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Abstract
Cell tracking is currently a powerful tool in a variety of biomedical research topics. 
Most cell tracking algorithms follow the tracking by detection paradigm. Detection 
is critical for subsequent tracking. Unfortunately, very accurate detection is not easy 
due to many factors like densely populated, low contrast, and possible impurities 
included. Keeping tracking multiple cells across frames suffers many difficulties, as 
cells may have similar appearance, they may change their shapes, and nearby cells 
may interact each other. In this paper, we propose a unified tracking-by-detection 
framework, where a powerful detector AttentionUnet++, a multimodal extension 
of the Efficient Convolution Operators algorithm, and an effective data association 
algorithm are included. Experiments show that the proposed algorithm can outper-
form many existing cell tracking algorithms.

Keywords Cell tracking · Data association · Detection

1 Introduction

Benefiting from microscopy imaging technologies and computer algorithms, sci-
entists can follow moving cell behavior and construct cellular lineages by pro-
cessing digital images. This knowledge is critical in biological research, drug 
development, medicinal or preventive therapies[3]. For example, cell tracking 
can help developmental scientists to understand the developmental history of cell 
functions [1] identify the role of differential gene expression in directing cell fate, 
analyze mutant defects, and verify development models. In assistive reproduction 
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labs, cell tracking can help to evaluate spermatozoid motility before artificial 
insemination [25]. Cell tracking is broadly used to evaluate spermatozoid motil-
ity in assistive reproduction technology [7]. By tracking single cell movement, 
Winter et al. [26], evaluate the role of deficiencies in axonal organelle transport in 
the pathogenesis of neurodegenerative diseases. Kwak YH et al. [15], studied cell 
chemotaxis by tracking a single cell’s migration route on a microfluid chip under 
culture conditions. Yue et  al. [27], recorded long-term live images of develop-
ing mouse hearts, by tracking cells and reconstructing cell lineages, revealing the 
ventricle chamber formation.

Most discriminative algorithms follow the tracking-by-detection paradigm [7, 
15, 26, 27], which treats the tracking task as a detection problem. They employ 
a classifier or a regressor to process both target and background representations. 
The detector is critical to the tracking performance. Unfortunately, because of 
possible impurities may coexist with cells, or the contrast between the target and 
the background is not high, the detector may not success all the time.

On the other hand, single object tracker can partially address this problem, 
as it does not rely on detection very much. Once the target’s initial position is 
assigned, SOT (Single Object Tracking) can capture the target in the following 
frames, and even the target disappears for a short time, without needing to detect 
the target in each frame. However, after certain frames, the SOT may drift.

However, these SOT algorithms usually suffer from the data imbalance issue 
between positive and negative samples for online model updating. In the search 
window of a tracker, positive samples are usually around the target center, while 
negative samples occupy the other area. This imbalance may cause inefficient 
training, and cause the model apt to drift. This problem is exacerbated in the case 
of multicell tracking tasks. As MOT (Multiple Object Tracking) suffers frequent 
interactions between cells with similar appearances, the tracker is more prone to 
drift. Thus, it is imperative to focus on a small number of hard examples during 
online updating to alleviate the drifting problems.

Recently, Discriminative Correlation Filter (DCF)-based SOT algorithms, esp. 
those combined with deep CNN (convolutional neural networks), have achieved 
surprising performance. However, they suffer problems of heavy computation 
overhead and the risk of severe overfitting. ECO incorporates a factorized con-
volution operator and a generative model of the training sample distribution to 
reduce computation complexity. Unlike many other DCF trackers, which update 
their models in each frame, ECO utilizes a sparser updating scheme to combat 
model drifting. Therefore we use ECO (Efficient Convolution Operators) as the 
base SOT for our multiple cell tracker.

To address the above problems, we propose a framework named as ECOMA 
(Efficient Convolution Operators with Multi-feature and Association). Our contri-
butions can be summarized as follows: 

(1) An accurate detector named as AttentionUnet++ is proposed, where spatial-
temporal attention mechanism is introduced. It can adapt to more broad types 
of cells under varying conditions. Compared with Unet++, it is more robust.
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(2) An ECO-based SOT is extended into a MOT tracker, where multimodal feature 
fusion and data association are included. In the data association module, a net-
work structure is proposed to evaluate cell similarity across frames.

