
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05907-2

1 3

Assessing opportunities of SYCL for biological sequence
alignment on GPU‑based systems

Manuel Costanzo1 · Enzo Rucci1 · Carlos García‑Sanchez2 · Marcelo Naiouf1 ·
Manuel Prieto‑Matías2

Accepted: 5 January 2024
© The Author(s) 2024

Abstract
Bioinformatics and computational biology are two fields that have been exploit-
ing GPUs for more than two decades, with being CUDA the most used program-
ming language for them. However, as CUDA is an NVIDIA proprietary language,
it implies a strong portability restriction to a wide range of heterogeneous architec-
tures, like AMD or Intel GPUs. To face this issue, the Khronos group has recently
proposed the SYCL standard, which is an open, royalty-free, cross-platform abstrac-
tion layer that enables the programming of a heterogeneous system to be written
using standard, single-source C++ code. Over the past few years, several imple-
mentations of this SYCL standard have emerged, being oneAPI the one from Intel.
This paper presents the migration process of the SW# suite, a biological sequence
alignment tool developed in CUDA, to SYCL using Intel’s oneAPI ecosystem. The
experimental results show that SW# was completely migrated with a small program-
mer intervention in terms of hand-coding. In addition, it was possible to port the
migrated code between different architectures (considering multiple vendor GPUs
and also CPUs), with no noticeable performance degradation on five different
NVIDIA GPUs. Moreover, performance remained stable when switching to another
SYCL implementation. As a consequence, SYCL and its implementations can offer
attractive opportunities for the bioinformatics community, especially considering the
vast existence of CUDA-based legacy codes.

Keywords SYCL · OneAPI · GPU · CUDA · SYCLomatic · Bioinformatics · DNA ·
Protein · Sequence alignment

1 Introduction

Hardware specialization has consolidated as an effective way to continue scaling
performance and efficiency after Moore’s law ended. Compared to CPUs, hardware
accelerators can offer orders of magnitude improvements in performance/cost and

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05907-2&domain=pdf

 M. Costanzo et al.

1 3

performance/W [1]. That is the main reason why the programmers typically rely on
a variety of hardware, such as GPUs (Graphics Processing Units), FPGAs (Field-
programmable Gate Array), and other kinds of accelerators, (e.g., TPUs), depend-
ing on the target application. Unfortunately, each kind of hardware requires differ-
ent development methodologies and programming environments, which implies the
usage of different models, programming languages, and/or libraries. Thus, the ben-
efits of hardware specialization come at the expense of increasing the programming
costs and complexity and complicating future code maintenance and extension.

In this context, GPUs are present in the vast majority of high performance com-
puting (HPC) systems and CUDA is the most used programming language for them
[2]. Bioinformatics and computational biology are two fields that have been exploit-
ing GPUs for more than two decades [3]. Many GPU implementations can be found
in sequence alignment [4], molecular docking [5], molecular dynamics [6], and pre-
diction and searching of molecular structures [7], among other application areas.
However, as CUDA is an NVIDIA proprietary language, it implies a strong portabil-
ity restriction to a wide range of heterogeneous architectures. To take a case in point,
CUDA codes cannot run on AMD or Intel GPUs.

In the last decades, academia and companies have been working on developing
a unified language to program heterogeneous hardware, capable of improving pro-
ductivity and portability. Open Computing Language (OpenCL) [8] is a standard
maintained by the Khronos group, which has facilitated the development of parallel
computing programs for execution on CPUs, GPUs, and other accelerators. Even
though OpenCL is a mature programming model, an OpenCL program is much
more verbose than a CUDA program and its development tends to be tedious and
error-prone [9]. That is why the Khronos group has recently proposed the SYCL
standard,1 which is an open, royalty-free, cross-platform abstraction layer that ena-
bles the programming of a heterogeneous system to be written using standard, sin-
gle-source C++ code. Moreover, SYCL sits as a higher level of abstraction, offer-
ing backend implementations that map to contemporary accelerator languages, like
CUDA, OpenCL, and HIP.

Currently, several implementations follow the SYCL standard and Intel’s oneAPI
is one of them. The core of oneAPI programming ecosystem is a simplified language
for expressing parallelism on heterogeneous platforms, named Data Parallel C++
(DPC++), which can be summarized as C++ with SYCL. In addition, oneAPI also
comprises a runtime, a set of domain-focused libraries, and supporting tools [10].

Due to the vast existence of CUDA-based legacy codes, oneAPI includes a com-
patibility tool (dpct renamed as SYCLomatic) that facilitates the migration to the
SYCL-based DPC++ programming language. In this paper, we present our experi-
ences porting a biological software tool to DPC++ using SYCLomatic. In particu-
lar, we have selected SW# [11]: a CUDA-based, memory-efficient implementation
for biological sequence alignment, which can be used either as a stand-alone appli-
cation or a library. This paper is an extended and thoroughly revised version of [12].
The work has been extended by providing:

1 https:// www. khron os. org/ regis try/ SYCL/ specs/ sycl- 2020/ pdf/ sycl- 2020. pdf.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

1 3

Assessing opportunities of SYCL for biological sequence…

• The complete migration of SW# to SYCL (not just the package for protein data-
base search). This code represents a SYCL-compliant, DPC++-based version of
SW# and is now available at a public git repository.2

• An analysis of the efficiency of the SYCLomatic tool for the CUDA-based
SW# migration, including a summary of the porting steps that required manual
modifications.

• An analysis of the DPC++ code’s portability, considering different target
devices and vendors (NVIDIA GPUs; AMD GPUs and CPUs; Intel GPUs and
CPUs), and SW# functionalities. Complementing our previous work, we have
considered 5 NVIDIA GPU microarchitectures, 3 Intel GPU microarchitectures,
2 AMD GPU microarchitectures, 4 Intel CPU microarchitectures, and 1 AMD
CPU microarchitecture. In addition, the analysis includes both DNA and pro-
tein sequence alignment, in a wide variety of scenarios (alignment algorithm,
sequence size, scoring scheme, among others). Moreover, cross-SYCL-imple-
mentation portability is also verified on several GPUs and CPUs.

• A comparison of the performance on the previous hardware architectures for the
different biological sequence alignment operations that were considered.

The remaining sections of this article are organized as follows. Section 2 explains
the background required to understand the rest of the article and Sect. 3 describes
the migration process and the experimental work carried out. Next, Sect. 4 presents
the experimental results and discussion. Finally, Sect. 5 concludes the paper.

2 Background

2.1 Biological sequence alignment

A fundamental operation in bioinformatics and computational biology is sequence
alignment, whose purpose is to highlight areas of similarity between sequences to
identify structural, functional, and evolutionary relationships between them [4].

Sequence alignment can be global, local, or semi-global. Global alignment
attempts to align every residue of every sequence and is useful when sequences are
very similar to each other. Local alignment is better when the sequences are different
but regions of similarity between them are suspected. Finally, semi-global alignment
is based on the global alternative, with the difference that it seeks to penalize inter-
nal gaps, but not those found at the beginning or end of any of the sequences [13].

Any of these algorithms can be used to compute: (a) pairwise alignments (one-
to-one); or (b) database similarity searches (one-to-many). Both cases have been
parallelized in the literature. In case (a), a single matrix is calculated and all pro-
cessing elements (PEs) work collaboratively (intra-task parallelism). Due to inher-
ent data dependencies, neighboring PEs communicate to exchange border elements.
In case (b), while intra-task scheme can be used, a better approach consists in

2 https:// github. com/ Manue lCost anzo/ swsha rp_ sycl.

https://github.com/ManuelCostanzo/swsharp_sycl

 M. Costanzo et al.

1 3

simultaneously calculating multiple matrices without communication between the
PEs (inter-task parallelism) [4].

