
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05884-y

1 3

Out of kernel tuning and optimizations for portable
large‑scale docking experiments on GPUs

Gianmarco Accordi1 · Davide Gadioli1 · Emanele Vitali1,2 · Luigi Crisci3 ·
Biagio Cosenza3 · Andrea Beccari4 · Gianluca Palermo1

Accepted: 23 December 2023
© The Author(s) 2024

Abstract
Virtual screening is an early stage in the drug discovery process that selects the
most promising candidates. In the urgent computing scenario, finding a solution in
the shortest time frame is critical. Any improvement in the performance of a virtual
screening application translates into an increase in the number of candidates evalu-
ated, thereby raising the probability of finding a drug. In this paper, we show how
we can improve application throughput using Out-of-kernel optimizations. They use
input features, kernel requirements, and architectural features to rearrange the kernel
inputs, executing them out of order, to improve the computation efficiency. These
optimizations’ implementations are designed on an extreme-scale virtual screening
application, named LiGen, that can hinge on CUDA and SYCL kernels to carry out
the computation on modern supercomputer nodes. Even if they are tailored to a sin-
gle application, they might also be of interest for applications that share a similar
design pattern. The experimental results show how these optimizations can increase
kernel performance by 2 × , respectively, up to 2.2× in CUDA and up to 1.9×,
in SYCL. Moreover, the reported speedup can be achieved with the best-pro-
posed parameterization, as shown by the data we collected and reported in this
manuscript.

Keywords SYCL · CUDA · Parallel programming · Virtual screening · HPC ·
Performance · Optimization · GPU · Batch computation · Molecular docking

1 Introduction

Drug discovery aims to find a small molecule that has a beneficial effect on a tar-
get disease. It involves in vitro and in vivo stages that increase costs and duration
and limit the number of candidates evaluated. Recent studies have shown that we
increase the likelihood of finding a drug by introducing a in silico stage that selects
which molecules to test in vitro [1, 16]. In this stage, we use virtual screening

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05884-y&domain=pdf

 G. Accordi et al.

1 3

software to estimate the strength of interaction between a drug candidate, a small
molecule called ligand, and the target protein representing the disease. We can use
this value to rank a chemical library of many ligands and forward only the most
promising ones to the following stages of drug discovery.

It is possible to create a chemical library by simulating known chemical reac-
tions. This method gives us access to a vast chemical space. Therefore, the size of
the chemical library is limited only by the computational resources available for vir-
tual screening. For this reason, supercomputers are the target system for a virtual
screening campaign [6, 8]. If we look at the node architectures of the fastest accord-
ing to the TOP5001 list, we can see that they rely heavily on accelerators to increase
their throughput. Although the accelerators are typically GPUs, they are from differ-
ent vendors and usually have other native programming languages. In the context of
urgent computing [14], where we want to reduce the social and economic impact of
a pandemic, virtual screening software needs to benefit from all available computing
resources. Due to the increasing cost of porting, testing, and maintaining different
implementations, there is a growing interest in code portability. When targeting an
HPC system, application performance is the key metric we want to improve. For this
reason, much effort is put into analyzing and improving the computational kernels.
It is common to find highly optimized libraries that solve well-known problems, for
example, BLAS [2] for linear algebra computations. In addition, we can use various
approaches to automatically tune kernel parameters to improve computational effi-
ciency further [25] for the target architecture or workload.

Instead of focusing on the computational kernel, the main goal of this paper is
to show how Out-of-kernel optimizations significantly impact an application’s per-
formance. As a demonstration, we applied them to LiGen, an extreme-scale virtual
screening application [6]. In particular, we analyze how rearranging the kernel input
data using architecture, kernel, and input features to execute them out-of-order can
increase computational efficiency. Experimental results on a current HPC node
show that this Out-of-kernel optimization can double the application’s performance.
Moreover, since LiGen has a CUDA and SYCL implementation of the computa-
tional kernels, we measured an advantage with both, showing that the approach is
portable. Although the proposed optimizations and experimental results apply to
LiGen, they might be of interest to other applications with a similar design.

In Sect. 2, we introduce the virtual screening problem and the LiGen applica-
tion as a case study, while in Sect. 3, we discuss related work. Section 4 describes
the proposed Out-of-kernel optimizations, along with their implementation for
both SYCL 2020 and CUDA. The experimental results evaluating the approach are
described in Sect. 5. Finally, Sect. 7 concludes the paper.

1 https:// www. top500. org/.

https://www.top500.org/

1 3

Out of kernel tuning and optimizations for portable large‑scale…

2 Background

This section introduces virtual screening in drug discovery and its use for HPC sys-
tems. We also give an overview of the GPU architecture and focus on the LiGen
algorithm.

2.1 Virtual screening for drug discovery

Drug discovery aims to find effective drug candidates against a disease. Broadly
speaking, drug candidates are small molecules called ligands, and one or more pro-
teins may represent the disease. Based on domain knowledge, we can expect a ben-
eficial effect if we find a molecule that has a strong interaction with target proteins.
Virtual screening aims to evaluate the interaction strength of a chemical library
composed of many ligands. This helps domain experts choose which ones to test
in vitro. This is an embarrassingly parallel task, given the independence of each pro-
tein-ligand pair.

