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Abstract
Virtual screening is an early stage in the drug discovery process that selects the 
most promising candidates. In the urgent computing scenario, finding a solution in 
the shortest time frame is critical. Any improvement in the performance of a virtual 
screening application translates into an increase in the number of candidates evalu-
ated, thereby raising the probability of finding a drug. In this paper, we show how 
we can improve application throughput using Out-of-kernel optimizations. They use 
input features, kernel requirements, and architectural features to rearrange the kernel 
inputs, executing them out of order, to improve the computation efficiency. These 
optimizations’ implementations are designed on an extreme-scale virtual screening 
application, named LiGen, that can hinge on CUDA and SYCL kernels to carry out 
the computation on modern supercomputer nodes. Even if they are tailored to a sin-
gle application, they might also be of interest for applications that share a similar 
design pattern. The experimental results show how these optimizations can increase 
kernel performance by 2 × , respectively,  up to 2.2× in CUDA  and  up to 1.9×,  
in SYCL. Moreover, the reported speedup can be achieved with the best-pro-
posed parameterization, as shown by the data we collected and reported in this 
manuscript.

Keywords SYCL · CUDA · Parallel programming · Virtual screening · HPC · 
Performance · Optimization · GPU · Batch computation · Molecular docking

1 Introduction

Drug discovery aims to find a small molecule that has a beneficial effect on a tar-
get disease. It involves in vitro and in vivo stages that increase costs and duration 
and limit the number of candidates evaluated. Recent studies have shown that we 
increase the likelihood of finding a drug by introducing a in silico stage that selects 
which molecules to test in  vitro [1, 16]. In this stage, we use virtual screening 
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software to estimate the strength of interaction between a drug candidate, a small 
molecule called ligand, and the target protein representing the disease. We can use 
this value to rank a chemical library of many ligands and forward only the most 
promising ones to the following stages of drug discovery.

It is possible to create a chemical library by simulating known chemical reac-
tions. This method gives us access to a vast chemical space. Therefore, the size of 
the chemical library is limited only by the computational resources available for vir-
tual screening. For this reason, supercomputers are the target system for a virtual 
screening campaign [6, 8]. If we look at the node architectures of the fastest accord-
ing to the TOP5001 list, we can see that they rely heavily on accelerators to increase 
their throughput. Although the accelerators are typically GPUs, they are from differ-
ent vendors and usually have other native programming languages. In the context of 
urgent computing [14], where we want to reduce the social and economic impact of 
a pandemic, virtual screening software needs to benefit from all available computing 
resources. Due to the increasing cost of porting, testing, and maintaining different 
implementations, there is a growing interest in code portability. When targeting an 
HPC system, application performance is the key metric we want to improve. For this 
reason, much effort is put into analyzing and improving the computational kernels. 
It is common to find highly optimized libraries that solve well-known problems, for 
example, BLAS [2] for linear algebra computations. In addition, we can use various 
approaches to automatically tune kernel parameters to improve computational effi-
ciency further [25] for the target architecture or workload.

Instead of focusing on the computational kernel, the main goal of this paper is 
to show how Out-of-kernel optimizations significantly impact an application’s per-
formance. As a demonstration, we applied them to LiGen, an extreme-scale virtual 
screening application [6]. In particular, we analyze how rearranging the kernel input 
data using architecture, kernel, and input features to execute them out-of-order can 
increase computational efficiency. Experimental results on a current HPC node 
show that this Out-of-kernel optimization can double the application’s performance. 
Moreover, since LiGen has a CUDA and SYCL implementation of the computa-
tional kernels, we measured an advantage with both, showing that the approach is 
portable. Although the proposed optimizations and experimental results apply to 
LiGen, they might be of interest to other applications with a similar design.

In Sect.  2, we introduce the virtual screening problem and the LiGen applica-
tion as a case study, while in Sect. 3, we discuss related work. Section 4 describes 
the proposed Out-of-kernel optimizations, along with their implementation for 
both SYCL 2020 and CUDA. The experimental results evaluating the approach are 
described in Sect. 5. Finally, Sect. 7 concludes the paper.

1 https:// www. top500. org/.

https://www.top500.org/
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2  Background

This section introduces virtual screening in drug discovery and its use for HPC sys-
tems. We also give an overview of the GPU architecture and focus on the LiGen 
algorithm.