2.1.1 Needleman–Wunsch algorithm (NW)

In 1970, Saul Needleman and Christian Wunsch proposed a method for aligning
protein sequences [14]. It is a typical example of dynamic programming which guar-
antees that the optimal global alignment is obtained, regardless of the length of the
sequences, and presents quadratic time and space complexities.

2.1.2 Smith–Waterman algorithm (SW)

In 1981, Smith and Waterman [15] proposed an algorithm to obtain the optimal
local alignment between two biological sequences. SW maintains the same pro-
gramming model and complexity as NW. Furthermore, it has been used as the basis
for many subsequent algorithms and is often employed as a benchmark when com-
paring different alignment techniques [16]. Unlike global alignments, local align-
ments consider the similarity between small regions of the two sequences, which
usually makes more biological sense [17].

2.1.3 Semi‑global algorithm (HW)

A semi-global alignment does not penalize gaps at the beginning or end in a global
alignment, so the resulting alignment tends to overlap one end of one sequence with
one end of the other sequence [18].

2.1.4 Overlap algorithm (OV)

An overlap of two sequences is an alignment in which the initial and final gaps are
ignored. It is considered a variant of the semi-global alignment because the two
sequences are aligned globally but without taking into account the end gaps at both
ends [19].

2.2 SW# suite

SW# is a software released in 2013 for biological sequence alignment. It can com-
pute pairwise alignments as well as database similarity searches, for both protein
and DNA sequences [20]. This software allows configuring the algorithm to be used
for different alignments (SW, NW, HW, OV) as well as open/extension penalties,
and also the substitution matrix (BLOSUM45, BLOSUM50, BLOSUM62, among
others, for proteins; and match/mismatch values for DNA). As it combines CPU
and GPU computation, it allows configuring the number of CPU threads and GPU
devices to be used.

1 3

Assessing opportunities of SYCL for biological sequence…

SW# applies specific CPU and GPU optimizations, which significantly reduce the
execution time. On the CPU side, SW# uses the OPAL.3 library that allows opti-
mizing the search for sequence similarities using the Smith–Waterman algorithm,
through the use of multithreading and SIMD instructions. On the GPU side, SW#
follows both inter-task and intra-task parallelism approaches (depending on the
sequence length) [11]

In particular, SW# has developed its efficient version of SW algorithm. This algo-
rithm can be divided into two phases: resolution and reconstruction. In the resolu-
tion phase, the maximum score is calculated, while in the reconstruction phase, the
optimal alignment path is obtained. For this second stage, SW# uses space-efficient
methods [21].

2.3 Hardware accelerators

Hardware acceleration aims to increase the performance and the energy efficiency
of applications by combining the flexibility of general-purpose processors, such as
CPUs, with the potential of specific hardware, called hardware accelerators. The
most used accelerators in HPC are GPUs. Although they were initially designed to
speed up graphic rendering, GPUs have been used in general scientific contexts due
to the massive incorporation of computing units. Historically, NVIDIA and AMD
have been the manufacturers, while Intel recently joined as a competitor.

2.3.1 CUDA

In 2006, NVIDIA introduced CUDA (Compute Unified Device Architecture), a
new architecture containing hundreds of processing cores or CUDA cores. CUDA
is an extension of C/C++ and provides an abstraction of the GPU, acting as a bridge
between the CPU and GPU [22]. However, CUDA is a proprietary language that
only runs on NVIDIA GPUs, which limits code portability.

2.3.2 SYCL and its implementations

SYCL is a cross-platform programming model based on C++ language for hetero-
geneous computing, announced in 2014. It is a cross-platform abstraction layer that
builds on the underlying concepts, efficiency, and portability inspired by OpenCL,4
which allows the same C++ code to be used on heterogeneous processors.

Nowadays, multiple SYCL implementations are available: Codeplay’s Com-
puteCpp [23] (now part of oneAPI5), oneAPI by Intel [24], triSYCL [25] led by
Xilinx, and AdaptiveCpp [26] (previously denoted as hipSYCL/OpenSYCL [27])
led by Heidelberg University. In particular, Intel oneAPI can be considered the
most mature developer suite. It is an ecosystem that provides a wide variety of

3 https:// github. com/ Marti nsos/ opal.
4 https:// www. khron os. org/ opencl/.
5 https:// codep lay. com/ portal/ news/ 2023/ 07/ 07/ the- future- of- compu tecpp.

https://github.com/Martinsos/opal
https://www.khronos.org/opencl/
https://codeplay.com/portal/news/2023/07/07/the-future-of-computecpp

 M. Costanzo et al.

1 3

development tools across different devices, such as CPUs, GPUs, and FPGAs. One-
API provides two different programming levels: on the one hand, it supports direct
programming through Data Parallel C++ (DPC++), an open, cross-platform pro-
gramming language that offers productivity and performance in parallel program-
ming. DPC++ is a fork of the Clang C++ and incorporates SYCL for heteroge-
neous programming while containing language-specific extensions. On the other
hand, it supports API-based programming, by invoking optimized libraries (such
as oneMKL, oneDAL, oneVPL, etc.). Within its variety of programming utilities,
oneAPI offers SYCLomatic, a tool to convert code written in CUDA to SYCL.6

AdaptiveCpp [26] is a platform that facilitates C++-based heterogeneous pro-
gramming for CPUs and GPUs. It integrates SYCL parallelism, enabling the off-
loading of C++ algorithms to a wide range of CPU and GPU vendors (such as Intel,
NVIDIA, and AMD). AdaptiveCpp applications can dynamically adapt to diverse
hardware. In particular, a single binary can target various hardware or even concur-
rent hardware from different vendors. This is enabled by a new feature of Adap-
tiveCpp (denoted as generic single-pass [28]) that increases the portability and
productivity by hiding the dependency on the target hardware. Specifically, Adap-
tiveCpp employs a generic, single-source, single compiler pass flow (SSCP), com-
piling kernels into a generic LLVM IR representation. At runtime, this representa-
tion is transformed into backend-specific formats like PTX or SPIR-V as required.
This approach involves a single compiler invocation, parsing the code once, regard-
less of the number of devices or backends used. Even so, AdaptiveCpp allows the
developer to indicate the specific toolchain/backend compilation flow (if preferred).

3 Materials and methods

In this section, we describe the migration process to reach a SYCL-compliant,
DPC++-based version of SW#. Next, we detail the experimental work carried out to
analyze the SYCL code’s portability and performance.

3.1 Migration process

Generally, SYCLomatic is not capable of generating a final code ready to be com-
piled and executed. It is necessary to perform some hand-tuned modifications to the
migrated code, taking advantage of the warnings and recommendations provided
by the tool.7 These warnings vary between aspects of the device to be taken into
account (e.g., not to exceed the device’s maximum number of threads), modifica-
tions to improve performance or even incompatible code fragments. Fortunately,

6 SYCLomatic: A New CUDA*-to-SYCL* Code Migration Tool: https:// www. intel. com/ conte nt/ www/
us/ en/ devel oper/ artic les/ techn ical/ syclo matic- new- cuda- to- sycl- code- migra tion- tool. html.
7 Diagnostics Reference of IntelⓇ DPC++ Compatibility Tool available at: https:// softw are. intel. com/
conte nt/ www/ us/ en/ devel op/ docum entat ion/ intel- dpcpp- compa tibil ity- tool- user- guide/ top/ diagn ostics-
refer ence. html.

https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html

1 3

Assessing opportunities of SYCL for biological sequence…

SYCLomatic reports warnings through an error code along with a description of
the issue, within the source code.

