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Abstract

The Internet of Robotic Things (IoRT) is an integration between autonomous robots
and the Internet of Things (IoT) based on smart connectivity. It’s critical to have
intelligent connectivity and excellent communication for IoRT integration with digi-
tal platforms in order to maintain real-time engagement based on efficient consumer
power in new-generation IoRT apps. The proposed model will be utilized to deter-
mine the optimal way of task offloading for IoRT devices for reducing the amount of
energy consumed in IoRT environment and achieving the task deadline constraints.
The approach is implemented based on fog computing to reduce the communica-
tion overhead between edge devices and the cloud. To validate the efficacy of the
proposed schema, an extensive statistical simulation was conducted and compared
to other related works. The proposed schema is evaluated against the Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm
(WOA), Artificial Bee Colony (ABC), Ant Lion Optimizer (ALO), Grey Wolf
Optimizer (GWO), and Salp Swarm Algorithm to confirm its effectiveness. After
200 iterations, our proposed schema was found to be the most effective in reduc-
ing energy, achieving a reduction of 22.85%. This was followed closely by GA and
ABC, which achieved reductions of 21.5%. ALO, WOA, PSO, and GWO were
found to be less effective, achieving energy reductions of 19.94%, 17.21%, 16.35%,
and 11.71%, respectively. The current analytical results prove the effectiveness of
the suggested energy consumption optimization strategy. The experimental find-
ings demonstrate that the suggested schema reduces the energy consumption of task
requests more effectively than the current technological advances.
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1 Introduction

IoRT is a modern scientific paradigm incorporating various concepts, such as
Cloud Robotics (CR), Artificial Intelligence (AI), Machine Learning (ML), and
The Internet of Things (IoT) [1]. IoT integration with robotics is mainly aimed at
enhancing movements, sensing, monitoring, and autonomous behavior in robotic
systems. The IoRT market rise is driven by industrial, e-commerce applications,
healthcare, household appliances (personal robots), and vehicle [2]. Many IoRT
applications have real-time service needs that will have devastating consequences
if the delay in response surpasses the tolerated latency. Moreover, due to limited
resources, such as low battery capacity and limited computation, these devices
cannot operate for a long period [3]. Therefore, energy consumption is also an
essential measure that must be taken into account. Accordingly, how to enhance
processing efficiency in real-time for enormous quantities of data with minimiz-
ing energy consumption is a major challenge.

Recent studies have shown that CR stands for a merger of robots with cloud tech-
nologies in order to extend the capabilities of robots using offloading techniques
[4]. The idea of computation offloading was explored in order to decrease energy
usage and improve the performance of task processing. However, it is important to
note that conventional central clouds are typically located in remote locations, far
from their consumers [5]. In addition, cloud robots are frequently unable to oper-
ate numerous robots because of their latency, bandwidth, and network congestion
restrictions. Hence, long transmissions from IoRT devices to cloud servers might
create delays and add to the cost of transmission energy [6]. Therefore, fog com-
puting was invented and constructed to overcome the constraints of cloud comput-
ing. Fog computing is a concept that stretches cloud and networking services to the
network edge, nearer to terminal devices with minimal data processing latency and
high mobility, which may decrease the load on the main network and maximize
energy savings. Fog computing puts both computation and radio resources closer to
IoRT devices, boosting scalability in both areas [6].

Energy efficiency is extremely essential from the future standpoint of informa-
tion communication technology (ICT) [7]. There is therefore much effort to mini-
mize energy consumption nowadays. Computation task offloading is believed to
be the way to reduce energy consumption [8]. There are two types of computation
offloading: Firstly, the binary processing offloading approach, which means that
the processing of tasks may be performed either locally or at the edge; and sec-
ondly, the partial computation offloading strategy, which considers that users can
divide the tasks such that some are performed locally, and others are offloaded to
the edge [9]. However, partial offloading is preferred because it achieves higher
energy savings and lower computation latency than binary offloading. Computa-
tion offloading consists of three main steps: (i) data transmission step, (ii) remote
processing step, and (iii) response step [10]. Ignoring the third procedure because
the amount of data needed to represent the computation results and send them
back to the end user is generally significantly lower than the amount of data nec-
essary to offload the task [11].

@ Springer



20078 N. El Menbawy et al.

This research aims to devise a new technique to offload tasks to meet the needs
of IoRT latency-sensitive systems with the optimal use of the resources available
on the fog-cloud platform. The objective is to reduce the overall service time and
decrease the consumed energy of the IoRT systems. The major contributions of this
paper can be summarized as follows:

e Proposing a novel paradigm for the Internet of Robotic Things (IoRT) that is
based on fog robotics, as opposed to the traditional approach of using cloud
robotics. By leveraging the power of fog computing, we aim to enable robots to
complete tasks within strict deadlines, while also ensuring energy efficiency and
reducing the burden on the communication network.

e Proposing a partial computation offloading scheme that uses a mathematical
model to find the optimal solution, taking into account features of the applica-
tion such as CPU requirements, network requirements, latency sensitivity, and
resource usage to reduce the energy consumed by latency-sensitive IoRT apps
that are based on the fog-cloud framework. The scheme optimizes the offloading
ratio and transmission rate to minimize energy consumption while ensuring that
task deadlines are met.

e Proposing an Improved Hybrid Optimization technique based on GA Combined
with PSO called (IHOGCP) to achieve efficient computation offloading. The pro-
posed algorithm provides a trade-off between exploration and exploitation capa-
bilities, which leads to better convergence and higher-quality solutions.

e Conducting simulations to evaluate the performance of the proposed algorithm,
and comparing it with full offloading and other state-of-the-art techniques. The
simulation results show a 22.85% improvement in overall energy consumption,
indicating the superiority of our algorithm over other existing techniques.

This research is outlined as follows: Sect. 2 provides background, including infor-
mation about IoT and IoRT technologies. Section 3 shows relevant literature pertain-
ing to the study subject. Section 4 discusses the proposed approach for IoRT based
on fog computing. Section 5 provides the system model and the problem formula-
tion. The methodology is presented in Sect. 6. Section 7 presents the proposed algo-
rithm and describes GA and PSO separately. Section 8 presents the experimental
analysis and results. InSect. 9, the conclusion and future work are presented.

