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Abstract
The viscosity properties of GNP-alumina hybrid nanofluids are of significant impor-
tance in various engineering applications. This study compares the predictive per-
formance of response surface methodology (RSM), artificial neural network (ANN), 
and adaptive neuro-fuzzy inference system (ANFIS) for the viscosity (µrel) and rela-
tive viscosity (µrel) of GNP-alumina hybrid nanofluid at varying mixing ratio (0–3) 
and temperature (15–55 °C). The ANN and ANFIS models were optimised by vary-
ing the number and type of neurons and membership functions (MFs), respectively. 
In contrast, the RSM model was optimised by varying the source model. The effi-
cacy of the models was assessed using various measures of performance metrics, 
including residual sum of squares, root mean square error, mean absolute error, 
and mean absolute percentage error (MAPE). The ANN architecture with 4 neu-
rons exhibited exceptional proficiency in forecasting the µnf, achieving an R2 value 
of 0.9997 and a MAPE of 0.3100. Meanwhile, the best ANN architecture for the 
µrel was achieved with 5 neurons, resulting in an R2 of 0.9817 and MAPE of 0.2588. 
Furthermore, the ANFIS model with the difference of two sigmoidal MFs and the 
product of two sigmoidal MFs for µnf and Generalized Bell MFs for µrel exhibited 
the best performance with (3 5) and (4 5) input membership functions, respectively. 
An R2 value of 0.9999 and 0.9872, with a corresponding MAPE value of 0.0945 
and 0.1214, were reported for the optimal ANFIS architecture of µnf and µrel, respec-
tively. The RSM model also produced its most accurate prediction with the quad-
ratic model for both µnf and µrel, with an R2 value of 0.9986 and 0.8835, respectively. 
Thus, comparative analysis across various models indicated that the ANFIS model 
outperformed others regarding performance metrics for both µnf and µrel. This study 
underscores the potential of ANN and ANFIS models in accurately forecasting the 
viscosity properties of GNP-alumina hybrid nanofluids, thus offering reliable tools 
for future applications.
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List of symbols
2FI  2-Factor interaction
AI  Artificial intelligence
ANFIS  Adaptive neuro-fuzzy inference system
ANN  Artificial neural network
ANOVA  Analysis of variance
CI  Confidence interval
Coefficients α0, α1, α2, β0, β1, β2, β3, β4,  
β5, γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9  Parameters of the regression equations for the 

RSM model
df  Degrees of freedom
DoE  Design of experiments
EG  Ethylene glycol
FCM-ANFIS  Fuzzy C-means adaptive neuro fuzzy infer-

ence system
Gauss2MF  Double gaussian membership function
GaussMF  Gaussian membership function
GbellMF  Generalised bell membership function
GNP  Graphene nanoplatelet
LR  Linear regression
MAE  Mean absolute error
MAPE  Mean absolute percentage error
MFs  Membership functions
MOD  Margin of deviation
MSE  Mean square error
n  Number of data points
PiMF  Pi-shaped membership function
PsigMF  Product of sigmas membership function
R  Correlation coefficient
R2  Coefficient of determination
RMSE  Root mean square error
RSS  Residual sum of squares
RSM  Response surface methodology
SDS  Sodium dodecyl sulfate
SR  Shear rate
T  Temperature (°C)
TrapMF  Trapezoidal membership function
TriMF  Triangular membership function
VIF  Variance inflation factor
φ  Nanoparticle volume fraction
µ  Viscosity (mPaS)
µi  Output of an artificial neuron
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µnf  Viscosity of nanofluid
µrel  Relative viscosity of nanofluid

1 Introduction

The increasing demand for energy-saving solutions and the limited resources have 
highlighted the need for efficient heat transfer systems. Nanofluids have emerged as 
a promising solution due to their compelling heat transfer performance compared 
to traditional fluids, such as water, oil, and ethylene glycol (EG) [1]. The use of 
nanofluids has been gaining attention due to their remarkable properties and poten-
tial applications in various industries, particularly in enhancing heat transfer per-
formance [2]. To further improve the properties of nanofluids, hybrid nanofluids 
have been studied, and they have shown more promising heat transfer enhancement 
effects than single nanofluids in most cases [3]. Numerous studies [3–5] have con-
firmed the potential of these nanofluids. Therefore, hybrid nanofluids are gaining 
attention as an effective solution to improve heat transfer efficiency, which can lead 
to energy savings and a reduction in greenhouse gas emissions. Further research on 
hybrid nanofluids is needed to optimise their properties and understand their behav-
iour under different conditions.

Hybrid nanofluids, which are base fluids with two or more nanoparticles, have 
altered physical and chemical properties that result in improved thermal conductiv-
ity [6]. However, adding these nanoparticles also alters the fluid’s rheological prop-
erties [7], which are crucial parameters in designing efficient heat transfer systems. 
Hence, accurate prediction of these parameters is essential for optimising the perfor-
mance of nanofluids in practical applications. Given this, classical prediction models 
have proved insufficient in elucidating nanofluid behaviour, leading to discrepancies 
between experimental findings and established models [8]. This limitation under-
scores the urgency for advanced modelling approaches capable of comprehending 
intricate nanoparticle-fluid interactions. Consequently, investigations are being done 
on diverse modelling techniques capable of yielding more precise forecasts for ther-
mophysical properties of nanofluids, capturing their intricate nonlinear connections 
and complex nanoparticle-fluid interplays. In response to these challenges, numer-
ous approaches [9–13] have been employed to model and predict the thermophysical 
properties of nanofluids.

Esfe et al. [14] applied the ANN technique to investigate the rheological proper-
ties of  TiO2/water nanofluids, with temperature and volume fraction as predictors. 
The calculated R-squared value of 0.9998 indicated that the ANN model was able 
to accurately forecast nanofluid viscosity (µnf). Shahsavar et al. [15] used ANNs to 
forecast the thermal conductivity and µnf of liquid paraffin-alumina nanofluids based 
on experimental data and found that the ANN method provided accurate predictions. 
Afrand et al. [16] utilised the ANN modelling technique to estimate the rheologi-
cal properties of Fe–EG nanofluid. They demonstrated that using the ANN method 
reduced the cost and time required for laboratory measurements. Mehrabi et  al. 
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[17] formulated an ANFIS model to forecast the effective µnf. The outcomes gener-
ated by the suggested FCM-ANFIS model matched closely with the experimental 
measurements.

Colak et al. [18] investigated the µnf behaviour of  ZrO2/Water nanofluids prepared 
through a two-step method at varying concentrations (between 0.0125 and 0.2%) 
and temperatures. Experimental data revealed that µnf decreased with increasing 
temperature and increased with higher concentration. They developed both an ANN 
and a mathematical correlation to predict µnf. The ANN demonstrated high accuracy 
with an average error rate of −0.11%, while the mathematical model achieved an 
error rate of −0.74%. The study concluded that both the developed ANN and the 
mathematical correlation are effective tools for predicting µnf based on temperature 
and concentration variations.