The migration process can be divided into 5 stages: (1) running the SYCLo-
matic tool to generate the first version of the code, (2) modifying the migrated
code based on SYCLomatic warnings to obtain the first executable version, (3) fix-
ing runtime errors to obtain the first functional version, (4) verifying the correctness
of the results, and (5) optimizing the resulting code, if necessary.

3.1.1 Compilation errors and warnings

After obtaining the first migrated version, the following warnings were reported by
SYCLomatic:

• DPCT1003 - Migrated API does not return error code.
(*, 0) is inserted. You may need to rewrite this code:
this is a very common warning in SYCLomatic and occurs when using CUDA-
specific functions, such as error codes.

• DPCT1005 - The SYCL device version is different from
CUDA Compute Compatibility. You may need to rewrite
this code: this is because the original code is querying for CUDA-specific
features, which would not make sense on another device.

• DPCT1049 - The workgroup size passed to the SYCL ker-
nel may exceed the limit. To get the device limit,
query info::device::max_work_group_size. Adjust the
workgroup size if needed: because the migrated code may run on
several devices, SYCLomatic warns not to exceed the maximum capabilities of
the devices (e.g., do not exceed the maximum number of threads).

• DPCT1065 - Consider replacing sycl::nd_item::barrier()
with sycl::nd_item::barrier (sycl::access::fence_
space::local_space) for better performance if there is
no access to global memory: SYCLomatic recommends to add a
parameter when synchronizing threads as long as global memory is not used.

• DPCT1084 - The function call has multiple migration
results in different template instantiations that could
not be unified. You may need to adjust the code.: occurs
when generic functions are used, which although DPC++ supports it, for the
moment SYCLomatic is not able to migrate it.

• DPCT1059 - SYCL only supports 4-channel image format.
Adjust the code.: in CUDA it is possible to create texture memories from
1 to 4 channels in SYCL, only 4-channel texture memories (called images in
DPC++) can be created and this is alerted by SYCLomatic.

Figure 1 summarizes the warnings generated by SYCLomatic grouped into four
areas: error handling (DPCT1003), not supported features (DPCT1005, DPCT1084,
and DPCT1059), recommendations (DPCT1049), and optimizations (DPCT1065).

 M. Costanzo et al.

1 3

The vast majority (67.1%) is caused due to differences between CUDA and SYCL
when handling possible runtime errors.

3.1.2 Code modifications

The following code modifications have been applied to solve the alerts generated by
SYCLomatic:

• DPCT1005: This condition has been removed because there is no equivalent in
SYCL.

• DPCT1049: the workgroup sizes have been adjusted to the maximum supported
by the device.

• DPCT1065: the recommendation was followed.
• DPCT1084: the use of generic functions has been replaced by conditional sen-

tences that execute the corresponding function.
• DPCT1059: the conflicting structures were adapted to four channels.

3.1.3 Runtime errors

At this point, it was possible to compile and execute the migrated code, but the fol-
lowing runtime error was obtained:

������∕�������∕����������, ������������������� >= ��
� <
= CL_������_�������_���_�����

This error appears because the maximum size for image arrays has been
exceeded. To solve this issue, the corresponding image array was migrated to the
DPC++ unified shared memory (USM)8

3.1.4 Code results check

After finishing the migration process, different tests were carried out, both for pro-
tein and DNA sequences, using different alignment algorithms and scoring schemes.
Finally, it was verified that both CUDA and DPC++ produced the same results.

3.1.5 Code update and tuning

SW# code was designed just for NVIDIA GPUs and is particularly customized for
those released in mid-2010. Some configurations are statically indicated in the code,
e.g., the block dimensions for kernels. This leads to two limitations when running
the migrated code on other devices. First, the code does not take full advantage
of current NVIDIA GPUs, which present larger memory capacity and computing
power. Second, it prevents execution on devices with different work-group require-
ments, such as Intel GPUs or CPUs.

8 https:// oneapi- src. github. io/ DPCPP_ Refer ence/ model/ unifi ed- shared- memory. html.

https://oneapi-src.github.io/DPCPP_Reference/model/unified-shared-memory.html

1 3

Assessing opportunities of SYCL for biological sequence…

To remedy this problem, the static setting of work-group size9 was replaced by
a dynamic configuration that considers the sequence lengths and the maximum
allowed value by the corresponding device.10 In this way, the migrated code support
is extended to devices from different architectures.

3.1.6 SYCL standardization (optional)

While the DPC++ language is based on SYCL, it is not fully compliant with
the latter. Thus, SYCLomatic produces code that depends on the oneAPI eco-
system. For example, in this case, the migrated code declares variables in the
constant memory and queries device attributes using DPC++-specific functions.
Thus, some manual adjustments must be made to reach a fully compliant SYCL
code. On the one hand, the constant memory variables were replaced by kernel
arguments, which still reside in constant memory when running on GPUs.11 On
the other hand, DPC++-specific functions were replaced by pure SYCL calls to
query the device information. As a result, this final version of the code can be
compiled with any of the SYCL-compatible compilers.12

Fig. 1 Distribution of the warnings generated by SYCLomatic

9 A DPC++ work-group is a CUDA block.
10 It is important to remark that the same enhancement was also applied to the original CUDA code to
avoid bias in performance evaluation.
11 It is important to note that this change implied a significant reduction in the number of lines of code.
12 Fortunately, several are available from an increasing number of vendors https:// www. khron os. org/
sycl/.

https://www.khronos.org/sycl/
https://www.khronos.org/sycl/

 M. Costanzo et al.

1 3

Ta
bl

e
1

 E
xp

er
im

en
ta

l p
la

tfo
rm

s u
se

d
in

 th
e

te
sts

C
PU

1
G

PU
2

 ID
Pr

oc
es

so
r

R
A

M
 (M

em
or

y)
ID

Ve
nd

or
 (T

yp
e)

M
od

el
 (A

rc
hi

te
ct

ur
e)

G
FL

O
PS

Pe

ak
 (S

P)

16
 G

B
G

TX
 9

80
N

V
ID

IA
 (D

is
cr

et
e)

G
TX

 9
80

 (M
ax

w
el

l)
50

00
16

 G
B

G
TX

 1
08

0
N

V
ID

IA
 (D

is
cr

et
e)

G
TX

 1
08

0
(P

as
ca

l)
88

73
Xe

on
 G

ol
d

In
te

l X
eo

n
G

ol
d

61
38

64
 G

B
V1

00
N

V
ID

IA
 (D

is
cr

et
e)

V
10

0
(V

ol
ta

)
14

13
0

64
 G

B
RT

X
30

90
N

V
ID

IA
 (D

is
cr

et
e)

RT
X

 3
09

0
(A

m
pe

re
)

35
58

0
C

or
e-

i5
C

or
e-

i9
In

te
l C

or
e

i5
-7

40
0

8
G

B
RT

X
20

70
N

V
ID

IA
 (D

is
cr

et
e)

RT
X

 2
07

0
(T

ur
in

g)
74

65
In

te
l C

or
e

i9
-9

90
0K

65
 G

B
P6

30
In

te
l (

In
te

gr
at

ed
)

