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Abstract
The constraints imposed by natural antibody affinity maturation often culminate 
in antibodies with suboptimal binding affinities, thereby limiting their therapeutic 
efficacy. As such, the augmentation of antibody binding affinity is pivotal for the 
advancement of efficacious antibody-based therapies. Classical experimental para-
digms for antibody engineering are financially and temporally prohibitive due to 
the extensive combinatorial space of sequence variations in the complementarity-
determining regions (CDRs). The advent of computational techniques presents a 
more expeditious and economical avenue for the systematic design and optimiza-
tion of antibodies. In this investigation, we assess the performance of AlphaFold2 
coupled with the binder hallucination technique for the computational refinement of 
antibody sequences to elevate the binding affinity of pre-existing antigen-antibody 
complexes. These methodologies exhibit the capability to predict protein tertiary 
structures with remarkable fidelity, even in the absence of empirically derived data. 
Our results intimate that the proposed approach is adept at designing antibodies with 
improved affinities for antigen-antibody complexes unrepresented in AlphaFold2’s 
training dataset, underscoring its potential as a robust and scalable strategy for anti-
body engineering.
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1 Introduction

The development of highly effective antibodies for therapeutic applications 
remains a key challenge in the field of immunology and drug discovery [1, 2]. 
While natural antibodies undergo affinity maturation in the immune response, 
their binding capacity often falls short of therapeutic requirements due to inher-
ent limitations in affinity gains [3–6]. Therefore, it is imperative to develop strate-
gies that can enhance the binding affinity of antibodies for successful therapeutic 
applications.

An antibody molecule is constituted by two functional regions: the constant 
region (Fc), which modulates effector functions, and the variable region (Fv), 
which is directly involved in antigen recognition. Within the variable region, a 
specific loop structure known as the complementarity-determining region (CDR) 
plays a pivotal role in recognizing and binding to antigens. Unlike the relatively 
conserved amino acid sequences found in other parts of the antibody, the CDR 
features highly diverse sequences and conformations, thus enabling the genera-
tion of antibodies with elevated antigen specificity.

The CDR itself is composed of six different sub-regions, designated L1 to L3 
for the light chain and H1 to H3 for the heavy chain. The length of these sub-
regions varies, ranging from approximately 4–30 amino acid residues. Given 
these variations, the task of experimentally optimizing sequences for maximal 
affinity and specificity becomes daunting, often requiring the assessment of a 
near-infinite number of sequence combinations. This approach is not only time-
consuming, but also financially burdensome.

Recent advancements in computational methods offer promising avenues for 
improving this cumbersome process. Within the broader field of protein engineer-
ing, machine learning-based methods, particularly those involving deep learn-
ing language models, have emerged as powerful tools for generating antibody 
sequences with desirable properties, often at a fraction of the traditional experi-
mental costs [7–9]. However, these sequence-based approaches have limitations, 
especially when applied to highly variable regions like the CDR or when dealing 
with sequences lacking experimental data for training.

Significant strides have also been made in the prediction of protein conforma-
tions, most notably through the development of AlphaFold2 [10] and RoseTTA-
Fold [11]. These tools have revolutionized the field with their ability to predict 
protein tertiary structures with remarkable accuracy. Building on this, a novel 
approach termed “Hallucination” has been developed, which employs structural 
predictions for de novo protein design [12]. By incorporating constraints based 
on 3D structure, “hallucination” provides a powerful framework for generating 
proteins tailored to interact with specified ligands.

Motivated by these advancements, our study leverages the AfDesign protein 
design method, which incorporates AlphaFold2-based structural predictions 
within the hallucination framework [13]. Building on the strengths of AfDesign, 
there have already been several successful reports of designing peptides that bind 
to target proteins using this method  [14, 15]. We specifically target the CDR 
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regions of existing antibody-antigen complexes for amino acid sequence redesign. 
Our aim is to capitalize on the structural prediction capabilities of AlphaFold2 
to create antibodies with enhanced binding affinities, even in instances where 
experimental structural data are lacking. We published a preliminary version of 
this work in conference proceedings [16], including limited experiments and dis-
cussion. We have added new results on the use of DDG Predictor [17] for the 
AlphaFold2 prediction structure and expanded all sections to clarify methods and 
content.