Toghraie et al. [19] investigated the µnf of Ag/EG nanofluid over a temperature 
range of 25–55  °C and nanoparticle volume fraction of 0.2–2%. Using an Artifi-
cial Neural Network (ANN), they successfully predicted the µnf and compared the 
ANN’s performance to a correlation method. The proposed algorithm identified the 
optimal ANN architecture, achieving accurate predictions based on input values of 
temperature and nanoparticle volume fraction. A comparison of the ANN and cor-
relation results demonstrated the ANN’s superior accuracy in predicting the µnf. The 
correlation method exhibited an MSE of 0.0012, SSE of 0.0512, and a maximum 
error of 0.0858. The study concluded that the ANN offers an effective means to pre-
dict Ag/EG µnf, reducing the need for costly experimental measurements.

In their study, Bhat et al. [20] explore µnf, investigating its interplay with nano-
particle concentration, size, and temperature. Employing CuO nanoparticles of vary-
ing sizes (15 nm, 45 nm, and 75 nm), the study observes µnf changes in the range 
of 1–4% volume concentrations and temperatures spanning 293  K to 353  K. The 
outcomes reveal notable trends: a 23% increase in effective µnf with added nanopar-
ticles, an 80% decrease in µnf with temperature elevation, and a slight 0.5% increase 
in µnf as particle size grows. The research develops a correlation and employs ANN 
modelling for effective µnf prediction, showcasing the superior performance of ANN 
over the correlation. The R2 values for the ANN and correlation models stand at 
0.95 and 0.90, respectively.

In another study, Esfe et al. [21] focused on predicting the µnf of MWCNT-ZnO 
(50–50)/oil SAE50 nano-lubricant using an ANN. Their investigation incorporated 
three key factors: temperature, nanoparticle volume fraction (φ), and shear rate. 
They utilised principal component analysis (PCA) to detect outliers and conducted a 
sensitivity analysis to evaluate the significance of temperature and φ in influencing 
experimental variations in µnf. Remarkably, the developed ANN model, employing 
7 neurons, exhibited a robust correlation between predicted and experimental data, 
effectively capturing the intricate behaviour of µnf in the nano-lubricant. This study’s 
conclusion underscores the ANN’s proficiency in accurately forecasting µnf and pro-
viding valuable insights into the complex interplay of temperature, φ, and the µnf 
characteristics of the MWCNT-ZnO (50–50)/oil SAE50 nano-lubricant system.

Esfe et al. [22] focused on predicting the µnf of a hybrid nano-lubricant MWCNT-
Al2O3 (30:70)/Oil 5W50 using an ANN. The study investigated the influence 
of temperature and φ on shear rates (SR) and µnf prediction through ANN. The 
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feed-forward ANN employed a multilayer perceptron network (MLP) and effectively 
predicted µnf based on experimental temperature, SR, and φ data. Sensitivity analy-
sis highlighted the importance of these factors in experimental µnf variations. The 
generated and tested ANN exhibited strong agreement between actual and predicted 
values. Comparison with other data processing methods, such as support vector 
machine (SVM), partial least squares (PLS), and principal component regression, 
showcased ANN’s superior performance. The ANN model with 8 neurons also dis-
played small residual values for µnf, indicating its precision. Using the ANN BFGS 
algorithm, a low mean squared error (MSE) of 5.6e−02 and a high % correlation 
coefficient of 97% were achieved for µnf prediction. Error diagrams underscored 
ANN’s efficacy in determining µnf’s behaviour and the employed learning algo-
rithm’s effectiveness. Notably, the study also explored linear adjustments using the 
identity function in the output layer to adapt the trend of targets in some instances.

Yacine et al. [23] investigated the use of RSM and ANN methods to estimate the 
µnf of CuO-liquid paraffin nanofluids. The nanofluids were prepared at temperatures 
of 25–100  °C and mass fractions of 0.25–6 wt.%. The RSM method was used to 
develop a cubic polynomial model for the µnf. The model was observed to be accu-
rate, with an R2 value of 0.9230 and a maximum margin of deviation of 10.48%. The 
ANN model was more accurate than the RSM model, with an R2 value of 0.9940 
and a maximum margin of deviation of 3.27%.

Qing et al. [24] investigated the interplay of nanoparticle φ and temperature on 
dynamic µnf in  Al2O3-MWCNT (40:60)—Oil SAE50 hybrid nano-lubricant. Their 
study involved 174 experiments encompassing various φ, temperatures, and shear 
rates. An ANN was developed using the trainbr/trainlm algorithm, exhibiting a high 
correlation coefficient of 0.999 and an MSE of 3.58 for predicting μnf. Comparative 
error diagrams and histograms validated the ANN’s efficacy in assessing the effi-
ciency of μnf and the training algorithms. The findings underscore that temperature 
notably influences μnf, while φ’s effect is more pronounced at lower temperatures. 
The shear rate also impacts μnf in a non-uniform manner.

This review shows that the rapid advancement of nanofluid rheology modelling, 
characterised by AI-based models and RSM applications, has led to accurate predic-
tions of µnf under varying conditions. However, a significant research gap persists 
in the specific context of GNP-Alumina hybrid nanofluids, a relatively unexplored 
area within the field. This study aims to address this gap by advancing the predic-
tive capabilities of these models in a novel and challenging nanofluid system. Also, 
while the existing literature review underscores successful applications of ANN 
and RSM techniques for predicting µnf, the unique characteristics of GNP-Alumina 
hybrid nanofluids introduce a new set of complexities. These complexities arise 
from the intricate interactions between mixing ratio and temperature, leading to 
nonlinear and non-uniform µnf changes. To address this challenge, our manuscript 
takes an innovative approach by optimising the AI-based models and RSM mod-
els to accurately forecast both µnf and µrel. This involves customising the models to 
capture the intricate interplay of mixing ratio and temperature, which has not been 
extensively explored in the existing literature.

Moreover, while ANNs have demonstrated their prowess in predicting nano-
fluid properties, including µnf, their architecture and performance optimisation 
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remain underexplored in the context of GNP-Alumina hybrid nanofluids. Our 
manuscript innovatively tackles this aspect, striving to develop ANN models that 
exhibit superior accuracy while considering the hybrid nature of the nanofluid. 
Additionally, incorporating µrel prediction, an aspect often overlooked in previous 
studies, adds further novelty to our work.

Thus, this study focuses on optimising AI models and RSM to predict the µnf 
and µrel of GNP-Alumina hybrid nanofluid. The study incorporates the influence 
of mixing ratio and temperature, which are known to have a significant impact on 
the properties of nanofluids. Two different AI models (ANN and ANFIS), RSM, 
and traditional linear regression (LR), were used to predict nanofluid properties. 
The AI models were optimised by varying the number and type of neurons and 
membership functions, respectively, while the RSM model was optimised by 
varying the source model. The performance of the models was evaluated using 
various measures of prediction accuracy, including margin-of-deviation (MOD), 
root mean square error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE).