U
H

D
 G

ra
ph

ic
s P

63
0

(G
en

 9
.5

)
44

1.
6

In
te

l C
or

e
i9

-1
39

00
k

65
 G

B
AR

C
77

0
In

te
l (

D
is

cr
et

e)
A

77
0

(X
e

H
PG

)
19

66
0

Xe
on

 E
5

In
te

l X
eo

n
E5

-1
62

0
32

 G
B

RX
67

00
A

M
D

 (D
is

cr
et

e)
R

X
 6

70
0

X
T

(R
D

N
A

2)
13

21
5

C
or

e-
i7

In
te

l C
or

e
i7

-1
16

5G
7

16
 G

B
Ir

is
 X

e
In

te
l (

In
te

gr
at

ed
)

Ir
is

 X
e

G
ra

ph
ic

s (
G

en
 1

2.
1)

16
90

Ry
ze

n3
A

M
D

 R
yz

en
 3

 5
30

0U
12

 G
B

RX
 V

eg
a

6
A

M
D

 (I
nt

eg
ra

te
d)

R
X

 V
eg

a
6

(V
eg

a)
84

5.
6

1 3

Assessing opportunities of SYCL for biological sequence…

3.2 Experimental work

All the tests were carried out using the platforms described in Table 113. The oneAPI
and CUDA versions are 2023.0.0 and 11.7, respectively, and to run DPC++ codes
on NVIDIA GPU, we have built a DPC++ toolchain with support for NVIDIA
CUDA, as it is not supported by default on oneAPI.14 Regarding to AdaptiveCPP,
we have used v23.10.0 build from the public repository15 with clang-v15.0, CUDA
v11.7 and ROCm v5.4.3.

For protein alignments, the following databases and configurations were used:

• UniProtKB/Swiss-Prot (Swiss-Prot) database (release 2022_07)16: The database
contains 204173280 amino acid residues in 565928 sequences with a maximum
length of 35213.

• Environmental Non-Redundant (Env. NR) database (release 2021_04)17: The
database contains 995210546 amino acid residues in 4789355 sequences with a
maximum length of 16925.

• The input queries range in length from 144 to 5478, and they were extracted
from the Swiss-Prot database (accession numbers: P02232, P05013, P14942,
P07327, P01008, P03435, P42357, P21177, Q38941, P27895, P07756, P04775,
P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5, P33450, and Q9UKN1).

• The substitution matrix selected is BLOSUM62 and the insertion and gap exten-
sion scores were set to 10 and 2, respectively.

For DNA alignments, Table 2 presents the accession numbers and sizes of the
sequences used. The score parameters used were +1 for match, −3 for mismatch, −5
for gap open, and −2 for gap extension.

To eliminate the CPU impact on performance, SW# has been configured in GPU-
only mode (flag T=0). On the other hand, different work-group sizes have been con-
figured to obtain the optimal one. Finally, each test was run twenty times, and per-
formance was calculated as an average to minimize variability.

4 Results and discussion

In this section, we assess the efficiency of the SYCLomatic tool for the CUDA-
based SW# migration. Next, we analyze the SYCL code’s portability and perfor-
mance, considering different target platforms and vendors (NVIDIA GPUs; AMD

16 Swiss-Prot: https:// www. unipr ot. org/ downl oads.
17 ENV NR: https:// ftp. ncbi. nlm. nih. gov/ blast/ db/.

14 https:// intel. github. io/ llvm- docs/ GetSt arted Guide. html.
15 AdaptiveCpp project: https:// github. com/ Adapt iveCpp/ Adapt iveCpp.

13 As the original SW# is an old CUDA-based software, we tried to include older NVIDIA GPUs (f.e. a
Kepler-based one). However, oneAPI only supports NVIDIA GPUs from Maxwell onwards; thus, it was
not possible to include them in the performance comparison.

https://www.uniprot.org/downloads
https://ftp.ncbi.nlm.nih.gov/blast/db/
https://intel.github.io/llvm-docs/GetStartedGuide.html
https://github.com/AdaptiveCpp/AdaptiveCpp

 M. Costanzo et al.

1 3

GPU; Intel CPUs and GPUs), and SW# functionalities. Last, we discuss the obtained
results considering related works.

4.1 SYCLomatic efficiency

In this context, efficiency refers to how good is SYCLomatic to automatically
translate the CUDA code to SYCL. In particular, this issue is evaluated by measur-
ing the SW# source lines of code (SLOC) for CUDA and DPC++ versions18 (see
Table 3). The original SW# version presents 8072 SLOC. After running SYCLo-
matic, we found that 407 CUDA SLOC were not automatically migrated. To reach
the first functional DPC++ version, some hand-tuned modifications were required,
increasing SLOC to 12175. In summary, SYCLomatic succeeded in migrating
95% of the CUDA code, confirming Intel’s claims. However, it was necessary to add
1718 SLOC (+21%) to the SYCLomatic output to obtain the first executable ver-
sion. Finally, by removing some SYCLomatic-specific code (SYCL standardiza-
tion), DPC++ SLOC got reduced by approximately 20%.

4.2 Performance and portability results

4.2.1 Performance results

GCUPS (billion cell updates per second) is the performance metric generally used
in the SW context [29]. Figure 2 presents the performance of both CUDA and SYCL
versions when varying work-group size, using the Swiss-Prot database and the SW
algorithm.19 It is possible to notice that both codes are sensitive to the work-group
size; in fact, dynamic configuration obtained the best results for all cases. Moreover,
both codes are able to extract more GCUPs when using more powerful GPUs.

Figure 3 complements the previous one by including Env. NR database, whose
size is about 7 times bigger than Swiss-Prot. On the one hand, the performance for
both versions holds for larger workloads, which turns out to be beneficial for scaling.
On the other hand, no code reached the best performance in all cases. The CUDA
version showed superiority on the GTX 980 and the GTX 1080 for both databases
and also on the V100 and RTX 3090 but only for the Swiss-Prot case. However, it is
important to remark that the performance improvement is up to 2% in the best-case
scenario. A similar phenomenon occurs on the V100 and RTX 3090 with the Env.
NR database, where the SYCL implementation was the fastest one, but just reaching
up to 2% higher GCUPS. Last, the performance difference between both codes was
smaller than 1% on the RTX 2070. Thus, due to the small performance differences,
it can be said that no marked differences can be noted between the two languages for
these experiments.

19 On the GTX 980, it was impossible to compute using block size = 1024 because it exceeds the maxi-
mum global memory size of this GPU.

18 To measure SLOC, the cloc tool was used (available at https:// github. com/ AlDan ial/ cloc), and blank
lines and comments were excluded.

https://github.com/AlDanial/cloc

1 3

Assessing opportunities of SYCL for biological sequence…

The influence of query length can be seen in Fig. 4.20 First, as expected, a longer
query leads to better performance. Second, this chart allows us to further explore
what is observed in Fig. 2, showing that although more powerful GPUs have higher
performance, a sufficiently large workload is necessary to take advantage of their
computing power. For example, the RTX 3090 achieves the best performance but
just when the query sequence is longer than 3005 residues.

To avoid the biases of the default configuration, we have considered different
alignment algorithms and scoring schemes for the same experiments (see Figs. 5
and 6, respectively). The performance difference for both variants is 2% on average,
rising up to 4% in a few cases. Therefore, none of these parameters seems to have an
impact on the performance of the migrated code.

