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Abstract
Mobile devices and handheld systems, such as the smartphones and tablets univer-
sally extended, are becoming increasingly powerful. Their basic hardware configu-
ration is usually state-of-the-art heterogeneous architectures consisting of multi-
core processors and some kind of accelerator such as GPUs or DSPs. Specific 
code adapted to the architecture is mandatory if high-performance computation is 
required and low-level libraries and parallelism are needed, which constitutes an 
important barrier for the usual developer in such devices. In this context, we pro-
pose the FancyJCL framework. It provides a high-level abstraction layer that hides 
implementation details and allows to develop parallel programs for mobile devices. 
The target platform for FancyJCL is mainly Android and Java developers due to 
their high market penetration. A very simple, seemingly sequential encoding results 
in parallel efficient OpenCL code. FancyJCL is itself based on the Fancier frame-
work, which enables optimal memory management across memory spaces on uni-
fied memory systems. Benchmarks of FancyJCL code developed for a wide range of 
image processing algorithms show good performance with low development effort.

Keywords Application programming interfaces · Hardware acceleration · 
Heterogeneous systems · Image processing · Mobile computing · Parallel 
programming · Performance analysis

1 Introduction

Since public adoption of mobile platforms is pervasive and their unused perfor-
mance potential is so high, it is important to consider compatibility with these 
platforms in designing new parallel programming models and tools. Most modern 
mobile devices run Android or iOS Operating Systems (OS), the former being much 
more widespread. The development of native Android applications is done mainly in 
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the Java and Kotlin programming languages, compiled into Java bytecode and seam-
lessly interoperating and running on top of the same runtime. Using this type of 
managed high-level programming language simplifies the development of interac-
tive applications at the cost of adding overhead that hinders execution performance. 
The potential of providing parallel and accelerated execution capabilities to Java-
based applications has been explored for several years, evidenced by all the work 
around Java Grande [1], or using Java for large-scale parallel applications. However, 
we believe that even though the programmability problem of creating these types of 
Java applications has not been completely solved, the demands of the mobile sec-
tor make this issue more relevant than ever. Typically, managed programming lan-
guages, such as Java, tend to run slower than native ones, like C/C++, due to the 
overhead of their runtime systems and higher levels of abstraction from the hard-
ware and OS. However, some of these shortcomings have improved over time due to 
improvements in virtual machine optimizations and Just-in-Time (JIT) compilation 
techniques [2].

Nevertheless, Java execution on accelerators still requires specialized Java Virtual 
Machines (JVMs) or libraries or code translation tools that integrate Java bytecode 
execution and native libraries with low-level access to accelerators. As a conse-
quence, the programmability effort is still very high. Alternatives as language bind-
ings like JCUDA [3] or JOCL [4] are geared toward experts and do not significantly 
reduce the programming effort. There are multiple approaches to address the issue 
of accelerating Java applications trying to reduce programming complexity. Projects 
like Sumatra [5] and TornadoVM [6] propose implementation features or extensions 
to JVMs and standard libraries that require a reduced effort of developers. Although 
working at the JVM level has the benefit of being able to decide at runtime, through 
a JIT compilation process, the processor to target for each task or a dynamic task 
migration is not always possible to rely on the use of custom JMVs, such as in 
Android devices.

Tools such as Paralldroid [7], Aparapi [8], Rootbeer [9], or ParallelME [10], on 
the other hand, can work on standard JVMs, and they can translate Java code or 
compiled bytecode into native or accelerated implementations. Each alternative 
defines its parallel programming model on top of Java, adding certain restrictions 
on what Java code is supported for parallel or accelerated execution. This makes it 
difficult to port parallel code written for one of these environments to another, and 
most of them have to solve a similar set of challenges, mainly relating to memory 
management, on top of making their particular parallel programming model work 
efficiently. Despite these efforts, none of the existing approaches has been widely 
adopted by the developer or scientific community, so there is no standard system 
that implements hardware acceleration of Java code yet.