2 Preliminaries and background information
2.1 Overview of the internet of things

The IoT principle allows a vast number of “things” that can be uniquely addressed to
communicate and transmit data via existing internet or network protocols like TCP/
IP. It produces massive amounts of data and processes vastly different amounts of
data, which have yet to be seen [12]. It seeks to make human society intelligent, con-
venient, and efficient with huge environmental and economic benefits. Processing,
energy, bandwidth, and storage restrictions are common in IoT devices. The Internet
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of Things might make human life easier, safer, and more intelligent. Many fields,
including military, agriculture, manufacturing, healthcare, robotics, and nanotech-
nology, are benefiting from IoT’s steady advancement [13]. Smart homes, smart cit-
ies, smart transportation and mobility, smart healthcare, smart factories, and smart
manufacturing are just a few of the numerous applications available to users [14].
Table 1 shows the Internet of Things application domains and their properties [15,
16].

IoT technology provides a solid foundation for consumers to add intelligence to
their current devices and connect them to the Internet to share information between
devices. As theory evolves and contributes to the major technological developments
in different fields of usage, new terminology has emerged, such as the Internet of
Medical Things (IoMT), Internet of Nano Things (IoNT), Internet of Mobile Things
(IoMBT), Internet of Cloud Things (IoCT), Internet of Autonomous Things (IoAT),
Internet of Drone Things (IoDT), Industrial Internet of Things (IIoT), and Inter-
net of Robotic Things (IoRT) and many more [17]. In recent years, the Internet of
Robotic Things, which combines sensing devices and robotic systems, has gained
prominence as a result of their widespread availability.

2.2 Overview of internet of robotic things

This section offers an introduction to the Internet of Robotic Things. It discusses the
IoRT and its architecture.

2.2.1 Aims and motivation

Through IoRT technology, one can reduce the need for human intervention in sev-
eral activities such as health care delivery, transportation, and marketing. This opens
up a new world of opportunities for everything from military operations to economic
applications [18]. The IoRT is classified according to the application categories in
Fig. 1. It can be used in different zones as factory, social and outdoor applications.
When it comes to situational and location awareness, the IoRT system has shown
its value in a variety of different contexts, including decreasing power consumption
while producing high-quality images, increasing system security, and even in clini-
cal services and emergencies for providing medical supplies ahead of rescue teams.
However, obstacles such as old network topologies, restricted bandwidth in Wireless
Sensor Networks (WSNs), outdated system integrations, and battery life constraints
prevent IoRT applications from realizing their full potential [19].

Several improvements have been brought about by robotic systems in differ-
ent areas of human life. Many manufacturing industries are embracing robotics to
conduct all kinds of complex, sensitive, and difficult activities, such as soldering,
assembling items, inspecting products, wrapping, and many more. The integration
of the smart world with independent agents (robots) has given rise to the Internet
of Robotic Things. [20]. Smart world apps include smart homes, manufacturing,
agriculture, buildings, and factories. The key aspect of these apps is the monitor-
ing of conditions and operations within a specific control region. Agents can only
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Fig. 1 Classification of IoRT according to application categories

perform well-defined tasks. These intelligent agents are known as robots and come
in a variety of forms including service, mobile, and assistance robots [2]. The advent
of intelligent agencies in the smart world completes the IoRT concept by merging
the Smart world’s functions and capabilities with those of robots. Robots are smart
machines with sensors that can interpret real-world behavior by acquiring environ-
mental data from sensors and taking appropriate action to resolve issues. The IoRT
is a multi-robotic network that is smart, extremely effective, secure, and inexpen-
sive. The IoRT refers to the collecting, analyzing, and utilization of sensor data from
a number of sources using local and distributed data to monitor and control physi-
cal items. The integration of IoT and robotics in IoRT is mainly aimed to enhance
movements, sensing, monitoring, and autonomous behavior in robotic systems.

CR is a term that refers to the use of cloud services and IoT technologies in the
area of robotics [20]. This model is becoming more popular in scientific studies
throughout the world because it makes it possible to use the robotic infrastructure in
conjunction with IoT and the cloud. Therefore, Robotic capabilities can be enhanced
by the use of high-performance cloud services at the backend thanks to CR, an inter-
disciplinary field combining distributed computing and robots. When it comes to
cloud computing, robotics is a growing discipline that relies on cloud services and
other technologies that allow robots to make use of current data centers’ strong com-
putational, storage, and communications capabilities connected via cloud infrastruc-
tures [17, 21]. IoRT shares significant characteristics with the IoT and CR, but it
also has distinct differences. As a result, it has its own set of benefits and problems
that must be met.

2.2.2 Internet of robotic things architecture
IoRT is an emerging discipline, and there have been many efforts to provide an

IoRT architecture. The IoRT general architecture can be divided into five layers,
as shown in Fig. 2 [17, 22, 23]. They can be described as Physical, Network,

@ Springer



20082 N. El Menbawy et al.
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Fig. 2 Internet of robotic things general architecture

Internet, Robotic Infrastructure, and Application layers, respectively. The follow-
ing section describes each of these layers.

1.

Physical layer: The bottom tier in IoRT architecture is the physical layer. This
layer is made up of various types of items such as vehicles, robots, home appli-
ances, healthcare equipment, cell phones, sensors, planetary equipment, weather
sensors, field equipment, underwater devices, and drones. A physical layer is
mainly responsible for working in the environment with signal sensing, data
gaining, and data transmission to the upper layer i.e., the Network tier [23].

Network Layer: Various network connectivity options are provided on the net-
work tier to allow connectivity between sensors and robots, even for machine-to-
machine interaction. In terms of cellular, Few-Short, and Moderate-Long ranges.
Cellular connectivity includes 3G [24], LTE/4G, and 5G [25] which is allowed
by this option. A few short-range communication technologies are used for easily
communicating with robots close to each other, such as Wi-Fi, Bluetooth Low
Energy (BLE) [26], 6LoWPAN [27], Broadband Global Area Network (BGAN)
[28] and Near Field Communication (NFC) [29]. Moderate-Long range communi-
cation technologies such as the Worldwide Interoperability for Microwave Access
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(a)

(b)

(©)

(d)

(e)