This paper is organized as follows. Section  2 introduces the AttentionUNet++ 
detector. Section 3 introduces the ECOMA tracking algorithm and the SiameseNet-
like data association algorithm. Section 4 presents some experimental results to ver-
ify our algorithms.

2  Related works

Tracking-by-detection, is currently the dominant paradigm of multitarget track-
ing, where detection is critical for successful tracking. Unfortunately, very accurate 
detection is not easy due to many factors like densely populated, low contrast, and 
possible impurities included, false detection may occur, which may lead to poor per-
formance in the following tracking. Another challenging in multicell tracking comes 
from the interaction between nearby cells. As cells may have similar appearance and 
may change their shapes, it is not easy to associate correctly across different frames. 
Therefore, data association is very critical. In this section, we give a brief overview 
on related works from two perspectives, i.e., detection and tracking.

Unet is widely used in medical image processing [21]. Its encoding-decoding 
structure endows it with distinguish segmentation performance even when there is 
not much training data. Unfortunately, for different data set, it has different optimal 
depth. In order to obtain the best segmentation effect, it may be necessary to try 
multiple Unets with different depths. Unet++ breaks the constraints of Unet [28].

DESU-US takes advantage a cell detection algorithm based the combination of 
motion diffusion-based partial differential equation (PDE) and active contours [5]. 
It also produces a tracking algorithm adopting a variational joint local–global opti-
cal flow technique to determine the motion vector field. Cell motion was predicted 
using a maximum likelihood criterion, which considers motion vectors and spatial 
cell features jointly.

DREX-US is a graph-based method for multicell target tracking [26]. It reduces 
the error rate and implementation complexity compared to approaches based on 
bipartite matching. Data association was solved using a graph-based cost approxi-
mating a posteriori probability across a window of future detection data.

As cell detection and data association are most frequently two separate stages, 
there is no guarantee of preserving coherence between these two stages. This separa-
tion may adversely affect tracking performance. To address this problem, Hayashida 
proposes an MPM-Net, which jointly represents both detection and association [15], 
where motion and position map (MPM) represents both the motion vector and the 
position likelihood map.

Li et al. [17], propose a cell tracking method which jointly uses a dynamic mem-
ory network and template matching. Cell detection is implemented by a fully con-
volutional neural network, and cell tracking is implemented with multiple dynamic 
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memory units. The template is dynamically updated using an attention LSTM to 
cope with changing cell appearance. Cell motion statistics based on motion con-
straint are conducted to improve the robustness. Experimental results demonstrate 
its good performance.

He et al. [13], proposed a novel cell tracking method is proposed by using CNNs 
as well as multitask learning (MTL) techniques. After initializing the cell positions 
in the first frame, the particle filter model is applied to produce a set of possible 
bounding boxes in the subsequent frames. The multitask learning observation CNN 
extracts robust cell features, and evaluates those candidate bounding boxes, with the 
one with the highest confidence probabilities selected as the final predicted position.

Zhou et  al. [29], jointly used two UNets for cell detection and segmentation 
respectively. The one for cell detection extracts both interframe and intraframe spa-
tiotemporal information. The other one can perform cell segmentation as well as 
mitosis at the same time. The algorithm works well in high densely populated cell 
images.

3  The proposed ECOMA tracker

As mentioned before, successful tracking of multiple cells depends on both powerful 
detection and tracking techniques. In this paper, we propose a unified frame work 
from the two perspectives for multicell tracking, as shown in Fig. 1.

At each frame, target detection (DET) is conducted with a robust detector Atten-
tionUNet++, which incorporates both spatial and temporal attention mechanisms 
into Unet++. Then ECOMA is activated to track each newly detected target, which 

Fig. 1  Framework of the proposed cell tracking algorithm
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takes both advantage of both deep appearance features and deep motion features. 
Deep appearance features are extracted with a deep CNN. Optical flow maps [4] are 
constructed from two nearby frames, and then deep motion features are extracted 
from optical flow maps using another deep CNN. In order to balance computation 
overhead and feature extraction performance, we use the output features of bottle-
neck block 12 and 17 of MobileNet [23] as features at different depths.

