 30,934 95,677 97.22
shipsec1 0 0 0 0 32 4893 934 79,342 55,673 95.84
G2_circuit 0 0 257 3935 2452 1994 8953 59,389 73,122 88.28
crashbasis 0 1 467 2893 5109 4892 7931 57,292 81,415 86.68
scircuit 0 0 0 0 0 3503 3849 54,950 108,696 95.70
cont-300 0 0 0 356 3893 2943 8230 63,420 102,053 91.47
hvdc2 0 0 0 0 0 0 0 0 189,860 100
co2010 0 0 0 0 0 0 0 30,465 170,597 100
mac_econ_fwd500 0 0 0 0 0 0 3497 129,302 73,701 98.31
bmw3_2 0 0 0 0 0 0 0 0 227,362 100
Si87H76 0 0 0 0 0 0 0 0 240,369 100
Lin 0 0 0 0 0 0 0 42,463 213,537 100
offshore 0 0 0 0 0 0 0 0 259,789 100
web-Stanford 0 0 0 0 0 0 475 29,574 251,854 99.83
coAuthorsDBLP 0 0 0 0 0 34 1073 59,603 238,357 99.62
ins2 0 0 0 0 0 0 0 0 309,412 100
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Furthermore, we used the same random seed to populate the X-vectors and 
Y-vectors for all tests, observing no noticeable differences in the correctness of the 
final results. We also examined the impact of varying the magnitude of random val-
ues in the X-vector across the ranges [1, 10, 100] on accuracy. We observed no sig-
nificant change in the accuracy of the final result.

4.4.2  Variation threshold for BDMP‑TCKI algorithm

A reduced threshold tl suggests a more even distribution of non-zero elements across 
rows, which favors the ELL format, thereby boosting performance. Yet, when tl is 
too minimal, matrix blocks ideally suited for the ELL format get stored in CSR, 
causing inefficient compression and a consequent performance decline. Therefore, 
in our tests for the BDMP-TCKI algorithm, we restricted tl values to between 0.1 
and 0.3.

In relation to the threshold tu , a more elevated value denotes a pronouncedly 
irregular distribution of non-zero elements. Setting tu too low might lead to the stor-
age of many matrix blocks in the HYB format, even when they are better suited to 
the CSR format. Such a choice can incur unnecessary storage and computational 
burdens. Consequently, our tests focused on tu values spanning from 0.9 to 1.0, 
ensuring the HYB format is reserved for blocks with the most skewed distributions.

To assess the implications of these threshold decisions on SpMV performance, 
we executed tests using varying tu and tl values for a subset of matrices on the 
2080Ti and A100 GPUs. These experimental outcomes are summarized in Fig. 5.

Fig. 5 reveals that BDMP-TCKI’s performance on both GPUs is intricately tied to 
the threshold choices. Specifically, when tu stands at 0.9 and tl at 0.2, BDMP-TCKI 
realizes peak performance across the majority of matrices.

Notably, BDMP-TCKI’s performance displays greater sensitivity to tl than tu . This 
heightened sensitivity to tl stems from its direct role in matrix block selection for 
the ELL format, renowned for efficiently managing uniformly dispersed non-zero 
elements. An ill-chosen tl can induce unwarranted storage overheads by compelling 
matrix blocks toward the CSR format when they might be better aligned with ELL. 
On the other hand, tu dictates the switch between CSR and HYB formats; the per-
formance implications of which are less drastic compared to the shift from ELL to 
CSR.

Based on these observations, we recommend setting the values of tu to 0.9 and tl 
to 0.2, as they yield near-optimal performance. We employ these threshold values in 
our subsequent experiments.

4.4.3  Performance comparison of SpMV

Figure  6 showcases the relative speedups of SELLP, MergeBase, BalanceCSR, 
BDMP-PBP, and BDMP-TCKI in comparison with the cuSPARSE CSR for the 
entire suite on both the 2080Ti and A100 GPUs.

Specifically, the upper subplot illustrates the outcomes on the NVIDIA RTX 
2080Ti, whereas the lower subplot reveals the metrics for the NVIDIA A100 
GPU. Within each of subplot, the left-hand subplots display scatter plots that 
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compile the speedup data across all tested matrices. In contrast, the right-hand 
subplots employ box plots to offer a statistical overview.

Notably, BDMP-PBP and BDMP-TCKI consistently outperform their competi-
tors on both GPU platforms. On the NVIDIA RTX 2080Ti, BDMP-PBP registers 
an average speedup of 2.04× , 2.64× , 1.14× , and 2.23 × over SELLP, MergeBase, 
BalanceCSR, and cuSPARSE CSR, respectively. Similarly, BDMP-TCKI exhibits 
speedups of 2.26× , 2.91× , 1.26× , and 2.46× . Switching attention to the NVIDIA 
A100 GPU, BDMP-PBP exceeds the performance of its aforementioned competi-
tors with speedups of 1.57× , 2.29× , 1.38× , and 2.99× respectively, while BDMP-
TCKI boasts speedups of 1.69× , 2.47× , 1.48× , and 3.22×.