In the Fancier framework [11], we proposed a common Java API that simplifies 
the automatic production of efficient native code for acceleration, which can be used 
as a platform to build independent automatic acceleration tools. This API, built on 
top of the OpenCL 1.1 standard libraries, includes fixed-size vector data types, a 
math library, and multiple containers for primitive data types and images, and it is 
designed to emulate the value semantics used in native languages, allowing a sim-
pler mapping of Java code to C/C++ or OpenCL for accelerators. Fancier provides 
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containers with transparent zero-copy memory support on unified memory systems 
while providing direct access to the memory from the Java, native, and OpenCL 
contexts. This is particularly relevant on mobile SoCs where memory copy overhead 
can easily become a performance bottleneck. The approach does not require modifi-
cation to the Java compiler or JVM; it only depends on OpenCL.

In this paper, we present the FancyJCL framework,1 and we propose a high 
abstraction layer that hides implementation details when developing parallel Java 
programs for mobile devices. Genericity, flexibility, and efficiency are basic issues 
in the design strategy. Parallelism is provided transparently through a sequential 
interface so that sequential users may access the parallel system. Our proposal is 
close to Aparapi [8]. However, they operate at the bytecode layer which may gener-
ate dependences on the VMs and could penalize the efficiency. FancyJCL is based 
on the Fancier framework and provides a set of “sequential” classes, methods, 
and data structures that encapsulate access to the parallel context, providing easy 
development and fast prototyping. No previous knowledge is needed about JNI and 
OpenCL since all the glue code for JNI and OpenCL is wrapped into FancyJCL. A 
very simple, apparently sequential encoding produces parallel and efficient OpenCL 
code. This ease of programming increases development productivity, improves the 
delivery of new parallel applications due to the rapid development time, and con-
tributes to the efficient exploitation of new emerging architectures. FancyJCL also 
benefits from some of the Fancier advantages since OpenCL has been chosen as 
the hardware acceleration backend, support for general-purpose computations and 
widespread adoption among all types of architectures, from low-power SoC to 
state-of-the-art high-performance computing accelerated distributed systems, is 
provided. The efficient memory management avoids unnecessary copies among the 
different memory spaces and increases the performance. The decoupled design of 
the FancyJCL classes is introduced without loss of efficiency. The benchmarks of 
FancyJCL-generated code show good speedups and ease of use on different mobile 
devices tested over a wide range of representative image processing kernels.

The rest of the paper is structured as follows: Section 2 introduces the process by 
which Android applications are compiled and executed. Section 3 presents a sum-
mary of the Fancier framework and its advantages. Section 4 describes in detail the 
building of FancyJCL on top of Fancier. Section 5 includes the performance analy-
sis developed to validate our approach, and in Sect. 6, we give our conclusions and 
future related lines of work.

2  Application execution on android

Android is a Linux-based operating system mainly designed for mobile devices, 
such as smartphones and tablets. Several development models are supported to 
manage the resources allocated to each application. Each model has different 
features that have to be used in different parts of the application to get the best 

1 https:// github. com/ HPC- ULL/ Fancy JCL

https://github.com/HPC-ULL/FancyJCL


 S. Afonso et al.

1 3

compromise between performance and development cost. These development 
models and their implementation trade-offs are outlined in this section.

Managed execution  Android native applications are developed mainly using 
the Java and Kotlin managed programming languages, providing simple devel-
opment environments with reasonable performance. Both are compiled into 
Java Bytecode, allowing transparent interoperability between those languages. 
However, their higher level of abstraction comes with a performance cost over 
native programming languages. To mitigate this, since Android 5.0, Java Byte-
code is transformed and optimized in various stages until it is compiled ahead 
of time (AOT) into binaries that run natively with help from Android Runtime 
(ART) [12], as shown in Fig. 1. Recent Android releases use a hybrid just-in-time 

Fig. 1  Compilation and execution of an Android application



1 3

Parallel programming in mobile devices with FancyJCL  

(JIT) and AOT profile-guided optimization process  [13]. Its performance, in 
many cases, is still far from that of the Native code.