It is essential to note that GNP and alumina were selected as the nanoparticles 
for the hybrid nanofluid due to their high surface area, good thermal conductivity, 
and relatively low cost. GNPs have a high surface area, meaning they can interact 
with many fluid molecules, leading to improved heat transfer [25]. GNP are also 
good heat conductors, which means they can quickly transfer heat from one part 
of the fluid to another. Alumina is also a good conductor of heat, which can help 
further improve the hybrid nanofluid’s heat transfer performance [26]. Addition-
ally, GNP and alumina are relatively inexpensive and easy to synthesise, mak-
ing them a more practical choice than some other nanomaterials, such as carbon 
nanotubes.

The results of this study can be used to design efficient heat transfer systems 
using GNP-Alumina hybrid nanofluid. The optimised AI models and RSM pro-
vide accurate predictions of the µnf and µrel of the nanofluid, which can be used 
as input parameters for the design of heat transfer systems. This study focused on 
the µnf of the hybrid nanofluid based on several considerations rooted in both sci-
entific and practical aspects. Firstly, the rheological behaviour of nanofluids plays 
a crucial role in various industrial applications, impacting their flow characteris-
tics, stability, and overall performance. By accurately predicting µnf and µrel, this 
study aims to provide insights into the fluid’s behaviour, which has implications 
for transportation, heat transfer, and mixing, among others. Secondly, the hybrid 
nature of GNP-Alumina nanofluids introduces complex interactions between the 
nanoparticles and base fluid, often leading to nonlinear and non-additive effects. 
By addressing the challenges of predicting these rheological properties, this study 
contributes to the fundamental understanding of nanofluid behaviour, which is 
essential for designing and optimising various technological applications.

Additionally, the study of rheological behaviour provides a foundation for fur-
ther research into the thermophysical properties of nanofluids, including their 
thermal conductivity and convective heat transfer characteristics. These proper-
ties are closely interrelated with rheology and are critical factors in enhancing 
heat transfer efficiency.
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2  Materials and methods

2.1  Experimental data collection

The research aims to evaluate the practicability of employing RSM and AI-based 
techniques, such as ANN and ANFIS, for modelling the influence of temperature 
and mixing ratio on the µnf of a hybrid nanofluid. To achieve this, the authors 
leveraged laboratory data sourced from Borode et al. [4]. This dataset was chosen 
due to its relevance and alignment with the objectives of our current research, 
as it provides a comprehensive set of experimental measurements specifically for 
GNP-Alumina hybrid nanofluids. Borode et al. [4] synthesised the hybrid nano-
fluid using a two-step approach and employing SDS surfactants to combine GNP 
with  Al2O3 nanoparticles (20–30  nm diameter). The researchers used various 
mixing ratios of the hybrid nanoparticles (0.33, 1.00, and 3) to prepare the hybrid 
nanofluids at nanoparticle loading of 0.1 vol% while maintaining equal concen-
trations of surfactant (1:1). They observed all the nanofluid to be stable for over 
48 h. The mixing ratio was calculated by dividing the weight of GNP by that of 
 Al2O3.

The researchers used a viscometer to measure the µnf of the resulting nanofluid 
samples at various temperatures (between 15 and 55 °C) and generated a dataset 
for future modelling processes. The dataset covers a range of mixing ratios (R) 
and temperatures (T), enabling us to incorporate the effects of these factors on µnf 
and µrel predictions, which is a central aspect of our investigation.

2.2  Artificial neural network (ANN) modelling

An ANN was developed using MATLAB software to model the µnf and µrel of 
the hybrid nanofluid. The MATLAB 2020a software platform facilitated the con-
struction and training of the neural network architectures, allowing for the itera-
tive adjustment of parameters to achieve the highest predictive accuracy. The ANN 
architecture was optimised through adjustment of the number of neurons and trained 
with 70% of the experimental data, while 15% was used for testing and the remain-
ing 15% for validation. To evaluate the accuracy of the ANN model, the forecasted 
values were compared with the laboratory data, and the mean square error (MSE) 
was calculated as a measure of efficacy. Equation (4) presents the formula used to 
calculate the MSE [27], which indicates the disparity between the observed data and 
the projected values derived from the ANN predictions.

where n is the datapoint number.
Artificial neural networks (ANNs) are a type of machine learning algorithm 

that takes inspiration from the structure and function of the human brain [28]. 

(1)MSE =
1

n

n∑

i=1

(Actual Valuei − Preducted valuei)
2
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They are made up of interconnected artificial neurons that process and analyse 
data. Each neuron receives input signals from its neighbouring neurons, applies 
an activation function to process the information, and passes the output to other 
neurons in the network. ANNs learn by modifying the strengths of the connec-
tions between neurons to enhance the network’s capability to provide precise pre-
dictions or classifications. Neurons are modelled as mathematical functions that 
take input values (xj), multiply them by corresponding weights (wij), add a bias 
term (bi), and then apply an activation function (f) to produce an output µi. The 
mathematical model of a neuron is shown in Eq. (5) [29]. To assess the accuracy 
of the ANN model in predicting µnf, we calculated the mean square error (MSE) 
using the actual and predicted values of µnf, where n is the number of data points.

To develop an efficient ANN, one must consider factors such as the learn-
ing algorithm, number of neurons, and choice of activation function. The Leven-
berg–Marquardt algorithm was selected as the learning algorithm for this study. This 
algorithm uses an iterative approach to minimise the disparity between predicted 
and actual output [30]. In addition, this algorithm enables the network to progres-
sively enhance its predictive accuracy. It is important to note that the efficiency of 
the ANN is influenced by its architecture, including the number of neurons and the 
selection of activation functions. A two-layer feed-forward network was employed 
in this study. The hidden layer used the tansig activation function, while the out-
put layer employed the purelin activation function. These functions, represented by 
Eqs. (6) and (7), respectively [31], contribute to processing input data and producing 
accurate predictions.

Numerous neuron numbers, spanning from 1 to 15, were examined for network 
optimisation, and the most effective count was chosen. Given the random nature of 
weight and bias generation in the network, multiple runs were conducted for each 
neuron number, and the average performance was employed as the metric. The opti-
mal neuron number was identified through iterative adjustments, varying the neuron 
number and assessing the resulting network output.

2.3  Adaptive neuro‑fuzzy inference system

ANFIS is an effective hybrid method for modelling various systems by combining 
fuzzy techniques and ANN [32]. The shortcomings of each approach can be reduced 

(2)�i = f

(
n∑

j=1

(
wijxj + bi

)
)

(3)tansig(n) =
2

1 + e−2n
− 1

(4)f (x) =
1

1 + exp(−x)



4849

1 3

Optimisation of artificial intelligence models and response…

by the other, which ultimately enhances the efficiency of the system, known as 
neuro-fuzzy.