For matrices with fewer non-zeros, the performance of all methods approxi-
mates that of CSR, primarily because of prevailing resource availability and 
launch overheads. Nevertheless, for matrices with many non-zeros, the perfor-
mance of BDMP distinctly eclipses that of the other methods.

Figure  7 shows the speedups of SELLP, MergeBase, BalanceCSR, BDMP-
PBP, and BDMP-TCKI over the cuSPARSE CSR, specifically focusing on a sub-
set of matrices that are prevalent in performance evaluations in related literature. 
On average, the BDMP-PBP algorithm achieves speedups of 1.02× , 1.54× , 1.03× , 
and 1.21× over SELLP, MergeBase, BalanceCSR and cuSPARSE CSR, respec-
tively on the NVIDIA RTX 2080Ti, and 1.29× , 1.94× , 1.31× , and 1.53× on the 
NVIDIA A100. The BDMP-TCKI algorithm achieves speedups of 1.31× , 1.67× , 

Fig. 5  The effect of t
u
 and t

l
 threshold on SpMV performance for BDMP-TCKI algorithm
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1.27× , and 2.53× on the NVIDIA RTX 2080Ti, and 1.53× , 1.95× , 1.47× , and 
2.95× on the NVIDIA A100.

In Fig. 6, we can observe that, on both machines, BDMP-PBP shows only a slight 
performance improvement compared to other methods. This modest improvement 
can be attributed to BDMP-PBP’s use on the CSR format for sub-matrices, rather 
than leveraging a more efficient compression format. The primary factor contrib-
uting to the enhanced performance of BDMP-PBP is its mixed-precision strategy. 
We anticipate that integrating more effective compression formats could potentially 
amplify BDMP-PBP’s performance even further.

From both Figs. 6 and 7, it is evident that the BDMP algorithm performs better 
on the A100 compared to the 2080Ti. This enhanced performance can be attributed 
to the A100’s doubled shared memory capacity and its 2.5x greater memory band-
width, which reduce memory bound.

It is important to note the influence of the X-vector on speedups in our experi-
ments. We maintained a consistent random seed for generating the values of 
the X-vector across all tests. Our examination included various random seeds 
to assess their impact on performance, and the results showed no significant 

Fig. 6  Speedup of SELLP, MergeBase, BalanceCSR, BDMP-PBP, and BDMP-TCKI versus cuSPARSE 
CSR, as run on Turing and Ampere GPUs
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variances in speedups. Additionally, we explored the effect of escalating the 
magnitude of random values within the X-vector, utilizing ranges such as [1, 10, 
100]. We observed that changes in the magnitude of these values did not nota-
bly alter the speedups. Similarly, we considered the role of the Y-vector in our 
experiments. Although the impact of the Y-vector on the performance of sparse 
matrix-vector multiplication is generally less pronounced compared to the X-vec-
tor and the matrix A, we conducted tests to ensure a comprehensive analysis. For 
the Y-vector, we generated its initial values using a consistent approach across all 
tests, opting for random numbers within an appropriate range that reflects typi-
cal use cases. It is noteworthy that, like the X-vector, variations in the Y-vector, 
including changes in its magnitude and distribution, showed minimal influence on 
the overall speedup.

From the aforementioned performance comparisons, we can discern the dis-
tinct advantages of BDMP-PBP and BDMP-TCKI in different aspects. When 
selecting between these algorithms, several key factors should be considered. 
BDMP-PBP offers significant flexibility and can be integrated with various 
matrix optimization methods, making it an invaluable tool for ongoing research 
in optimization strategies. In contrast, BDMP-TCKI excels in memory efficiency 

Fig. 7  Speedup of SELLP, MergeBase, BalanceCSR, BDMP-PBP, and BDMP-TCKI versus cuSPARSE 
CSR for subset of matrices
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and processing speed, making it a more suitable choice for applications where 
performance and efficiency are paramount. Despite their differences, both algo-
rithms, as integral components of the BDMP framework, maintain comparable 
precision in their outputs. These findings suggest that for scenarios emphasizing 
efficiency, BDMP-TCKI is recommended, whereas the potential of BDMP-PBP 
for integration with other techniques makes it particularly suitable for research 
purposes in the field of matrix optimization.