Native execution  Java applications can interface with native code by using the 
Java Native Interface (JNI) [14], also supported by Android [15]. The native imple-
mentation of the method require some JNI API calls as a bridge between Java and 
C to the actual work to be done by it, adding some development complexity and 
execution overhead. As an advantage, it allows to link and use Android-supported 
native system libraries (OpenGL, Vulcan...) or any other native independent library, 
and existing native code can be integrated instead of re-implementing it in Java or 
Kotlin. Compute or memory-intensive codes can be accelerated.

Accelerated execution  The acceleration of regular Android applications is pos-
sible through the use of the officially supported Renderscript language  [16]. Con-
versely, OpenCL is a multi-platform standard for general-purpose accelerated exe-
cution that has existed for longer than RenderScript, and it has enjoyed continued 
support by most of the main SoC vendors at the core of modern smartphones, such 
as Arm or Qualcomm. Although this alternative has not received official support 
from Android, its widespread adoption, higher performance potential, and finer-
grained control make it an interesting alternative. Additionally, the officially sup-
ported framework for Android acceleration from version 12 is Vulkan instead of 
RenderScript, for which work is being done to allow OpenCL kernels to run [17]. 
OpenCL is our best option as this work is focused on general-purpose cross-plat-
form acceleration.

The main disadvantage of OpenCL or Vulkan compared to Renderscript is that 
they demand a higher development effort to be integrated into a managed applica-
tion written in Java or Kotlin and a steeper learning curve. This is why approaches 
like those presented in this paper are still relevant and necessary.

3  The Fancier framework

In this section, we describe the Fancier framework [11], a multi-platform, modular, 
and extensible programming interface to accelerate Java applications without requir-
ing any special features from the JVM they are running in. FancyJCL is supported 
on top of the Fancier execution model.

3.1  Overview

Fancier uses OpenCL as the high-performance multi-platform backend for acceler-
ated execution. It targets Linux and Android platforms and defines a Java and Native 
API modelled after the OpenCL C programming language for accelerators. Fancier 
provides several utilities that simplify the integration of C/C++ and OpenCL execu-
tion to a Java application efficiently. Two main features from Fancier have been deci-
sive in building FancyJCL:
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• Fancier defines a Java and C/C++ subset of features and functions where the 
mismatch between the reference semantics of Java and the value semantics of 
C/C++ and OpenCL is addressed. Fancier forces value semantics by returning 
a new result object when operating. The pressure on the Java memory manage-
ment is reduced by pre-allocating objects for all intermediate results. The Fancier 
unification of the Java, Native, and OpenCL languages greatly reduces develop-
ment costs and has no performance penalty. Fancier facilitates the translation of 
a standardized Java subset to C/C++ and OpenCL for accelerated execution into 
a Java application and their runtime integration by creating a unified interface 
and library.

• The information flow between Java, C/C++ and OpenCL is difficult and requires 
manual management. There are multiple ways of performing this, but most 
incur in performance penalties that may go unnoticed. Fancier implements opti-
mal strategies for container data types that work transparently and significantly 
reduces the development cost. Unified memory systems allow sharing memory 
buffers between a host processor and accelerators, which can provide great 
performance gains. However, the optimal management of this type of memory 
becomes difficult when buffers must be accessed from managed, native, and 
accelerated contexts. The Fancier memory management strategy features effi-
cient and transparent zero-copy read and write access from all contexts.