2.1  Virtual screening for drug discovery

Drug discovery aims to find effective drug candidates against a disease. Broadly 
speaking, drug candidates are small molecules called ligands, and one or more pro-
teins may represent the disease. Based on domain knowledge, we can expect a ben-
eficial effect if we find a molecule that has a strong interaction with target proteins. 
Virtual screening aims to evaluate the interaction strength of a chemical library 
composed of many ligands. This helps domain experts choose which ones to test 
in vitro. This is an embarrassingly parallel task, given the independence of each pro-
tein-ligand pair.

Virtual screening is a well-known problem in the literature, where many 
approaches have been proposed, implemented, and evaluated [19, 30]. To evaluate a 
protein-ligand pair, we have to perform three tasks. Since the ligand is much smaller 
than a protein in terms of the number of atoms, the first task is to identify one or 
more regions of the protein where we would like to place the ligand (docking site). 
The second task aims to estimate the 3D displacement of the ligand’s atoms when it 
interacts with the target docking site: It docks the ligand into the protein. In addition 
to the rigid movement of the ligand, it is possible to change its shape. A subset of 
ligand bonds, called rotatable bonds, split the molecular atoms into two disjoint sets, 
allowing one set of atoms to rotate around the bond axis. This flexibility changes the 
geometric shape of the molecule, producing different poses, but does not alter its 
chemical and physical properties. Finally, the third task evaluates the strength of the 
interaction between the docked ligand and the docking site. This paper will focus on 
the second task: molecular docking.

2.2  HPC for virtual screening

Improvements in computing power and computational efficiency have made it possi-
ble to explore a large chemical space simultaneously and with greater accuracy [8]. 
In the context of urgent computing, [14], there are efforts to redesign existing soft-
ware for scaling out and to use accelerators of modern heterogeneous HPC nodes. 
The goal is to achieve a significant performance improvement [6, 8, 17, 29]. The 
supercomputing centers extensively use external offloading accelerators to speed 
up computation. Indeed, the data parallelism available in virtual screening tasks is 
well suited to the architecture of GPUs. Examples from the literature (e.g., Auto-
Dock-Vina [24], PLANTS [11], and LiGen [6]) have already demonstrated over 25× 
speedup after porting to GPUs.
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HPC infrastructure has already been used to perform molecular docking simula-
tion for virtual screening [7], and it has already been proven successful in designing 
a drug against avian influenza viruses [13].

2.3  GPU architectures

NVIDIA was the first GPU vendor to recognize the benefits of offloading HPC com-
puting onto the GPU. In the early 2000  s, NVIDIA introduced CUDA (Compute 
Unified Device Architecture). This prompted many developers to add CUDA sup-
port to their applications, including LiGen [26].

NVIDIA’s GPUs consist of Streaming Multiprocessors (SMs). All SMs can 
access the same global memory and exchange data with the CPU’s RAM. From a 
hardware perspective, each SM has a user-programmable cache called shared mem-
ory, a set of registers, and the hardware that performs the computation and mem-
ory operations. Each SM uses a SIMD, single instruction multiple data [9], scheme 
where a bundle of hardware threads called warp execute the same instruction on 
different data. Each SM can have a relatively high number of warps ready to exe-
cute, named active warps in CUDA jargon. Recent NVIDIA HPC architectures use 
4 hardware scheduler for each SM. At each cycle, the latter selects which warp to 
run. The number of active warps depends on the kernel’s hardware requirements and 
the GPU hardware availability. This way, it is possible to hide stalls due to memory 
access transparently for the programmer.

From a programming language perspective, it is possible to partition the compu-
tation into blocks. Each block consists of at least one warp. We have the guarantee 
that all warps belonging to the same block are executed by the same SM. There-
fore, efficient synchronization is possible, and we can program the shared memory 
to avoid accessing the global memory as much as possible. All the blocks that make 
up the whole computation are called a grid.

The developers are responsible for choosing the number of threads per block and 
the number of blocks per grid. Although both are constrained by the algorithm and 
the input data size, they can usually be tuned to improve overall performance.