The ANFIS modelling based on grid partitioning (GP) Sugeno-based fuzzy infer-
ence systems was performed using MATLAB R2020a software with the Fuzzy 
Logic Toolbox. The ANFIS models were meticulously crafted and fine-tuned 
within the MATLAB environment, leveraging its computational power and flex-
ibility to effectively handle the intricate relationships between variables. The GP-
ANFIS method is efficient for small sets of input variables, and it employs member-
ship functions (MFs) to partition input data into rectangular subspaces, which form 
the basis for fuzzy regions [33, 34]. The number of membership functions (MFs) 
can vary depending on the significance and impact of the input variables. While 
more fuzzy rules can lead to better performance, they also increase computational 
demands and model complexity. There is a limit to the number of fuzzy rules that 
can be effectively used, as too many rules can lead to the “curse of dimensional-
ity” [35]. In GP-ANFIS, the number of MFs allocated to each input is limited to a 
predetermined range based on the available data points. This ensures that the model 
remains manageable and avoids having too many rules for the available data.

In this study, the ANFIS model was trained using 85% of the experimental data, 
and the remaining 15% of the data was used for testing the model. The ANFIS model 
was used to predict the µnf and µrel of the hybrid nanofluids based on the mixing ratio 
and temperature inputs. The number and type of membership functions (MF) for 
each input variable were optimised to achieve the best performance of the ANFIS 
model. Various MF types were considered in fuzzy logic systems, and the number of 
MF was varied from 3 to 4 for the mixing ratio and 4–5 for the temperature. The MF 
types evaluated include Triangular (TriMF), Trapezoidal (TrapMF), Generalized 
Bell (GbellMF), Gaussian (GaussMF), Double Gaussian (Gauss2MF), Pi-shaped 
(PiMF), Difference of Sigmas (DsigMF), and Product of Sigmas (PsigMF) Member-
ship Functions. The performance of the ANFIS model was evaluated using the MSE 
between the predicted and actual values of µnf and µrel. The best ANFIS model was 
selected based on the minimum MSE value.

2.4  Response surface methodology (RSM) modelling

The statistical method of RSM was utilised to model the µnf by fitting a response 
surface to laboratory data through the Design of Experiments (DoE). Subsequently, 
regression analysis was applied to establish a response surface model based on the 
collected data. The RSM models were expertly constructed using the Design Expert 
13 software. This software facilitated the fitting of response surfaces to experimental 
data, enabling the exploration of various source models and their optimisation to 
accurately capture the complex interactions between input factors and µnf responses. 
The input parameters and output were employed to suggest a variety of polynomial 
functions resembling first-, second-, or third-order equations as presented in Eqs. (5, 
6 and 7) [23, 36, 37]. The selection of the most suitable polynomial function, which 
closely matches the data was chosen by the user based on mathematical criteria. The 
Design Expert software determined the quadratic equation’s coefficients through 
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multiple regression analysis of the experimental results. The regression equation’s 
strength was estimated using R2 and R. Graphical techniques were employed to visu-
alise the model’s ability to fit the actual data, and ANOVA was utilised to assess the 
model’s significance. The RSM analysis code and factors definition are presented in 
Table 1.

In the application of RSM to predict the µ properties of GNP-alumina hybrid 
nanofluids, the selection of optimal source models played a pivotal role in achieving 
precise predictions. The study explored various source models to effectively capture 
the intricate relationships between input factors (mixing ratio and temperature) and 
viscosity responses (µnf and µrel). The options considered for viscosity predictions 
encompassed Linear, Two-Factor Interaction (2FI), Quadratic, Cubic, and Quartic 
models, each offering increasing complexity to represent nonlinearities. Similarly, 
for µrel predictions, the same models were evaluated. These source models were 
meticulously optimised to minimise prediction errors and closely align with experi-
mental data. By systematically comparing their performance, the study identified the 
most suitable source models that accurately portrayed the interplay between mixing 
ratio, temperature, and µ properties of GNP-alumina hybrid nanofluids. This rigor-
ous approach ensured the chosen source models precisely captured the µ responses 
and facilitated reliable predictions under varying experimental conditions.

2.5  Comparative analysis

The study compared the performance of ANFIS, ANN and RSM models with linear 
regression analysis. Evaluation metrics such as R2, and error metrics were used to 
assess the performance of the different models. The error metrics include the margin 
of deviation (MOD), mean absolute percentage error (MAPE), mean absolute error 
(MAE), residual sum of squares (RSS), and root mean square error (RMSE). The 
error metrics were calculated using Eqs. (8, 9, 10, 11, 12) to evaluate the models’ 
performance [38, 39].

(5)� = �0 + �1T + �2R

(6)� = �0 + �1T + �2R + �3RT + �4T
2 + �5R

2

(7)� = �0 + �1T + �2R + �3RT + �4T
2 + �5R

2 + �6T
2R + �7TR

2 + �8T
3 + �9R

3

Table 1  Code and factors for the RSM architecture

Factor Name Minimum Maximum Coded low 
(−1)

Coded 
high 
(+ 1)

A Mixing ratio 0 3 0 3
B Temperature (°C) 15 55 15 55
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(8)MOD =
actual value − predicted value

actual value
× 100

(9)MAPE =
1

n

n∑

i=1

|
|MODI

|
|

(10)MAE =
1

n

n∑

i=1

|
|actual valuei − Predicted valuei

|
|

(11)RSS =

n∑

i=1

(
Actual valuei − Predicted valuei

)2

(12)RSME =

√
RSS

n

Table 2  The correlation coefficient and sorted MSE performance of the ANN viscosity output at differ-
ent neuron number

Number 
of neuron

Coefficient of correlation MSE performance

Train Validation Testing All Train Validation Testing All

4 1.0000 1.0000 0.9998 0.9998 3.58E−06 2.47E−05 4.69E−05 1.33E−05
7 0.9997 1.0000 0.9998 0.9996 3.73E−05 1.72E−05 4.49E−05 3.55E−05
3 0.9997 0.9998 1.0000 0.9993 2.74E−05 6.23E−05 1.77E−04 5.51E−05
6 0.9998 1.0000 0.9976 0.9993 1.74E−05 8.35E−05 2.33E−04 5.96E−05
2 0.9979 0.9999 0.9951 0.9993 7.60E−05 1.75E−05 3.62E−05 6.13E−05
10 0.9997 0.9983 0.9973 0.9989 3.57E−05 3.20E−04 3.17E−04 1.21E−04
1 0.9990 0.9999 0.9989 0.9985 8.03E−05 3.90E−04 1.47E−04 1.37E−04
5 0.9998 0.9658 0.9979 0.9983 1.86E−05 7.67E−04 1.88E−04 1.56E−04
11 1.0000 0.9979 0.9941 0.9958 1.95E−07 3.22E−04 2.16E−03 3.73E−04
15 1.0000 0.9625 0.9846 0.9951 1.51E−07 5.42E−04 2.18E−03 4.09E−04
14 0.9994 0.9976 0.9988 0.9952 5.86E−05 5.70E−04 1.99E−03 4.25E−04
9 0.9995 0.9930 0.9999 0.9912 2.93E−05 1.77E−03 3.33E−03 7.86E−04
8 1.0000 0.9801 0.9785 0.9882 3.11E−06 3.81E−03 4.42E−03 1.24E−03
13 0.9968 0.9805 0.9324 0.9873 4.57E−04 4.86E−03 2.48E−03 1.42E−03
16 0.9791 0.9863 0.9898 0.9766 2.01E−03 1.47E−03 2.73E−03 2.03E−03
12 0.9999 0.9867 0.9457 0.9721 1.26E−05 1.09E−03 1.86E−02 2.96E−03
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3  Results and discussion