(WiMAX) [30], Z-Wave, ZigBee [31], and LoRA [32] have all been integrated
for the simple operation of information transmission.
Internet Layer: This single option allows for device connectivity and access to
information everywhere. This layer contains protocols that perform a variety of
network functions. Taking into account IoRT’s architecture, the Internet layer is
perceived as the core of any communication. Since IoRT uses 10T, different IoT
structured protocols like UDP, IPv6, DDS, CoAP, LLAP, MQTT, and XMPP are
used [33].
Robotic Infrastructure Layer: This architectural portion of the IoT-based CR stack
is renovated to become the most precious layer of all. This layer is composed
of 5 components, including robotic platform support, Machine-to-Machine-to-
Actuator (M2M2A) cloud platform support, Internet of Things business cloud
services, Big Data services, and Internet of Things cloud robotics infrastructure.
Each of them should be discussed as follows:
Robotic Platform Support: This platform is used by scientists to create robots
with rudimentary software abilities for doing experiments. It provides basic
robotic service technologies like Robot Operating System (ROS), Robot Service
Network Protocol (RSNP), Controller Area Network (CANopen), and Open
Resource Interface for the Network (ORIN), etc.
Cloud Platform Support for M2M2A: This component accomplishes many
tasks such as data gathering, data analysis, device monitoring, and control. The
Machine-to-Machine-to-Actuator model, which is suitable for sophisticated
robotic devices, i.e., IoRT, is envisioned.
Internet of Things business cloud services: By supporting enterprises and pro-
ducers in lowering their total burden, IoRT will provide a platform upon which
to build a variety of complicated business activities. All transactions under [oRT
can be extended to various cloud computing models like SaaS, PaaS, and IaaS
[34]. Both modular and packaged business-oriented APIs make e-commerce
performance simpler.
Big Data services: It provides incredibly valuable operations in areas of optimi-
zation, forecasting, marketing, and statistical analytics, Big Data offers extremely
value-added services.
IoT cloud robotics infrastructure: This part is designed to encompass services
only. It allows robots to be equipped with a wide range of services, such as loca-
tion identification, image and video processing, and communication management
[20, 33].
Application Layer: This is the highest layer of IoRT architecture, it is designed to
spread user experience by investigating a variety of robotics-related applications.
When robotics is integrated with the Internet of Things, the cloud can be used in a
range of applications, such as healthcare, infrastructure servicing, electronic com-
merce sites, retail stores, life-critical circumstances, data centers, Web Services
Description Language interfaces, and others [23].
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2.2.3 Internet of robotic things difficulties and problems

There are a number of unresolved difficulties related to IoRT as well as suggestions
for future research guidelines and directions on various IoRT technology and applica-
tion subjects. The computational problem, scalability, and handling of data generated
by a billion devices are some of the quality of service (QoS) metrics that are mentioned
in this section. In order to summarize the most significant issues related to the IoRT,
Table 2 is provided [35, 36].

This research focuses on the energy efficiency of the computation offloading net-
work, with the goal of reducing system energy consumption while meeting the latency
requirements of the computing workloads. Both computational and communication
energy are consumed in total energy consumption. Since IoRT is based on CR so, it
suffers from a high latency response [4]. Real-time tasks are processed on the IoRT
devices rather than offloaded to the cloud due to the high latency response of the cloud.
In order to decrease the amount of energy consumed during processing real-time tasks
on the mobile device, it is needed a new approach to perform these tasks with regard to
their sensitivity [37]. Also, it is a very energy-consuming process to move massive data
sets to a central cloud. Therefore, this study proposes using fog robotics instead of CR
for achieving efficient-energy consumption.

Fog robotics is an expansion of “Cloud Robotics” that shares storage, computation,
and resources between the cloud and the edge. The name “Fog Robotics” was coined
by Gudi et al. (like Fog Computing) [38]. The Edge of the network is characterized by
a limited number of heterogeneous resources, while the cloud may be considered an
infinite pool of identical resources in remote centralized servers. The edge’s resources
include lightweight microservices, and networking devices such as gateways, rout-
ers, switches, and access points. The purpose is to leverage the available resources in
both the Edge and the Cloud to improve latency, bandwidth, reliability, and energy
efficiency [39]. Therefore, the study will move from centralization to decentralization
using fog computing.

Cisco has introduced fog computing [40]. It is an expansion that is based on the
cloud, and it is located much closer to the Internet of Robotic Things systems. It gives
the edge of the network the ability to compute, communicate, store data, and provide
services. Fog’s distinguishing features include its closeness to end devices, its wide-
spread geographic dispersion, and its locomotion-supporting. Fog computing has mer-
its such as: reducing the amount of data that is sent to the centralized servers; delay
reduction; reducing the bandwidth cost; increasing security; and enhancing services for
remote locations [41]. Now, one can introduce a new definition of IoRT as it is a mod-
ern scientific paradigm incorporating various concepts including Fog Robotics (FR),
Artificial Intelligence (AI), Machine learning (ML), and The Internet of Things (IoT).

3 Related work
Inconsistency of sensing equipment’s limited computing resources with demand-

ing real-time processing tasks results in huge amounts of energy use and inadequate
performance. In recent years, computation offloading has been an important hotspot
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for these difficult challenges because of its benefits of timeliness and energy effi-
ciency [42]. Hence, in this section, some related works will be reviewed to address
the energy consumption by the computation offloading technique. Offloading strate-
gies have been suggested in the literature in a variety of forms. There are two types
of offloading strategies: (a) performance-based offloading strategies [43—-49] and (b)
energy-performance-based offloading strategies [42, 50-59].

3.1 Performance-based offloading

The performance-based offloading technique aims to improve end-user processing
time. Hence, in the following section, studies that enhance the computation offload-
ing execution time will be discussed. Sheng et al. [43] investigated the relationship
between differential uploading delay and co-channel interference. In addition, they
suggested a computational offloading method that aimed to lower the customers’
average delay by concurrently optimizing the decision on the offloading and allocat-
ing resources. To address the challenge of reducing the total completion period, Li
et al. [44] suggested a combined optimization technique established on the Genetic
Algorithm (GA) for offloading a proportion of the task, link bandwidth, and mobile
edge server (MES) computational elements. This study is simple because it only
looked at the time it takes to complete the task and ignored energy consumption.
Joint Partial Offloading and Resource Allocation (JPORA) is a significant approach
presented by Saleem et al. [45]. JPORA iteratively changes data segmentation to
reduce task execution delay by allocating QoS-aware communication resources to
cellular lines and interference-aware resources to D2D links. A target expression
with a constraint item was obtained by Li et al. [46] by transforming the task off-
loading problem of fog computation into the matching problem between task and
node. However, the improved differential evolution (IDE) technique was presented
to address the task offloading issue.

Miao et al. [47] suggest a method for decreasing the processing duration of appli-
cations through an algorithm that involves the migration of tasks and the offloading
of computation. The algorithm involves several components, including a task pre-
diction mechanism based on the LSTM algorithm, a computation offloading strategy
for mobile devices that utilizes task prediction, and a task migration scheme for edge
cloud scheduling. These components work together to improve the efficiency of the
edge computing offloading model. For mobile device users who have enough energy
and solely care about the computation time overhead, Zhou and Jadoon [48] sug-
gested a partial computation offloading technique based on game theory for multi-
user edge computing. A digital twin edge network (DITEN) was suggested by Sun
et al. [49]. Through deep reinforcement learning, an approach is presented to reduce
the offloading latency.