For those with a low tracking score, marked as “lost”target, the ECOMA tracker 
is suspended and data association is activated to evaluate the similarity between the 
lost target and those “tracked” targets in the previous frame. Once the lost target is 
linked to a tracklet through data association, it is updated as “tracked”, and the track-
ing process is restored. For any new detection, which cannot be linked to a tracklet, 
a new trajectory is initiated. This data association algorithm does not have to be con-
ducted for each cell in each frame. It is activated only when tracking is unreliable. 
Experiments show that the proposed algorithm can outperform many existing cell 
tracking algorithms.

3.1  Cell segmentation and detection

In Fig.  2, if the attention module is bypassed and removed, then it becomes a 
Unet++. The overall architecture of Unet++ is kind of similar to that of Unet, both 
have downsampling networks (encoders), upsampling networks (decoders) and 
intermediate hopping connections. The down arrow in the figure denotes down-
sampling, the up arrow upsampling, and the dotted arrow hop connection. Xi,j in 
the circle represents convolution layer, and L represents the loss function. Unet++ 
combines Unet networks with different depth. These UNet networks share the same 
encoding network, and their decoders are intertwined. After proper training under 

Fig. 2  Network structure of attentionUnet++
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deep supervision, this design can speedup reasoning with high accuracy. For each 
node Xi,j , i is the index along the sampling layer, and j is the index along the hop-
ping connection. Let xi,j represent the output feature map of node Xi,j , which can be 
calculated as:

where H(⋅) represents the activation function, and u(⋅) represents the upsampling and 
[⋅] represents the connection. The node with j = 0 only receives the input from the 
upper layer of the encoder; the node with j = 1 receives two inputs from the adjacent 
encoder network layer. The node with j > 1 receives j + 1 inputs, of which j inputs 
are from the outputs of the first j nodes on the same hopping connection, and the last 
input is from the node just below it.

In the backbone, the convolution block composed of multiple convolution lay-
ers, can accumulate all the previous feature maps and deliver them to the last node. 
Hopping connections combine the shallow feature map from the encoder network 
with the deep feature map from the decoder, which can effectively restore the fine-
grained features of the object, and help the network recover the lost image informa-
tion and improve the performance.

3.1.1  AttentionUNet++

It is expected that the network can extract spatiotemporal information. Multiple 
frames are connected along the channel dimension, for example, the original image 
frame dimension is hWC. When combining the images of the past n frames, the data 
sent to the network have a dimension of hW(C(1 + n)) . This method only allows 
the network to receive multi-frame images by changing the input data dimension, 
which is used to improve the detection performance without adding the parameters 
of the input layer. Attention mechanism can emphasize important features and sup-
press non-important features. Since the input tensor to our UNet++ has a dimension 
of hW(C(1 + n)) , the different channels of the input tensor are the image information 
of different frames, and convolution operations extract features by mixing the cross 
channel and spatial information.

Inspired by [11], the channel attention map and spatial attention map are applied 
to feature maps in turn. Each branch can learn important information along the chan-
nel and spatial dimension, respectively. Therefore, the network will be enhanced to 
focus on targets. The network structure of the temporal attention and spatial atten-
tion mechanisms are shown in Figs. 3 and 4.

The structure of the temporal attention module is shown in Fig. 3 or calculated 
using Eq (2), and features across channels are utilized to generate an attention map. 
Since the pooling operations and shared MLP (multlayer perception) are applied on 
each channel of the input feature maps across n + 1 nearby frames, it makes sense to 

(1)xi,j =

⎧
⎪⎨⎪⎩

H(x(i−1,j)) if j = 0

H
��
[xi,k]

j−1

k=0
, u(xi+1,j−1)

��
if j > 0
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focus on “which frames.” In order to effectively calculate channel attention maps, 
we compress the spatial dimension of the input feature maps.