Implementing the computational kernels using SYCL is one approach to achiev-
ing functional portability. SYCL stands for Single-source C++ Heterogeneous Pro-
gramming for OpenCL. In particular, it provides an abstraction using an offloading 
architecture abstraction. It allows everyone to write the implementation code once, 
using standard C++, and then each interested vendor will provide their backend 
targeting their accelerated architecture. LiGen has ported the CUDA kernels using 

Table 1  CUDA and SYCL 
terminology mapping

CUDA SYCL

Streaming multiprocessor Compute unit
Block Work-group
Warp Sub-group
Thread Work-item
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SYCL [4], in the context of the LIGATE European Project [20]. The SYCL termi-
nology differs from CUDA but can be easily mapped using Table 1. In the follow-
ing, we will use CUDA terminology as a reference.

2.4  Case study: LiGen

This paper aims to show how Out-of-kernel optimization can improve computa-
tional efficiency, tailoring them on LiGen, an application for extreme-scale virtual 
screening [6].
Algorithm 1  LiGen’s Docking Algorithm

In Algorithm 1, we have described the LiGen docking algorithm. The inputs to 
this algorithm are the docking sites of the protein and the ligands from the chemical 
space to analyze. The algorithm docks each ligand to each docking site of the target 
protein. The algorithm outputs the list of poses that should be scored in the third 
task of virtual screening. In this work, we focus on the docking kernel because it is 
the most demanding one in terms of hardware requirements and computation effort. 
It accounts for 90% of the execution time.

The LiGen docking algorithm performs a gradient descent with multiple restarts 
[21]. This docking procedure is applied to all the target proteins’ docking sites. Algo-
rithm 1 describes the algorithm in more detail. An initial pose is generated using the 
internal flexibility provided by the rotatable bonds at the start of the iterations (line 
3). After this translation, we use rigid rotation to find the best alignment in the dock-
ing site (line 4). Then, the shape of the ligand is optimized and refined based on 
the number of repetitions and rotatable bonds (lines 5 to 10). Finally, the algorithm 
checks that the pose does not collide with the protein (line 11) and is within the 
docking site (line 12). From the functions described in the algorithm, we notice that 
the computational complexity increases linearly with the number of rotatable bonds 
and atoms in the ligand [6]. Additionally, the evaluation of ligands in a docking site 
can be done in parallel without waiting for the result of other computations.
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From a kernel implementation perspective, two main ways exist to take advan-
tage of GPU parallelism in a virtual screening application. The most common is to 
spread the ligand-protein evaluation across the GPU to reduce the execution time 
as much as possible, which also increases the application throughput. We refer to 
this approach in literature as the latency one [12]. The AutoDock GPU and LiGen 
developers implemented this approach for an extreme virtual screening campaign 
against SARS-CoV-2 [6, 8]. Since the computation of a single ligand is independ-
ent of the others, we can hinge on data parallelism. The idea is to collect input data 
in a batch and then execute the whole batch on the GPU using a few threads to 
compute each input. Even if the computation time of a single ligand increases, the 
throughput might be higher since we are computing more input in parallel. Whether 
this batch approach yields a higher throughput than the latency one depends on 
the application. In the case of LiGen, it provides a 5× speedup with respect to the 
latency implementation [26]. This paper focuses on how we can manage the stream 
of ligands by reordering, packing, and organizing them. It also discusses how this 
affects the application’s throughput. Rather than comparing the differences in the 
kernel implementations, as discussed in [14], the paper emphasizes the importance 
of efficient ligand management.

From an implementation point of view, LiGen uses multiple CPU threads, called 
workers, to launch the computational kernels. It uses a double buffering technique to 
hide data transfers to and from the device. When a worker receives a batch of ligands 
to compute, called a bucket, it starts copying the data to the first available buffer on 
the GPU. Then, it waits for the GPU to become available and executes the computa-
tion using the whole GPU. Finally, it copies the results to CPU memory and releases 
the buffer for another worker. It is possible to use this approach for any available 
GPU in the system. Figure 1 provides an overview of how the ligand computation is 
mapped on the CUDA abstraction. One warp carries out the computation of a single 
ligand. In particular, their atoms are computed in parallel by different GPU threads. 
This paper will focus on NVIDIA GPUs, using both CUDA and SYCL.