3.1  Artificial neural network

Tables 2 and 3 present the efficacy of ANN in predicting the µnf and µrel, respec-
tively, of GNP-alumina hybrid nanofluid at various neuron numbers. The ANN 
model was trained, validated, and tested by utilising a set of input variables and their 
corresponding µnf and µrel values. Three metrics were used to evaluate the ANN 
were used: correlation coefficient (R) and MSE for training, validation, testing and 
overall. The model’s effectiveness was measured by analysing the MSE values for 
each set of neurons. A lower MSE value indicates that the model has better predic-
tive performance. The results indicate that the ANN model with 4 neurons achieved 
the best performance in terms of both R and MSE for all the µnf data sets, while the 
ANN model with 5 neurons achieved the best performance in terms of both R and 
MSE for all the µrel data sets. The ANN schematics for the optimal neuron number 
are presented in Fig. 1a, b. The figure indicates that the ANN model has three layers: 
input, hidden, and output. The input layer receives the input parameters, the hidden 
layer performs the learning based on the number of neurons, and the output layer 
produces the prediction values.

Figures 2 and 3 depict the relationship between the ANN output data point and 
the actual data point for the training, validation, testing, and overall data sets using 
the optimal number of neurons for µnf and µrel, respectively. In the training data set 
shown in the figures, the R-value is 1 and 0.9991 for µnf and µrel, respectively. The 

Table 3  The correlation coefficient and sorted MSE performance of the ANN relative viscosity output at 
different neuron number

Number 
of neuron

Coefficient of correlation MSE performance

Train Validation Testing All Train Validation Testing All

5 0.9991 0.9967 0.9994 0.9908 2.34E−06 8.26E−05 6.68E−05 2.40E−05
11 0.9939 0.9993 0.8516 0.9805 9.90E−06 2.40E−06 2.20E−04 4.03E−05
14 0.9664 0.9991 0.9970 0.9789 5.02E−05 1.77E−05 2.73E−05 4.19E−05
12 0.9758 0.9730 0.9384 0.9673 4.28E−05 7.96E−05 1.66E−04 6.68E−05
6 0.9988 0.9976 0.9000 0.9668 2.82E−06 2.54E−05 4.58E−04 7.44E−05
15 0.9553 0.9996 0.9993 0.9654 5.54E−05 1.70E−04 1.34E−04 8.44E−05
9 0.9736 0.9902 0.9807 0.9596 5.22E−05 2.46E−04 1.14E−04 9.05E−05
10 0.9996 0.8754 0.9481 0.9479 9.82E−07 4.04E−04 2.53E−04 9.92E−05
13 0.9635 0.9541 0.9870 0.9478 6.50E−05 8.93E−05 3.05E−04 1.05E−04
16 0.9961 0.9997 0.8760 0.9522 1.45E−05 3.19E−04 3.30E−04 1.08E−04
2 0.9282 0.9538 0.9961 0.9389 9.03E−05 1.80E−04 1.85E−04 1.18E−04
4 0.9784 0.9991 0.9009 0.9465 4.02E−05 6.10E−06 6.13E−04 1.21E−04
8 0.9598 0.9614 0.9986 0.9411 7.35E−05 4.15E−04 1.25E−04 1.32E−04
7 0.9481 0.9975 0.9537 0.9131 1.01E−04 1.66E−04 4.57E−04 1.64E−04
3 0.9393 0.9505 0.8738 0.9151 1.77E−04 1.07E−04 2.75E−04 1.81E−04
1 0.8894 0.9290 0.9779 0.8902 2.46E−04 1.61E−04 5.14E−05 2.04E−04
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validation and testing data sets for the µnf have an R-value of 0.98788 and 0.9999, 
respectively. Conversely, the R for the µrel in the validation and testing datasets are 
0.99671 and 0.99936, respectively. Overall, the figures indicated a strong correla-
tion between the forecasted and observed values for µnf and µrel. However, it is worth 
noting that the ANN model for µnf is more suitable for its dataset than the ANN 
model for µrel (Fig. 4). Therefore, the ANN model for µnf is expected to have higher 
accuracy and dependability in forecasting future observations than the ANN model 
for µrel.

3.2  Adaptive neuro‑fuzzy inference system

Tables 4 and 5 show the optimisation results of the membership function (MF) type 
and number of MFs for the input parameters of µnf and µrel, respectively. The table 
presents the MSE values obtained for different combinations of the number of MFs 
and the MF types. The rows represent the different types of MF evaluated, while the 
columns represent the different combinations of numbers of MF used for the mix-
ing ratio (R) and temperature (T) inputs. For example, (3 4) means 3 MF for mixing 
ratio and 4 MF for temperature. This optimisation aims to identify the best combina-
tion of MF type and number of MFs that leads to the smallest MSE value. In this 
case, the smallest MSE value for the µnf is achieved for both DsigMF and PsigMF 
with three and five MFs for the input parameters (R and T), respectively, as shown 
by the value of 2.86E−06, highlighted (bold) in Table 4.

Conversely, the lowest MSE value for the µrel is achieved for GbellMF with four 
and five MFs for the input parameters (R and T), respectively, as shown by the value 
of 1.29E−05, highlighted (bold) in Table 5. The lowest MSE value indicates the best 
performance of the ANFIS model, which can be used to predict the µnf and µrel of 

Fig. 1  ANN schematics of (a) viscosity and (b) relative viscosity for optimum neuron number
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hybrid nanofluids based on the mixing ratio and temperature inputs. The correspond-
ing structures for the optimal MF parameters of the outputs are illustrated in Fig. 5.

To support the result of this optimisation, a graph, which depicts the linear 
fitting of the predicted value generated using the optimal ANFIS Model for both 
µnf and µrel is presented in Fig. 6a, b. This graph enables the visualisation of the 
accuracy of the model’s prediction and estimation of its correlation parameters. 
In this study, the graphs showed a high correlation between the predicted and 
actual values for both µnf and µrel. The R2 values were 0.9999 and 0.9872, respec-
tively, indicating a strong correlation between the predicted and actual values. 
The slope of the fitted line was close to 1, indicating that the ANFIS model accu-
rately predicted the µnf and µrel of the hybrid nanofluids. This result indicates that 
the ANFIS model of the µnf fits its data better than that of µrel. This shows that 

Fig. 2  ANN training, validation, testing and overall viscosity data outputs
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Fig. 3  ANN training, validation, testing and overall relative viscosity data outputs

Fig. 4  Linear fitting of ANN predicted value in relation to the experimental data of (a) viscosity and (b) 
relative viscosity
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the ANFIS model of µnf is likely more accurate and reliable in predicting future 
observations than that of µrel.