Different from channel attention, spatial attention focuses on “which location,” and 
works as a complement to channel attention. As calculated in Eq. (3), average pool-
ing and maximum pooling operations are very efficient, and they are applied along 
the channel dimension. The two corresponding feature maps FS

avg
∈ RH×W×1 and 

FS
max

∈ RH×W×1 are concatenated, and then convoluted with a kernal of 7 × 7 , and 
finally normalized with a sigmoid function, and corresponding structure is shown in 
Fig. 4.

A spatial-temporal attention module is constructed as shown in Fig.  5. Atten-
tion (weight) maps from Figs.  3 and 4 are applied onto feature maps by multi-
plications. When multiple such modules are integrated into Unet++, therefore 

(2)Mt(F) =�
(
MLP(AvgPool(F)) +MLP(MaxPool(F)

)

(3)Ms(F) =�
(
f 7×7

[
AvgPoll(F);MaxPool(F)

])

Fig. 3  Temporal attention

Fig. 4  Spatial attention

Fig. 5  Spatial-temporal attention
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AttentionUNet++ is built up as shown in Fig. 2, where L represents the loss func-
tion. Using these embedded attention modules, let the network emphasize the chan-
nel in temporal and spatial features. Attention Unet++ takes multiple neighboring 
frames as inputs, rather than single frame. Multiframe image information is spliced 
on the channel, therefore detection can be performed with higher accuracy.

3.2   ECO tracker

Here ECO is briefly summarized on which our multicell tracker is built [9]. Suppose 
totally there are D channels of appearance or motion feature maps, �1 , �2,..., �D , and 
each �d has a size of Nd . As they have different size, before they are combined, they 
are interpolated into continuous domain:

where Φ{�d}(t) is �d(n) ’s counterpart in continuous domain. cd is a periodic func-
tion as expressed in the following equation:

where bd is an interpolation kernel, e.g., a cubic spline. bd(t) for channel d is scaled 
to the sampling frequency T∕Nd

Conducting convolution on Φ(�d) with a filter f d in continuous domain creates a 
confidence map of channel d. Summarizing all those confidence maps on all chan-
nels creates the combined confidence map:

The target can be localized by searching the peak value across the combined confi-
dence map [10]. The tag yj is also defined on continuous domain, which denotes the 
expected feature map when f d is applied on �d . All these filters can be learned by 
minimizing the following loss function:

where m denotes the total number of samples, and �j controls the weight for each 
sample, and the second item denotes the regularizing penalty.

Applying Fourier Transform to (5)

(4)Φ{�d}(t) =

Nd−1∑
n=0

�d[n]cd

(
t −

T

Nd
n
)

(5)cd(t) =

+∞∑
−∞

bd

(
Nd

T

(
t −

nT

2Nd

))

(6)Sf (x) =

D∑
d

f d ∗ Φ
(
�d

)

(7)E(f ) = argmin
f

m∑
j=1

�j
‖‖‖Sf {xj} − yj

‖‖‖
2

+

D∑
d

‖‖‖wf
d‖‖‖

2
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where hat functions corresponds to the Fourier transform of corresponding items in 
(6). It is very time consuming to minimize the function. According to Parseval’s for-
mula, Eq. (6) is equivalent to resolving the following formulation in Fourier domain 
[8]:

To minimizing Eq. (9) is equivalent to resolving the following equation:

where f̂d and ŷ are vectorizations of the Fourier coefficients of f d and yj . H denotes 
the conjugate transpose. A denotes a matrix with diagonal blocks, and each block 
contains elements of the form Φd

j
ĉd[k] . Γ is a diagonal matrix of weights �j , and 

Wcorresponds is a convolution matrix with the kernel ŵ[k] . To localize the target, 
the peak value on the inverse Fourier Transform of the response map is searched.

Unfortunately, D is often a very large number. To speedup calculation, ECO algo-
rithm compresses the D filters into smaller C(C < D) filters. To avoid the number 
of samples being intractable, ECO takes advantage of Gaussian Mixture Model to 
build a generative distribution model of samples.