2  Methods

2.1  Binder hallucination

In this study, we focused on the binder hallucination function of AfDesign and 
applied it to the antibody sequence design problem. A schematic of the method-
ology used in this study is shown in Fig.  1. Binder hallucination designs protein 
sequences using the following mechanism [14, 15]: 

1. Specify the type of target protein and the sequence length of the binder protein.
2. The amino acid sequence of the binder side is randomly generated at the specified 

length.
3. AlphaFold2 predicts the 3D structure of the target protein-binder protein complex 

and outputs pLDDT and pAE, which represent the reliability of the prediction 
and the C �-distogram, a distance matrix between C � atoms, respectively.

4. The amino acid sequence is updated to minimize the loss using dgram-cce, 
pLDDT, and pAE as loss functions (dgram-cce is a categorical cross-entropy of 
the distogram).

Binder hallucination is a protein design methodology that concurrently “generates a 
three-dimensional structure” and “searches for a sequence” through iterative cycles, 

Fig. 1  Schematic of binder hallucination
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as detailed in steps 3 and 4. This aims to design a protein with a high likelihood of 
binding to a target protein.

The stepwise optimization procedure, termed design_3stage(), is furnished 
by AfDesign to directly optimize one-hot encoded arrays, particularly for com-
plex three-dimensional structural configurations. This method starts by optimizing 
the neural network’s output before the softmax activation function (logits). It then 
optimizes the output post-softmax activation (soft), and finally refines the one-hot 
encoded array (hard). This multifaceted optimization strategy is suitable for com-
plex topologies and was utilized in this study [18].

In the binder hallucination module within AfDesign, one can partially redesign 
existing proteins by inputting the amino acid sequence of the binding protein and 
specifying the regions for redesign during step 1. In the present work, we employed 
binder hallucination to target the CDR amino acid sequences of antibodies, using 
antigens as the targets and antibodies as the binders. We used AfDesign to generate 
sequences with improved binding affinities compared to the original sequences.

2.2  Output value of AlphaFold2

2.2.1  pLDDT (predicted Local Distance Difference Test)

The pLDDT metric is an adaptation of the lDDT index introduced by Mariani et al. 
[19]. The lDDT metric is commonly used to assess the accuracy of predicted protein 
structures in terms of their ability to replicate corresponding reference structures. 
Specifically, it involves the calculation of all interatomic distances between a set of 
atoms belonging to a target residue in the reference structure and a set of atoms 
within a predetermined distance threshold ( R

0
 ) that do not belong to the same resi-

due. The percentage of atoms within the threshold that are also present in the pre-
dicted structure is computed to quantify the extent to which the predicted structure 
preserves the local geometry of the reference structure. The pLDDT index builds 
on this metric by incorporating additional factors that account for uncertainties and 
errors inherent in the prediction process, resulting in a more robust and reliable 
measure of structural accuracy.

AlphaFold2 calculates lDDT-C� , which targets only the C � carbons in each resi-
due and trains it to output pLDDT, which is the predicted value of lDDT, even in 
cases where the correct structure is unavailable. It outputs the reliability of the pre-
diction for each residue within a range of 0 to 100. The regions with low pLDDT 
values often correspond to intrinsically disordered regions that do not have specific 
structures [20]. In AfDesign, pLDDT values are normalized to a scale between 0 
and 1.

2.2.2  pAE (predicted Aligned Error)

pAE is a matrix representing the positional error between the C � atoms of residue 
i and residue j, which is calculated by aligning the predicted structure by Alpha-
Fold2 using the backbone structure of residue i with the experimentally determined 
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structure. When predicting structures for which no ground-truth structure is avail-
able, regions where the relative error between residues i and j is large indicate lower 
confidence in the prediction [21].

2.2.3  Cˇ distogram

In AfDesign, the distance matrix (distogram) representing the distance between C � 
and C � residues predicted by AlphaFold2 can be used. Using dgram-cce as a loss 
function allows the design of predictions that have higher confidence in forming 
complexes [22].