Virtual screening is a well-known problem in the literature, where many
approaches have been proposed, implemented, and evaluated [19, 30]. To evaluate a
protein-ligand pair, we have to perform three tasks. Since the ligand is much smaller
than a protein in terms of the number of atoms, the first task is to identify one or
more regions of the protein where we would like to place the ligand (docking site).
The second task aims to estimate the 3D displacement of the ligand’s atoms when it
interacts with the target docking site: It docks the ligand into the protein. In addition
to the rigid movement of the ligand, it is possible to change its shape. A subset of
ligand bonds, called rotatable bonds, split the molecular atoms into two disjoint sets,
allowing one set of atoms to rotate around the bond axis. This flexibility changes the
geometric shape of the molecule, producing different poses, but does not alter its
chemical and physical properties. Finally, the third task evaluates the strength of the
interaction between the docked ligand and the docking site. This paper will focus on
the second task: molecular docking.

2.2 HPC for virtual screening

Improvements in computing power and computational efficiency have made it possi-
ble to explore a large chemical space simultaneously and with greater accuracy [8].
In the context of urgent computing, [14], there are efforts to redesign existing soft-
ware for scaling out and to use accelerators of modern heterogeneous HPC nodes.
The goal is to achieve a significant performance improvement [6, 8, 17, 29]. The
supercomputing centers extensively use external offloading accelerators to speed
up computation. Indeed, the data parallelism available in virtual screening tasks is
well suited to the architecture of GPUs. Examples from the literature (e.g., Auto-
Dock-Vina [24], PLANTS [11], and LiGen [6]) have already demonstrated over 25×
speedup after porting to GPUs.

 G. Accordi et al.

1 3

HPC infrastructure has already been used to perform molecular docking simula-
tion for virtual screening [7], and it has already been proven successful in designing
a drug against avian influenza viruses [13].

2.3 GPU architectures

NVIDIA was the first GPU vendor to recognize the benefits of offloading HPC com-
puting onto the GPU. In the early 2000 s, NVIDIA introduced CUDA (Compute
Unified Device Architecture). This prompted many developers to add CUDA sup-
port to their applications, including LiGen [26].

NVIDIA’s GPUs consist of Streaming Multiprocessors (SMs). All SMs can
access the same global memory and exchange data with the CPU’s RAM. From a
hardware perspective, each SM has a user-programmable cache called shared mem-
ory, a set of registers, and the hardware that performs the computation and mem-
ory operations. Each SM uses a SIMD, single instruction multiple data [9], scheme
where a bundle of hardware threads called warp execute the same instruction on
different data. Each SM can have a relatively high number of warps ready to exe-
cute, named active warps in CUDA jargon. Recent NVIDIA HPC architectures use
4 hardware scheduler for each SM. At each cycle, the latter selects which warp to
run. The number of active warps depends on the kernel’s hardware requirements and
the GPU hardware availability. This way, it is possible to hide stalls due to memory
access transparently for the programmer.

From a programming language perspective, it is possible to partition the compu-
tation into blocks. Each block consists of at least one warp. We have the guarantee
that all warps belonging to the same block are executed by the same SM. There-
fore, efficient synchronization is possible, and we can program the shared memory
to avoid accessing the global memory as much as possible. All the blocks that make
up the whole computation are called a grid.

The developers are responsible for choosing the number of threads per block and
the number of blocks per grid. Although both are constrained by the algorithm and
the input data size, they can usually be tuned to improve overall performance.

Implementing the computational kernels using SYCL is one approach to achiev-
ing functional portability. SYCL stands for Single-source C++ Heterogeneous Pro-
gramming for OpenCL. In particular, it provides an abstraction using an offloading
architecture abstraction. It allows everyone to write the implementation code once,
using standard C++, and then each interested vendor will provide their backend
targeting their accelerated architecture. LiGen has ported the CUDA kernels using

Table 1 CUDA and SYCL
terminology mapping

CUDA SYCL

Streaming multiprocessor Compute unit
Block Work-group
Warp Sub-group
Thread Work-item

1 3

Out of kernel tuning and optimizations for portable large‑scale…

SYCL [4], in the context of the LIGATE European Project [20]. The SYCL termi-
nology differs from CUDA but can be easily mapped using Table 1. In the follow-
ing, we will use CUDA terminology as a reference.

2.4 Case study: LiGen

This paper aims to show how Out-of-kernel optimization can improve computa-
tional efficiency, tailoring them on LiGen, an application for extreme-scale virtual
screening [6].
Algorithm 1 LiGen’s Docking Algorithm

In Algorithm 1, we have described the LiGen docking algorithm. The inputs to
this algorithm are the docking sites of the protein and the ligands from the chemical
space to analyze. The algorithm docks each ligand to each docking site of the target
protein. The algorithm outputs the list of poses that should be scored in the third
task of virtual screening. In this work, we focus on the docking kernel because it is
the most demanding one in terms of hardware requirements and computation effort.
It accounts for 90% of the execution time.