3.2 Energy-performance-based offloading

The objective of an energy-performance-based offloading technique is to decrease
the energy consumption and task processing duration of end-user devices. As a
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result, computation-intensive tasks need to be carried out on remote servers. Cheng
et al. [50] presented a task offloading decision technique for Internet of Vehicle-
based edge computing with Particle Swarm Optimization (PSO). The PSO was per-
formed in order to transform task offloading into the process and achieve the best
offloading strategy. The suggested approach for offloading can efficiently decrease
the terminal devices’ energy consumption while ensuring user service quality. Han
et al. [51] utilized nonorthogonal multiple access (NOMA) so that a user is able to
delegate tasks to numerous adjacent devices with idle computer resources. Through
the use of a decomposition strategy, they proposed a two-tier optimization scheme
called Multitask Joint Computation Offloading and Resource Allocation (MT-
JCORA). Transmission Scheduling and Computation Offloading (TSCO) was devel-
oped by Hazra et al. [52] to meet energy and delay requirements in a fog environ-
ment. In addition to that, they presented an approach for task offloading that is based
on graphs and utilizes constrained-restricted mixed linear programming. To address
the issue of energy-efficient and delay-aware task allocation problems, Singh et al.
[53] introduced the Energy-efficient task offloading strategy (EETOS) based on the
Levy-flight moth flame optimization (LMFO) method. Huang et al. [54] suggest a
method called Multi-Objective Whale Optimization Algorithm (MOWOA) that
takes into account time and energy consumption to determine the best computation
offloading mechanism. Yan et al. [55] have addressed the challenge of jointly opti-
mizing task offloading and resource allocation, taking into account both energy con-
sumption and execution time. They have also demonstrated that optimal offloading
decisions follow a “one climb” policy, which enabled the development of a Gibbs
sampling algorithm with reduced complexity to determine the optimal offload-
ing decisions. Gu et al. [56] proposed a method for offloading computations and
allocating transmit power that uses less energy and takes less time to complete. By
using the offloading of computation dynamically and transmission power allocation
for MEC, they created an energy efficiency cost reduction issue that fulfills Mobile
devices’ completion time deadline restriction.

With a supervised deep learning approach, Abbas et al. [57] examined the par-
tial offloading strategy in mobile edge computing (MEC). They effectively chose the
partial offloading strategy and the amount of each unit of the task to decrease service
latency and energy usage of the user equipment using the suggested approach, the
complete and energy-efficient deep learning-based offloading method (CEDOT). By
using a collaborative computing paradigm that addressed the vertical and horizon-
tal cooperation across fog and cloud nodes while reducing total end device energy
according to service latency limitations. In hierarchical fog-cloud systems, Nguyen
et al. [58] developed innovative and effective methods for combining the compres-
sion of data and computation discharging to reduce energy and delay costs. In par-
ticular, they looked at scenarios in which data compression only was utilized by end
devices and both end devices and the fog node. In Multiple user fog computing plat-
form, Chang et al. [59] developed an energy-efficient approach for computation off-
loading. They believed that users must decide whether or not to discharge processes
to the nearest fog node, depending on energy usage and latency constraints. They
devised an energy-efficient improvement solution to minimize energy consump-
tion, subject to delay limitations. Chen et al. [42] devised a fog-assisted IoT network
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data aggregation computation offloading strategy that was both privacy and energy
conscious. The aim of the suggested strategy is to reduce the overall energy usage
of computing tasks that provide a secure three-layer computing architecture and an
energy-efficient offloading decision technique based on the momentum gradient
descent. Table 3 summarizes several techniques used in related work.

Furthermore, many of the previous related works in the literature review focus
solely on either performance and ignore energy consumption or energy performance
but suffer from some limitations such as scalability, heterogeneity, and complexity.
In contrast, our proposed approach, which combines the genetic algorithm with Par-
ticle Swarm Optimization, achieves a balance between energy efficiency and per-
formance. By applying partial offloading of the computational tasks between [oRT
devices and fog nodes, our approach reduces energy consumption while maintaining
a high level of performance. Moreover, our approach is designed to address the limi-
tations of previous studies, such as homogeneity, complexity, and scalability. There-
fore, our approach contributes to the development of more practical and effective
solutions for energy-efficient and high-performance computation offloading in fog-
based IoRT networks.

4 The proposed approach

This section focuses on explaining the proposed approach to reduce the energy con-
sumption of IoRT in more detail. The approach is based on developing an IoRT hier-
archical architecture for deploying IoRT applications into the three-layer fog land-
scape. Then, the proposed framework is introduced to minimize energy consumption
using a partial task offloading strategy.

4.1 The proposed IoRT architecture

Figure 3 shows the hierarchical architecture of IoRT based on fog computing tech-
nology to help IoRT devices perform better and use less energy. The hierarchical
architecture consists of the following three layers:

1. Hardware Layer: It consists of various IoRT devices. Here, we solely employ
IoRT devices for intelligent sensing. Typically, these devices are geographically
dispersed. It is accountable for detecting and transmitting the perceived data of
physical objects to the layer above for analysis and storage. These devices are con-
nected to upper layer nodes by wireless technologies like SigFox, Wi-Fi, ZigBee,
Bluetooth Low Energy (BLE), 4G, and 5G [2]. This layer is responsible for taking
the offloading decision by selecting the most acceptable task offloading ratio o.

2. Fog Layer: This layer lies close to end devices at the edge of the network. It
consists of a variety of nodes that typically involve routers, gateways, switches,
access points, base stations, fog servers, etc. These nodes have the power to
process, transfer, and store sensed data. In the fog layer, real-time analysis and
latency-sensitive applications can be done. In addition, the fog nodes are linked
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to the centralized cloud servers to achieve more efficient computing and storage
capabilities [42].

3. Cloud Layer: It is composed of many highly efficient servers and storage units
and offers diverse applications. It has strong computational and storage resources
for the comprehensive processing and storing of a large volume of data [60].

4.2 The proposed loRT framework

To reduce the energy consumption of IoRT devices, the energy consumed in the
computation process will decrease by offloading a ratio of a task to fog nodes and
the rest of the task will be processed locally on the IoRT devices. Also, IoRT devices
generate data that differ in size, e.g. data transmitted from sensors (e.g. Ultrasonic
sensors) usually are less than images transmitted from cameras. The variety of the
data packages impacts the behavior of the fog node during the processing event.
Heavy data packages thus take more time than light data packets to process. On the
other hand, the computation capacity of fog nodes is weaker than that of cloud serv-
ers [41]. Therefore, to achieve a low latency response and reduce the power con-
sumed in the idle state sector at the same time, we should apply the collaboration
concept in the fog layer to process heavy tasks faster. Therefore, if the fog node
accepts a request based on of its current load, it either performs the whole request
or begins handling the application portion and transfers the remainder of the request
to a separate node (in case of heavy package size). Figure 4 demonstrates the pro-
posed IoRT based on the fog framework that will be suitable for time-sensitive and
efficient-energy consumption applications [61].