3.3  Response surface methodology

The RSM is a statistical technique used to determine the optimal combination of 
input variables to produce the best possible output. Table 6 presents the RSM analy-
sis results for the outputs (µnf and µrel). The table shows the different model types 
(linear, 2-factor interaction (2FI), quadratic, cubic, and quartic) tested for each out-
put and their corresponding Sequential p-value, Adjusted R2, and Predicted R2. The 
Sequential p-value indicates the significance of each model, with smaller p-values 
less than 0.05 indicating more significant models. The Adjusted R2 evaluates the 
extent to which the model conforms to the data while considering the number of 
variables included in the model. The Predicted R2 evaluates the accuracy of the 
model’s predictions for new data.

Table 4  Optimisation of the MF type and the number of MF for the input parameters of the viscosity

Number of MFs (R T)

MF type (3 3) (3 4) (3 5) (4 4) (4 5)

TriMF 1.13E−05 1.01E−05 2.44E−05 1.07E−04 4.25E−06
TrapMF 3.69E−05 3.20E−05 2.82E−02 4.01E−06 2.99E−06
GbellMF 1.26E−05 4.85E−06 2.88E−06 2.99E−04 5.69E−06
GaussMF 1.30E−05 1.15E−04 2.89E−06 1.51E−04 4.82E−06
Gauss2MF 1.28E−05 4.12E−06 2.96E−06 9.92E−06 3.28E−06
PiMF 3.71E−05 3.23E−05 2.82E−02 4.14E−06 2.97E−06
DsigMF 1.33E−05 4.04E−06 2.86E−06 1.17E−05 1.56E−05
PsigMF 1.33E−05 4.04E−06 2.86E−06 1.17E−05 1.55E−05

Table 5  Optimisation of the MF type and the number of MF for the input parameters of the relative vis-
cosity

Number of MFs (R T)

MF type (3 3) (3 4) (3 5) (4 4) (4 5)

TriMF 1.15E−04 2.44E−05 5.63E−05 3.15E−02 1.74E−05
TrapMF 8.11E−05 7.39E−05 6.02E−02 2.44E−05 1.52E−05
GbellMF 3.38E−05 2.48E−05 1.48E−05 4.14E−02 1.29E−05
GaussMF 3.42E−05 2.45E−05 1.49E−05 3.78E−02 1.97E−05
Gauss2MF 3.36E−05 2.45E−05 1.51E−05 4.47E−02 1.47E−05
PiMF 8.10E−05 7.39E−05 6.02E−02 2.44E−05 1.52E−05
DsigMF 3.36E−05 2.47E−05 1.48E−05 4.12E−02 1.46E−05
PsigMF 3.36E−05 2.47E−05 1.48E−05 4.12E−02 1.46E−05
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Fig. 5  Optimum ANFIS structure for the modelling of (a) viscosity and (b) relative viscosity

Fig. 6  Linear fitting of ANFIS predicted value in relation to the experimental data of (a) viscosity and 
(b) relative viscosity
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For the µnf output, the quadratic model is suggested as the optimal model 
because it has a Sequential p-value of less than 0.0001 and the highest Adjusted 
R2 and Predicted R2 values among all the models tested. For the µrel output, the 
quadratic model is also suggested as the optimal model because it has a Sequen-
tial p-value of 0.0393 and the highest Adjusted R2 and Predicted R2 values among 
all the models tested, except for the Quartic model. However, the Quartic model 
has a low Sequential p-value of 0.0021, which suggests it is significant. Still, it 
is aliased, meaning it cannot be estimated uniquely from the data. Therefore, the 
quadratic model is the recommended model for the µrel output.

Table 6  Optimal selection of the best RSM model

Output Source Sequential p-value Adjusted R2 Predicted R2

Viscosity Linear  < 0.0001 0.9736 0.9666
2FI 0.9383 0.9719 0.9579
Quadratic  < 0.0001 0.9982 0.9977 Suggested
Cubic 0.92 0.9976 0.9961
Quartic 0.0029 0.9996 0.9967 Aliased

Relative viscosity Linear  < 0.0001 0.7617 0.7173
2FI 0.1373 0.7804 0.7493
Quadratic 0.0393 0.8419 0.8046 Suggested
Cubic 0.9955 0.7826 0.6425
Quartic 0.0021 0.9701 0.671 Aliased

Table 7  ANOVA findings for the recommended model

Source Sum of squares df Mean square F-value p-value

Viscosity Model 0.8062 5 0.1612 2054.83  < 0.0001 Significant
A-mixing ratio 0.0048 1 0.0048 61.7  < 0.0001
B-temperature 0.6934 1 0.6934 8836.41  < 0.0001
AB 7.39E-06 1 7.39E-06 0.0941 0.7635
A2 0.0008 1 0.0008 10.62 0.0057
B2 0.0171 1 0.0171 218.56  < 0.0001
Residual 0.0011 14 0.0001
Cor total 0.8073 19

Relative viscosity Model 0.0172 5 0.0034 21.24  < 0.0001 Significant
A-mixing ratio 0.0083 1 0.0083 51.41  < 0.0001
B-temperature 0.0085 1 0.0085 52.6  < 0.0001
AB 0.0006 1 0.0006 3.4 0.0864
A2 0.0013 1 0.0013 8.23 0.0124
B2 1.67E-07 1 1.67E-07 0.001 0.9748
Residual 0.0023 14 0.0002
Cor total 0.0195 19
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Table  7 shows the results of an ANOVA (Analysis of Variance) for the rec-
ommended model for two outputs: µnf and µrel. ANOVA is a statistical technique 
utilised for examining the variation among different groups or factors in a data-
set. The table shows the sources of variation in the data, including the Model, 
A-Mixing Ratio, B-Temperature, AB interaction,  A2,  B2, Residual, and Cor Total. 
For each source of variation, the table provides the Sum of Squares, degrees of 
freedom (df), Mean Square, F-value, and p-value. The F-value is the ratio of the 
variance explained by the model to the variance not explained by the model. For 
both the µnf and the µrel output, the ANOVA table shows that the model is sig-
nificant (p-value < 0.0001), indicating that the recommended model is a good 
fit for the data. Among the variables in the model, A, B,  A2, and  B2 are also 
significant (p-values < 0.05). At the same time, AB interaction is insignificant 
(p-value > 0.05) for the µnf output and weakens the µrel output.

Table  8 shows the coefficient estimates for the factors in coded units for the 
response variables of µnf and µrel. For µnf and µrel, the intercept is correspondingly 
1.12 and 0.8685, indicating the expected value of the response when both factors 
are at their midpoint. For both outputs, the coefficient estimates for A is 0.0269 
and 0.0205, respectively, indicating that increasing A levels positively affect µnf 
and µrel. The coefficient estimate for B is 0.031 and −0.2797 correspondingly for 
both outputs, indicating that increasing B levels positively affect the µnf. At the 
same time, it exhibits a negative effect on µrel. The AB coefficient estimate for 
µnf is 0.0096, indicating that the interaction effect is positive but relatively small, 
while that of µrel is close to zero (0.0011), indicating little evidence of an interac-
tion effect. The  A2 coefficient estimate for both outputs is negative, indicating a 
curvature in the effect of A on µnf and µrel. Conversely, the  B2 coefficient estimate 
of the µnf is close to zero, indicating little evidence of a quadratic effect of B. At 
the same time, that of µrel is positive (0.07), indicating that there is evidence of a 
quadratic effect of B on µrel.