The LiGen docking algorithm performs a gradient descent with multiple restarts
[21]. This docking procedure is applied to all the target proteins’ docking sites. Algo-
rithm 1 describes the algorithm in more detail. An initial pose is generated using the
internal flexibility provided by the rotatable bonds at the start of the iterations (line
3). After this translation, we use rigid rotation to find the best alignment in the dock-
ing site (line 4). Then, the shape of the ligand is optimized and refined based on
the number of repetitions and rotatable bonds (lines 5 to 10). Finally, the algorithm
checks that the pose does not collide with the protein (line 11) and is within the
docking site (line 12). From the functions described in the algorithm, we notice that
the computational complexity increases linearly with the number of rotatable bonds
and atoms in the ligand [6]. Additionally, the evaluation of ligands in a docking site
can be done in parallel without waiting for the result of other computations.

 G. Accordi et al.

1 3

From a kernel implementation perspective, two main ways exist to take advan-
tage of GPU parallelism in a virtual screening application. The most common is to
spread the ligand-protein evaluation across the GPU to reduce the execution time
as much as possible, which also increases the application throughput. We refer to
this approach in literature as the latency one [12]. The AutoDock GPU and LiGen
developers implemented this approach for an extreme virtual screening campaign
against SARS-CoV-2 [6, 8]. Since the computation of a single ligand is independ-
ent of the others, we can hinge on data parallelism. The idea is to collect input data
in a batch and then execute the whole batch on the GPU using a few threads to
compute each input. Even if the computation time of a single ligand increases, the
throughput might be higher since we are computing more input in parallel. Whether
this batch approach yields a higher throughput than the latency one depends on
the application. In the case of LiGen, it provides a 5× speedup with respect to the
latency implementation [26]. This paper focuses on how we can manage the stream
of ligands by reordering, packing, and organizing them. It also discusses how this
affects the application’s throughput. Rather than comparing the differences in the
kernel implementations, as discussed in [14], the paper emphasizes the importance
of efficient ligand management.

From an implementation point of view, LiGen uses multiple CPU threads, called
workers, to launch the computational kernels. It uses a double buffering technique to
hide data transfers to and from the device. When a worker receives a batch of ligands
to compute, called a bucket, it starts copying the data to the first available buffer on
the GPU. Then, it waits for the GPU to become available and executes the computa-
tion using the whole GPU. Finally, it copies the results to CPU memory and releases
the buffer for another worker. It is possible to use this approach for any available
GPU in the system. Figure 1 provides an overview of how the ligand computation is
mapped on the CUDA abstraction. One warp carries out the computation of a single
ligand. In particular, their atoms are computed in parallel by different GPU threads.
This paper will focus on NVIDIA GPUs, using both CUDA and SYCL.

Fig. 1 The mapping of ligands’ computation on the GPU logical and physical architecture

1 3

Out of kernel tuning and optimizations for portable large‑scale…

3 State of the art

When we focus on the application level, improving the computation efficiency by
executing a batch of input together has been successfully applied in various fields
[26, 28, 31]. This trend is even more common in machine learning for accelerating
training and inference [15, 18]. However, they target a more dynamic environment,
considering the batch size as a tuning parameter [3]. This paper focuses on a classic
HPC context, where the application and the architecture are known. For this rea-
son, we can analyze in more detail how to hinge on these measures to optimize the
computation.

When focusing on the GPU kernels, there are three main factors that we need to
consider: data movement, thread divergence, and occupancy [12]. The latter is the
ratio of active warps on the SM to the maximum number of warps that can run on
an SM.2

The GPU’s memory hierarchy has three main layers: global memory, shared
memory/caches, and registers. As a general rule, it is more efficient to use the shared
memory and the registers, as they are closer to the GPU’s computing resources3 [5].
Moreover, the SIMD nature of GPU implies that control flow instructions may lead
to thread divergence, decreasing computation efficiency inside a warp. For this rea-
son, modern approaches borrowed from multi-core systems battle proven techniques
[27] and enhanced them for GP/GPU systems [5]. These analyses are critical to iden-
tifying kernel bottlenecks and seizing optimization opportunities [10, 22]. However,
this work focuses on Out-of-kernel optimizations and their impact on the application
throughput. While the memory access pattern and thread prediction are tied to the
kernel, we aim to increase the application throughput by improving occupancy. The
kernel implementation using a batched design has been investigated in the litera-
ture [28, 29], also in an application domain similar to LiGen. However, these works
focus more on in-kernel optimizations [10], while Out-of-kernel optimizations were
either left to a static tuning phase or employed using a fixed strategy, not consider-
ing the target architecture. In this manuscript, we focus on Out-of-kernel methods
to develop a more portable methodology. This follows a comparison between GPU-
centered computation approaches, better detailed in a previous work [26]. Usually,
developers expose software knobs to tailor the kernel to the execution environment.
In literature, several autotuners can improve the application performance, leveraging
these knobs [23, 25]. However, they target kernel-related parameters, such as the
number of CUDA threads per block. This paper aims to show how input features,
kernel, and architecture features can be used to rearrange the kernel input to improve
the application performance.

2 https:// docs. nvidia. com/ gamew orks/ conte nt/ devel opert ools/ deskt op/ analy sis/ report/ cudae xperi ments/
kerne llevel/ achie vedoc cupan cy. html.
3 https:// docs. nvidia. com/ deepl earni ng/ perfo rmance/ dl- perfo rmance- gpu- backg round/ index. html.