Pairwise alignment presents different parallelization challenges to database
similarity search. SW# employs the inter-task parallelism approach for the for-
mer (kernel swSolveSingle) and the intra-parallelism scheme for the latter
(kernel swSolveShortGpu). In consequence, the performance comparison on
DNA alignments is presented in Fig. 7. Firstly, contrary to the protein case, longer
DNA sequences do not always lead to more GCUPS. This fact can be attributed
to the particularities of DNA sequence alignment, such as the degree of similarity
between them, as was already observed in [30]. Secondly, the performance between
both models is similar except for two GPUs. On the RTX 2070, SYCL outperforms
CUDA by 10% on average, while on the V100 the difference is still positive but
slightly smaller (7%).

To find out more about the causes of these larger performance differences, we
have profiled both code executions on the RTX 2070 and the RTX 3090 GPUs using
the NVIDIA Nsight Compute tool [31].21 Table 4 presents some relevant metrics
collected from this experimental task. As can be seen, SYCL outperforms CUDA for
several metrics on the RTX 2070, not only in memory management but also in com-
putational productivity. However, both codes achieve practically the same values on

Table 2 DNA sequence
information used in the tests Sequence 1 1 Sequence 2 2

 Accession Size Accession Size Matrix size (cells)

CP000051.1 1 M AE002160.2 1 M 1 G
BA000035.2 3 M BX927147.1 3 M 9 G
AE016879.1 5 M AE017225.1 5 M 25 G
NC_005027.1 7 M NC_003997.3 5 M 35 G
NC_017186.1 10 M NC_014318.1 10 M 100 G

20 While both SYCL and CUDA codes were executed, only the SYCL version is included to improve the
readability of the chart.
21 The profiling metrics used are described in https:// docs. nvidia. com/ nsight- compu te/ Profi lingG uide/.

https://docs.nvidia.com/nsight-compute/ProfilingGuide/

 M. Costanzo et al.

1 3

the RTX 3090. At this point, we assume that it could be related to particular features
of their micro-architecture in contrast to the rest of them.22

4.2.2 Cross‑GPU‑vendor and cross‑architecture portability results

To verify cross-vendor GPU portability, the SYCL code was run on two AMD GPUs
and two Intel GPUs for searching the Env. NR database, covering both discrete and
integrated segments. Similarly, the same code was executed on four Intel CPUs and
one AMD CPU to demonstrate its cross-architecture portability (see Fig. 8). In both
cases, all results were verified to be correct. At this point, little can be said about their
performance due to the absence of an optimized version for these devices. Finally, it is
important to remark on two aspects: (1) running these tests just required a single back-
end switch; (2) as the ported DPC++ version is pure SYCL code, running this version
on different architectures just needs a compatible compiler. As it was mentioned before,
several are available nowadays and this aspect is analyzed in the next Section.

Table 3 SLOC of SW# (CUDA and DPC++ versions)

CUDA1 DPC++2

 Original Not migrated by SYCLomatic SYCLomatic output Hand-tuned Pure SYCL

8072 408 10457 12175 9866

Fig. 2 Performance comparison when varying work-group size

22 Both GPUs belong to the same Nvidia micro-architecture; unlike previous generations, Nvidia has
employed different codenames for each commercial segment (Turing is the codename for the consumer
segment while Volta is corresponding for the professional one).

1 3

Assessing opportunities of SYCL for biological sequence…

4.2.3 Cross‑SYCL‑implementation portability results

To verify cross-SYCL-implementation portability, we decided to compile and run
the ported code on several GPUs and CPUs using the AdaptiveCpp framework. For
this task, the SYCL standardization step from Sect. 3.1.6 was fundamental. Fig-
ure 9 presents the performance achieved for both oneAPI and AdaptiveCpp ver-
sions when searching the Swiss-Prot database. Some performance losses can be

Fig. 3 Performance comparison when varying protein databases

Fig. 4 Performance comparison when varying the query length

 M. Costanzo et al.

1 3

observed in AdaptiveCpp when using the generic compiler instead of the specific-
target one (up to 15%). In the opposite direction, no significant performance dif-
ferences can be noted between oneAPI and AdaptiveCpp, except for the Arc A770

Fig. 5 Performance comparison when varying the alignment algorithm

Fig. 6 Performance comparison when varying the scoring scheme

1 3

Assessing opportunities of SYCL for biological sequence…

Fig. 7 Performance comparison for DNA alignment

Table 4 Profiles of DNA sequence alignment executions (matrix size: 100 G) for CUDA and SYCL on
RTX 2070 and RTX 3090 GPUs

Section Name Metric Name RTX 2070 RTX 3090

CUDA SYCL SYCL/
CUDA
ratio

CUDA SYCL SYCL/
CUDA
ratio

Compute workload
Analysis

Executed Ipc Active
(inst/cycle)

2.15 2.71 1.26 2.18 2.07 0.95

Executed Ipc Elapsed
(inst/cycle)

1.79 2.26 1.26 1.53 1.46 0.95

GPU Speed Of
Light Throughput

Memory Throughput
(%)

20.08 33.85 1.69 N/A N/A –

DRAM Throughput
(%)

0.16 0.20 1.25 0.42 0.42 1

L1/TEX Cache
Throughput (%)

24.18 40.74 1.68 25.72 24.43 0.95

L2 Cache Throughput
(%)

0.17 0.24 1.41 0.35 0.3 0.95

Memory Workload
Analysis

Memory Throughput
(Mbyte/sec)

677.46 853.17 1.26 3684.16 3503.77 0.95

Max Bandwidth (%) 20.08 33.85 1.69 18.16 17.26 0.95
Mem Pipes Busy (%) 20.08 33.84 1.69 18.16 17.26 0.95

Scheduler statistics Issued Warp Per
Scheduler

0.54 0.68 1.26 N/A N/A –

 M. Costanzo et al.

1 3

GPU, where the former is just 1.05× faster than the latter. This fact contributes to the
interchangeability of SYCL and favors its adoption.

4.3 Related works

Some preliminary studies assessing the portability of SYCL and oneAPI can be found
in simulation [10], math [32, 33], machine learning [34, 35], software benchmarks [36,
37], image processing [38], and cryptography [39]. In the bioinformatics field, some
works can also be mentioned. In [9], the authors describe the experience of translating
a CUDA implementation of a high-order epistasis detection algorithm to SYCL, find-
ing that the highest performance of both versions is comparable on an NVIDIA V100
GPU. It is important to remark that some hand-tuning was required in the SYCL imple-
mentation to reach its maximum performance. In [40], the authors migrate representa-
tive kernels in bioinformatics applications from CUDA to SYCL and evaluate their per-
formance on an NVIDIA V100 GPU, explaining the performance gaps through code
profiling and analyzes. The performance difference ranges from 1.25× to 5 × (2.73× on
average) and the authors relate it to CUDA’s mature and extensive development envi-
ronment. As in the previous work, the authors did not report if manual or automatic
migration was employed. In [41], the authors evaluate the performance and portability
of the CUDA-based ADEPT kernel for SW short-read alignment. Unlike this study, the
authors followed manual porting to obtain a DPC++ equivalent version of ADEPT,
arguing that the resultant code was unnecessarily complex and required major changes.
Both CUDA and DPC++ versions were run on an NVIDIA V100 GPU, where the lat-
ter was approximately 2 × slower in all experiments. However, the authors were not able
to determine the causes of the slowdown due to some limitations in kernel profiling.
In addition, the code portability of the DPC++ version was verified on an Intel P630

Fig. 8 Performance of SYCL code on different vendor GPUs and CPUs

1 3

Assessing opportunities of SYCL for biological sequence…

GPU. In [42], the authors translate the molecular docking software AutoDock-GPU
from CUDA to SYCL by employing dpct, remarking that this tool greatly reduces
the effort of code migration but manual steps for code completion and tuning are still
required. From a performance point of view, most test cases show that SYCL execu-
tions are slower than CUDA ones on an NVIDIA A100 (1.91× on average). While still
preliminary analysis, the authors attribute performance gaps to the SYCL version per-
forming more computations than its CUDA counterpart and higher register pressure
and shared memory usage from the former. In [43], the authors presented OneJoin, a
oneAPI-based tool to edit similarity join in DNA data decoding. This tool was devel-
oped using oneAPI from scratch and its portability was checked on two Intel CPUs
(Xeon E-2176 G, Core i9-10920X), an integrated Intel GPU (P630), and a discrete
NVIDIA GPU (RTX 2080). Last, few works have compared performance and port-
ability of different SYCL implementations [44–46]. Generally, the performance results
have been similar between SYCL implementations, but significant differences occurred
in some cases. Even though, these results cannot be considered definitive due to the
rapid growth of these tools.