Table 8  Coefficient estimate in terms of the coded factors

Factor Coefficient esti-
mate

df Standard error 95% CI low 95% CI high VIF

Viscosity Intercept 1.12 1 0.0072 1.1 1.13
A 0.0269 1 0.0038 0.0189 0.035 1.05
B 0.031 1 0.0043 0.0218 0.0402 1.13
AB 0.0096 1 0.0052  − 0.0016 0.0207 1.13
A2  − 0.0229 1 0.008  − 0.04  − 0.0058 1.05
B2 0.0002 1 0.0068  − 0.0144 0.0148 1

Relative viscosity Intercept 0.8685 1 0.005 0.8577 0.8793
A 0.0205 1 0.0026 0.0149 0.0262 1.05
B  − 0.2797 1 0.003  − 0.2861  − 0.2733 1.13
AB 0.0011 1 0.0036  − 0.0066 0.0089 1.13
A2  − 0.0181 1 0.0056  − 0.03  − 0.0062 1.05
B2 0.07 1 0.0047 0.0598 0.0802 1
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Additionally, the VIF (variance inflation factor) is provided for each factor, which 
measures how much the variance of a coefficient estimate is inflated due to collin-
earity with other factors. The VIF for each factor indicates the extent to which that 
factor is linearly related to the other factors in the model. A VIF of 1 indicates no 
multicollinearity, while VIFs greater than 1 indicate increasing levels of multicollin-
earity. Generally, VIFs less than 10 are considered tolerable, but the threshold may 
depend on the specific context. As presented in Table 8, all the VIFs are less than or 
equal to 1.13, indicating no significant multicollinearity present in the model. There-
fore, we can conclude that the model is not affected by multicollinearity, and the 
estimates for the coefficients are reliable.

The model-coded equation for the µnf and µrel are presented in Eq. (13 and 14), 
respectively. The coded equation can predict the response for given levels of the fac-
tors in a way that is independent of the actual units used to measure the factors. This 
is because the coded levels are standardised to a range of −1 to + 1, corresponding 
to the low and high levels of the factors. The relative impact of each factor on the 
response can be determined by comparing the magnitude and direction of the coef-
ficients. For example, in Table 8, it can be observed that the coefficient for factor B 
is larger than the coefficient for factor A in both the µnf and µrel equations, suggest-
ing that factor B has a stronger effect on the response than factor A. The equation 
expressed in terms of the actual factors for both outputs are presented in Eqs.  (15 
and 16). These equations can predict the response for a given level of each factor.

(13)
μnf = 0.8685 + 0.0205A − 0.2797B + 0.0011AB − 0.0181A2 + 0.0700B2

(14)

�nf

�water

= 1.12 + 0.0269A + 0.0310B + 0.0096AB − 0.0229A2 + 0.0002B2

(15)
�nf = 1.53562 + 0.036539R − 0.026290T + 0.000037RT − 0.008044R2 + 0.000175T2

Fig. 7  Perturbation plot for the RSM modelling of (a) viscosity and (b) relative viscosity
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The influence of two factors on the µnf and µrel behaviour is showcased in Fig. 7a, 
b using perturbation plots. These visualisations offer insights into the correlation 
between factors and the system’s outcome. The creation of the plot involves modi-
fying one factor while keeping the other parameters constant and noting the result-
ant alterations in the response. By doing this, the curvature of the response surface 
can be visualised, and any interactions between the factors can be identified. The 
response sensitivity to a particular factor is reflected in the slope of its line, while 
the line’s curvature indicates a relationship with other variables. From the result, it 
can be inferred that factor B exerts the most substantial impact on both µnf and µrel, 
while factor A has the least.

Figure 8a, b displays contour plots illustrating the effect of mixing ratio and tem-
perature on the µnf and µrel. In Fig.  8a, the contour plot for µnf shows that as the 
mixing ratio increases, the µnf of the nanofluid also increases. This indicates that a 
higher concentration of the GNP in the hybrid nanoparticle mixture leads to a thicker 
or more viscous hybrid nanofluid. Additionally, as the temperature decreases, the µnf 
of the nanofluid also increases. This indicates that the fluid becomes more viscous at 
lower temperatures, which can have implications for its flow properties and behav-
iour. Many published studies [40–43] support this observation.

In Fig. 8b, the contour plot for µrel shows that as the mixing ratio increases, the 
µrel of the fluid also increases. This indicates that a higher concentration of the GNP 
in the hybrid nanoparticle mixture leads to a greater increase in µnf compared to a 
base fluid. This behaviour can be attributed to various mechanisms through which 
nanoparticles interact with the base fluid, influencing µ properties. Notably, these 

(16)

�nf

�water

= 1.02895 + 0.037309R + 0.001033T + 0.000319RT − 0.010169R
2

+ 5.46429E − 07T
2

Fig. 8  Contour of RSM predicted values of (a) viscosity and (b) relative viscosity in relation to the input 
parameters



4862 A. Borode, P. Olubambi 

1 3

mechanisms encompass physical adsorption and chemical bonding phenomena. 
Physical adsorption, where nanoparticles adhere to the base fluid molecules’ sur-
face, can contribute to µ increase by forming a nanoparticle layer around the mol-
ecules. Conversely, chemical bonding, involving nanoparticles bonding with base 
fluid molecules, can further elevate µ by establishing a network of nanoparticles 
within the base fluid.

Additionally, as the temperature decreases, the µrel of the fluid also increases. 
This indicates that at lower temperatures, the fluid becomes more resistant to flow 
than the base fluid, which can also affect its behaviour and performance. This tem-
perature-dependent behaviour is rooted in the amplified kinetic energy or Brown-
ian motion of base fluid molecules at higher temperatures, facilitating smoother 
movement and reducing resistance. Consequently, the enhanced fluidity results in 
decreased µ. Many previous studies [41, 44–46] have also made a similar observa-
tion, emphasising the significance of temperature and nanoparticle concentration in 
influencing the µ behaviour of the hybrid nanofluid.

The predicted values generated using the RSM model for µnf and µrel were com-
pared with experimental data through linear fitting. The results of this analysis are 
presented in Fig.  9a, b, which shows the linear fitting lines for the predicted and 
experimental values for both µnf and µrel. The high R2 values obtained for both varia-
bles (0.9986 for µnf and 0.8835 for µrel) indicate a strong correlation between the pre-
dicted and experimental values. These findings highlight the effectiveness of RSM 
in predicting µnf and µrel and provide valuable insight into the relationships between 
these variables.