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html

 G. Accordi et al.

1 3

4 Out‑of‑kernel optimization

For embarrassing parallel applications, it can be beneficial to bundle input in a
bucket and execute them in a batch fashion. This holds true for LiGen [26]. While
the batched approach is fairly common and analyzed in literature [12], in this paper,
we focus on how we bundle ligands together and their impact on performance. In
particular, it must answer two different design choices: (i) which inputs to bundle
into a batch, and (ii) its size. In the LiGen context, we want to optimize how to bun-
dle ligands into a bucket. To increase code portability, we evaluated these Out-of-
kernel optimizations for both SYCL and CUDA implementations. In particular, they
use ligand characteristics, such as the number of atoms and rotatable bonds, to bun-
dle them into different clusters. Then, for each cluster of ligands, we compute how
many ligands a bucket should store using GPU hardware characteristics and kernel
hardware requirements. In the remainder of this section, we will discuss implemen-
tation details.

4.1 Selecting the number of input clusters

In the batch approach, we hinge on the GPU parallelism by computing a bucket
of ligands at the same time. This means the entire GPU is dedicated to the virtual
screen of all the ligands in an input batch at any given time. The most straightfor-
ward implementation bundles all ligands in the same bucket, processing them with-
out altering their order. Since the docking complexity depends on input features, the
time required to dock all the ligands in a batch can differ, decreasing the computa-
tion efficiency. For this reason, we use the input features related to the application
performance to cluster the ligands in different buckets. Figure 2 provides a sche-
matic overview of this Out-of-kernel optimizations. The main goal that we want to
achieve is to execute the input ligand out-of-order, processing together the ones that
have a similar execution time, improving computation efficiency [12].

Looking at the algorithm complexity reported in Algorithm 1, we can see a linear
dependency on the number of atoms and rotatable bonds. From the kernel imple-
mentation perspective, LiGen uses the warp threads to run parallel SIMD computa-
tions on the atoms. However, we need to process the rotatable bonds sequentially

Fig. 2 Overview of how input ligands are mapped in different input clusters, according to their features,
to enable out-of-order input execution. The goal is to balance the kernel time in the Streaming Multipro-
cessors

1 3

Out of kernel tuning and optimizations for portable large‑scale…

to preserve the ligand geometry. For this reason, ligands within a bucket must have
similar numbers of atoms and fragments to have a similar execution time, balancing
the computation. These two input features can be considered orthogonal as the num-
ber of atoms and fragments are loosely related.

A Cartesian product between the maximum number of atoms and the maximum
number of fragments for ligands within that cluster defines the number of clusters. When
considering the number of atoms, we used a multiple of the warp size to generate dif-
ferent clusters, i.e., with 32 × n atoms with n > 0 . For the number of rotatable bonds,
we used non-uniform partitioning. We prefer a more fine-grained resolution toward the
lower number of fragments since they lead to a higher relative difference. For example,
we can bundle ligands with 0, 1, 2, 5, and 12 rotatable bonds in the same bucket. Sec-
tion 5.1 reports the impact on performance when we change the number of clusters.

4.2 Selecting the bucket size

Since each ligand-protein pair can be computed independently, the bucket size is a
parameter that we can tune. Ideally, we want a bucket with the number of ligands
that maximizes computational efficiency, i.e., that uses the most GPU computational
resources for the longest time. To achieve this goal, we must calculate how many ligands
we can process in parallel on the GPU. In the remainder of this document, we will refer
to this number as l. We can then use the largest multiple of l that fits into the GPU’s
memory as the bucket size.

Since LiGen uses one warp to compute a single ligand, we can use the number
of CUDA threads t in a CUDA block to calculate the number of ligands in a CUDA
block. Usually, t is a tuning parameter, but we set t = 32 since we focus on Out-of-
kernel parameters in this paper. Thus, we compute a single ligand in each CUDA
block.

The maximum number of active CUDA blocks depends on GPU hardware properties
and kernel hardware requirements regarding registers and shared memory. We can use
the CUDA API4 to query how many blocks b can be run on the same Streaming Multi-
processors (SM) for any given kernel. In the LiGen context, we consider the kernel that
docks a ligand since it is the most demanding one in terms of hardware requirements.
Therefore, we can compute the bucket size l on the fly as follows:

where SM is the number of SMs available on the GPU, and ws is the warp size.
Since one of the paper’s goals is to have this optimization portable across a large set

of GPUs, we adopted a similar approach within an SYCL porting of LiGen. The port-
ing of the previous calculation on SYCL 20205 uses kernel bundle information from the
standard. In particular, we can calculate the number of ligands l in a bucket as follows:

(1)l = b × SM ×
t

ws

4 CUDA function to query the number of active blocks on an SM for the given kernel cudaOccupan-
cyMaxActiveBlocksPerMultiprocessor.
5 https:// regis try. khron os. org/ SYCL/ specs/ sycl- 2020/ html/ sycl- 2020. html.

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

 G. Accordi et al.

1 3

where wgs is the maximum number of work items we can run on a single Com-
pute Unit (CU), given the target kernel. CU is the number of CUs, and sgs is the
maximum subgroup size. Finally, t is the number of work-items in a work-group. In
CUDA jargon, the work-items are CUDA threads, the CU is an SM, the work-group
is a CUDA block, and the maximum sub-group size is the warp size. Although we
can simplify t, we have written Eq. 2 to match the terms in Eq. 1. We can query the
wgs, sgs, and CU values using the SYCL 2020 API. In particular, wgs is the property
kernel_device_specific::work_group_size. The t parameter has the
same value as in the CUDA implementation.

