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Abstract
Bioinformatics and computational biology are two fields that have been exploit-
ing GPUs for more than two decades, with being CUDA the most used program-
ming language for them. However, as CUDA is an NVIDIA proprietary language, 
it implies a strong portability restriction to a wide range of heterogeneous architec-
tures, like AMD or Intel GPUs. To face this issue, the Khronos group has recently 
proposed the SYCL standard, which is an open, royalty-free, cross-platform abstrac-
tion layer that enables the programming of a heterogeneous system to be written 
using standard, single-source C++ code. Over the past few years, several imple-
mentations of this SYCL standard have emerged, being oneAPI the one from Intel. 
This paper presents the migration process of the SW# suite, a biological sequence 
alignment tool developed in CUDA, to SYCL using Intel’s oneAPI ecosystem. The 
experimental results show that SW# was completely migrated with a small program-
mer intervention in terms of hand-coding. In addition, it was possible to port the 
migrated code between different architectures (considering multiple vendor GPUs 
and also CPUs), with no noticeable performance degradation on five different 
NVIDIA GPUs. Moreover, performance remained stable when switching to another 
SYCL implementation. As a consequence, SYCL and its implementations can offer 
attractive opportunities for the bioinformatics community, especially considering the 
vast existence of CUDA-based legacy codes.

Keywords SYCL · OneAPI · GPU · CUDA · SYCLomatic · Bioinformatics · DNA · 
Protein · Sequence alignment

1 Introduction

Hardware specialization has consolidated as an effective way to continue scaling 
performance and efficiency after Moore’s law ended. Compared to CPUs, hardware 
accelerators can offer orders of magnitude improvements in performance/cost and 
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performance/W [1]. That is the main reason why the programmers typically rely on 
a variety of hardware, such as GPUs (Graphics Processing Units), FPGAs (Field-
programmable Gate Array), and other kinds of accelerators, (e.g., TPUs), depend-
ing on the target application. Unfortunately, each kind of hardware requires differ-
ent development methodologies and programming environments, which implies the 
usage of different models, programming languages, and/or libraries. Thus, the ben-
efits of hardware specialization come at the expense of increasing the programming 
costs and complexity and complicating future code maintenance and extension.

In this context, GPUs are present in the vast majority of high performance com-
puting (HPC) systems and CUDA is the most used programming language for them 
[2]. Bioinformatics and computational biology are two fields that have been exploit-
ing GPUs for more than two decades [3]. Many GPU implementations can be found 
in sequence alignment [4], molecular docking [5], molecular dynamics [6], and pre-
diction and searching of molecular structures  [7], among other application areas. 
However, as CUDA is an NVIDIA proprietary language, it implies a strong portabil-
ity restriction to a wide range of heterogeneous architectures. To take a case in point, 
CUDA codes cannot run on AMD or Intel GPUs.

In the last decades, academia and companies have been working on developing 
a unified language to program heterogeneous hardware, capable of improving pro-
ductivity and portability. Open Computing Language (OpenCL)  [8] is a standard 
maintained by the Khronos group, which has facilitated the development of parallel 
computing programs for execution on CPUs, GPUs, and other accelerators. Even 
though OpenCL is a mature programming model, an OpenCL program is much 
more verbose than a CUDA program and its development tends to be tedious and 
error-prone  [9]. That is why the Khronos group has recently proposed the SYCL 
standard,1 which is an open, royalty-free, cross-platform abstraction layer that ena-
bles the programming of a heterogeneous system to be written using standard, sin-
gle-source C++ code. Moreover, SYCL sits as a higher level of abstraction, offer-
ing backend implementations that map to contemporary accelerator languages, like 
CUDA, OpenCL, and HIP.

Currently, several implementations follow the SYCL standard and Intel’s oneAPI 
is one of them. The core of oneAPI programming ecosystem is a simplified language 
for expressing parallelism on heterogeneous platforms, named Data Parallel C++ 
(DPC++), which can be summarized as C++ with SYCL. In addition, oneAPI also 
comprises a runtime, a set of domain-focused libraries, and supporting tools [10].

Due to the vast existence of CUDA-based legacy codes, oneAPI includes a com-
patibility tool (dpct renamed as SYCLomatic) that facilitates the migration to the 
SYCL-based DPC++ programming language. In this paper, we present our experi-
ences porting a biological software tool to DPC++ using SYCLomatic. In particu-
lar, we have selected SW#  [11]: a CUDA-based, memory-efficient implementation 
for biological sequence alignment, which can be used either as a stand-alone appli-
cation or a library. This paper is an extended and thoroughly revised version of [12]. 
The work has been extended by providing:

1 https:// www. khron os. org/ regis try/ SYCL/ specs/ sycl- 2020/ pdf/ sycl- 2020. pdf.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
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• The complete migration of SW# to SYCL (not just the package for protein data-
base search). This code represents a SYCL-compliant, DPC++-based version of 
SW# and is now available at a public git repository.2

• An analysis of the efficiency of the SYCLomatic tool for the CUDA-based 
SW# migration, including a summary of the porting steps that required manual 
modifications.