Fig. 1  The mapping of ligands’ computation on the GPU logical and physical architecture
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3  State of the art

When we focus on the application level, improving the computation efficiency by 
executing a batch of input together has been successfully applied in various fields 
[26, 28, 31]. This trend is even more common in machine learning for accelerating 
training and inference [15, 18]. However, they target a more dynamic environment, 
considering the batch size as a tuning parameter [3]. This paper focuses on a classic 
HPC context, where the application and the architecture are known. For this rea-
son, we can analyze in more detail how to hinge on these measures to optimize the 
computation.

When focusing on the GPU kernels, there are three main factors that we need to 
consider: data movement, thread divergence, and occupancy [12]. The latter is the 
ratio of active warps on the SM to the maximum number of warps that can run on 
an SM.2

The GPU’s memory hierarchy has three main layers: global memory, shared 
memory/caches, and registers. As a general rule, it is more efficient to use the shared 
memory and the registers, as they are closer to the GPU’s computing resources3 [5]. 
Moreover, the SIMD nature of GPU implies that control flow instructions may lead 
to thread divergence, decreasing computation efficiency inside a warp. For this rea-
son, modern approaches borrowed from multi-core systems battle proven techniques 
[27] and enhanced them for GP/GPU systems [5]. These analyses are critical to iden-
tifying kernel bottlenecks and seizing optimization opportunities [10, 22]. However, 
this work focuses on Out-of-kernel optimizations and their impact on the application 
throughput. While the memory access pattern and thread prediction are tied to the 
kernel, we aim to increase the application throughput by improving occupancy. The 
kernel implementation using a batched design has been investigated in the litera-
ture [28, 29], also in an application domain similar to LiGen. However, these works 
focus more on in-kernel optimizations [10], while Out-of-kernel optimizations were 
either left to a static tuning phase or employed using a fixed strategy, not consider-
ing the target architecture. In this manuscript, we focus on Out-of-kernel methods 
to develop a more portable methodology. This follows a comparison between GPU-
centered computation approaches, better detailed in a previous work [26]. Usually, 
developers expose software knobs to tailor the kernel to the execution environment. 
In literature, several autotuners can improve the application performance, leveraging 
these knobs [23, 25]. However, they target kernel-related parameters, such as the 
number of CUDA threads per block. This paper aims to show how input features, 
kernel, and architecture features can be used to rearrange the kernel input to improve 
the application performance.

2 https:// docs. nvidia. com/ gamew orks/ conte nt/ devel opert ools/ deskt op/ analy sis/ report/ cudae xperi ments/ 
kerne llevel/ achie vedoc cupan cy. html.
3 https:// docs. nvidia. com/ deepl earni ng/ perfo rmance/ dl- perfo rmance- gpu- backg round/ index. html.

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
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4  Out‑of‑kernel optimization

For embarrassing parallel applications, it can be beneficial to bundle input in a 
bucket and execute them in a batch fashion. This holds true for LiGen [26]. While 
the batched approach is fairly common and analyzed in literature [12], in this paper, 
we focus on how we bundle ligands together and their impact on performance. In 
particular, it must answer two different design choices: (i) which inputs to bundle 
into a batch, and (ii) its size. In the LiGen context, we want to optimize how to bun-
dle ligands into a bucket. To increase code portability, we evaluated these Out-of-
kernel optimizations for both SYCL and CUDA implementations. In particular, they 
use ligand characteristics, such as the number of atoms and rotatable bonds, to bun-
dle them into different clusters. Then, for each cluster of ligands, we compute how 
many ligands a bucket should store using GPU hardware characteristics and kernel 
hardware requirements. In the remainder of this section, we will discuss implemen-
tation details.

4.1  Selecting the number of input clusters

In the batch approach, we hinge on the GPU parallelism by computing a bucket 
of ligands at the same time. This means the entire GPU is dedicated to the virtual 
screen of all the ligands in an input batch at any given time. The most straightfor-
ward implementation bundles all ligands in the same bucket, processing them with-
out altering their order. Since the docking complexity depends on input features, the 
time required to dock all the ligands in a batch can differ, decreasing the computa-
tion efficiency. For this reason, we use the input features related to the application 
performance to cluster the ligands in different buckets. Figure  2 provides a sche-
matic overview of this Out-of-kernel optimizations. The main goal that we want to 
achieve is to execute the input ligand out-of-order, processing together the ones that 
have a similar execution time, improving computation efficiency [12].