5 System model and problem formulation

A new energy modeling method for IoRT devices is suggested in this section to
increase energy efficiency. The robot will quantify and forecast energy consump-
tion by using the energy model as a reference to energy-saving strategies. The IoRT
device’s power usage takes into account six key factors: the transmission cost, the
computation system cost, the idle state cost, the sensor system cost, the control sys-
tem cost, and the movement system cost, as shown in Fig. 5. Figure 5 represents the
top six research challenges related to the design of energy-efficient IoRT systems
[62, 63].

Firstly, since IoRT is based on fog computing, tasks may be executed on the [oRT
device or moved to the fog nodes and implemented there. Afterward, the results
may be sent to the device, allowing further operations to be carried out. Deciding
whether the computation process on mobile devices or fog is best applied is a sig-
nificant matter because it has a huge impact on the use of energy. Also, the gathered
data from sensors will be transferred to the fog and this will consume energy in
the communication process. The amount of energy used to send data over a net-
work will depend on the amount of data and the data transmission rate. Secondly,
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Fig. 3 The hierarchical architecture of IoRT based on fog computing

IoRT devices need to describe and recognize the surrounding environment, so it is
connected to many sensors such as GPS, ultrasonic, cameras, encoders, gyroscopes,
compasses, etc. Also, these sensors affect the energy consumed, so it must be con-
sidered when calculating the energy of the robot. Finally, the control circuit board
and motion system will affect the robot’s energy. Equation (1) represents the con-
sumed energy based on the previous scheme [63].

E

total = E +E

comp

+E

contro.

+E,, +E

sensor i + Emov (1 )

trans

In this article, we apply partial computation offloading, so we mainly take into
account computation and transmission energy and the rest of (1) will not be affected
and assumed as A as shown in (2).

E 1

otal

= Etrzms + Ecamp +A (2)

In the remainder of this part, the content of the computation and transmission
energy sectors will be examined in detail. Let’s assume having a system consist-
ing of K end users (EU) scattered in the system at random, and each end user
is expressed as EU,, a fog node, and a distant cloud server, as demonstrated
in Fig. 6. Each EU has a computation task 7} = {M;.C,pLcomp}> M explains
the size of the task to be done, C,,,, illustrates the computation capacity of the
EU) which is the number of processed bits in a second, and P, represents the
computation power for implementing one cycle at the EU, in Watt, where k €
(1,2,3,...... 8).
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By applying partial offloading each EU, must offload o, the ratio of tasks to the
fog node for computation, and this offloading ratio must be greater than 0 and less
than or equal to 1, leaving the rest of the fractional processing tasks (I — o) to be
processed locally, hence the local computation energy E,,,,, and local computa-
tion time T} ;,.,, can be calculated as:

(1= o )M,
Ecomp = Pcomp * C— 3)
comp
(1— ock) * My * L
Tk,local = C (4)

comp

where L, represents the CPU cycles needed to process 1bit of the EU,.
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Fig.4 Internet of robotic things based on fog framework
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Frequency division multiple access is used for uploading the offloading data.
The system’s total bandwidth is B,,, and the bandwidth assigned to EU, is b.
So, in the transmission term, energy usage involves transmitted data size, network
transmission rate R, and the amount of energy needed to transmit network data
€.0na @S shown in (5).

ok My,

trans — Rk * €send (5)

Energy consumption for transferring data in the network e, is calculated
according to the Shannon equation, and the transmission rate of the EU, may be
expressed as:

esendhz (6)
NObk

R, =blog, | 1+

where &, represents the wireless channel gain and N, represents the spectral density
of the channel noise power. Then the energy consumption for data transmission in
the network can be indicated as:

Noby, (5
esend = ﬂ <2bf - 1> (7)

The final form of the transmission energy consumption and the uplink time is
expressed below:

Transmission
Cost

Movement
Cost

Control Cost

Fig.5 The top six design considerations for energy-efficient [oRT devices
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trans 2 R (8)
k k
o x My,
Ttmns = R (9)
k

Finally, the total computation time of the offloaded tasks consists of the offloading
transmission time and the fog processing time. Therefore, the final form of the total
energy consumed during the offloading process for all user devices in the system and
the total computation time of the offloaded task can be expressed, respectively, as:

J
Nyb, [ ok M 1= o )M,
Etutal=z%<2bk _1> *u.kp *w_FA (10)

comp
k=1 k Rk Ccomp

T ook My ok My x Ly
k.offload — Rk + F (11)

comp

The primary goal of the proposal presented in this article is to reduce the total
amount of energy consumed while meeting the delay requirement and improve the per-
formance of all IoRT devices by implementing a flexible network model based on fog
computing technology. The IoRT system efficiency optimization problem has several
competing objectives that must be optimized against a set of possible and achievable
solutions that are not predetermined but proposed by a set of boundaries and limita-
tions. In order to reach the proposed goal, we leverage the QoS concepts of computa-
tion time and energy consumption. They are characterized as follows:

Central Cloud

Fig.6 System model
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r BN

J Ry .
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comp

total
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min
0 < a, < land k=1

J
2 Rk <B total
k=1

(12)

where Tk,max = max [Tk,l()(‘al’ Tk,ojﬁoaded] <T.

In (12), the ideal scenario for optimal or near-optimal consumed energy in the
first half is to reduce the consumed energy in the transmutation in order to get the
best possible result (i.e., reducing the amount of energy needed to transport the data
packet to its destination and back to its sender). The consumed energy in the first
half can be optimized by getting the optimal value of the transmission rate R, and
offloading ratio «, of the data. The second half of (12) represents the optimal sce-
nario in terms of reducing energy consumption during local computing of the por-
tion of the task (1- ;) depending on the offloading ratio.

In the cost function (12), the goal is to modify the parameters «;, and R, to mini-
mize the overall energy consumption E, . The following are a few constraints to
keep in mind:

a. The device k offloading ratio should be between 0 and 1.

b. Ensures that the total data transmission rate of each device in the sub-region does
not surpass the channel bandwidth value.

c. Guarantees that the processing time after offloading procedure must be less than
or equal to the duration when all the tasks are computed locally and meet the task
deadline.