• An analysis of the DPC++ code’s portability, considering different target 
devices and vendors (NVIDIA GPUs; AMD GPUs and CPUs; Intel GPUs and 
CPUs), and SW# functionalities. Complementing our previous work, we have 
considered 5 NVIDIA GPU microarchitectures, 3 Intel GPU microarchitectures, 
2 AMD GPU microarchitectures, 4 Intel CPU microarchitectures, and 1 AMD 
CPU microarchitecture. In addition, the analysis includes both DNA and pro-
tein sequence alignment, in a wide variety of scenarios (alignment algorithm, 
sequence size, scoring scheme, among others). Moreover, cross-SYCL-imple-
mentation portability is also verified on several GPUs and CPUs.

• A comparison of the performance on the previous hardware architectures for the 
different biological sequence alignment operations that were considered.

The remaining sections of this article are organized as follows. Section 2 explains 
the background required to understand the rest of the article and Sect. 3 describes 
the migration process and the experimental work carried out. Next, Sect. 4 presents 
the experimental results and discussion. Finally, Sect. 5 concludes the paper.

2  Background

2.1  Biological sequence alignment

A fundamental operation in bioinformatics and computational biology is sequence 
alignment, whose purpose is to highlight areas of similarity between sequences to 
identify structural, functional, and evolutionary relationships between them [4].

Sequence alignment can be global, local, or semi-global. Global alignment 
attempts to align every residue of every sequence and is useful when sequences are 
very similar to each other. Local alignment is better when the sequences are different 
but regions of similarity between them are suspected. Finally, semi-global alignment 
is based on the global alternative, with the difference that it seeks to penalize inter-
nal gaps, but not those found at the beginning or end of any of the sequences [13].

Any of these algorithms can be used to compute: (a) pairwise alignments (one-
to-one); or (b) database similarity searches (one-to-many). Both cases have been 
parallelized in the literature. In case (a), a single matrix is calculated and all pro-
cessing elements (PEs) work collaboratively (intra-task parallelism). Due to inher-
ent data dependencies, neighboring PEs communicate to exchange border elements. 
In case (b), while intra-task scheme can be used, a better approach consists in 

2 https:// github. com/ Manue lCost anzo/ swsha rp_ sycl.

https://github.com/ManuelCostanzo/swsharp_sycl
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simultaneously calculating multiple matrices without communication between the 
PEs (inter-task parallelism) [4].

2.1.1  Needleman–Wunsch algorithm (NW)

In 1970, Saul Needleman and Christian Wunsch proposed a method for aligning 
protein sequences [14]. It is a typical example of dynamic programming which guar-
antees that the optimal global alignment is obtained, regardless of the length of the 
sequences, and presents quadratic time and space complexities.

2.1.2  Smith–Waterman algorithm (SW)

In 1981, Smith and Waterman  [15] proposed an algorithm to obtain the optimal 
local alignment between two biological sequences. SW maintains the same pro-
gramming model and complexity as NW. Furthermore, it has been used as the basis 
for many subsequent algorithms and is often employed as a benchmark when com-
paring different alignment techniques  [16]. Unlike global alignments, local align-
ments consider the similarity between small regions of the two sequences, which 
usually makes more biological sense [17].

2.1.3  Semi‑global algorithm (HW)

A semi-global alignment does not penalize gaps at the beginning or end in a global 
alignment, so the resulting alignment tends to overlap one end of one sequence with 
one end of the other sequence [18].

2.1.4  Overlap algorithm (OV)

An overlap of two sequences is an alignment in which the initial and final gaps are 
ignored. It is considered a variant of the semi-global alignment because the two 
sequences are aligned globally but without taking into account the end gaps at both 
ends [19].

2.2  SW# suite

SW# is a software released in 2013 for biological sequence alignment. It can com-
pute pairwise alignments as well as database similarity searches, for both protein 
and DNA sequences [20]. This software allows configuring the algorithm to be used 
for different alignments (SW, NW, HW, OV) as well as open/extension penalties, 
and also the substitution matrix (BLOSUM45, BLOSUM50, BLOSUM62, among 
others, for proteins; and match/mismatch values for DNA). As it combines CPU 
and GPU computation, it allows configuring the number of CPU threads and GPU 
devices to be used.
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SW# applies specific CPU and GPU optimizations, which significantly reduce the 
execution time. On the CPU side, SW# uses the OPAL.3 library that allows opti-
mizing the search for sequence similarities using the Smith–Waterman algorithm, 
through the use of multithreading and SIMD instructions. On the GPU side, SW# 
follows both inter-task and intra-task parallelism approaches (depending on the 
sequence length) [11]

In particular, SW# has developed its efficient version of SW algorithm. This algo-
rithm can be divided into two phases: resolution and reconstruction. In the resolu-
tion phase, the maximum score is calculated, while in the reconstruction phase, the 
optimal alignment path is obtained. For this second stage, SW# uses space-efficient 
methods [21].