Unfortunately, not all SYCL compilers implement the entire standard yet. To over-
come this problem, we need to calculate wgs by manually examining the compiled ker-
nel. We look for its hardware requirements and compare them to the GPU resources.
Due to differences in GPU architectures, especially when they are manufactured by dif-
ferent vendors, we cannot provide a one-fits-all equation to compute this term. How-
ever, since the dock kernel in LiGen is register bound, we set t = 32 , and in this paper,
we are targeting the NVIDIA A100 GPUs; we can calculate the number of active
blocks as follows:

where kr is the number of registers used by a kernel implementation and maxr is
the maximum number of registers a CUDA thread can use. Since our GPU does not
allocate resources linearly, we must consider that it allocates blocks of 256 registers
and that the number of active warps in each SM should be a multiple of 4. As the
SYCL compilers mature, Eq. 3 will become obsolete as wgs can be retrieved at runt-
ime using the standard SYCL API.

From a LiGen implementation point of view, the dock kernel has a non-type tem-
plate parameter representing the maximum number of atoms it can process. This imple-
mentation choice allows the compiler to optimize the kernel for a specific number of
atoms. However, it also changes the number of hardware registers used by the kernel.
Therefore, depending on the maximum number of atoms, each ligand cluster may have
a different l value.

5 Experimental results

This section evaluates the proposed Out-of-kernel optimizations’ impact on the
application performance. Therefore, in Sect. 5.2, we evaluate the impact on cluster-
ing ligands in different buckets according to input features, while in Sect. 5.3, we
evaluate the impact of using kernel and GPU properties to size each bucket.

(2)l =
wgs

t
× CU ×

t

sgs

(3)
wgs

t
=

⌈

maxr
⌈

kr ∗ ws
⌉

256

⌉

4

1 3

Out of kernel tuning and optimizations for portable large‑scale…

5.1 Experimental setup

We run the experiment using a modern HPC compute node from the Karolina super-
computer at IT4I. A compute node uses two AMD EPYC 7763 with 64 cores paired
with 1024 GB of RAM and eight NVIDIA A100 with 40 GB of VRAM each. We
used CUDA 11.7 with GCC 11.3.0 as a software stack for compiling the CUDA ker-
nels. We used Intel oneAPI 2023 as an SYCL compiler.

Since this is a typical HPC batch job, we want to evaluate the impact on the appli-
cation throughput in terms of computed ligands per second. Unless stated otherwise,
we report the average throughput, computed as the number of processed molecules
divided by the elapsed wall time.

5.2 Measuring the clusterization impact

This experiment aims to measure how clustering the input into different buckets,
according to ligand features, can affect the application’s performance. We achieve
this goal by performing a virtual screening campaign on a dataset of heterogeneous
ligands. The input dataset contains 10 million different ligands with a number of
atoms ranging from 20 to 120, having 0 to 20 rotatable bonds. In this experiment,
we change the number of clusters for both input features. We set the bucket size
for each cluster equal to l, as computed using Eqs. 1 and 2, according to the target
implementation. The change in application performance is only due to how we bun-
dle the ligands together in a batch.

Figure 3 shows the experiment results using CUDA and SYCL. On the x-axis,
we report the number of clusters that we use to group the ligands according to
the number of rotatable bonds. On the y-axis, we group them according to the
number of atoms. The value reported in the heatmap is the normalized through-
put achieved using as baseline the case where we bundle all ligands in the same
batch, reported in the lower left cell. The upper right cell instead represents the
finest-grained clustering, where we split the range of rotatable bonds into 23 clus-
ters while we split the range of atoms into 6 clusters. In total, we divided the
input ligands into 138 different clusters according to their input features.

Fig. 3 Application throughput speed-up by varying the number of clusters that target both the number of
atoms and rotatable bonds in a ligand

 G. Accordi et al.

1 3

The application throughput shows how it is possible to double performance
by using the highest number of clusters. In addition, the trend might suggest that
increasing the number of clusters could further improve performance. However,
when we increase the number of clusters, we also spread the input dataset over
more buckets. Therefore, at the end of the computation, we will have a larger
number of half-empty buckets. This limitation is not problematic for large virtual
screening campaigns, as we have to evaluate a significant amount of ligands, but
it becomes relevant for everyday use.

To measure this limitation, we performed a virtual screening by varying the
number of clusters and the number of ligands in the input dataset. Figure 4 shows
the execution trace of LiGen. On the x-axis, we plot the execution time, while on
the y-axis, we plot the application’s throughput over a moving observation win-
dow. Each line in the plot is an execution using 5 clusters for the number of atoms
and 1, 8, 24, and 138 clusters for the number of rotatable bonds. We use LiGen to
virtually screen a chemical library with a different number of ligands in each plot.

The experimental results show that the throughput is not constant, but we
have a steep increase at the beginning and a steep decrease at the end. When we
consider a large dataset, the effect of these two transients becomes negligible.
However, when we use smaller datasets, it becomes more and more important. In
particular, when we use 10K molecules (Fig. 4a), the configuration using more
clusters becomes slower.