Accelerated Java applications using Fancier for OpenCL execution are able to take 
full advantage of all the features of the OpenCL 1.1 standard, with the advantage 
that passing data between the Java, C/C++ and OpenCL layers is much simpler, and 
the control flow between Java and C/C++ is more seamless. As a result, Fancier 
enables the design and implementation of parallel accelerated programming models 
on top of Java, and automated transformation tools can easily generate high-perfor-
mance Fancier Native or OpenCL C code.

3.2  Fancier: APIs and memory management

The Fancier framework provides three layers: the Fancier Java API, the Fancier 
Native API, and the Fancier OpenCL API. The three layers implement all the func-
tionality to allow an algorithm to be expressed similarly in Java, C++ or OpenCL so 
its translation from and to any of them is trivial. Arrays, vectors of sizes 2, 3, 4 and 
8 and basic types Byte, Short, Int, Long, Float, and Double are supported 
in the three layers. All Fancier containers are allocated through OpenCL API calls. 
The functions for managing buffers are much simpler than manually writing JNI and 
OpenCL API calls. The Fancier Native API allows to obtain and compile OpenCL 
C kernels at runtime that add math functions supported by Fancier Java and Fancier 
Native, which are not included in the OpenCL C standard library. In the case of 
DirectBuffer Java objects, Fancier uses the native address to provide zero-copy 
operations.

Data transfers between contexts have great implications for performance. An 
OpenCL-accelerated Java application deals with three independent memory spaces: 
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the Java-managed heap, the OS-managed native heap, and the OpenCL device 
memory. Fancier handles the memory buffers efficiently, taking advantage of uni-
fied memory and avoiding unnecessary copies. The Fancier functions also manage 
memory synchronizations. Moreover, Fancier includes methods to get the Byte-
Buffers and copies of their content when it is assumed that the copies will perform 
more efficiently than the direct use of the ByteBuffer. In summary, Fancier ena-
bles transparent use of the unified memory architecture, avoids unnecessary memory 
movements, and allows reading and writing data from the three layers. Java, Native, 
and OpenCL.

4  The FancyJCL framework

This section presents the FancyJCL framework, a high-level tool oriented to Java 
developers willing to accelerate their applications on mobile devices. Core ideas as 
ease of use, genericity, flexibility, and efficiency are basic goals of the design strat-
egy in FancyJCL.

4.1  Overview

FancyJCL provides a high-level sequential abstraction layer so that users without 
any expertise in native or parallel programming can use it in a simple way. Fan-
cyJCL collects a package of sequential classes, methods, and data structures that 
encapsulate access to native and parallel contexts, allowing easy development and 
fast prototyping. No prior knowledge is needed about parallelism, JNI or OpenCL 
since all the glue code for JNI and OpenCL is wrapped into FancyJCL. A very sim-
ple, apparently sequential encoding produces parallel efficient OpenCL code. Since 
FancyJCL is based on Fancier, it is also multi-platform, extensible, and does not 
require any special features from the JVM they are running in, so the generated 
parallel code can be executed into a mobile device but also on server or desktop 
computers.

Genericity appears naturally since OpenCL is the hardware acceleration backend, 
with support for general-purpose computations, fine-grained hardware control, and 
widespread adoption among all types of architectures. The object-oriented design 
makes FancyJCL a flexible tool that can be easily extended to new scenarios. For 
example, optimization techniques such as vectorization or tiling could be introduced 
in a transparent manner. The Fancier parallel structures are decoupled from the 
FancyJCL classes so no loss of efficiency is introduced by the approach. The zero-
copy memory support provided by Fancier avoids unnecessary copies among the 
different memory spaces, increasing the performance. Improved application quality, 
increased use of parallel architectures by non-expert users, rapid inclusion of emerg-
ing technology benefits into their systems, and dynamic and transparent optimiza-
tion enhancements are some of the benefits that can be reached.
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4.2  Design

Figure 2 shows a general overview of the FancyJCL architecture. FancyJCL builds 
a layer on top of Fancier that encapsulates the Fancier initialization, the glue code 
necessary for the JNI and OpenCL generation, the mapping to Fancier data struc-
tures and objects, the generation of the functional Kernel including inputs and out-
puts, and also the full OpenCL program and the synchronization among the different 
contexts. Some of these actions are supported by Fancier, and the FancyJCL inter-
face wraps up and adapts the user calls but, in some others, more elaborated extra 
code is added internally in FancyJCL to generate new code or before a call to the 
Fancier framework is performed.