2.3  Hardware accelerators

Hardware acceleration aims to increase the performance and the energy efficiency 
of applications by combining the flexibility of general-purpose processors, such as 
CPUs, with the potential of specific hardware, called hardware accelerators. The 
most used accelerators in HPC are GPUs. Although they were initially designed to 
speed up graphic rendering, GPUs have been used in general scientific contexts due 
to the massive incorporation of computing units. Historically, NVIDIA and AMD 
have been the manufacturers, while Intel recently joined as a competitor.

2.3.1  CUDA

In 2006, NVIDIA introduced CUDA (Compute Unified Device Architecture), a 
new architecture containing hundreds of processing cores or CUDA cores. CUDA 
is an extension of C/C++ and provides an abstraction of the GPU, acting as a bridge 
between the CPU and GPU  [22]. However, CUDA is a proprietary language that 
only runs on NVIDIA GPUs, which limits code portability.

2.3.2  SYCL and its implementations

SYCL is a cross-platform programming model based on C++ language for hetero-
geneous computing, announced in 2014. It is a cross-platform abstraction layer that 
builds on the underlying concepts, efficiency, and portability inspired by OpenCL,4 
which allows the same C++ code to be used on heterogeneous processors.

Nowadays, multiple SYCL implementations are available: Codeplay’s Com-
puteCpp  [23] (now part of oneAPI5), oneAPI by Intel  [24], triSYCL  [25] led by 
Xilinx, and AdaptiveCpp  [26] (previously denoted as hipSYCL/OpenSYCL  [27]) 
led by Heidelberg University. In particular, Intel oneAPI can be considered the 
most mature developer suite. It is an ecosystem that provides a wide variety of 

3 https:// github. com/ Marti nsos/ opal.
4 https:// www. khron os. org/ opencl/.
5 https:// codep lay. com/ portal/ news/ 2023/ 07/ 07/ the- future- of- compu tecpp.

https://github.com/Martinsos/opal
https://www.khronos.org/opencl/
https://codeplay.com/portal/news/2023/07/07/the-future-of-computecpp
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development tools across different devices, such as CPUs, GPUs, and FPGAs. One-
API provides two different programming levels: on the one hand, it supports direct 
programming through Data Parallel C++ (DPC++), an open, cross-platform pro-
gramming language that offers productivity and performance in parallel program-
ming. DPC++ is a fork of the Clang C++ and incorporates SYCL for heteroge-
neous programming while containing language-specific extensions. On the other 
hand, it supports API-based programming, by invoking optimized libraries (such 
as oneMKL, oneDAL, oneVPL, etc.). Within its variety of programming utilities, 
oneAPI offers SYCLomatic, a tool to convert code written in CUDA to SYCL.6

AdaptiveCpp  [26] is a platform that facilitates C++-based heterogeneous pro-
gramming for CPUs and GPUs. It integrates SYCL parallelism, enabling the off-
loading of C++ algorithms to a wide range of CPU and GPU vendors (such as Intel, 
NVIDIA, and AMD). AdaptiveCpp applications can dynamically adapt to diverse 
hardware. In particular, a single binary can target various hardware or even concur-
rent hardware from different vendors. This is enabled by a new feature of Adap-
tiveCpp (denoted as generic single-pass  [28]) that increases the portability and 
productivity by hiding the dependency on the target hardware. Specifically, Adap-
tiveCpp employs a generic, single-source, single compiler pass flow (SSCP), com-
piling kernels into a generic LLVM IR representation. At runtime, this representa-
tion is transformed into backend-specific formats like PTX or SPIR-V as required. 
This approach involves a single compiler invocation, parsing the code once, regard-
less of the number of devices or backends used. Even so, AdaptiveCpp allows the 
developer to indicate the specific toolchain/backend compilation flow (if preferred).

3  Materials and methods

In this section, we describe the migration process to reach a SYCL-compliant, 
DPC++-based version of SW#. Next, we detail the experimental work carried out to 
analyze the SYCL code’s portability and performance.

3.1  Migration process

Generally, SYCLomatic is not capable of generating a final code ready to be com-
piled and executed. It is necessary to perform some hand-tuned modifications to the 
migrated code, taking advantage of the warnings and recommendations provided 
by the tool.7 These warnings vary between aspects of the device to be taken into 
account (e.g., not to exceed the device’s maximum number of threads), modifica-
tions to improve performance or even incompatible code fragments. Fortunately, 

6 SYCLomatic: A New CUDA*-to-SYCL* Code Migration Tool: https:// www. intel. com/ conte nt/ www/ 
us/ en/ devel oper/ artic les/ techn ical/ syclo matic- new- cuda- to- sycl- code- migra tion- tool. html.
7 Diagnostics Reference of IntelⓇ DPC++ Compatibility Tool available at: https:// softw are. intel. com/ 
conte nt/ www/ us/ en/ devel op/ docum entat ion/ intel- dpcpp- compa tibil ity- tool- user- guide/ top/ diagn ostics- 
refer ence. html.

https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://www.intel.com/content/www/us/en/developer/articles/technical/syclomatic-new-cuda-to-sycl-code-migration-tool.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
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SYCLomatic reports warnings through an error code along with a description of 
the issue, within the source code.