3.3  Data association

Using the ECO, cells can be predicted in the next frame. Unfortunately, tracker 
may drift. Therefore we employ a tracker-detector interplay scheme. Each detec-
tion around the predicted position is evaluated by calculating the IoU between the 
bounding box associated with the detection and that associated with the position 
given by the tracker. For those with an IoU above a threshold (e.g., 50%), cells are 
tagged as tracked, otherwise lost. For any target cell marked as lost, data association 
is conducted.

As shown in Fig. 6, the data association module is constructed as a SiameseNet-
like network, where the similarity between the target in the previous frame and a 
detection in current frame is evaluated. As many cells look like similar, using 
appearance features may not be sufficient to differentiate them, therefore both 
appearance and motion features are utilized. Two patch pairs are fed into it: a pair of 
gray scale patches plus a pair of optical flow patches. The similarity between each 
pair is evaluated, respectively. For each pair, the similarity is compared at three dif-
ferent depths. At each depth, the similarity is evaluated with a structure as shown in 
Fig. 7.

(8)Ŝf {x}[k] =

D∑
d

f̂ d[k]Φd[k]̂cd[k]

(9)E(f ) = argmin
f

m∑
j=1

�j

‖‖‖‖‖‖

D∑
d

f̂ dΦd
j
ĉd − ŷj

‖‖‖‖‖‖

2

+

D∑
d

‖‖‖ŵ ∗ f̂ d
‖‖‖
2

(10)
(
AHΓA +WHW

)
�f = AHΓŷ
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The similarity score at depth l is denoted as Sl . Finally, in total six different Sl s 
are combined with their respective weights. Here a uniform weight 1

6
 is used.
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Fig. 6  Data association

Fig. 7  Similarity calculation module
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The data association network is trained with a cross entropy loss:

where yi denotes the tag for sample i, yi = 1 denotes that sample i is the same cell, 
otherwise yi = 0 . p(yi) denotes the predicted tag by the network, and N denotes the 
batch size. Suppose that there are N target cells in the ith frame,xi,1, xi,2, xi,3, ..., xi,N ; 
and there are M cells detected in the (i + 1) th frame, xi+1,1, xi+1,2, xi+1,3, ..., xi+1,M . For 
any specific target n in the ith frame, the candidate with the highest Sall(xi,n, xi+1,m) in 
the (i + 1)th frame is thought as the one associated with n.

Those targets in the ith frame, which are successfully associated are marked as 
“tracked," and others marked as “lost." If any target marked as “lost” in the next 
three continuous frames, i.e., a cell has moved out of the field of view, then its tra-
jectory is terminated. For any new detection, which is not associated with any tar-
gets in the ith frame, a new trajectories is initiated.

4  Experimental results

4.1  Experiment setup

All codes are written in Python 3.5.6, TensorFlow-gpu 1.14.0 and Keras 2.2.2. All 
algorithms are evaluated under Linux Ubunto 14.2. The hardware platform includes 
an Intel Xeon Gold 5118 CPU, 256 GB memory, and a Tesla V100 GPU with 16 GB 
memory.

As many other peer works in cell tracking, our algorithms are evaluated on CTC 
data sets. Among them, some typical data sets are selected. In the data set Fluo-
N2DH-SIM+, cells are hard to detect and segment, as the contrast between the cell 
and background is not high, and cells look quite similar. In the data set PhC-C2DH-
U373(U373), the cells’ shape varies drastically, and some impurities are mixed. In 
the data set Fluo-N2DH-GWOT1(GWOT1), cells are stained unevenly, and cells 
collide with each other, coming in or out of field of view frequently. In the Fluo-
C2DL-Huh7 data set (Huh7), cells are densely populated and their shapes are irreg-
ular, and they contact each other.

According to the requirements by CTC (Cell Tracking Challenge) [18] all codes 
as well as input∖output scripts are submitted to CTC for evaluation. CTC will test all 
submissions with data sets, and then announce the results.

(11)Sall =

6∑
l=1

�lSl

(12)L = −
1

N

N∑
i=1

[
yilog(p(yi)) + (1 − yi)log(1 − p(yi))

]
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4.2  Performance on cell detection

The AttentionUnet++ was trained with three neighboring frames, with a backbone 
ResNet50 [12] is transferred from pretrained ImageNet. The Adam optimizer [14] is 
used with a learning ratio of 0.0001.