2.3  Affinity calculation

In this study, the change in binding free energy during the antigen-antibody binding 
process, ΔΔG , was used to indicate the strength of the antigen-antibody interaction. 
However, because it is difficult to obtain the value of ΔΔG experimentally, we used 
the value predicted by the calculation in this study. In this study, we used the DDG 
predictor [17, 23], a deep learning-based ΔΔG prediction tool.

In this study, we utilized the change in binding free energy, ΔΔG , as an indica-
tor of antigen-antibody interaction strength. Given the experimental challenges in 
measuring ΔΔG , we relied on computational predictions for this value. Specifically, 
we employed DDG predictor, a deep learning-based tool for predicting ΔΔG val-
ues [17, 23].

3  Experimental procedure

3.1  Performance evaluation of DDG predictor

In this study, we employed the deep learning-based DDG predictor to evaluate the 
binding affinity of the generated antibody-antigen complex. The structure after the 
mutation is the one predicted by AlphaFold2. Therefore, in this experiment, we 
checked whether there is a correlation between the ΔΔG output by DDG predictor 
and the experimental values even for the 3D structure predicted by AlphaFold2.

In this preliminary experiment, we used the AB-Bind database [24], a database 
that collects structural information on proteins and experimental data on changes 
in binding affinity due to mutations. From the AB-Bind Database, we extracted 
information on a total of 308 mutations in 11 complexes that are antibody-antigen 
complexes.

First, we input the amino acid sequences that reproduce the mutations in the 
above database into AlphaFold2 to predict their 3D structures. Then, we use DDG 
predictor to predict the ΔΔG between the generated structures and the original struc-
tures. Finally, we examine the correlation between the predicted values and experi-
mental data.
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3.2  Determination of loss weights

In the binder hallucination function of AfDesign, the dgram-cce, pLDDT, and pAE 
described in Sect. 2.2 can be used as loss functions, and AfDesign allows the user 
to set the weight of each loss. In this experiment, we varied the relative weights of 
dgram-cce, pLDDT, and pAE losses to redesign the antibody sequences under dif-
ferent conditions and investigated the appropriate weights of these losses. A sche-
matic diagram of how the antibody sequences were generated is shown in Fig. 2.

3.2.1  Protein design tools

AfDesign, a protein design tool available at the GitHub repository [13], was used in 
this study. Software version 1.0.8 was used in this study.

3.2.2  Parameters

The following parameters were used in the experiment: the number of iterations rep-
resents the number of iterations of logits, soft, and hard in the design_3stage(). 
In AfDesign, the number of times that AlphaFold2 iteratively improves the structure 
through cycling is specified as num_recycle.

• Design object: 1VFB
• Number of repetitions: logits-soft-hard=50-50-5
• num_recycles = 0
• Learning rate: 0.01
• Optimization Algorithm: Adam[25]

Ten samples were generated for each of the six regions of the CDR, L1–3, and H1–3 
under six conditions (A–F). For each of the 360 samples generated, the values of 
ΔΔG were outputted using the DDG predictor. CDRs were determined according to 
Chothia’s definition [26]. The coordinates of atoms other than the target atom were 
fixed, and structure prediction using AlphaFold2 was performed only for the target 
amino acid. 

Case A  dgram-cce=1.0

Fig. 2  Schematic diagram of how to generate antibody sequences using AfDesign and DDG predictor
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Case B  dgram-cce=1.0, pLDDT=0.2, pAE=0.2

Case C  dgram-cce=1.0, pLDDT=0.4, pAE=0.4

Case D  dgram-cce=1.0, pLDDT=0.6, pAE=0.6

Case E  dgram-cce=1.0, pLDDT=0.8, pAE=0.8

Case F  dgram-cce=1.0, pLDDT=1.0, pAE=1.0

3.2.3  Affinity

Using ΔΔG predicted by the DDG predictor, the average ΔΔG and IMP (IMProved 
Percentage), the percentage of sequences generated with a higher binding capacity 
than the original amino acid sequence was used as the valuation index.

3.3  Antibody CDR sequence design with AfDesign

We used the appropriate weights for the losses pLDDT, pAE, and dgram-cce deter-
mined from the results of Sect. 3.2, and applied AfDesign to the CDRs of the 12 
complexes manually selected from the Protein Data Bank (PDB). For each CDR, 
we generated ten samples by redesigning with AfDesign and randomly mutating the 
amino acids. A total of 720 samples were generated using these two methods, and 
the predicted ΔΔG values were obtained by inputting the mutant and original PDB 
files into the DDG predictor for each sample (Table 1).