The migration process can be divided into 5 stages: (1) running the SYCLo-
matic tool to generate the first version of the code, (2) modifying the migrated 
code based on SYCLomatic warnings to obtain the first executable version, (3) fix-
ing runtime errors to obtain the first functional version, (4) verifying the correctness 
of the results, and (5) optimizing the resulting code, if necessary.

3.1.1  Compilation errors and warnings

After obtaining the first migrated version, the following warnings were reported by 
SYCLomatic:

• DPCT1003 - Migrated API does not return error code. 
(*, 0) is inserted. You may need to rewrite this code: 
this is a very common warning in SYCLomatic and occurs when using CUDA-
specific functions, such as error codes.

• DPCT1005 - The SYCL device version is different from 
CUDA Compute Compatibility. You may need to rewrite 
this code: this is because the original code is querying for CUDA-specific 
features, which would not make sense on another device.

• DPCT1049 - The workgroup size passed to the SYCL ker-
nel may exceed the limit. To get the device limit, 
query info::device::max_work_group_size. Adjust the 
workgroup size if needed: because the migrated code may run on 
several devices, SYCLomatic warns not to exceed the maximum capabilities of 
the devices (e.g., do not exceed the maximum number of threads).

• DPCT1065 - Consider replacing sycl::nd_item::barrier() 
with sycl::nd_item::barrier (sycl::access::fence_
space::local_space) for better performance if there is 
no access to global memory: SYCLomatic recommends to add a 
parameter when synchronizing threads as long as global memory is not used.

• DPCT1084 - The function call has multiple migration 
results in different template instantiations that could 
not be unified. You may need to adjust the code.: occurs 
when generic functions are used, which although DPC++ supports it, for the 
moment SYCLomatic is not able to migrate it.

• DPCT1059 - SYCL only supports 4-channel image format. 
Adjust the code.: in CUDA it is possible to create texture memories from 
1 to 4 channels in SYCL, only 4-channel texture memories (called images in 
DPC++) can be created and this is alerted by SYCLomatic.

Figure 1 summarizes the warnings generated by SYCLomatic grouped into four 
areas: error handling (DPCT1003), not supported features (DPCT1005, DPCT1084, 
and DPCT1059), recommendations (DPCT1049), and optimizations (DPCT1065). 
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The vast majority (67.1%) is caused due to differences between CUDA and SYCL 
when handling possible runtime errors.

3.1.2  Code modifications

The following code modifications have been applied to solve the alerts generated by 
SYCLomatic:

• DPCT1005: This condition has been removed because there is no equivalent in 
SYCL.

• DPCT1049: the workgroup sizes have been adjusted to the maximum supported 
by the device.

• DPCT1065: the recommendation was followed.
• DPCT1084: the use of generic functions has been replaced by conditional sen-

tences that execute the corresponding function.
• DPCT1059: the conflicting structures were adapted to four channels.

3.1.3  Runtime errors

At this point, it was possible to compile and execute the migrated code, but the fol-
lowing runtime error was obtained:

������∕�������∕����������, ������������������� >= ��
� <
= CL_������_�������_���_�����

This error appears because the maximum size for image arrays has been 
exceeded. To solve this issue, the corresponding image array was migrated to the 
DPC++ unified shared memory (USM)8

3.1.4  Code results check

After finishing the migration process, different tests were carried out, both for pro-
tein and DNA sequences, using different alignment algorithms and scoring schemes. 
Finally, it was verified that both CUDA and DPC++ produced the same results.

3.1.5  Code update and tuning

SW# code was designed just for NVIDIA GPUs and is particularly customized for 
those released in mid-2010. Some configurations are statically indicated in the code, 
e.g., the block dimensions for kernels. This leads to two limitations when running 
the migrated code on other devices. First, the code does not take full advantage 
of current NVIDIA GPUs, which present larger memory capacity and computing 
power. Second, it prevents execution on devices with different work-group require-
ments, such as Intel GPUs or CPUs.

8 https:// oneapi- src. github. io/ DPCPP_ Refer ence/ model/ unifi ed- shared- memory. html.

https://oneapi-src.github.io/DPCPP_Reference/model/unified-shared-memory.html
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To remedy this problem, the static setting of work-group size9 was replaced by 
a dynamic configuration that considers the sequence lengths and the maximum 
allowed value by the corresponding device.10 In this way, the migrated code support 
is extended to devices from different architectures.