For this reason, the optimal number of clusters we want to use depends on the
actual use case. If we target an extreme-scale virtual screening campaign [6], it is
better to use many clusters. For everyday use, however, using a more coarse-grained
classification of the input is better. We also need to consider that if we increase the

Fig. 4 LiGen CUDA throughput Moving Average, upon using different numbers of clusters

1 3

Out of kernel tuning and optimizations for portable large‑scale…

number of clusters, we must store more buckets in temporary storage, increasing the
memory footprint.

5.3 Measuring the bucket size impact

We must choose their size when we bundle inputs together to hinge on data paral-
lelism to use GPU parallelism. This section aims to show the impact of using the
proposed methodology for selecting the number of inputs based on kernel and GPU
features. In particular, we use Eq. 1 or Eq. 2 to find the minimum number of ligands
we need to fill the GPU, called l. We can then choose its multiple according to the
memory available on the host or device side.

Figure 5 shows the throughput of the application by varying the bucket size, using
both the CUDA (Fig. 5a) and SYCL (Fig. 5b) implementations. To reduce the influ-
ence of different features, such as the number of rotatable bonds, we focus on three
ligands: “small,” “medium,” and “large.” They have 17, 53 and 99 atoms, respec-
tively. We measured a stable throughput by replicating each ligand 10 million times
and docking the ligands into twelve docking sites of a target protein. Each line in the
graph represents a different data set. The x-axis represents the number of ligands in
each bucket. We normalize the size using l, which is the value suggested by Eq. 1 or
Eq. 2, as reported in Table 2. We also evaluate application performance using the
maximum number of ligands that fit into GPU memory, labeled “max⋅l.”

The experimental results show two phases: before and after the value suggested
by the equations. Before this value, the application throughput increases with the
number of ligands. This is due to the increasing number of active warps that the
SM scheduler can use to hide computational stalls. After this value, we have a drop
in performance as we are processing the same ligand, and its computation will take
a similar amount of time. The throughput increases as more active warps are cre-
ated, repeating the pattern. The pattern is more evident for the SYCL and CUDA
implementations with small ligands. For medium and large ligands, the change in
throughput is smoother. This means that we choose how many and which ligands are
evaluated on the GPU for each wave, but the GPU schedules the active warps.

To evaluate the impact of this Out-of-kernel parameter in a more realistic sce-
nario, we performed the same experiment using the heterogeneous dataset described

Fig. 5 LiGen average throughput by varying the number of ligands in a bucket for three classes of
ligands

 G. Accordi et al.

1 3

in Sect. 5.2. We bundle the input ligands into 128 different clusters to measure per-
formance. Figure 6 shows the average throughput of the CUDA and SYCL imple-
mentations. While both follow the same trend, confirming the impact of Out-of-ker-
nel optimization, the difference in throughput is larger than expected. We analyzed
the docking kernel as it accounts for over 90% of the total execution time. Compar-
ing their execution times, SYCL was only 12% slower than CUDA, while the gap in
application throughput is more significant. This is due to the higher register pressure
of the SYCL implementation, as reported in Table 2, which reduces the number of
active blocks on the GPU. This means that SYCL can process fewer ligands in paral-
lel, reducing its throughput. However, it can provide a significant speed-up over the
CPU version, achieving a throughput of less than 50 ligands/s using all available
cores.

The bucket size reported in Table 2 has been calculated using Eq. 1 for CUDA
and Eq. 2 for SYCL. This number is subject to change depending on several fac-
tors. These factors include the template parameter used by the docking kernel, which
affects the docking kernel register pressure used by the compiler, the docking kernel
implementation, and the target offloading architecture. However, the bucket size is a
multiple of 432 ligands on both implementations. The latter is the minimum incre-
ment in the size of the buckets due only to architectural characteristics. We can com-
pute this increment step by multiplying the number of SMs per GPU by the number

Fig. 6 LiGen average throughput with a dataset of heterogeneous ligands by varying the number of
ligands in a bucket

Table 2 Comparison between
the CUDA and SYCL kernel
implementations, by varying the
maximum number of atoms, on
an NVIDIA A100 graphics card
compiling with CUDA 11.7 and
oneAPI 2023

Num atoms CUDA SYCL

Register Bucket Size Register Bucket Size

32 102 1728 158 1296
64 103 1728 176 864
96 98 1728 176 864
128 102 1728 178 864
160 112 1728 176 864
192 124 1728 182 864

1 3

Out of kernel tuning and optimizations for portable large‑scale…

of hardware schedulers per SM. With our reference GPU, NVIDIA A100, we have
108 SMs and four hardware schedulers, which results in a bucket size step of 432.

6 Discussion

The main objective of the proposed work is to show how we can improve appli-
cation throughput among different GPU architectures by using Out-of-kernel opti-
mizations. In particular, we used input features, kernel requirements, and architec-
tural features to rearrange the kernel inputs. Thus, we executed them out of order to
improve the computation efficiency. We also wanted to demonstrate how these opti-
mizations are not strictly related to the language used for the kernel description (i.e.,
CUDA or SYCL). Thus, Sect. 5.2 evaluates the impact of clusterization with SYCL
and CUDA to demonstrate that they have a similar trend. Section 5.3 evaluates how
the performance changes by varying the number of ligands to show how the trend is
coherent between CUDA and SYCL.