Looking at the algorithm complexity reported in Algorithm 1, we can see a linear 
dependency on the number of atoms and rotatable bonds. From the kernel imple-
mentation perspective, LiGen uses the warp threads to run parallel SIMD computa-
tions on the atoms. However, we need to process the rotatable bonds sequentially 

Fig. 2  Overview of how input ligands are mapped in different input clusters, according to their features, 
to enable out-of-order input execution. The goal is to balance the kernel time in the Streaming Multipro-
cessors
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to preserve the ligand geometry. For this reason, ligands within a bucket must have 
similar numbers of atoms and fragments to have a similar execution time, balancing 
the computation. These two input features can be considered orthogonal as the num-
ber of atoms and fragments are loosely related.

A Cartesian product between the maximum number of atoms and the maximum 
number of fragments for ligands within that cluster defines the number of clusters. When 
considering the number of atoms, we used a multiple of the warp size to generate dif-
ferent clusters, i.e., with 32 × n atoms with n > 0 . For the number of rotatable bonds, 
we used non-uniform partitioning. We prefer a more fine-grained resolution toward the 
lower number of fragments since they lead to a higher relative difference. For example, 
we can bundle ligands with 0, 1, 2, 5, and 12 rotatable bonds in the same bucket. Sec-
tion 5.1 reports the impact on performance when we change the number of clusters.

4.2  Selecting the bucket size

Since each ligand-protein pair can be computed independently, the bucket size is a 
parameter that we can tune. Ideally, we want a bucket with the number of ligands 
that maximizes computational efficiency, i.e., that uses the most GPU computational 
resources for the longest time. To achieve this goal, we must calculate how many ligands 
we can process in parallel on the GPU. In the remainder of this document, we will refer 
to this number as l. We can then use the largest multiple of l that fits into the GPU’s 
memory as the bucket size.

Since LiGen uses one warp to compute a single ligand, we can use the number 
of CUDA threads t in a CUDA block to calculate the number of ligands in a CUDA 
block. Usually, t is a tuning parameter, but we set t = 32 since we focus on Out-of-
kernel parameters in this paper. Thus, we compute a single ligand in each CUDA 
block.

The maximum number of active CUDA blocks depends on GPU hardware properties 
and kernel hardware requirements regarding registers and shared memory. We can use 
the CUDA API4 to query how many blocks b can be run on the same Streaming Multi-
processors (SM) for any given kernel. In the LiGen context, we consider the kernel that 
docks a ligand since it is the most demanding one in terms of hardware requirements. 
Therefore, we can compute the bucket size l on the fly as follows:

where SM is the number of SMs available on the GPU, and ws is the warp size.
Since one of the paper’s goals is to have this optimization portable across a large set 

of GPUs, we adopted a similar approach within an SYCL porting of LiGen. The port-
ing of the previous calculation on SYCL 20205 uses kernel bundle information from the 
standard. In particular, we can calculate the number of ligands l in a bucket as follows:

(1)l = b × SM ×
t

ws

4 CUDA function to query the number of active blocks on an SM for the given kernel cudaOccupan-
cyMaxActiveBlocksPerMultiprocessor.
5 https:// regis try. khron os. org/ SYCL/ specs/ sycl- 2020/ html/ sycl- 2020. html.

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
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where wgs is the maximum number of work items we can run on a single Com-
pute Unit (CU), given the target kernel. CU is the number of CUs, and sgs is the 
maximum subgroup size. Finally, t is the number of work-items in a work-group. In 
CUDA jargon, the work-items are CUDA threads, the CU is an SM, the work-group 
is a CUDA block, and the maximum sub-group size is the warp size. Although we 
can simplify t, we have written Eq. 2 to match the terms in Eq. 1. We can query the 
wgs, sgs, and CU values using the SYCL 2020 API. In particular, wgs is the property 
kernel_device_specific::work_group_size. The t parameter has the 
same value as in the CUDA implementation.