4.5  Storage cost analysis

In Fig. 8, the memory space costs of the standard CSR format are compared with our 
BDMP-PBP and BDMP-TCKI. Compared to the standard CSR format, our BDMP-
PBP (depicted by the blue line) consistently utilizes slightly less memory space. The 
space reduction is up to 22%, with an average of 12%. This outcome is anticipated, 
given that single-precision storage demands are less than those of double precision. 
The BDMP-PBP requires additional storage due to the necessity of a complete row 
pointer array for each block, bringing its memory consumption closer to that of the 
standard CSR format. It is worth noting that while BDMP-PBP uses the CSR format 
for both its single-precision and double-precision sub-matrices, this approach may 
not be the most efficient for each sub-matrix. Indeed, there exists an opportunity for 
enhanced memory optimization by selecting a storage format specifically adapted to 
the unique characteristics of each sub-matrix.

On the other hand, BDMP-TCKI (represented by the green line) consumes less 
memory than the standard double-precision CSR format. The space reduction is up 
to 31%, with an average of 22%. Although it requires additional storage for the block 
row pointer array and other supplementary arrays for each block, it effectively econ-
omizes memory. This optimization is achieved by judiciously selecting the most effi-
cient storage format for each block and utilizing bit compression for both row and 

Fig. 8  Relative memory space costs for BMDP over CSR across the entire benchmark suite
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column indices. In conclusion, both BDMP-PBP and BDMP-TCKI offer solutions 
that are more memory-efficient compared to the conventional CSR format.

4.6  Overhead analysis

Figure 9 shows the preprocessing overhead of both BDMP-PBP and BDMP-TCKI 
algorithms relative to a single SpMV operation. Comparative analysis indicates 
that BDMP-PBP consistently outperforms BDMP-TCKI in terms of preprocessing 
overhead across the entire dataset range. This disparity is attributed to the simpler 
preprocessing steps in BDMP-PBP, which involve matrix partitioning and preci-
sion selection. In contrast, BDMP-TCKI additionally requires selecting the opti-
mal compression format for each block. To quantify, the preprocessing overhead of 
BDMP-PBP is on average equivalent to the time taken for 5 SpMV operations, while 
BDMP-TCKI’s overhead is on average equivalent to 15 SpMV operations.

5  Conclusion

SpMV remains an essential operation in various scientific and engineering fields, 
especially in the domain of linear algebra computations. However, when executed on 
GPUs, SpMV encounters obstacles that hinder its computational efficiency. These 
challenges include irregular memory access patterns, extensive memory usage, high 
bandwidth requirements, and underutilization of parallelism.

In this paper, we introduce an innovative approach called BDMP, which aims 
to enhance the efficiency of SpMV on GPUs. Our methodology involves partition-
ing the original matrix into uniformly sized blocks, taking into account architec-
tural characteristics and accuracy requirements. Additionally, we dynamically assign 

Fig. 9  Comparative preprocessing overhead of BDMP-PBP and BDMP-TCKI relative to SpMV opera-
tion
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precision to each block using a strategy that considers the value distribution of the 
underlying sparse matrix. To implement BDMP, we develop two distinct SpMV 
computation algorithms: BDMP-PBP and BDMP-TCKI. BDMP-PBP focuses on 
partitioning the matrix into two independent matrices for separate computations 
based on block precision, while BDMP-TCKI optimizes thread-level parallelism and 
memory bandwidth utilization by tailoring a compressed storage format and ker-
nel implementation specific to each block. We compare our BDMP method against 
cuSPARSE CSR and three other state-of-the-art SpMV implementations on both a 
Turing RTX 2080Ti and an Ampere A100, using matrices from the University of 
Florida’s SuiteSparse. Our evaluation shows that, on Turing RTX 2080Ti, BDMP-
PBP and BDMP-TCKI achieve average speedups ranging from 1.14× to 2.64× and 
1.26× to 2.91× , respectively. On Ampere A100, the corresponding ranges are 1.38× 
to 2.99× for BDMP-PBP and 1.48× to 3.22× for BDMP-TCKI. Additionally, our 
BDMP-PBP and BDMP-TCKI algorithms can reduce memory consumption by up 
to 22% and 31%, respectively, compared to the standard CSR format. Our BDMP 
method maintains an acceptable level of precision slightly below double precision. 
These results validate the effectiveness of our BDMP techniques in improving com-
putation speed without significantly compromising the necessary precision for reli-
able outcomes.

In our future endeavors, we aim to not only further refine our precision selection 
strategy and extend our methodology to accommodate lower precisions, but also to 
conduct comprehensive studies to accurately determine how different precision stor-
age configurations impact computational accuracy. Enhancing and optimizing the 
BDMP-PBP algorithm remain a key objective. Its suitability for integration with 
various optimization techniques opens new avenues in matrix optimization research. 
We anticipate that advancements in BDMP-PBP will particularly arise from syn-
ergies with other strategies and a deeper understanding of matrix characteristics. 
Additionally, we plan to explore the potential of BDMP in other numerical algo-
rithms involving sparse matrices, such as matrix–matrix multiplication and triangu-
lar solve.
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