6 The proposed methodology

Next, the flow of an Improved Hybrid Optimization technique based on GA Com-
bined with PSO named ITHOGCP will be discussed. Figure 7 illustrates the main
steps of the IHOGCP algorithm. The IHOGCP algorithm begins with the random
population generation of individuals, defines a certain number of iterations, and
determines the algorithm parameters. The initialized population is fed into the GA
algorithm for the specified number of iterations. Each solution is represented by a
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chromosome, which is a fixed-length string. A chromosome consists of numerous
genes, and the overall chromosomal count indicates the population size. A fitness
function is used to evaluate the quality of one solution over another. Several opera-
tors, including selection, mutation, and crossover, are employed during the devel-
opment process to improve solutions passed to the next generation. In consecutive
iterations, solutions are developed until a suitable criterion, i.e., a maximum number
of generations or a preset fitness value is reached.

Following that, PSO’s particles are initialized once the GA-optimized solutions
are supplied, in which the position of the particles reflects the GA population’s solu-
tions and the velocity of each particle is initialized at the beginning. Position update
and velocity update are the main two operators in the PSO scheme. To find the opti-
mum particle position, the two “best” values, pBest and gBest, are modified. Based
on these two “best” values, the particle’s position may be changed by altering its
velocity dynamically toward the optimal value of calculation, known as the global
optimum. Each computation updates the velocity and position of each particle. The
optimal position of the particle, known as pBest, is assessed for every particle of the
swarm. If the present position is better than the prior one, the particle position shall
be altered. The old position shall otherwise be maintained. Afterward, determine
the gBest, which is the particle’s best position in the whole population. These four
stages are continued until a stopping condition is satisfied, indicating that the popu-
lation’s particles are in the best position. Finally, solutions are continuously opti-
mized until the maximum number of generations is achieved.

7 Proposed algorithm formulation

The optimization problem (12) cannot be solved by standard optimization techniques
such as the Lagrange multiplier method or the KKT condition, since it is a non-con-
vex problem. This problem is well suited to the usage of meta-heuristic algorithms,
as meta-heuristic algorithms are a type of computational intelligence paradigm that
is used to address sophisticated optimization problems. Due to their robustness and
ability to manage non-linearity and discontinuity, meta-heuristic optimization algo-
rithms are extensively used. The meta-heuristic algorithms are including Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and others. In any case, each
algorithm has its own advantages and disadvantages. For example, PSO’s conver-
gence is rapid, but it can be locked into locally optimum solutions when it is used
to solve complicated problems with high-dimensional solution spaces. In addition,
genetic algorithms have a great ability for global search and various solutions, but
their convergence process is time demanding. This study incorporates the benefits
of these two algorithms and proposed an Improved Hybrid Optimization technique
based on GA Combined with PSO named IHOGCP, as shown in Algorithm 1. Fol-
lowing that, we’ll go through the algorithm’s sequence, followed by the GA and
PSO used in this study.
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Fig.7 The flowchart of the IHOGCP algorithm
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Algorithm 1: Improved Hybrid Optimization technique based on GA combined with PSO (IHOGCP)

1: Input: the size of the population S, the number of variables N, the Max iteration of IHOGCP 1, the parameters of GA P,,, P,
I, tournament size tg, the parameters of PSOw, Cy, C,, I,.

2: Output: the optimal values <, R and E/.q;.
3: begin
4 Randomly generate individuals in initial population P and assign number of generations to 0 (i= 0).
5: ‘While termination criteria is not satisfied
do
6: Perform GA operations in Algorithm 2
7 Perform PSO operations in Algorithms 3
8: i=i+1
9: End

10:  Obtaining the optimal value of o¢k, Ry
11: The optimal energy consumption can be obtained by equation (12) with optimal values in the previous step

12: End

Algorithm 2: Genetic Algorithm operations

1: Input: the population P, P., B, ts , Max iteration /; .
2: Output: The S solutions after /; iterations.

3: Begin

4: calculate the fitness of individuals and assign number of generations to 0 (i; = 0).
5: While termination criteria is not satisfied

do

6: Select parents by the tournament selection
7: Apply crossover by probability P,

8: Apply mutation by probability P,

9: Evaluate the new candidates

10: i =i +1

11: End

PSO is used to increase the performance of GA. As demonstrated in Algo-
rithm 1, we utilize GA as the algorithm’s foundation, while PSO is used to
enhance the solution provided by GA. Algorithm 1 starts with a population
initialization randomly. Then, the individuals are handled by GA operations
in Algorithm 2 for I, iterations. Following that, PSO’s particles are initialized
once the GA-optimized solutions are provided from Algorithm 2 and perform
the PSO operations in Algorithm3 for 7, iterations. The individuals are repeat-
edly optimized using GA and PSO until convergence or the maximum number of
generations is reached.
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Algorithm 3: PSO Algorithm operations

1: Input: the best solutions (particles) produced by algorithm 2, inertia wight (w), C; ,
C,, Max iteration [,

2: Output: The position of S particles after I, iterations.
Begin
4: Initialize the velocity of S particles and assigning number of generations to 0 (i, = 0).

5: 'While termination criteria are not satisfied

do
calculate the fitness function of particles
Update the pps; and g, for each particle
Update the velocity of the particles
Update the position of the particles

10: | i,=1i,+1

11: End

7.1 GA schema

In order to tackle complicated problems, GA uses a random search strategy that
mimics biological evolution, which uses the notion of survival of the fittest as its
evolution concept. Selection, crossover, and mutation are the three fundamental
operators in a typical GA. Each individual is represented by a chromosome, which is
a string (typically binary or decimal) that encodes the solution. The selection opera-
tor replicates chromosomes of higher quality to pass on to the next generation in
order to improve fitness values in the population as a whole. Evolutionary popula-
tions benefit from mutations and crossovers, which give them different, but presum-
ably higher-quality genetic resources.

7.1.1 Chromosome structure and selection operation

The initial stage in solving the problem is chromosomal encoding, which is highly
dependent on the problem. Figure 8 shows the procedure of chromosome encod-
ing. The population matrix is made up of a number of individuals, each individual
has a set of genes. {x, R} becomes a gene for the individual in the population. In
each iteration, the individual with the lowest energy consumption is selected as the
optimum individual. There are two widely used ways for the selection operation:
roulette wheel and tournament. This study adopts the tournament since the selection
technique for the roulette wheel is more suited for maximization problems. In tour-
nament selection, choosing K individuals from the population randomly and select-
ing the fittest to become a parent. For picking the new parent, an identical process is
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performed. The crossover and mutation procedures are used by parents to generate
offspring to enhance variety and provide better solutions to this problem.