Unfortunately, not all SYCL compilers implement the entire standard yet. To over-
come this problem, we need to calculate wgs by manually examining the compiled ker-
nel. We look for its hardware requirements and compare them to the GPU resources. 
Due to differences in GPU architectures, especially when they are manufactured by dif-
ferent vendors, we cannot provide a one-fits-all equation to compute this term. How-
ever, since the dock kernel in LiGen is register bound, we set t = 32 , and in this paper, 
we are targeting the NVIDIA A100 GPUs; we can calculate the number of active 
blocks as follows:

where kr is the number of registers used by a kernel implementation and maxr is 
the maximum number of registers a CUDA thread can use. Since our GPU does not 
allocate resources linearly, we must consider that it allocates blocks of 256 registers 
and that the number of active warps in each SM should be a multiple of 4. As the 
SYCL compilers mature, Eq. 3 will become obsolete as wgs can be retrieved at runt-
ime using the standard SYCL API.

From a LiGen implementation point of view, the dock kernel has a non-type tem-
plate parameter representing the maximum number of atoms it can process. This imple-
mentation choice allows the compiler to optimize the kernel for a specific number of 
atoms. However, it also changes the number of hardware registers used by the kernel. 
Therefore, depending on the maximum number of atoms, each ligand cluster may have 
a different l value.

5  Experimental results

This section evaluates the proposed Out-of-kernel optimizations’ impact on the 
application performance. Therefore, in Sect. 5.2, we evaluate the impact on cluster-
ing ligands in different buckets according to input features, while in Sect. 5.3, we 
evaluate the impact of using kernel and GPU properties to size each bucket.

(2)l =
wgs

t
× CU ×

t

sgs

(3)
wgs

t
=

⌈

maxr
⌈

kr ∗ ws
⌉

256

⌉

4
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5.1  Experimental setup

We run the experiment using a modern HPC compute node from the Karolina super-
computer at IT4I. A compute node uses two AMD EPYC 7763 with 64 cores paired 
with 1024 GB of RAM and eight NVIDIA A100 with 40 GB of VRAM each. We 
used CUDA 11.7 with GCC 11.3.0 as a software stack for compiling the CUDA ker-
nels. We used Intel oneAPI 2023 as an SYCL compiler.

Since this is a typical HPC batch job, we want to evaluate the impact on the appli-
cation throughput in terms of computed ligands per second. Unless stated otherwise, 
we report the average throughput, computed as the number of processed molecules 
divided by the elapsed wall time.

5.2  Measuring the clusterization impact

This experiment aims to measure how clustering the input into different buckets, 
according to ligand features, can affect the application’s performance. We achieve 
this goal by performing a virtual screening campaign on a dataset of heterogeneous 
ligands. The input dataset contains 10 million different ligands with a number of 
atoms ranging from 20 to 120, having 0 to 20 rotatable bonds. In this experiment, 
we change the number of clusters for both input features. We set the bucket size 
for each cluster equal to l, as computed using Eqs. 1 and 2, according to the target 
implementation. The change in application performance is only due to how we bun-
dle the ligands together in a batch.

Figure 3 shows the experiment results using CUDA and SYCL. On the x-axis, 
we report the number of clusters that we use to group the ligands according to 
the number of rotatable bonds. On the y-axis, we group them according to the 
number of atoms. The value reported in the heatmap is the normalized through-
put achieved using as baseline the case where we bundle all ligands in the same 
batch, reported in the lower left cell. The upper right cell instead represents the 
finest-grained clustering, where we split the range of rotatable bonds into 23 clus-
ters while we split the range of atoms into 6 clusters. In total, we divided the 
input ligands into 138 different clusters according to their input features.

Fig. 3  Application throughput speed-up by varying the number of clusters that target both the number of 
atoms and rotatable bonds in a ligand
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The application throughput shows how it is possible to double performance 
by using the highest number of clusters. In addition, the trend might suggest that 
increasing the number of clusters could further improve performance. However, 
when we increase the number of clusters, we also spread the input dataset over 
more buckets. Therefore, at the end of the computation, we will have a larger 
number of half-empty buckets. This limitation is not problematic for large virtual 
screening campaigns, as we have to evaluate a significant amount of ligands, but 
it becomes relevant for everyday use.