Performing a direct comparison between CUDA and SYCL versions of the target
application was out of the scope of this paper. However, we can draw a few gen-
eral comments derived from our experience with this work. Different trade-offs exist
when considering whether to use a CUDA or a SYCL implementation. CUDA ena-
bles better low-level access to the resources, thus granting the possibility to use the
underlying hardware efficiently. SYCL has a higher level abstraction, supporting
GPUs from different vendors. Their performances are not comparable on the target
NVIDIA A100-based system used for the validation. This is mostly due to the differ-
ent register pressure, as reported in Table 2, that limits the exploitable parallelism.

From the implementation point of view, the CUDA bucket dimensions are calcu-
lated by querying the CUDA runtime, making this information available for all the
NVIDIA cards. On the other hand, SYCL is a cross-platform programming model
with multiple implementations, which may support different (and partial) versions
of the standard. Thus, to compute the bucket dimensions, we need to consider these
differences, selecting the correct function call based on the compiler version.

7 Conclusions

With the increasing availability of heterogeneous nodes in HPC systems, there is
a trend for re-designing scientific applications to hinge on accelerator computation
power, typically GPUs. To achieve this goal, an application can follow two different
strategies. On the one hand, it can spread the computation across the GPU, lower-
ing the execution time and thus increasing its throughput. On the other hand, it can
hinge on data parallelism by computing input batches.

This paper focuses on Out-of-kernel optimizations that application developers
can use in batch approaches. In particular, we can use input features to group inputs
that are expected to have similar execution times, while we can use the kernel and
GPU features to compute the batch size.

 G. Accordi et al.

1 3

We implemented this Out-of-kernel optimization on LiGen, an extreme-scale vir-
tual screening application that can be scaled up an entire supercomputer. The experi-
mental result shows that the data preparation phase can improve computational effi-
ciency, doubling the application’s throughput. This performance gain is consistent
with both SYCL and CUDA implementations. However, a large or homogeneous
input set is required to achieve this efficiency level. The latter is not a limitation
since we need maximum efficiency only for extreme-scale virtual screening cam-
paigns with a very large number of ligands. Even though the result refers to LiGen,
the reported analysis may be of interest to applications with a similar pattern.

Acknowledgements We would like to thank Mauro Bisson and Massimiliano Fatica from NVIDIA Corp.
for their support on the CUDA optimization. This project has received funding from EuroHPC-JU - the
European High-Performance Computing Joint Undertaking - under grant agreement No 956137. The JU
receives support from the European Union’s Horizon 2020 research and innovation program and Italy,
Sweden, Austria, Czech Republic, and Switzerland. We acknowledge EuroHPC Joint Undertaking for
awarding us access to Karolina at IT4Innovations, Czech Republic (EHPC-DEV-2021D02-049).

Author Contributions G.A., D.G., E.V., and G.P. conceived the idea and wrote the paper, along with the
data collection and analysis, and the review of the paper. B.C. and L.C. provided SYCL support for the
data collection and analysis, as long as review for the SYCL content in the paper. A.B. contributed to the
revision and critical analysis of the paper’s content.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agree-
ment. EuroHPC-JU with grant agreement No 956137 (LIGATE), EuroHPC-JU with grant
EHPC-DEV-2021D02-049.

Availability of data and materials All the datasets used in the experiments use ligands from the MEDI-
ATE dataset, which is publicly available https:// media te. exsca late4 cov. eu/. We use a target protein taken
from the RCSV PDB, with id 1CVU, which is publicly available https:// www. rcsb. org/ struc ture/ 1cvu.

Declarations

Conflict of interest All authors declare that they have no conflict of interest.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Allegretti M, Cesta MC, Zippoli M et al (2022) Repurposing the estrogen receptor modulator raloxifene to
treat SARS-CoV-2 infection. Cell Death Differ 29(1):156–166

 2. Blackford LS, Petitet A, Pozo R et al (2002) An updated set of basic linear algebra subprograms (BLAS).
ACM Trans Math Softw 28(2):135–151

 3. Crankshaw D, Wang X, Zhou G, et al (2017) Clipper: a low-latency online prediction serving system. In:
NSDI, pp 613–627

https://mediate.exscalate4cov.eu/
https://www.rcsb.org/structure/1cvu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Out of kernel tuning and optimizations for portable large‑scale…

 4. Crisci L, Salimi Beni M, Cosenza B, et al (2022) Towards a portable drug discovery pipeline with SYCL
2020. In: International workshop on OpenCL

 5. Ding N, Williams S (2019) An instruction roofline model for gpus. In: 2019 IEEE/ACM performance
modeling, benchmarking and simulation of high performance computer systems (PMBS), pp 7–18

 6. Gadioli D, Vitali E, Ficarelli F, et al (2022) Exscalate: an extreme-scale virtual screening platform for drug
discovery targeting polypharmacology to fight SARS-CoV-2. IEEE Transactions on Emerging Topics
in Computing pp 1–12

 7. Ge H, Wang Y, Li C et al (2013) Molecular dynamics-based virtual screening: accelerating the drug dis-
covery process by high-performance computing. J Chem Inf Model 53(10):2757–2764

 8. Glaser J, Vermaas JV, Rogers DM et al (2021) High-throughput virtual laboratory for drug discovery using
massive datasets. Int J High Perform Comput Appl 35(5):452–468

 9. Hassaballah M, Omran S, Mahdy YB (2008) A review of SIMD multimedia extensions and their usage in
scientific and engineering applications. Comput J 51(6):630–649