7.1.2 Crossover and mutation operation

Like reproduction and biological crossover, the crossover operator works in the
same way. This includes the selection of more than one parent and the produc-
tion of one or more offspring utilizing the parents’ genetic material. The goal is to
produce a bigger offspring pool with higher fitness levels. The concept underlying
reproduction is that the offspring is even more fitting by combining some features of
two already suitable individuals, as it may be best inherited from each of their par-
ents. Therefore, crossover aids in optimization and enhancing convergence. Cross-
over is carried out when the parents are interchanged by picking a random point
on the chromosome. After then, the crossover creates a new offspring depending
on the exchange point selected with certain portions of the parents. Figure 9 shows
an example of a crossover operation. The GA has a probability of crossover, which
decides whether crossover will occur or not. From practical and theoretical research,
results point to a substantially greater likelihood probability P, of crossover in the
0.6-0.95 range.

In short, mutation may be described as a little random chromosomal modifica-
tion in order to find a new solution. It is utilized in order to preserve and add vari-
ety to the population and is generally employed with low probabilities P,, around
0.0001-0.05. This operator generates new adaptive solutions by applying modifica-
tions randomly to one or more “genes” in order to produce new offspring, thereby
creating new adaptive individuals that prevent local optimum. For the integer rep-
resentation, a random value is assigned to a randomly selected gene from the list
of possible values. Figure 10 shows the exact procedure of the operation. A new
random value is assigned to the mutation if the modified gene is above the limit of
the constraint.

7.2 PSO schema

One of the approaches for evolutionary computation is Particle Swarm Optimiza-
tion (PSO). The PSO is a population-based optimization approach inspired by bird
flock and school fish movements. This approach searches for the best solution using
agents, called particles, which have a stochastic and a determinist component to
adapt their paths. The population of moving particles is called a swarm. Particles

o« R

oCq ST - ok Ry Ry | Ry,

Fig. 8 Chromosome encoding method
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only have two properties: position and velocity. Each particle adjusts its position in
the search space and enhances its speed in response to its own and other particles’
movement experiences in order to achieve a better suitable position. The particle’s
position in PSO represents the solution in the GA population, and the velocity shows
the rate of change in the position of the particle. Each particle has a record that
recalls its prior best position and is termed the particle’s best position as (pBest).
Each particle has a pBest, and the particle with the highest fitness value is referred
to as the group’s best position (gBest). Hence, the “best” position of each particle,
as well as the “best” position of the group, have an influence on the particle. Sup-
pose that the search space is S-dimensional, and the ith individual in the swarm may
be expressed by an S-dimensional vector X; = (X;,,X;,, ..., X;5). Another S-dimen-
sional vector can be used to describe the particle’s velocity V; = (Vi,l, Vigseos st)
Each particle adjusts its position according to the new velocity with each iteration.
During the iteration procedure, the velocity and position of a particle are updated as
(13) and (14).

+1 _ t t t ! 1
Vi’d = wV(l.,d) + rl.cl(pBest(i,d) — X(l.’d)) + r2.c2(gBest(l.’d) - X(Ld)) (13)

1 _ 1
Xig =X+ Vi (14)

Here, t=iteration number, d=1,2, 3, ..., S;i=1, 2, ..., M, where M is a swarm
size. w, ¢;, ¢y, r. and r, are, respectively, inertia weight which means the particle’s
weight at its prior speed, accelerator constants, and two random parameters within
[0, 1] to increase the randomness in the search. A particle is guided to its optimal
position by a set of acceleration parameters, which are represented by ¢; and c,,
which are two constants. It’s conceivable that the optimal answer will be neglected
if the values of ¢, and ¢, are large, resulting in a fast search. It is possible that the
search time will be slow if the values of ¢, and ¢, are low, and a local optimum may
be found. Thus, we assume that ¢, =2 and ¢, =2.

Crossover point

Parent 1 | I a1| a, | - | ay | Ry | R, | I Ry

I‘Parent2||&\1|d§ |d7c|f(’;|1’?3||1'?7c

Children |

Fig. 9 Crossover operation
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Random

!

a; | as ar | Ry R, Ry

Fig. 10 Mutation operation

8 Performance evaluation

The numerical experiments in this section will be based on the system model pre-
sented in Fig. 6 and the algorithm provided above. All experiments are executed on
a PC with a Windows 10 operating system and 12 GB of RAM, and the algorithms
are programmed in MATLAB 2021a.

We will suppose that the sub-area is equipped with a fog node and eight IoRT
devices. Specifically, each fog node has a computation capacity of 15 GHz, whereas
the computation capacity of each IoRT device is designed to be in the range of
0.1-1GHZ. Furthermore, the amount of CPU cycles required to process one bit of
data is assumed to equal 1000 cycles/bit. Assuming that the spectrum is partitioned
into k channels, with the bandwidth of each channel being identical, we set the chan-
nel bandwidth b, = 5 MHZ and the white Gaussian noise to be Ny= 10" W in the
communication environment. Each end user has a unique task that has to be cal-
culated, and the data amount of the computing task is chosen at random from 1 to
20 Mb for each end user. In Table 4, we summarize the simulation parameters.

Figure 11 shows the simulation results for the total energy consumption with the
number of iterations for eight end devices. As a first step, we ran our system through
a variety of iterations to evaluate how the number of iterations influences the
energy consumption of IoRT devices. In the beginning, the cost of the end devices
decreased rapidly. In the following rounds, as seen in Fig. 11, the rate of decline was
reduced as the number of repetitions increased. From Fig. 11, it can be observed
that the suggested algorithm’s overall energy consumption tends to converge after
90 iterations. For instance, increasing the number of iterations from one to ninety
resulted in a drop in energy consumption by 18 percent from, 21,684 to 17,810 (mlJ).
Following that, the rate of decline reduced when the number of generations was
above ninety, as seen in Fig. 11.

The energy consumption of the IoRT devices was estimated and compared for
three different situations in order to evaluate the proposed approach performance
versus different task sizes ranging from 1 to 15 MB. Figure 12 depicts the effect
of increasing the task size on the overall amount of energy consumed throughout
the task computation in the three different scenarios. The first situation was one
in which all the tasks are offloaded remotely. Tasks in the second situation were
all performed locally. The IHOGCP was implemented in the third situation. Fig-
ure 12 shows that the energy consumption rose as the size of the task increased.
This indicates that the proposed algorithm has the lowest energy consumption of the
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three situations that were tested. Local computing, on the other hand, has the largest
energy consumption. In contrast to local computing, the full-task offloading tech-
nique uses more energy in task transmission, although it costs less energy than local
computing. For instance, the suggested approach used 22,035 (mJ) of energy when
the task was 12 MB in size. When comparing full-task offloading and local comput-
ing, the amount of energy consumed was reduced by 28.3 percent and 52.2 percent,
respectively.