Figure 3 goes deeper in the architecture and shows a set of representative Fan-
cyJCL classes, objects and methods. The FancyJCL environment is initialized by 

Fig. 2  The FancyJCL architecture
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calling the  initialize() method of the FancyJCLManager static class. 
This initializes the FancyJCL and Fancier contexts at the same time and creates the 
JNI, the OpenCL context and the OpenCL queues. The list of namespace and attrib-
utes that will be passed through the different contexts is created.

The FancyJCL Stage class is designed to create execution units that manage 
information about an algorithm, its parameters, and the configuration run, i.e., the 
range of the index variables and how many GPU threads to use, among others. 
Objects declared in the Stage class are intended to run a parallel process on input 
data objects to produce output data objects. The setInputs and setOutputs 
methods of a Stage object will manage the corresponding java objects. FancyJCL 
converts them into Fancier objects; if the declared object belongs to the DirectBuffer 
class (or a derived from it), only pointer reassignments to the Fancier objects will 
be needed, and there will not be data copies among the different contexts. This has 
an important impact on overall performance. Otherwise, a copy is performed into a 
Fancier object, and from that moment on, no additional copies among the different 
contexts are needed. The parallel procedure is assumed to be a simplified kernel, 
defining the operation to be applied to the input and output data, passed through the 
setKernelSource method. The predefined variables d0,… , d

k
,… , d

n−1 manage 
the index on dimension k − th , which eases and encapsulates the call to the get_
global_id(k) OpenCL kernel function. Before an execution is launched the 
length and number of threads to use per dimension must be fixed (setRunCon-
figuration()). This method calls to the OpenCL functions to create the OpenCL 
kernel. The Stage class provides methods to run the kernel, including synchro-
nous blocking and asynchronous executions of several kernels, and the correspond-
ing methods to ensure synchronization among the different contexts. An attribute 
list created in FancyJCLManager keeps a list of references to the Stage which 
addresses the attributes. This allows the output to be the input of the same kernel or 
a different kernel.

Fig. 3  FancyJCL use case diagram
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4.3  FancyJCL example

An example illustrating the use of FancyJCL appears in Figs. 3 and 4, where a 
simple code is shown that computes the average of two buffers. The flow control 
follows the steps previously described. No native code is included by the user 
into their application nor glue code. Every declaration, definition, and method 
call adopt the natural coding style in Java. The user only needs to know two Fan-
cyJCL classes, FancyJCLManager and Stage and some of their methods. 
The only difference is the notion of a simplified kernel. The user must understand 
how to express the computation of an input data item to produce the output. This 
is straightforward if the user is familiar with the CUDA or OpenCL streaming 
programming model, but, in any case, it involves a quite simple semantic and 
does not require too much effort from the user side. Some attention must also 
be paid by the user to the synchronization of the results. This piece of program 
(about 20 lines) encapsulates a code of about 56 lines.

Another important element that usually goes unnoticed is the effort involved in 
the cross-compilation for this case, where java and native code are mixed. Since 
FancyJCL is delivered in a precompiled package, the extra compilation stage 
and CMake management are removed from the development cycle. Compiling is 
faster, and the knowledge required to do it is less.