The AttentionUnet++ is trained and tested with the data set SIM+. SIM+-train 
has 01 and 02 series, and series 01 contains 65 images with a resolution of 628×
690, while series 02 contains 150 images with a resolution of 739×773. Both series 
have a 16-bit gray scale. All these images are normalized and adjusted to 512×512. 
The SIM+ data set is augmented to triple of its original size. 80% percent of data are 
used for training, while 20% are used for validation purpose. The output of Attentio-
nUnet++ is centroids of cells, their boundaries are then delineated using a Voronoi 
algorithm [29]. The performance is scaled with the metric DET.

The effectiveness of our detection algorithms is shown in Fig. 8. As shown in 
(a), a false detection occurs when a single frame image used, but this does not 
occur in (b), where multiframes are used. The robustness of multiple frame input 
is proved.

(a) Three-frame Input (b) Single-frame Input

Fig. 8  Effectiveness of attention Unet++

Table 1  AttentionUNet++ 
Outperforms Unet++

Dataset Method  DET 
(Detec-
tion)(%)

1 DESU-US [2] 85.5
2 DREX-US [16] 92.8
3 HIT-CN [29] 93.9
4 MON-AU [6] 93.6
5 HD-Wol-GE [22] 87.4
6 OURS 94.5
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For the purpose of comparison, some of the famous detection algorithm are 
listed in Table 1. DESU-US [2] utilizes a temporal-spatial motion diffusion-based 
Partial Differential Equation (PDE) formulation to detect cells. DREX-US [16] 

Table 2  Alblation tests on 
augmentation and the number 
of frames

Networks Aug. Frames Precision (%) Recall (%) F1 (%)

SIM+ 01 sequence
Unet++ Yes 3 97.75 98.82 98.28
Att.Unet++ No 3 91.20 98.97 94.93
Att.Unet++ Yes 1 90.91 99.52 95.02
Att.Unet++ Yes 3 97.38 99.40 98.38
SIM+ 02 sequence
Unet++ Yes 3 83.66 94.63 88.81
Att.Unet++ No 3 45.69 93.04 61.28
Att.Unet++ Yes 1 71.91 95.99 82.22
Att.Unet++ Yes 3 87.08 95.39 91.04

Fig. 9  Cell tracking and segmentation
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uses Gaussion Mixture Model and Euclid Distance Transformation. HIT-CN [29] 
uses a classic Unet for detection, while MON-AU [6] uses a Mask R-CNN with 
a backbone of ResNet. HD-Wol-GE [22] extracts features on multiple scales, and 
then detects cells with a recurrent network. For Table  1, our algorithm outper-
forms all other algorithms, and the effectiveness of AttentionUnet++ is proven.

Table 3  Tracking performance comparison

Dataset Method  SEG(%)  TRA(%) OP
CTB

(%)

Fluo-N2DH-SIM+ DESU-US [2] 64.0 83.7 73.9
DREX-US [16] 73.1 92.2 82.7
UP-PT [24] 60.5 89.6 75.0
OURS 79.7 93.5 86.6

PhC-C2DH-U373 DESU-US 62.5 50.8 56.6
DREX-US 67.9 93.3 80.6
IMCB-SG [20] 26.7 95.5 61.1
UP-PT 35.5 88.3 61.9
OURS 87.8 95.6 91.7

Fluo-N2DH-GOWT1 DESU-US 82.3 82.8 82.6
DREX-US 86.4 91.3 88.9
IMCB-SG .52.9 88.2 70.5
UP-PT 72.2 87.5 79.9
OURS 85.6 88.8 87.2

Fluo-C2DL-Huh7 DESU-US 41.5 76.2 58.8
DREX-US 54.0 .85.5 69.7
IMCB-SG – – –
UP-PT – – –
OURS 63.3 88.0 75.6

Table 4  Ablation test on ECO 
and data association

Dataset ECO Association  SEG (%)  TRA (%)  OP
CTB

 (%)