To measure this limitation, we performed a virtual screening by varying the 
number of clusters and the number of ligands in the input dataset. Figure 4 shows 
the execution trace of LiGen. On the x-axis, we plot the execution time, while on 
the y-axis, we plot the application’s throughput over a moving observation win-
dow. Each line in the plot is an execution using 5 clusters for the number of atoms 
and 1, 8, 24, and 138 clusters for the number of rotatable bonds. We use LiGen to 
virtually screen a chemical library with a different number of ligands in each plot.

The experimental results show that the throughput is not constant, but we 
have a steep increase at the beginning and a steep decrease at the end. When we 
consider a large dataset, the effect of these two transients becomes negligible. 
However, when we use smaller datasets, it becomes more and more important. In 
particular, when we use 10K molecules (Fig.  4a), the configuration using more 
clusters becomes slower.

For this reason, the optimal number of clusters we want to use depends on the 
actual use case. If we target an extreme-scale virtual screening campaign [6], it is 
better to use many clusters. For everyday use, however, using a more coarse-grained 
classification of the input is better. We also need to consider that if we increase the 

Fig. 4  LiGen CUDA throughput Moving Average, upon using different numbers of clusters
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number of clusters, we must store more buckets in temporary storage, increasing the 
memory footprint.

5.3  Measuring the bucket size impact

We must choose their size when we bundle inputs together to hinge on data paral-
lelism to use GPU parallelism. This section aims to show the impact of using the 
proposed methodology for selecting the number of inputs based on kernel and GPU 
features. In particular, we use Eq. 1 or Eq. 2 to find the minimum number of ligands 
we need to fill the GPU, called l. We can then choose its multiple according to the 
memory available on the host or device side.

Figure 5 shows the throughput of the application by varying the bucket size, using 
both the CUDA (Fig. 5a) and SYCL (Fig. 5b) implementations. To reduce the influ-
ence of different features, such as the number of rotatable bonds, we focus on three 
ligands: “small,” “medium,” and “large.” They have 17, 53 and 99 atoms, respec-
tively. We measured a stable throughput by replicating each ligand 10 million times 
and docking the ligands into twelve docking sites of a target protein. Each line in the 
graph represents a different data set. The x-axis represents the number of ligands in 
each bucket. We normalize the size using l, which is the value suggested by Eq. 1 or 
Eq. 2, as reported in Table 2. We also evaluate application performance using the 
maximum number of ligands that fit into GPU memory, labeled “max⋅l.”

The experimental results show two phases: before and after the value suggested 
by the equations. Before this value, the application throughput increases with the 
number of ligands. This is due to the increasing number of active warps that the 
SM scheduler can use to hide computational stalls. After this value, we have a drop 
in performance as we are processing the same ligand, and its computation will take 
a similar amount of time. The throughput increases as more active warps are cre-
ated, repeating the pattern. The pattern is more evident for the SYCL and CUDA 
implementations with small ligands. For medium and large ligands, the change in 
throughput is smoother. This means that we choose how many and which ligands are 
evaluated on the GPU for each wave, but the GPU schedules the active warps.

To evaluate the impact of this Out-of-kernel parameter in a more realistic sce-
nario, we performed the same experiment using the heterogeneous dataset described 

Fig. 5  LiGen average throughput by varying the number of ligands in a bucket for three classes of 
ligands



 G. Accordi et al.

1 3

in Sect. 5.2. We bundle the input ligands into 128 different clusters to measure per-
formance. Figure 6 shows the average throughput of the CUDA and SYCL imple-
mentations. While both follow the same trend, confirming the impact of Out-of-ker-
nel optimization, the difference in throughput is larger than expected. We analyzed 
the docking kernel as it accounts for over 90% of the total execution time. Compar-
ing their execution times, SYCL was only 12% slower than CUDA, while the gap in 
application throughput is more significant. This is due to the higher register pressure 
of the SYCL implementation, as reported in Table 2, which reduces the number of 
active blocks on the GPU. This means that SYCL can process fewer ligands in paral-
lel, reducing its throughput. However, it can provide a significant speed-up over the 
CPU version, achieving a throughput of less than 50 ligands/s using all available 
cores.