Fig. 4  Computing in FancyJCL a weighted average of elements of two buffers and storing it in a third 
buffer
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5  Evaluation

Three Android devices have been used to evaluate the performance improvements 
of the FancyJCL API over Java reference implementations (Table 1). Their results 
are representative of a range of recent SoCs present in modern Smartphones. Two 
of the devices are off-the-shelf products, and the other is an HDK (mobile Hard-
ware Development Kit). FancyJCL takes advantage of two main key aspects: the 
existence of a GPU that is programmable using OpenCL and the unified memory 
model that allows for implementing zero-copy strategies when executing code in 
CPU and GPU contexts.

Several image filter kernels have been developed to evaluate the performance 
of the FancyJCL library. The kernels have been programmed naively, meaning 
that no parallel strategy has been applied to the FancyJCL implementation, such 
as loop unrolling, vectorization, or sharing memory in a workgroup (local mem-
ory). The only strategy followed is to establish a large global workgroup size. 
The image processing kernels have been implemented using a 32-bit RGBA pixel 
format. The collection of kernels implemented is the following:

• Bilateral An edge-preserving smoothing filter is a stencil code; each neighbor 
is weighted according to its color and distance to the center pixel.

• Median A median filter is a stencil code that evaluates the neighbors of each 
pixel within a given radius and applies the median intensity of these input pix-
els to the output. Our implementation only uses the red pixel channel, produc-
ing a gray scale output.

• Posterize A filter that applies pre-selected colors to given ranges of input 
pixel intensity is a pixel-wise kernel that is called multiple times, one per 
range. We use five ranges in our testing.

• Levels A pixel-wise kernel applies a saturation and contrast levels change to 
an image.

• Fisheye A distortion kernel applies a fisheye lens effect to an image. The coor-
dinates of each pixel are transformed using several math functions, and the 

Table 1  Hardware platforms

Xiaomi Mi Mix 2 Snapdragon 865 HDK Vivo iQOO 7

OS Android 9 Android 10 Android 11
SoC Qualcomm Snapdragon 

SD845
Qualcomm Snapdragon 

SD865
Qualcomm Snapdragon SD888

CPU 4 Kryo 385@1.7GHz + 4 
Kryo 385@2.8 GHz

4 Kryo 585@2.1GHz + 3 
Kryo 585@2.42 GHz + 1 
Kryo 585@2.84GHz

4 Kryo 680@1.8GHz + 3 Kryo 
680@2.42 GHz + 1 Kryo 
680@2.84GHz

GPU Adreno 630@670–710 MHz Adreno 650@250–587MHz Adreno 660@700MHz
RAM 6GB LPDDR4x@1866MHz 6GB LPDDR5@2750MHz 8GB LPDDR5@3200MHz
Year 2017 2019 2021
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resulting output pixel is calculated through a bilinear interpolation of these 
transformed coordinates.

• Contrast A pixel-wise kernel applies a parameterized contrast enhancement of 
an image.

• Convolution 5×5; 3×3 Convolution kernels using a 5×5 or 3×3 mask imple-
mented without loops.

• GrayScale: A pixel-wise kernel converts a color image to gray scale.
• GaussianBlur: A smoothing filter based on the Gaussian function is imple-

mented as two successive passes where one applies the filter considering the 
horizontal neighbors and the other considers only the vertical neighbors of each 
pixel. This reduces computation and provides the same result as a single-kernel 
variant because it is separable.

Each of these kernels has been implemented in Java and FancyJCL, the Java refer-
ence implementation uses Java arrays (byte []) to fetch, process, and write pixel 
data and the FancyJCL is a parallel OpenCL implementation using DirectBuffer 
Java Buffers and taking advantage of the FancyJCL library.