U373 No No 89.74 94.76 92.25
No No 90.90 96.57 93.73
Yes Yes 90.90 97.13 94.02

GOWT1 No No 90.61 96.35 93.48
Yes No 92.36 97.81 95.09
Yes Yes 92.20 98.32 95.26

Huh7 No No 72.03 94.14 .83.09
Yes No 73.47 95.38 84.43
Yes Yes 75.78 97.44 86.61
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As shown in Table 2, alblation tests are conducted on SIM+01 and SIM+02, 
and metrics of precision, recall and F1 are measured. On SIM+01, the attention 
mechanism does not improve much. However,on SIM+02, it improves 3.42% on 
precision, 0.75% on recall and 1.17% on F1. Multiframe input enables the network 
to fully obtain spatial-temporal information, and the F1 metric is improved about 
6.09% on average on SIM+01, and the precision metric is improved by approxi-
mately 10.82% on SIM+02. As there are not enough images in both data sets, data 
augmentation can effectively prevent overfitting. From row 2 and row 4, it can be 
seen obviously that data augmentation improves all metrics.

4.3  Performance on cell segmentation and tracking

In terms of tracking, the feature compression augment of ECO is set as 14 and 64, 
� is set as 0.125, the learning ratio is set as 0.02, and NS is set as 5. The backbone is 
transferred from ResNet50, and an Adam optimizer with a learning rate of 0.0001 is 
utilized.

In Cell Tracking Challenge, tracking performance is scaled with three metrics: 
SEG, TRA and OPCTB (a combination of SEG and TRA) [18, 19]. SEG denotes the 
accuracy of segmentation of cells, TRA denotes the overall tracking performance, 
and OPCTB is the average of SEG and TRA. The tracking performance of our pro-
posed method is compared with some state-of-the-art methods, such as traditional 
methods or deep learning-based methods. The tracking and segmentation effective-
ness can be shown in Fig. 9. Segmentation is performed using the method proposed 
in [29], which can delineate the cell’s boundary very well.

As shown in Table  3, due to our powerful cell detection algorithm and multi-
modal feature fusion, our proposed ECOMA algorithm outperforms all others except 
DREX-US, which is slightly better than our algorithm on GOWT1. In summary, our 
algorithm is more robust.

The contributions of ECO and our Data Association are evaluated as shown 
in Table 4. From the table, it can be found that the first row corresponds to the 
Nearest Neighbor (NN) algorithm, which is used as the base line. Compared 
with the greedy NN, it can be seen that multimode feature fusion improves 1.14% 
on SEG, 1.5% on TRA, and 1.47% on OPCTB . Data association improves 1.04% on 
TRA, 0.81% on OPCTB . It seems that the data association strategy works but not 
very much. One possible reason is that cells does not move very far from frame 

Table 5  Ablation test on 
appearance and motion features

Dataset Appearance  Motion (%)  TRA(%)

U373 Yes No 97.04
No Yes 96.94
Yes Yes 97.13

GOWT1 Yes No 98.24
No Yes 98.02
Yes Yes 98.32
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to frame, the IoUs are sufficient for tracking. If the frame rate is reduced, and the 
cell’s position in nearby frames does not overlap, then the advantage of tracking 
and data association will become obvious.

From Table 5, it can be shown that the combination of appearance and motion 
features outperforms any single feature, but appearance features contribute more 
to the tracking performance, motion features can be helpful to enhance the track-
ing performance, but not much.

5  Conclusion

In this research, we proposed AttentionUnet++ detctor as well as ECOMA tracker. 
The AttentionUnet++ detector takes in multi-frame input, and utilizes spatial and 
temporal features. Extending single-target tracker ECO to multi-cell tracking, the 
proposed ECOMA tracker utilizes both appearance and motion features and a 
Sames-like data association module is included. Experiments are conducted on CTC 
data set, the efficiency of our algorithms is verified, indicating that our algorithms 
can outperform many highly ranked algorithms published by CTC. Future works 
may focus on a more robust data association module, which can evaluate multiple 
frames and can deal with broken tracklets or tracklets connected by mistake.
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