3.1.6  SYCL standardization (optional)

While the DPC++ language is based on SYCL, it is not fully compliant with 
the latter. Thus, SYCLomatic produces code that depends on the oneAPI eco-
system. For example, in this case, the migrated code declares variables in the 
constant memory and queries device attributes using DPC++-specific functions. 
Thus, some manual adjustments must be made to reach a fully compliant SYCL 
code. On the one hand, the constant memory variables were replaced by kernel 
arguments, which still reside in constant memory when running on GPUs.11 On 
the other hand, DPC++-specific functions were replaced by pure SYCL calls to 
query the device information. As a result, this final version of the code can be 
compiled with any of the SYCL-compatible compilers.12

Fig. 1  Distribution of the warnings generated by SYCLomatic 

9 A DPC++ work-group is a CUDA block.
10 It is important to remark that the same enhancement was also applied to the original CUDA code to 
avoid bias in performance evaluation.
11 It is important to note that this change implied a significant reduction in the number of lines of code.
12 Fortunately, several are available from an increasing number of vendors https:// www. khron os. org/ 
sycl/.

https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
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3.2  Experimental work

All the tests were carried out using the platforms described in Table 113. The oneAPI 
and CUDA versions are 2023.0.0 and 11.7, respectively, and to run DPC++ codes 
on NVIDIA GPU, we have built a DPC++ toolchain with support for NVIDIA 
CUDA, as it is not supported by default on oneAPI.14 Regarding to AdaptiveCPP, 
we have used v23.10.0 build from the public repository15 with clang-v15.0, CUDA 
v11.7 and ROCm v5.4.3.

For protein alignments, the following databases and configurations were used:

• UniProtKB/Swiss-Prot (Swiss-Prot) database (release 2022_07)16: The database 
contains 204173280 amino acid residues in 565928 sequences with a maximum 
length of 35213.

• Environmental Non-Redundant (Env. NR) database (release 2021_04)17: The 
database contains 995210546 amino acid residues in 4789355 sequences with a 
maximum length of 16925.

• The input queries range in length from 144 to 5478, and they were extracted 
from the Swiss-Prot database (accession numbers: P02232, P05013, P14942, 
P07327, P01008, P03435, P42357, P21177, Q38941, P27895, P07756, P04775, 
P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5, P33450, and Q9UKN1).

• The substitution matrix selected is BLOSUM62 and the insertion and gap exten-
sion scores were set to 10 and 2, respectively.

For DNA alignments, Table  2 presents the accession numbers and sizes of the 
sequences used. The score parameters used were +1 for match, −3 for mismatch, −5 
for gap open, and −2 for gap extension.

To eliminate the CPU impact on performance, SW# has been configured in GPU-
only mode (flag T=0). On the other hand, different work-group sizes have been con-
figured to obtain the optimal one. Finally, each test was run twenty times, and per-
formance was calculated as an average to minimize variability.

4  Results and discussion

In this section, we assess the efficiency of the SYCLomatic tool for the CUDA-
based SW# migration. Next, we analyze the SYCL code’s portability and perfor-
mance, considering different target platforms and vendors (NVIDIA GPUs; AMD 

16 Swiss-Prot:  https:// www. unipr ot. org/ downl oads.
17 ENV NR:  https:// ftp. ncbi. nlm. nih. gov/ blast/ db/.

14 https:// intel. github. io/ llvm- docs/ GetSt arted Guide. html.
15 AdaptiveCpp project: https:// github. com/ Adapt iveCpp/ Adapt iveCpp.

13 As the original SW# is an old CUDA-based software, we tried to include older NVIDIA GPUs (f.e. a 
Kepler-based one). However, oneAPI only supports NVIDIA GPUs from Maxwell onwards; thus, it was 
not possible to include them in the performance comparison.

https://www.uniprot.org/downloads
https://ftp.ncbi.nlm.nih.gov/blast/db/
https://intel.github.io/llvm-docs/GetStartedGuide.html
https://github.com/AdaptiveCpp/AdaptiveCpp
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GPU; Intel CPUs and GPUs), and SW# functionalities. Last, we discuss the obtained 
results considering related works.

4.1  SYCLomatic efficiency

In this context, efficiency refers to how good is SYCLomatic to automatically 
translate the CUDA code to SYCL. In particular, this issue is evaluated by measur-
ing the SW# source lines of code (SLOC) for CUDA and DPC++ versions18 (see 
Table 3). The original SW# version presents 8072 SLOC. After running SYCLo-
matic, we found that 407 CUDA SLOC were not automatically migrated. To reach 
the first functional DPC++ version, some hand-tuned modifications were required, 
increasing SLOC to 12175. In summary, SYCLomatic succeeded in migrating 
95% of the CUDA code, confirming Intel’s claims. However, it was necessary to add 
1718 SLOC (+21%) to the SYCLomatic output to obtain the first executable ver-
sion. Finally, by removing some SYCLomatic-specific code (SYCL standardiza-
tion), DPC++ SLOC got reduced by approximately 20%.