Due to the highly dynamic performance characteristics of these SoCs and 
because of the power and thermal constraints they have, the testing algorithms must 
be repeated enough times so that the standard deviation is low enough for the aver-
age to be considered a valid measurement. Also, in the multiple-context application 
such as the use case of executing in the GPU, the benchmarking process must be 
aware of when to synchronize with the CPU. If DirectBuffer Objects are used in 
an architecture that implements unified memory, synchronization of the input and 
output memory buffers is not necessary. To achieve fairness, the measurement pro-
cess in GPU implementations is the following:

• Start measuring time
• Enqueue execution of the algorithm on GPU N times
• Wait until the OpenCL queue finishes
• End time_measurement
• Return time_measurement / N

The class FancyJCL.Benchmark allows for executing a benchmark a num-
ber of times and includes a synchronization prologue that will only be executed 
once but will be included in the measured time. The benchmarking application was 
compiled in release mode, producing native binaries in arm64-v8a mode (64-bit). 
The implementation of the image-processing kernels was evaluated over the follow-
ing set of image inputs of different sizes: VGA ( 640 × 480 ); XGA ( 1024 × 768 ); 
HD1 ( 1280 × 720 ); HD2 ( 1366 × 768 ); HD+ ( 1600 × 900 ); FHD ( 1920 × 1080 ); 
QHD ( 2560 × 1440 ); UHD ( 3840 × 2160 ). The number of executions was variable 
for each experiment. A fixed execution time of at least 30 s was set as experi-
ment_time. The number of executions N is therefore the amount needed to take 
the experiment_time. In all cases, N was greater than 10 and the measured 
standard deviation was lower than 0.01.
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Table 2 shows the average execution times and speedups obtained from the com-
putational experience developed. Figure 5 shows the speedups for a selected group 
of kernels on each SoC. For almost every experiment, the average execution time 
of the FancyJCL version was shorter than that of its Java reference implementation. 
The average speedup is of  23. This means that by using this library, not only is a 
significant increase in speed gained, but also the complexity of the code is greatly 
reduced by hiding all the OpenCL library calls and the native C++ code. The worst 
case is the Mean filter, since it fetches a large number of pixels to be sorted, and 
a local memory strategy should be used to achieve a significant speedup. The best 
case is the Bilateral filter, where most of the computational cost lies on floating 
point mathematical operations such as multiplication and power because their 
Adreno implementations are much faster.

The speedups achieved in the SoC SD845 are about twice those of the SD865 or 
SD888. This is explained since the CPU and the GPU did not evolve at the same rate 
between SD845 and SD865, while they did between SD865 and SD888. The differ-
ence in performance between the CPU and GPU is greater for the SD845 than for 
the SD865 or SD888. This can be better appreciated using our data in Fig. 6, where 
the normalized execution times are compared for the three SoC and for CPU and 
GPU. The GPU evolution behaves almost linearly, while the CPU evolution behaves 
exponentially.

Fig. 5  Speedups of the Java averaged execution time by the FancyJCL equivalent implementation of 5 
groups of kernels with 8 resolutions. One subplot per SoC

Fig. 6  Normalized average of time measurements
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6  Conclusion

We have presented FancyJCL, a framework that provides easy development and 
fast prototyping to generate parallel OpenCL codes in mobile devices. A set of 
Java classes is provided to the developer to fill code gaps in the apparently sequen-
tial methods of these classes. The set of classes made available to the user is quite 
reduced, so the learning curve is very low and the parallelism is offered in a trans-
parent manner. Genericity and efficiency are guaranteed through the internal use of 
the Fancier Library. Fancier constitutes a promising backend for parallel programing 
models built on top. It is not constrained by any particular JVM and efficiently solves 
the problem of data movement among the various memory spaces involved in parallel 
computations in a mobile device. The ease of use and efficiency of FancyJCL are val-
idated by benchmarking a wide range of representative image processing kernels on 
three different SoC architectures. The flexibility of the framework is inherent to the 
design of FancyJCL; for example, natural extensions to FancyJCL could provide sup-
port for Image2D, vectorization, or auto-tuning just by extending the RunConfigu-
ration method. More elaborated extensions would allow us to generate OpenGL or 
Vulcan code, which is supported by a larger number of vendors, or generate code in a 
different language as JavaScript to cover a greater community of mobile developers.
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