In this work, as was shown above, SW# has been completely migrated with
a small programmer intervention in terms of hand-coding. Moreover, it has been
possible to port the migrated code between different GPU and CPU architectures
from multiple vendors. Specifically, the code portability was verified on 5 NVIDIA
GPU microarchitectures, 3 Intel GPU microarchitectures—one discrete and two
integrated—2 AMD GPU microarchitecture, 1 AMD CPU microarchitecture, and
4 Intel CPU microarchitectures; with no noticeable performance degradation on the
5 different NVIDIA GPUs. In the same line, the performance remained stable when
cross-SYCL-implementation portability was verified on 5 GPUs and 2 CPUs from
different manufacturers.

5 Conclusions and future work

SYCL aims to take advantage of the benefits of hardware specialization while
increasing productivity and portability at the same time. Recently, Intel released
oneAPI, a complete programming ecosystem that follows the SYCL standard. In this
paper, we have presented our experiences migrating a CUDA-based biological soft-
ware to SYCL. Besides, the portability of the migrated code was analyzed in combi-
nation with a performance evaluation on different GPU and CPU architectures. The
main findings of this research are:

• SYCLomatic has proved to be an efficient tool for migrating 95% of the origi-
nal CUDA code to DPC++, according to Intel’s marketing rates. A small hand-
tune effort was required first to achieve a functional version and then a fully
SYCL-compliant one.

• To minimize possible biases, the SYCL code was successfully executed on
5 NVIDIA GPUs from different microarchitectures (Maxwell, Pascal, Volta,
Turing, and Ampere), 3 Intel GPUs (one integrated and two discrete), 2 AMD
GPUs (one integrated and one discrete), 1 AMD CPU, and 4 different Intel
CPUs. Extending and diversifying the set of experimental platforms reinforce

 M. Costanzo et al.

1 3

the conclusions reached regarding cross-vendor GPU and cross-architecture
portability of SYCL.

• Unlike our previous work, tests carried out included a wide variety of scenarios
(sequence type, sequence size, alignment algorithm, and scoring scheme, among
others) to represent diverse workloads in the field. This fact strengthens previ-
ous findings stating that performance results showed that both CUDA and SYCL
versions presented comparable GCUPS, demonstrating that portability can be
gained without severe performance losses.

• Last but not least, the portability between SYCL implementations was also veri-
fied, showing that performance remains stable when switching between oneAPI
and AdaptiveCpp. This is another fact that favors the adoption of SYCL.

Given the results obtained, SYCL and its implementations can offer attractive oppor-
tunities for the bioinformatics community, especially considering the vast existence
of CUDA-based legacy codes. In this regard, because SYCL is still under develop-
ment, the advance of its compilers and the growth of the programmers’ community
will be key aspects in determining SYCL’s success in improving productivity and
portability.

Future work will focus on:

• Optimizing the SYCL code to reach its maximum performance. In particular, the
original SW# suite does not consider some known optimizations for SW align-

Fig. 9 Performance comparison between SYCL implementations (oneAPI and AdaptiveCpp) on different
vendor GPUs and CPUs

1 3

Assessing opportunities of SYCL for biological sequence…

ment [47], such as instruction reordering to reduce their count and the use of
lower precision integers to increase parallelism23.

• Running the SYCL code on other architectures such as FPGAs, to extend the
cross-architecture portability study. In the same vein, considering hybrid CPU-
GPU execution, taking advantage of the inherent ability of SYCL to exploit co-
execution [48, 49].

• Carrying out an extensive study of the performance portability of these codes,
following Marowka’s proposal [50].

Acknowledgements Not applicable.

Author Contributions ER and CG-S proposed the idea. MC developed the software and conducted the
experiments. ER, MC, and CG-S analyzed the results and wrote the paper. MN and MP-M reviewed the
manuscript. All authors contributed to the article and approved the submitted version.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Grant PID2021-126576NB-I00 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by
“ERDF A way of making Europe”, by the “European Union” or by the “European Union Next Generation
EU/PRTR”.

Data availability statements The SW# CUDA software used in this study is available at https:// github.
com/ mkorp ar/ swsha rp. The migration to SYCL was performed using the SYCLomatic tool, accessible
at https:// github. com/ oneapi- src/ SYCLo matic. The migrated SW# software is available at https:// github.
com/ Manue lCost anzo/ swsha rp_ sycl. The protein data utilized for this research are sourced from the Uni-
ProtKB/Swiss-Prot (Swiss-Prot) database (release 2022_07), which can be found at https:// www. unipr
ot. org/ downl oads, and the Environmental Non-Redundant (Env. NR) database (release 2021_04) avail-
able at https:// ftp. ncbi. nlm. nih. gov/ blast/ db/. Operating system: Platform independent. Programming lan-
guages: C++20, CUDA 11.7. Other requirements: Intel LLVM available at https:// github. com/ intel/ llvm
with the CUDA toolchain available at https:// intel. github. io/ llvm- docs/ GetSt arted Guide. html# build- dpc-
toolc hain- with- suppo rt- for- nvidia- cuda. AdaptiveCpp es available athttps:// github. com/ Adapt iveCpp/
Adapt iveCpp.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

23 It is important to note that at the time of SW#’s development, most CUDA-enabled GPUs did not sup-
port efficient arithmetic on 8-bit vector data types.

https://github.com/mkorpar/swsharp
https://github.com/mkorpar/swsharp
https://github.com/oneapi-src/SYCLomatic
https://github.com/ManuelCostanzo/swsharp_sycl
https://github.com/ManuelCostanzo/swsharp_sycl
https://www.uniprot.org/downloads
https://www.uniprot.org/downloads
https://ftp.ncbi.nlm.nih.gov/blast/db/
https://github.com/intel/llvm
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 M. Costanzo et al.