4.2  Performance and portability results

4.2.1  Performance results

GCUPS (billion cell updates per second) is the performance metric generally used 
in the SW context [29]. Figure 2 presents the performance of both CUDA and SYCL 
versions when varying work-group size, using the Swiss-Prot database and the SW 
algorithm.19 It is possible to notice that both codes are sensitive to the work-group 
size; in fact, dynamic configuration obtained the best results for all cases. Moreover, 
both codes are able to extract more GCUPs when using more powerful GPUs.

Figure 3 complements the previous one by including Env. NR database, whose 
size is about 7 times bigger than Swiss-Prot. On the one hand, the performance for 
both versions holds for larger workloads, which turns out to be beneficial for scaling. 
On the other hand, no code reached the best performance in all cases. The CUDA 
version showed superiority on the GTX 980 and the GTX 1080 for both databases 
and also on the V100 and RTX 3090 but only for the Swiss-Prot case. However, it is 
important to remark that the performance improvement is up to 2% in the best-case 
scenario. A similar phenomenon occurs on the V100 and RTX 3090 with the Env. 
NR database, where the SYCL implementation was the fastest one, but just reaching 
up to 2% higher GCUPS. Last, the performance difference between both codes was 
smaller than 1% on the RTX 2070. Thus, due to the small performance differences, 
it can be said that no marked differences can be noted between the two languages for 
these experiments.

19 On the GTX 980, it was impossible to compute using block size = 1024 because it exceeds the maxi-
mum global memory size of this GPU.

18 To measure SLOC, the cloc tool was used (available at https:// github. com/ AlDan ial/ cloc), and blank 
lines and comments were excluded.

https://github.com/AlDanial/cloc


1 3

Assessing opportunities of SYCL for biological sequence…

The influence of query length can be seen in Fig. 4.20 First, as expected, a longer 
query leads to better performance. Second, this chart allows us to further explore 
what is observed in Fig. 2, showing that although more powerful GPUs have higher 
performance, a sufficiently large workload is necessary to take advantage of their 
computing power. For example, the RTX 3090 achieves the best performance but 
just when the query sequence is longer than 3005 residues.

To avoid the biases of the default configuration, we have considered different 
alignment algorithms and scoring schemes for the same experiments (see Figs.  5 
and 6, respectively). The performance difference for both variants is 2% on average, 
rising up to 4% in a few cases. Therefore, none of these parameters seems to have an 
impact on the performance of the migrated code.

Pairwise alignment presents different parallelization challenges to database 
similarity search. SW# employs the inter-task parallelism approach for the for-
mer (kernel swSolveSingle) and the intra-parallelism scheme for the latter 
(kernel swSolveShortGpu). In consequence, the performance comparison on 
DNA alignments is presented in Fig. 7. Firstly, contrary to the protein case, longer 
DNA sequences do not always lead to more GCUPS. This fact can be attributed 
to the particularities of DNA sequence alignment, such as the degree of similarity 
between them, as was already observed in [30]. Secondly, the performance between 
both models is similar except for two GPUs. On the RTX 2070, SYCL outperforms 
CUDA by 10% on average, while on the V100 the difference is still positive but 
slightly smaller (7%).

To find out more about the causes of these larger performance differences, we 
have profiled both code executions on the RTX 2070 and the RTX 3090 GPUs using 
the NVIDIA Nsight Compute tool  [31].21 Table  4 presents some relevant metrics 
collected from this experimental task. As can be seen, SYCL outperforms CUDA for 
several metrics on the RTX 2070, not only in memory management but also in com-
putational productivity. However, both codes achieve practically the same values on 

Table 2  DNA sequence 
information used in the tests Sequence 1 1 Sequence 2 2

 Accession Size Accession Size Matrix size (cells)

CP000051.1 1 M AE002160.2 1 M 1 G
BA000035.2 3 M BX927147.1 3 M 9 G
AE016879.1 5 M AE017225.1 5 M 25 G
NC_005027.1 7 M NC_003997.3 5 M 35 G
NC_017186.1 10 M NC_014318.1 10 M 100 G

20 While both SYCL and CUDA codes were executed, only the SYCL version is included to improve the 
readability of the chart.
21 The profiling metrics used are described in https:// docs. nvidia. com/ nsight- compu te/ Profi lingG uide/.

https://docs.nvidia.com/nsight-compute/ProfilingGuide/
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the RTX 3090. At this point, we assume that it could be related to particular features 
of their micro-architecture in contrast to the rest of them.22

4.2.2  Cross‑GPU‑vendor and cross‑architecture portability results

To verify cross-vendor GPU portability, the SYCL code was run on two AMD GPUs 
and two Intel GPUs for searching the Env. NR database, covering both discrete and 
integrated segments. Similarly, the same code was executed on four Intel CPUs and 
one AMD CPU to demonstrate its cross-architecture portability (see Fig. 8). In both 
cases, all results were verified to be correct. At this point, little can be said about their 
performance due to the absence of an optimized version for these devices. Finally, it is 
important to remark on two aspects: (1) running these tests just required a single back-
end switch; (2) as the ported DPC++ version is pure SYCL code, running this version 
on different architectures just needs a compatible compiler. As it was mentioned before, 
several are available nowadays and this aspect is analyzed in the next Section.