3.4  Comparison of the modelling techniques

In this study, the µnf and µrel were predicted using three different modelling tech-
niques: ANN, ANFIS and RSM. All these techniques are commonly used in engi-
neering and statistical modelling, and each has its strengths and limitations. To com-
prehensively compare these techniques and the traditional linear regression (LR) 

Fig. 9  Linear fitting of RSM predicted value in relation to the experimental data of (a) viscosity and (b) 
relative viscosity
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approach, a comparative analysis was performed on their ability to forecast the µnf 
and µrel for numerous applications.

First, an LR analysis was done using the laboratory data, and the resulting corre-
lation model is presented in Eq. (15). The accuracy of the LR model was then evalu-
ated by graphically comparing the predicted and actual values, as shown in Fig. 10a, 
b. Figure  10a illustrates that the predicted values obtained from the LR model 
closely matched the actual values of the µnf, with only a few insignificant outliers. 
On the other hand, Fig. 10b indicates a more pronounced deviation between the pre-
dicted values and actual values of the µrel compared to that of µnf. The R-values for 
the µnf and µrel are 0.9881 and 0.8870, respectively. These results suggest that the LR 
approach can be a useful tool for predicting the properties of GNP-alumina hybrid 
nanofluids. However, given the limitations of the LR method, such as its inability to 
capture complex nonlinear relationships [47], this modelling approach will be com-
pared with the ANFIS, ANN and RSM approaches.

Table 9 presents the performance comparison of various models for predict-
ing µnf and µrel, while the models’ residuals are illustrated in Fig. 11. The models 
compared are ANFIS, ANN, RSM, and LR. The table presents different perfor-
mance metrics of the various models used for forecasting the µnf and µrel. The 
metrics include R2, MOD, RSS, RMSE, MAE, and MAPE.

A detailed analysis of the results in Table 9 indicates that the ANFIS model 
consistently demonstrates superior performance across all metrics for both µnf 
and µrel predictions. The R2 values, which indicate the proportion of variance 
explained by the model, are notably higher for the ANFIS model than the other 
models. Additionally, the MOD values for ANFIS are consistently the closest to 
zero, indicating a better alignment of predicted values with actual values. Fur-
thermore, the ANFIS model exhibits the lowest values for RSS, RMSE, MAE, 
and MAPE, indicating that it produces predictions with minimal residual errors 
and high accuracy. This is particularly evident in the significantly lower RMSE 
and MAE values for the ANFIS model compared to the other models, signifying 

Fig. 10  Linear fitting of LR predicted value in relation to the experimental data of (a) viscosity and (b) 
relative viscosity
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its ability to make precise predictions. The lower MAPE values highlight the 
ANFIS model’s capacity to generate predictions with smaller percentage errors.

While the ANN model also performs well across most metrics, the ANFIS 
model consistently outperforms it. The RSM model, on the other hand, exhibits 
relatively higher values across the majority of metrics, implying comparatively 
weaker predictive performance. The LR model consistently fares the poorest 
among all models, as evidenced by its lower R2 values and higher errors across 
the board. The superior predictive capabilities of ANFIS compared to other 
models and the better performance of ANN relative to RSM and LR align with 
findings from prior studies [23, 48, 49]. Overall, the results suggest that the 
ANFIS model could be a better option for predicting µnf and µrel values.

Fig. 11  Residual plot of various predicted data in relation to the experimental data of (a) viscosity and 
(b) relative viscosity

Table 9  Performance comparison of the various models

R2 Margin of 
deviation (%)

RSS RMSE MAE MAPE

Min Max

Viscosity ANFIS 0.9999  − 0.59 0.34 5.72E−05 1.69E−03 9.38E−04 0.0945
ANN 0.9997  − 0.57 1.37 2.65E−04 3.64E−03 2.60E−03 0.3100
RSM 0.9986  − 1.50 1.72 1.10E−03 7.41E−03 5.77E−03 0.7179
LR 0.9764  − 6.34 5.55 1.91E−02 3.09E−02 2.72E−02 3.2167

Relative viscosity ANFIS 0.9872  − 0.89 1.19 2.58E−04 3.59E−03 1.29E−03 0.1214
ANN 0.9817  − 0.33 1.18 4.81E−04 4.90E−03 2.82E−03 0.2588
RSM 0.8835  − 1.57 1.61 2.27E−03 1.06E−02 8.56E−03 0.7814
LR 0.7868  − 2.25 2.71 4.15E−03 1.44E−02 1.16E−02 1.0625
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4  Conclusion

In this study, the accurate prediction of µ properties for GNP-alumina hybrid 
nanofluids was investigated through the comparison of various modelling tech-
niques, including RSM, ANN and ANFIS. The study focused on µnf and µrel pre-
dictions across a wide range of mixing ratios (0, 0.33, 1, and 3) and temperatures 
(15, 25, 35, 45 and 55 °C). The models were optimised by varying the number 
of neurons for ANN, while the MF type and MF number were varied for ANFIS. 
On the other hand, the RSM model’s performance was enhanced by varying 
its source model. The models’ performances were estimated using MOD, RSS, 
RSME, MAE and MAPE.

The findings revealed that the ANN architecture with 4 neurons exhibited 
exceptional predictive capabilities for µnf, yielding an impressive R2 value of 
0.9997 and a MAPE of 0.3100. Similarly, for µrel, the optimal ANN architec-
ture was achieved with 5 neurons, resulting in an R2 of 0.9817 and a MAPE of 
0.2588. The ANFIS model achieved remarkable accuracy, employing PsigMF and 
DSigMF for µnf and GBellMF for µrel, respectively, with (3 5) and (4 5) input 
membership functions. This was evidenced by R2 values of 0.9999 and 0.9872, 
along with corresponding MAPE values of 0.0945 and 0.1214 for the optimal 
ANFIS architecture of µnf and µrel.

Furthermore, the RSM model demonstrated its efficacy in predicting µ proper-
ties, specifically with the quadratic model, resulting in R2 values of 0.9986 and 
0.8835 for µnf and µrel, respectively. Comparative analysis of the models empha-
sised the superiority of the ANFIS model in terms of performance metrics for 
both µnf and µrel predictions.

Overall, the results revealed that all the techniques could accurately forecast 
the µnf and µrel of GNP-alumina hybrid nanofluid. Still, the ANN and ANFIS 
models outperformed the RSM and LR models. This study highlights the poten-
tial of ANN and ANFIS models for accurate µ forecasting in GNP-alumina hybrid 
nanofluids. It provides reliable tools for future applications in a wide array of 
engineering contexts.

In terms of future research, this study lays the groundwork for further explo-
ration into the interactions between solid volume fractions, mixing ratios, and 
temperatures on nanofluid behaviour. While this study has focused on the key 
factors of mixing ratio and temperature in this study, understanding the effects of 
variations in solid volume fractions on predictive accuracy will be a significant 
avenue for investigation. Additionally, applying these models to different types 
of nanoparticles, base fluids, and experimental conditions could provide valuable 
insights into the broader applicability of the developed predictive tools.
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