1 3

References

 1. Dally WJ, Turakhia Y, Han S (2020) Domain-specific hardware accelerators. Commun ACM
63(7):48–57. https:// doi. org/ 10. 1145/ 33616 82

 2. Robert D (2021) GPU shipments increase year-over-year in Q3. https:// www. jonpe ddie. com/ press-
relea ses/ gpu- shipm ents- incre ase- year- over- year- in- q3

 3. Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D (2016) Graphics processing units in bioinfor-
matics, computational biology and systems biology. Brief Bioinform 18(5):870–885. https:// doi. org/
10. 1093/ bib/ bbw058

 4. De Oilveira Sandes EF, Boukerche A, De Melo ACMA (2016) Parallel optimal pairwise biological
sequence comparison: algorithms, platforms, and classification. ACM Comput Surv. https:// doi. org/
10. 1145/ 28934 88

 5. Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014) Megadock 4.0: an ultra-
high-performance protein-protein docking software for heterogeneous supercomputers. Bioinfor-
matics 30(22):3281–3283

 6. Loukatou S, Papageorgiou L, Fakourelis P, Filntisi A, Polychronidou E, Bassis I, Megalooikonomou
V, Makałowski W, Vlachakis D, Kossida S (2014) Molecular dynamics simulations through GPU
video games technologies. J Mole Biochem 3(2):64

 7. Mrozek D, Brożek M, Małysiak-Mrozek B (2014) Parallel implementation of 3d protein structure
similarity searches using a GPU and the CUDA. J Mol Model 20(2):1–17

 8. Group K (2009) The OpenCL specification. Version 1.0. https:// www. khron os. org/ regis try/ cl/ specs/
opencl- 1.0. pdf

 9. Jin Z, Vetter JS (2022) Performance portability study of epistasis detection using sycl on nvidia gpu.
In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biol-
ogy and Health Informatics. BCB ’22. Association for Computing Machinery, New York. https://
doi. org/ 10. 1145/ 35355 08. 35455 91

 10. Christgau S, Steinke T (2020) Porting a legacy CUDA stencil code to oneAPI. In: 2020 IEEE
IPDPSW, pp 359–367. https:// doi. org/ 10. 1109/ IPDPS W50202. 2020. 00070

 11. Korpar M, Sikic M (2013) SW# - GPU-enabled exact alignments on genome scale. Bioinformatics
29(19):2494–2495. https:// doi. org/ 10. 1093/ bioin forma tics/ btt410

 12. Costanzo M, Rucci E, García-Sánchez C, Naiouf M, Prieto-Matías M (2022) Migrating CUDA to
oneAPI: a smith-waterman case study. In: Rojas I, Valenzuela O, Rojas F, Herrera LJ, Ortuño F
(eds) Bioinform Biomed Eng. Springer, Cham, pp 103–116

 13. De O, Sandes EF, Miranda G, Martorell X, Ayguade E, Teodoro G, De Melo ACMA (2016) Masa:
a multiplatform architecture for sequence aligners with block pruning. ACM Trans Parallel Comput
2(4):28–12831. https:// doi. org/ 10. 1145/ 28586 56

 14. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J Mol Biol 48(3):443–453. https:// doi. org/ 10. 1016/ 0022-
2836(70) 90057-4

 15. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol
147(1):195–197

 16. Hasan L, Al-Ars Z (2011) In: Lopes H, Cruz L (eds) An overview of hardware-based acceleration of
biological sequence alignment, pp 187–202. Intech

 17. Isaev A (2006) Introduction to mathematical methods in bioinformatics. Universitext, 1st edn.
Springer, Heidelberg

 18. Daily J (2016) Parasail: SIMD C library for global, semi-global, and local pairwise sequence align-
ments. BMC Bioinform. https:// doi. org/ 10. 1186/ s12859- 016- 0930-z

 19. Mneimneh S (2024) Computational biology lecture 4: overlap detection, Local Alignment, Space
Efficient Needleman–Wunsch

 20. Korpar M, Sosic M, Blazeka D, Sikic M (2016) SWdb: GPU-accelerated exact sequence similarity
database search. PLoS ONE 10(12):1–11. https:// doi. org/ 10. 1371/ journ al. pone. 01458 57

 21. Khoo AA, Ogrizek-Tomaš M, Bulović A, Korpar M, Gürler E, Slijepčević I, Šikić M, Mihalek
I (2013) ExoLocator-an online view into genetic makeup of vertebrate proteins. Nucl Acids Res
42(D1):879–881. https:// doi. org/ 10. 1093/ nar/ gkt11 64

 22. Ghorpade J, Parande J, Kulkarni M, Bawaskar A (2012) Gpgpu processing in CUDA architecture.
arXiv: 1202. 4347

https://doi.org/10.1145/3361682
https://www.jonpeddie.com/press-releases/gpu-shipments-increase-year-over-year-in-q3
https://www.jonpeddie.com/press-releases/gpu-shipments-increase-year-over-year-in-q3
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1145/2893488
https://doi.org/10.1145/2893488
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://doi.org/10.1145/3535508.3545591
https://doi.org/10.1145/3535508.3545591
https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1093/bioinformatics/btt410
https://doi.org/10.1145/2858656
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.1371/journal.pone.0145857
https://doi.org/10.1093/nar/gkt1164
http://arxiv.org/abs/1202.4347

1 3

Assessing opportunities of SYCL for biological sequence…

 23. Software (2023) ComputeCpp Comunity Edition. https:// devel oper. codep lay. com/ produ cts/ compu
tecpp/ ce/ home

 24. Intel Corp (2021) Intel oneAPI. https:// softw are. intel. com/ en- us/ oneapi
 25. The triSYCL project. https:// github. com/ triSY CL/ triSY CL (2023)
 26. Alpay: OpenSYCL implementation. https:// github. com/ Adapt iveCpp/ Adapt iveCpp (2023)
 27. Alpay A, Soproni B, Wünsche H, Heuveline V (2022) Exploring the possibility of a hipsycl-based

implementation of oneapi. In: International workshop on OpenCL. IWOCL’22. Association for
Computing Machinery, New York. https:// doi. org/ 10. 1145/ 35295 38. 35300 05

 28. Alpay A, Heuveline V (2023) One pass to bind them: The first single-pass sycl compiler with uni-
fied code representation across backends. In: Proceedings of the 2023 international workshop on
OpenCL. IWOCL ’23. Association for Computing Machinery, New York. https:// doi. org/ 10. 1145/
35853 41. 35853 51

 29. Rucci E, Garcia C, Botella G, Giusti AED, Naiouf M, Prieto-Matias M (2018) Oswald: Opencl
smith-waterman on altera’s FPGA for large protein databases. Int J High Perform Comput Appl
32(3):337–350. https:// doi. org/ 10. 1177/ 10943 42016 654215

 30. Rucci E, Garcia C, Botella G, De Giusti A, Naiouf M, Prieto-Matias M (2018) SWIFOLD: Smith-
waterman implementation on FPGA with OpenCL for long DNA sequences. BMC Syst Biol
12(Suppl 5):96. https:// doi. org/ 10. 1186/ s12918- 018- 0614-6

 31. NVIDIA (2022) Nsight Compute. https:// devel oper. nvidia. com/ nsight- compu te
 32. Tsai YM, Cojean T, Anzt H (2021) Porting a sparse linear algebra math library to Intel GPUs
 33. Costanzo M, Rucci E, Sanchez CG, Naiouf M (2021) Early experiences migrating cuda codes to

oneapi. In: Short Papers of the 9th Conference on Cloud Computing Conference, Big Data and
Emerging Topics, pp 14–18. http:// sedici. unlp. edu. ar/ handle/ 10915/ 125138

 34. Martínez PA, Peccerillo B, Bartolini S, García JM, Bernabé G (2022) Applying intel’s oneAPI to a
machine learning case study. Concurrency Comput Pract Exp 34(13):6917. https:// doi. org/ 10. 1002/
cpe. 6917

 35. Faqir-Rhazoui Y, García C (2023) Exploring the performance and portability of the k-means algo-
rithm on SYCL across CPU and GPU architectures. J Supercomput 79(16):18480–18506. https://
doi. org/ 10. 1007/ s11227- 023- 05373-2

 36. Jin Z, Vetter J (2021) Evaluating cuda portability with HIPCL and DPCT. In: 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp 371–376. https://
doi. org/ 10. 1109/ IPDPS W52791. 2021. 00065