Table 3  SLOC of SW# (CUDA and DPC++ versions)

CUDA1 DPC++2

 Original Not migrated by SYCLomatic SYCLomatic output Hand-tuned Pure SYCL

8072 408 10457 12175 9866

Fig. 2  Performance comparison when varying work-group size

22 Both GPUs belong to the same Nvidia micro-architecture; unlike previous generations, Nvidia has 
employed different codenames for each commercial segment (Turing is the codename for the consumer 
segment while Volta is corresponding for the professional one).
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4.2.3  Cross‑SYCL‑implementation portability results

To verify cross-SYCL-implementation portability, we decided to compile and run 
the ported code on several GPUs and CPUs using the AdaptiveCpp framework. For 
this task, the SYCL standardization step from Sect.  3.1.6 was fundamental. Fig-
ure  9 presents the performance achieved for both oneAPI and AdaptiveCpp ver-
sions when searching the Swiss-Prot database. Some performance losses can be 

Fig. 3  Performance comparison when varying protein databases

Fig. 4  Performance comparison when varying the query length
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observed in AdaptiveCpp when using the generic compiler instead of the specific-
target one (up to 15%). In the opposite direction, no significant performance dif-
ferences can be noted between oneAPI and AdaptiveCpp, except for the Arc A770 

Fig. 5  Performance comparison when varying the alignment algorithm

Fig. 6  Performance comparison when varying the scoring scheme
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Fig. 7  Performance comparison for DNA alignment

Table 4  Profiles of DNA sequence alignment executions (matrix size: 100 G) for CUDA and SYCL on 
RTX 2070 and RTX 3090 GPUs

Section Name Metric Name RTX 2070 RTX 3090

CUDA SYCL SYCL/
CUDA 
ratio

CUDA SYCL SYCL/
CUDA 
ratio

Compute workload
Analysis

Executed Ipc Active 
(inst/cycle)

2.15 2.71 1.26 2.18 2.07 0.95

Executed Ipc Elapsed 
(inst/cycle)

1.79 2.26 1.26 1.53 1.46 0.95

GPU Speed Of
Light Throughput

Memory Throughput 
(%)

20.08 33.85 1.69 N/A N/A –

DRAM Throughput 
(%)

0.16 0.20 1.25 0.42 0.42 1

L1/TEX Cache 
Throughput (%)

24.18 40.74 1.68 25.72 24.43 0.95

L2 Cache Throughput 
(%)

0.17 0.24 1.41 0.35 0.3 0.95

Memory Workload
Analysis

Memory Throughput 
(Mbyte/sec)

677.46 853.17 1.26 3684.16 3503.77 0.95

Max Bandwidth (%) 20.08 33.85 1.69 18.16 17.26 0.95
Mem Pipes Busy (%) 20.08 33.84 1.69 18.16 17.26 0.95

Scheduler statistics Issued Warp Per 
Scheduler

0.54 0.68 1.26 N/A N/A –
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GPU, where the former is just 1.05× faster than the latter. This fact contributes to the 
interchangeability of SYCL and favors its adoption.

4.3  Related works

Some preliminary studies assessing the portability of SYCL and oneAPI can be found 
in simulation [10], math [32, 33], machine learning [34, 35], software benchmarks [36, 
37], image processing [38], and cryptography [39]. In the bioinformatics field, some 
works can also be mentioned. In [9], the authors describe the experience of translating 
a CUDA implementation of a high-order epistasis detection algorithm to SYCL, find-
ing that the highest performance of both versions is comparable on an NVIDIA V100 
GPU. It is important to remark that some hand-tuning was required in the SYCL imple-
mentation to reach its maximum performance. In [40], the authors migrate representa-
tive kernels in bioinformatics applications from CUDA to SYCL and evaluate their per-
formance on an NVIDIA V100 GPU, explaining the performance gaps through code 
profiling and analyzes. The performance difference ranges from 1.25× to 5 × (2.73× on 
average) and the authors relate it to CUDA’s mature and extensive development envi-
ronment. As in the previous work, the authors did not report if manual or automatic 
migration was employed. In [41], the authors evaluate the performance and portability 
of the CUDA-based ADEPT kernel for SW short-read alignment. Unlike this study, the 
authors followed manual porting to obtain a DPC++ equivalent version of ADEPT, 
arguing that the resultant code was unnecessarily complex and required major changes. 
Both CUDA and DPC++ versions were run on an NVIDIA V100 GPU, where the lat-
ter was approximately 2 × slower in all experiments. However, the authors were not able 
to determine the causes of the slowdown due to some limitations in kernel profiling. 
In addition, the code portability of the DPC++ version was verified on an Intel P630 