The bucket size reported in Table 2 has been calculated using Eq. 1 for CUDA 
and Eq. 2 for SYCL. This number is subject to change depending on several fac-
tors. These factors include the template parameter used by the docking kernel, which 
affects the docking kernel register pressure used by the compiler, the docking kernel 
implementation, and the target offloading architecture. However, the bucket size is a 
multiple of 432 ligands on both implementations. The latter is the minimum incre-
ment in the size of the buckets due only to architectural characteristics. We can com-
pute this increment step by multiplying the number of SMs per GPU by the number 

Fig. 6  LiGen average throughput with a dataset of heterogeneous ligands by varying the number of 
ligands in a bucket

Table 2  Comparison between 
the CUDA and SYCL kernel 
implementations, by varying the 
maximum number of atoms, on 
an NVIDIA A100 graphics card 
compiling with CUDA 11.7 and 
oneAPI 2023

Num atoms CUDA SYCL

Register Bucket Size Register Bucket Size

32 102 1728 158 1296
64 103 1728 176 864
96 98 1728 176 864
128 102 1728 178 864
160 112 1728 176 864
192 124 1728 182 864
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of hardware schedulers per SM. With our reference GPU, NVIDIA A100, we have 
108 SMs and four hardware schedulers, which results in a bucket size step of 432.

6  Discussion

The main objective of the proposed work is to show how we can improve appli-
cation throughput among different GPU architectures by using Out-of-kernel opti-
mizations. In particular, we used input features, kernel requirements, and architec-
tural features to rearrange the kernel inputs. Thus, we executed them out of order to 
improve the computation efficiency. We also wanted to demonstrate how these opti-
mizations are not strictly related to the language used for the kernel description (i.e., 
CUDA or SYCL). Thus, Sect. 5.2 evaluates the impact of clusterization with SYCL 
and CUDA to demonstrate that they have a similar trend. Section 5.3 evaluates how 
the performance changes by varying the number of ligands to show how the trend is 
coherent between CUDA and SYCL.

Performing a direct comparison between CUDA and SYCL versions of the target 
application was out of the scope of this paper. However, we can draw a few gen-
eral comments derived from our experience with this work. Different trade-offs exist 
when considering whether to use a CUDA or a SYCL implementation. CUDA ena-
bles better low-level access to the resources, thus granting the possibility to use the 
underlying hardware efficiently. SYCL has a higher level abstraction, supporting 
GPUs from different vendors. Their performances are not comparable on the target 
NVIDIA A100-based system used for the validation. This is mostly due to the differ-
ent register pressure, as reported in Table 2, that limits the exploitable parallelism.

From the implementation point of view, the CUDA bucket dimensions are calcu-
lated by querying the CUDA runtime, making this information available for all the 
NVIDIA cards. On the other hand, SYCL is a cross-platform programming model 
with multiple implementations, which may support different (and partial) versions 
of the standard. Thus, to compute the bucket dimensions, we need to consider these 
differences, selecting the correct function call based on the compiler version.

7  Conclusions

With the increasing availability of heterogeneous nodes in HPC systems, there is 
a trend for re-designing scientific applications to hinge on accelerator computation 
power, typically GPUs. To achieve this goal, an application can follow two different 
strategies. On the one hand, it can spread the computation across the GPU, lower-
ing the execution time and thus increasing its throughput. On the other hand, it can 
hinge on data parallelism by computing input batches.

This paper focuses on Out-of-kernel optimizations that application developers 
can use in batch approaches. In particular, we can use input features to group inputs 
that are expected to have similar execution times, while we can use the kernel and 
GPU features to compute the batch size.



 G. Accordi et al.

1 3

We implemented this Out-of-kernel optimization on LiGen, an extreme-scale vir-
tual screening application that can be scaled up an entire supercomputer. The experi-
mental result shows that the data preparation phase can improve computational effi-
ciency, doubling the application’s throughput. This performance gain is consistent 
with both SYCL and CUDA implementations. However, a large or homogeneous 
input set is required to achieve this efficiency level. The latter is not a limitation 
since we need maximum efficiency only for extreme-scale virtual screening cam-
paigns with a very large number of ligands. Even though the result refers to LiGen, 
the reported analysis may be of interest to applications with a similar pattern.
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