 37. Castaño G, Faqir-Rhazoui Y, García C, Prieto-Matías M (2022) Evaluation of intel’s DPC++ com-
patibility tool in heterogeneous computing. J Parall Distrib Comput 165:120–129. https:// doi. org/ 10.
1016/j. jpdc. 2022. 03. 017

 38. Yong W, Yongfa Z, Scott W, Wang Y, Qing X, Chen W (2021) Developing medical ultrasound
imaging application across gpu, fpga, and CPU using oneapi. In: International workshop on
OpenCL. IWOCL’21. Association for Computing Machinery, New York. https:// doi. org/ 10. 1145/
34566 69. 34566 80

 39. Marinelli E, Appuswamy R (2021) Xjoin: portable, parallel hash join across diverse xpu architec-
tures with OneaPI. In: Proceedings of the 17th international workshop on data management on new
hardware. DAMON ’21. Association for Computing Machinery, New York. https:// doi. org/ 10. 1145/
34659 98. 34660 12

 40. Jin Z, Vetter JS (2022) Understanding performance portability of bioinformatics applications in
sycl on an nvidia gpu. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pp 2190–2195. https:// doi. org/ 10. 1109/ BIBM5 5620. 2022. 99952 22

 41. Haseeb M, Ding N, Deslippe J, Awan M (2021) Evaluating performance and portability of a core
bioinformatics kernel on multiple vendor GPUS. In: 2021 International workshop on performance,
portability and productivity in HPC (P3HPC), pp 68–78. https:// doi. org/ 10. 1109/ P3HPC 54578.
2021. 00010

 42. Solis-Vasquez L, Mascarenhas E, Koch A (2023) Experiences migrating cuda to sycl: a molecular
docking case study. In: Proceedings of the 2023 international workshop on OpenCL. IWOCL ’23.
Association for Computing Machinery, New York. https:// doi. org/ 10. 1145/ 35853 41. 35853 72

 43. Marinelli E, Appuswamy R (2021) OneJoin: cross-architecture, scalable edit similarity join for
DNA data storage using oneAPI. In: ACM (ed) ADMS 2021, 12th international workshop on accel-
erating analytics and data management systems using modern processor and storage architectures, in
conjunction with VLDB 2021, 16 August 2021, Copenhagen, Denmark, Copenhagen

https://developer.codeplay.com/products/computecpp/ce/home
https://developer.codeplay.com/products/computecpp/ce/home
https://software.intel.com/en-us/oneapi
https://github.com/triSYCL/triSYCL
https://github.com/AdaptiveCpp/AdaptiveCpp
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.1177/1094342016654215
https://doi.org/10.1186/s12918-018-0614-6
https://developer.nvidia.com/nsight-compute
http://sedici.unlp.edu.ar/handle/10915/125138
https://doi.org/10.1002/cpe.6917
https://doi.org/10.1002/cpe.6917
https://doi.org/10.1007/s11227-023-05373-2
https://doi.org/10.1007/s11227-023-05373-2
https://doi.org/10.1109/IPDPSW52791.2021.00065
https://doi.org/10.1109/IPDPSW52791.2021.00065
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1145/3456669.3456680
https://doi.org/10.1145/3456669.3456680
https://doi.org/10.1145/3465998.3466012
https://doi.org/10.1145/3465998.3466012
https://doi.org/10.1109/BIBM55620.2022.9995222
https://doi.org/10.1109/P3HPC54578.2021.00010
https://doi.org/10.1109/P3HPC54578.2021.00010
https://doi.org/10.1145/3585341.3585372

 M. Costanzo et al.

1 3

 44. Johnston B, Vetter JS, Milthorpe J (2020) Evaluating the performance and portability of contempo-
rary sycl implementations. In: 2020 IEEE/ACM international workshop on performance, portability
and productivity in HPC (P3HPC), pp 45–56. https:// doi. org/ 10. 1109/ P3HPC 51967. 2020. 00010

 45. Breyer M, Daiß G, Pflüger D (2021) Performance-portable distributed k-nearest neighbors using
locality-sensitive hashing and sycl. In: International workshop on OpenCL. IWOCL’21. Association
for Computing Machinery, New York. https:// doi. org/ 10. 1145/ 34566 69. 34566 92

 46. Shilpage WR, Wright SA (2023) An investigation into the performance and portability of sycl com-
piler implementations. In: Bienz A, Weiland M, Baboulin M, Kruse C (eds) High performance com-
puting. Springer, Cham, pp 605–619

 47. Rognes T (2011) Faster Smith–Waterman database searches with inter-sequence SIMD paralleliza-
tion. BMC Bioinform 12:221

 48. Constantinescu D-A, Navarro A, Corbera F, Fernández-Madrigal J-A, Asenjo R (2021) Efficiency
and productivity for decision making on low-power heterogeneous cpu+gpu socs. J Supercomput
77(1):44–65. https:// doi. org/ 10. 1007/ s11227- 020- 03257-3

 49. Nozal R, Bosque JL (2021) Exploiting co-execution with OneAPI: heterogeneity from a modern
perspective. In: Sousa L, Roma N, Tomás P (eds) Euro-Par 2021: parallel processing. Springer,
Cham, pp 501–516

 50. Marowka A (2022) Reformulation of the performance portability metric. Softw Pract Exp
52(1):154–171. https:// doi. org/ 10. 1002/ spe. 3002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Manuel Costanzo1 · Enzo Rucci1 · Carlos García‑Sanchez2 · Marcelo Naiouf1 ·
Manuel Prieto‑Matías2

 * Carlos García-Sanchez
 garsanca@ucm.es

 Manuel Costanzo
 mcostanzo@lidi.info.unlp.edu.ar

 Enzo Rucci
 erucci@lidi.info.unlp.edu.ar

 Marcelo Naiouf
 mnaiouf@lidi.info.unlp.edu.ar

 Manuel Prieto-Matías
 mpmatias@ucm.es

1 Facultad de Informática, III-LIDI, UNLP – CIC, 1900 La Plata, Buenos Aires, Argentina
2 Facultad Informatica. DACyA, Universidad Complutense de Madrid, 28040 Madrid, Spain

https://doi.org/10.1109/P3HPC51967.2020.00010
https://doi.org/10.1145/3456669.3456692
https://doi.org/10.1007/s11227-020-03257-3
https://doi.org/10.1002/spe.3002

	Assessing opportunities of SYCL for biological sequence alignment on GPU-based systems
	Abstract
	1 Introduction
	2 Background
	2.1 Biological sequence alignment
	2.1.1 Needleman–Wunsch algorithm (NW)
	2.1.2 Smith–Waterman algorithm (SW)
	2.1.3 Semi-global algorithm (HW)
	2.1.4 Overlap algorithm (OV)

	2.2 SW# suite
	2.3 Hardware accelerators
	2.3.1 CUDA
	2.3.2 SYCL and its implementations

	3 Materials and methods
	3.1 Migration process
	3.1.1 Compilation errors and warnings
	3.1.2 Code modifications
	3.1.3 Runtime errors
	3.1.4 Code results check
	3.1.5 Code update and tuning
	3.1.6 SYCL standardization (optional)

	3.2 Experimental work

	4 Results and discussion
	4.1 SYCLomatic efficiency
	4.2 Performance and portability results
	4.2.1 Performance results
	4.2.2 Cross-GPU-vendor and cross-architecture portability results
	4.2.3 Cross-SYCL-implementation portability results

	4.3 Related works

	5 Conclusions and future work
	Acknowledgements
	References