The following parameters were used:

• Number of repetitions: logits-soft-hard = 50-50-5
• num_recycles = 0
• Learning rate: 0.01
• Optimization Algorithm: Adam[25]
• Types of loss functions and their respective weights: dgram-cce=1.0, 

pLDDT=1.0, pAE=1.0

Using ΔΔG predicted by the DDG predictor, the average ΔΔG and IMP, the per-
centage of sequences generated with a higher binding capacity than the original 
amino acid sequence, were used as valuation indexes.

Table 1  Protein Data Bank (PDB) IDs of 12 antigen-antibody complexes. The bold represented that were 
not used for AlphaFold2 training  [10] (AlphaFold-Multimer were trained using PDB structures with a 
release date before 30 Apr, 2018)

1QNZ, 1VFB, 1JHL, 2DQC, 2YSS, 2UZI, 4XVJ, 5NGV, 6J5F, 7CWO, 7RR0, 7WP1
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4  Results and discussion

4.1  Performance of DDG predictor

Figure  3 displays a scatterplot comparing predicted ΔΔG values from the DDG 
predictor to experimental values. These values pertain to mutation structures 
sourced from the AB-Bind database and are generated using AlphaFold2. The 
overall Pearson correlation coefficient of R = 0.56 ( p-value = 3.9 × 10−27 ) sug-
gests a high level of agreement between experimental and computational predic-
tions. Further subdivision of the dataset reveals Pearson correlation coefficients of 
R = 0.48 ( p-value = 1.5 × 10−13 ) for the 209 data points concerning single muta-
tions and R = 0.67 ( p-value = 2.7 × 10−14 ) for the 99 data points linked to multiple 
mutations. Notably, the predictive accuracy is particularly high for multiple muta-
tions, underscoring the potential of our computational approach for more complex 
antibody designs. While the Pearson correlation is a useful measure, it should be 
noted that it does not capture all aspects of prediction accuracy, and further valida-
tion might be necessary. Overall, these findings align well with previous studies, 
strengthening the evidence for the efficacy of computational methods in predicting 
antibody-antigen binding affinity.

Fig. 3  Scatterplot comparing the experimental and predicted values of ΔΔG for antibody-antigen com-
plexes, with a correlation coefficient of R = 0.56 . A black dashed diagonal line represents the line of 
perfect agreement between experimental and predicted values. Blue dashed lines are placed at ±2 kcal/
mol around the diagonal. In the scatterplot, blue points represent single mutations (point mutations) in 
the antibodies, while red points represent multiple mutations
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4.2  Loss weights

Figure  4 shows the distribution of ΔΔG values for 60 samples when designing 
the six regions of CDR-L1–3 and CDR-H1–3, each with 1VFB, as design targets 
under various conditions. According to Fig. 4, there is no difference in the dis-
tribution among the different conditions; no advantage of ΔΔG by condition was 
found.

Figure 5 is a graph that shows the transition of the three parameters, dgram-
cce, pLDDT, and pAE, during the design process under various conditions when 
designing CDR-H1 as the design target. Looking at the transition graph for Case 
A, even though only dgram-cce was considered a loss, pLDDT and pAE also 
showed correlated changes in their values. In addition, even when the proportions 
of pLDDT and pAE in the loss function increased in Cases B and C, the changes 
in the transitions of the two parameters were very small.

Table 2 lists the average ΔΔG values for the ten samples generated under each 
condition when each CDR was the design target, as well as the average ΔΔG and 
IMP values for each condition. Although no clear advantage in binding affin-
ity was found depending on the conditions, we conducted the experiment using 
Case F, which showed the best average ΔΔG and IMP values. Since we did not 
observe significant changes even when the ratio of pLDDT to pAE was altered, 
we decided not to conduct further experiments.