Fig. 8  Performance of SYCL code on different vendor GPUs and CPUs
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GPU. In  [42], the authors translate the molecular docking software AutoDock-GPU 
from CUDA to SYCL by employing dpct, remarking that this tool greatly reduces 
the effort of code migration but manual steps for code completion and tuning are still 
required. From a performance point of view, most test cases show that SYCL execu-
tions are slower than CUDA ones on an NVIDIA A100 (1.91× on average). While still 
preliminary analysis, the authors attribute performance gaps to the SYCL version per-
forming more computations than its CUDA counterpart and higher register pressure 
and shared memory usage from the former. In [43], the authors presented OneJoin, a 
oneAPI-based tool to edit similarity join in DNA data decoding. This tool was devel-
oped using oneAPI from scratch and its portability was checked on two Intel CPUs 
(Xeon E-2176  G, Core i9-10920X), an integrated Intel GPU (P630), and a discrete 
NVIDIA GPU (RTX 2080). Last, few works have compared performance and port-
ability of different SYCL implementations [44–46]. Generally, the performance results 
have been similar between SYCL implementations, but significant differences occurred 
in some cases. Even though, these results cannot be considered definitive due to the 
rapid growth of these tools.

In this work, as was shown above, SW# has been completely migrated with 
a small programmer intervention in terms of hand-coding. Moreover, it has been 
possible to port the migrated code between different GPU and CPU architectures 
from multiple vendors. Specifically, the code portability was verified on 5 NVIDIA 
GPU microarchitectures, 3 Intel GPU microarchitectures—one discrete and two 
integrated—2 AMD GPU microarchitecture, 1 AMD CPU microarchitecture, and 
4 Intel CPU microarchitectures; with no noticeable performance degradation on the 
5 different NVIDIA GPUs. In the same line, the performance remained stable when 
cross-SYCL-implementation portability was verified on 5 GPUs and 2 CPUs from 
different manufacturers.

5  Conclusions and future work

SYCL aims to take advantage of the benefits of hardware specialization while 
increasing productivity and portability at the same time. Recently, Intel released 
oneAPI, a complete programming ecosystem that follows the SYCL standard. In this 
paper, we have presented our experiences migrating a CUDA-based biological soft-
ware to SYCL. Besides, the portability of the migrated code was analyzed in combi-
nation with a performance evaluation on different GPU and CPU architectures. The 
main findings of this research are:

• SYCLomatic has proved to be an efficient tool for migrating 95% of the origi-
nal CUDA code to DPC++, according to Intel’s marketing rates. A small hand-
tune effort was required first to achieve a functional version and then a fully 
SYCL-compliant one.

• To minimize possible biases, the SYCL code was successfully executed on 
5 NVIDIA GPUs from different microarchitectures (Maxwell, Pascal, Volta, 
Turing, and Ampere), 3 Intel GPUs (one integrated and two discrete), 2 AMD 
GPUs (one integrated and one discrete), 1 AMD CPU, and 4 different Intel 
CPUs. Extending and diversifying the set of experimental platforms reinforce 
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the conclusions reached regarding cross-vendor GPU and cross-architecture 
portability of SYCL.

• Unlike our previous work, tests carried out included a wide variety of scenarios 
(sequence type, sequence size, alignment algorithm, and scoring scheme, among 
others) to represent diverse workloads in the field. This fact strengthens previ-
ous findings stating that performance results showed that both CUDA and SYCL 
versions presented comparable GCUPS, demonstrating that portability can be 
gained without severe performance losses.

• Last but not least, the portability between SYCL implementations was also veri-
fied, showing that performance remains stable when switching between oneAPI 
and AdaptiveCpp. This is another fact that favors the adoption of SYCL.

Given the results obtained, SYCL and its implementations can offer attractive oppor-
tunities for the bioinformatics community, especially considering the vast existence 
of CUDA-based legacy codes. In this regard, because SYCL is still under develop-
ment, the advance of its compilers and the growth of the programmers’ community 
will be key aspects in determining SYCL’s success in improving productivity and 
portability.

Future work will focus on:

• Optimizing the SYCL code to reach its maximum performance. In particular, the 
original SW# suite does not consider some known optimizations for SW align-

Fig. 9  Performance comparison between SYCL implementations (oneAPI and AdaptiveCpp) on different 
vendor GPUs and CPUs
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ment  [47], such as instruction reordering to reduce their count and the use of 
lower precision integers to increase parallelism23.

• Running the SYCL code on other architectures such as FPGAs, to extend the 
cross-architecture portability study. In the same vein, considering hybrid CPU-
GPU execution, taking advantage of the inherent ability of SYCL to exploit co-
execution [48, 49].

• Carrying out an extensive study of the performance portability of these codes, 
following Marowka’s proposal [50].
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