Then, as seen in Fig. 13, the performance of IHOGCP has been analyzed and
compared to the Genetic Algorithm (GA) [64], Particle Swarm Optimization (PSO)
[65], Whale Optimization Algorithm (WOA) [66], Artificial Bee Colony (ABC)
[67], Ant Lion Optimizer (ALO) [68], Grey Wolf Optimizer (GWO) [69], and Salp
Swarm Algorithm (SSA) [70]. According to the perspective of convergence, the
PSO is the best option, followed by IHOGCP, then GA, and finally WOA. However,
the other four algorithms take longer to converge, requiring more than 500 itera-
tions to reach their convergence points. However, in terms of energy consumption,
IHOGCP is the most efficient, whereas PSO is the most inefficient. GA’s perfor-
mance falls somewhere in the middle of that of IHOGCP and PSO. This is due to the
fact that IHOGCP combines the benefits of GA and PSO, with GA being better at
searching the global domain and PSO being faster at convergence. This means that
compared to the single GA or PSO, IHOGCP performs better. For example, in the
proposed approach when the number of iterations increased from 1 to 90 resulted in
a drop in energy consumption by 18% in contrast to GA makes convergence after
322 iterations to reach the same result approximately. However, the PSO makes con-
vergence after 20 generations but has the highest energy consumption. When com-
paring the proposed approach to the PSO algorithm, the consumed energy by the
proposed approach has been reduced by 8 percent compared with PSO. Finally, due
to the whale optimization algorithm suffering from slow convergence speed, low
precision, and a propensity to slip into local optimums, it achieves convergence after
386 iterations and consumes 6 percent more energy than IHOGCP.

The best results obtained by various algorithms on eight IoRT devices in terms
of task offloading ratio and transmission rate are shown in Table 5. One can see that
each device has its own offloading ratio and transmission rate, which differs from

Table 4 Simulation parameters

Parameter Value

Task size [1,20] Mb
Gaussian noise N 1077 w

CPU cycles needed to process 1bit 1000 cycles/bit
Local computation capacity C.,,, [0.1, 1] GHz
Fog node computation capacity 15 GHz

User channel bandwidth b, 5 MHz

A certain deadline constraint 4s

Crossover probability 0.85

Mutation probability 0.0625
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Fig. 11 Total energy consumption with iteration times

the other devices depending on the amount of the task being performed. It can be
easily observed that the IHOGCP approach has the best results compared with other
approaches under different task sizes in MATLAB experimental environment.

The influence of IoRT devices’ local computation capacities on energy consump-
tion and task offloading ratios in different schemas is illustrated in Fig. 14. Accord-
ing to the task sizes in Fig. 14a, we set them identical across all IoRT devices and
equals 13 MB. It is obvious that as local computation capacity increased, total
energy consumption decreased, and the offloading ratio decreased as well because

80000
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Task size (MB)
el |[HOGCP == 3¢ == Full offloading ¢« ok ¢ ¢« Local Computing

Fig. 12 The impact of task size on energy consumption
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of that IoRT devices can process a large ratio of tasks locally to achieve the deadline
constraints.

Clearly, the energy consumption in all schemas was near and substantial when
the local computation capacity was as low as possible and equivalent to 0.1 GHz.
As a result, the task-offloading ratio was as high as possible in order to complete the
majority of tasks at the fog node as quickly as possible. However, when local com-
putation capacity increased, the proposed approach was more efficient than alter-
native approaches and achieved a lower offloading ratio, owing to the fact that the
IoRT’s devices, which have high computation capacity, can complete tasks in a short
period of time.

On the other hand, on each IoRT device, task sizes were randomly selected
according to Fig. 14b. It’s obvious that our proposed approach consumes less energy
than others at different local computation capacities. However, we show that when
a small amount of local computing capacity is used, the difference in energy con-
sumption between algorithms is minor, and the difference arises when the amount
of local computing capacity is increased. For instance, at 1 GHz computation capac-
ity, the PSO algorithm consumes the most energy (19,255 mlJ), followed by the
WOA algorithm (18,916 mlJ). In contrast, our suggested approach, GA algorithm,
and ABC algorithm were found to use the least energy (17,804 mJ). Additionally,
three other algorithms were tested, and they consumed energy as follows: Algo-
rithm GWO used 18,454 mJ, Algorithm SSA used 18,410 mJ, and Algorithm ALO
used 18,591 mlJ. Overall, the additional algorithms performed better than PSO and
WOA but worse than our proposed algorithm. Hence, it is noticed that the suggested
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Fig. 13 Convergence comparison between IHOGCP, GA, PSO and WOA
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algorithm performs well under high computation capacity in terms of its speed of
convergence and energy consumption.

Figure 15 shows the energy consumption of various schemas as a function of the
number of IoRT devices, ranging from two to thirty-two. As illustrated in Fig. 15,
IHOGCP has a low computational cost in comparison to other algorithms. It’s easy
to notice that as the number of IoRT devices decreases, the difference in energy con-
sumption between the algorithms in comparison becomes nearly non-existent. Nev-
ertheless, when the number of IoRT devices increases, the difference in energy con-
sumption between the comparison algorithms becomes obvious and the proposed
approach becomes more efficient than the others. This is because, according to PSO
and WOA, the more devices present, the greater the likelihood of becoming trapped
in the local optimum.

The elapsed time in the run for our proposed algorithm and the other three algo-
rithms in different three scenarios is illustrated in Fig. 16. The three scenarios tested
were: the first scenario, where the sub-areas were equipped with four IoRT devices,
the second scenario where the sub-areas were equipped with eight IoRT devices,
and the third scenario where the sub-areas were equipped with sixteen IoRT devices.
Our proposed algorithm was evaluated against these three algorithms in terms of
elapsed time during execution. The results showed that our algorithm consumed less
elapsed time compared to the other three algorithms in all three scenarios tested.
This indicates that our proposed algorithm is more efficient in terms of time con-
sumption during execution than the other three algorithms.
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_E ABC
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Fig. 16 Elapsed time in the run for four algorithms at different scenarios
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9 Conclusion

In this research, a computation offloading strategy was presented to address the issue
of IoRT devices consuming excessive amounts of energy for task computation while
still fulfilling deadlines. Improving the task offloading ratio and transmission rate
using an Improved Hybrid Optimization technique based on GA Combined with
PSO named IHOGCP to reduce the total energy consumption. Based on the results
of the simulations, it appears that the proposed technique can reduce [oRT devices’
energy consumption under time limitations. Furthermore, simulation is used to eval-
uate the convergence of the proposed approach. The simulation results show that the
proposed algorithm is able to outperform GA and PSO methods separately.

In future works, keep working to improve the computation offloading model by
applying it to more realistic settings. Additional approaches for offloading opti-
mization will be conducted as well. Furthermore, examining the difficulty of off-
loading tasks in a dynamic moving environment for user devices with inter-task
dependencies.
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