Fig. 4  Box-and-whisker plot 
illustrating the distribution 
of ΔΔG values under each 
condition. In the boxes, the line 
represents the median, while the 
cross mark signifies the mean

Table 2  Average ΔΔG and 
IMP values (PDB 1VFB) for 
each condition. Letters in bold 
indicate the best value in each 
CDR

Case A Case B Case C Case D Case E Case F

CDR-L1 −0.797 −�.��� −0.420 −0.549 −0.666 −0.699

CDR-L2 1.096 1.046 0.935 1.063 0.926 �.���

CDR-L3 −0.561 −1.020 −1.385 −�.��� −0.795 −0.833

CDR-H1 −0.255 −0.306 −0.084 −0.114 −0.376 −�.���

CDR-H2 1.547 1.279 1.555 1.231 1.430 �.���

CDR-H3 1.787 1.702 1.713 1.409 2.491 �.���

avg ΔΔG 0.46 0.31 0.38 0.26 0.50 �.��

IMP (%) 45.0 ��.� 36.7 43.3 45.0 ��.�
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4.3  Antibody CDR sequence design

Figure 6a shows the comparison between designs obtained using AfDesign and 
those obtained from 20 random mutations, in which 20 amino acids were ran-
domly mutated with equal probability within the same design range. In particu-
lar, when CDR-H1 and CDR-H3 were targeted for design, more sequences with 
higher binding affinity than the original sequence were generated compared to 
random mutations. However, when CDR-L2 and CDR-H2 were targeted, the 
design performance was inferior to random mutations, and the results differed 
depending on the CDR.

Fig. 5  1VFB CDR-H1 as the design target and the evolution of the values of the three parameters when 
designed for each condition

Fig. 6  IMP of sequence design results for each of AfDesign and random mutation
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Figure  6b shows the results for three of the 12 complexes used in Experiment 
3 that were not used for AlphaFold2 training. It was confirmed that in all regions, 
a higher percentage of sequences with higher binding affinity than the original 
sequence was generated compared to random mutations or at least the same level. 
Thus, it is possible to create mutations that improve binding affinity, even without 
training data.

Figure 7a and b shows the superimposed 3D structures of the actual sequences 
generated using AfDesign with CDR-L1 and CDR-H3 as the design targets and the 
original structures for PDB ID 7RR0. The version of AfDesign used in this study 
utilized the proteins registered in PDB in 2019 for AlphaFold’s training; therefore, 
the 7RR0 complex registered in PDB in 2021 was not used for training. However, 
when designing regions other than CDR-H3, as shown in Fig. 7a, there was a ten-
dency to generate sequences with structures similar to the original loop structure, 

Fig. 7  Sequence redesign of PDB ID 7RR0 structure by AfDesign
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even for complexes not used in AlphaFold2 training. The results of this study show 
that CDR-H3 tends to produce a structure that is slightly different from the original 
loop structure, as shown in Fig. 7b. This is because it is difficult to predict the loop 
structure of CDR-H3 because of the diversity in the sequence and structure of CDR-
H3 compared with those of other regions of the CDR. Therefore, we speculate that 
the difference in CDR-H3 loop structure prediction accuracy by AlphaFold2 may 
be due to the generated loop structures being slightly offset from the original loop 
structures.

5  Conclusion

In this study, we successfully utilized AlphaFold2 to design antibody sequences with 
improved binding affinity. Notably, AfDesign exhibited significant improvements 
over randomly mutated sequences, even in the absence of experimental data. This 
fills a critical gap noted in related studies that struggled with designing sequences 
for highly variable regions such as CDRs. The application of loss functions like 
dgram-cce, pLDDT, and pAE in AfDesign yielded sequences that closely resembled 
the original loop structures, suggesting that AfDesign is not only effective, but also 
versatile, capable of working even on complexes not included in AlphaFold2’s train-
ing data.

However, it is important to note that our results are based on computational 
evaluations. Hence, biochemical validation is essential to confirm the designed 
sequences’ binding capabilities with their respective targets. Further investigation is 
also warranted to fine-tune the approach for broader applications, including a wider 
variety of antigen-antibody complexes.

This study serves as a stepping stone toward the rapid and efficient development 
of antibody-based therapeutics, particularly in scenarios where experimental data are 
scarce. Future work should aim at empirical validation of our findings and expand-
ing the applicability of our approach to a broader range of biological interactions.
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