 10. Hijma P, Heldens S, Sclocco A et al (2023) Optimization techniques for GPU programming. ACM
Comput Surv 55(11)

 11. Korb O, Stützle T, Exner TE (2011) Accelerating molecular docking calculations using graphics pro-
cessing units. J Chem Inf Model 51(4):865–876

 12. Lemeire J, Cornelis JG, Segers L (2016) Microbenchmarks for GPU characteristics: the occupancy
roofline and the pipeline model. In: 2016 24th Euromicro International Conference on Parallel, Distrib-
uted, and Network-Based Processing (PDP), pp 456–463

 13. Liu T, Lu D, Zhang H et al (2016) Applying high-performance computing in drug discovery and
molecular simulation. Natl Sci Rev 3(1):49–63

 14. López N, Debbio LD, Baaden M, et al (2021) Lessons learned from urgent computing in Europe: tack-
ling the COVID-19 pandemic. In: Proceedings of the National Academy of Sciences, vol 118, pp 46

 15. Ma S, Belkin M (2019) Kernel machines that adapt to GPUS for effective large batch training. In: Tal-
walkar A, Smith V, Zaharia M (eds) Proceedings of Machine Learning and Systems, pp 360–373

 16. Matter H, Sotriffer C (2011) Applications and success stories in virtual screening. Wiley, chap 12, pp
319–358

 17. Murugan NA, Podobas A, Gadioli D, et al (2022) A review on parallel virtual screening softwares for
high-performance computers. Pharmaceuticals 15(1)

 18. Nabavinejad SM, Reda S, Ebrahimi M (2022) Coordinated batching and DVFS for DNN inference on
GPU accelerators. IEEE Trans Parallel Distrib Syst 33(10):2496–2508

 19. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev
9(2):91–102

 20. Palermo G, Accordi G, Gadioli D et al (2023) Tunable and portable extreme-scale drug discovery plat-
form at exascale: the lIGATE approach. In: Proceedings of the 20th ACM International Conference on
Computing Frontiers, pp 272–278

 21. Ruder S (2017) An overview of gradient descent optimization algorithms
 22. Ryoo S, Rodrigues CI, Stone SS et al (2008) Program optimization carving for GPU computing. J Par-

allel Distrib Comput 68(10):1389–1401
 23. Sethia A, Mahlke S (2014) Equalizer: dynamic tuning of GPU resources for efficient execution. In:

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp 647–658
 24. Tang S, Chen R, Lin M et al (2022) Accelerating autodock vina with GPUS. Molecules 27(9):3041
 25. Tillmann M, Karcher T, Dachsbacher C, et al (2014) Application-independent autotuning for GPUS.

In: Parallel Computing: Accelerating Computational Science and Engineering (CSE). IOS Press, pp
626–635

 26. Vitali E, Ficarelli F, Bisson M, et al (2024) GPU-optimized approaches to molecular docking-based
virtual screening in drug discovery: a comparative analysis. J Parallel Distrib Comput 186(4)

 27. Williams S, Waterman A, Patterson D (2009) Roofline. Commun ACM 52(4):65–76
 28. Wu D, Zhang F, Ao N, et al (2009) A batched GPU algorithm for set intersection. In: 2009 10th Inter-

national Symposium on Pervasive Systems, Algorithms, and Networks, pp 752–756
 29. Yu Y, Cai C, Zhu Z, et al (2022) Uni-dock: a GPU-accelerated docking program enables ultra-large

virtual screening. American Chemical Society (ACS)
 30. Yuriev E, Holien J, Ramsland PA (2015) Improvements, trends, and new ideas in molecular docking:

2012–2013 in review. J Mol Recognit 28(10):581–604
 31. Zhou G, Feng Y, Bo R et al (2017) GPU-accelerated batch-ACPF solution for n-1 static security

analysis. IEEE Trans Smart Grid 8(3):1406–1416

 G. Accordi et al.

1 3

Authors and Affiliations

Gianmarco Accordi1 · Davide Gadioli1 · Emanele Vitali1,2 · Luigi Crisci3 ·
Biagio Cosenza3 · Andrea Beccari4 · Gianluca Palermo1

 * Gianmarco Accordi
 gianmarco.accordi@polimi.it

 * Davide Gadioli
 davide.gadioli@polimi.it

 Emanele Vitali
 emanuele.vitali@csc.fi

 Luigi Crisci
 lcrisci@unisa.it

 Biagio Cosenza
 bcosenza@unisa.it

 Andrea Beccari
 andrea.beccari@dompe.com

 Gianluca Palermo
 gianluca.palermo@polimi.it

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
2 CSC - IT Center for Science, Espoo, Finland
3 Dipartimento di Informatica, Università degli studi di Salerno, Salerno, Italy
4 Dompé Farmaceutici S.p.A, Naples, Italy

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 Virtual screening for drug discovery
	2.2 HPC for virtual screening
	2.3 GPU architectures
	2.4 Case study: LiGen

	3 State of the art
	4 Out-of-kernel optimization
	4.1 Selecting the number of input clusters
	4.2 Selecting the bucket size

	5 Experimental results
	5.1 Experimental setup
	5.2 Measuring the clusterization impact
	5.3 Measuring the bucket size impact

	6 Discussion
	7 Conclusions
	Acknowledgements
	References

