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Abstract
RISC-V set architecture is playing an increasingly important role in processor tech-
nology due to its open instructions which allow researchers to build and improve 
computing systems. However, many RISC-V architectures exist in multi-core archi-
tecture with complex designs, large area, and high-power consumption. This paper 
studies an open-source multi-core RISC-V processor in a simple design with less 
power consumption. The processor depends on an open-source single RISC-V core 
processor, Taiga. Two cores of Taiga are integrated on a single chip while address-
ing issues related to cache coherence, interconnect, and memory design. A solution 
has been developed to achieve data coherence between implemented caches and the 
main memory; its architecture depends on the snoopy protocol. A hardware-cus-
tomized peripheral unit has been implemented to achieve the management process 
among operated cores’ tasks. For more consistent and highly controlled memory 
storage, the main memory unit has been designed in dual-port based on a specific 
protocol in the interface, and 8192 lines and word addressable unit. As the UART 
is common in several devices and processors for communication, the UART as a 
peripheral customized device has been appended for communication with other 
devices. The processor has been implemented in System Verilog HDL and exten-
sively tested on various testbenches to ensure correct functionality. Hence, the sys-
tem performance has been evaluated using the CoreMark benchmark, and achieved 
4.605 CoreMark/MHz on Zedboard (FPGA Xilinx family) with a maximum operat-
ing frequency 98 MHz. The results indicate that the processor performs comparably 
to state-of-the-art multi-core processors, while offering a simpler and more power-
efficient design. Overall, the research demonstrates the potentialof RISC-V architec-
ture in creating a simple and power-efficient multi-core RISC-V processor.
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1 Introduction

Single-core processors have reached their potential due to physical limitations. To 
achieve higher performance, parallel processing techniques can be used at both 
the hardware and software levels. Multicore processors have become popular for 
various applications including personal computers, supercomputers, and smart-
phones. RISC-V is a new RISC instruction set architecture that is open-source 
and categorized into several sets. These sets can be implemented based on a spe-
cific design target. Since their introduction in 2011, RISC-V designs have been 
recognized for their high performance, modularity, flexibility, and open-source 
specifications and development tools.

Most multicore RISC-V processors have been implemented as a closed source 
which makes it difficult for further modification and enhancement. This paper 
discusses an implementation of an open multicore RISC-V processor.

While several multiprocessor RISC-V implementations exist [1–4], they are not 
open-source [1, 2]. Most of those open-source works in a machine mode only and 
don’t support OS [3]. Those are highly designed as soft-processor such as the RISC-
V Rocket processor [5]. It supports both in-order and out-of-order schedules. These 
designs have components off-chip such as a memory controller and a main memory 
and don’t aim at FPGA platforms due to the extensive resource usage.

The novelty of our design is that the processor is designed on-chip as a dual-
core processor and is extendable for more than two threads. It is optimized enough 
to keep high performance. The maximum operating frequency is so near that 
of the single-core Taiga. The processor is in-order but the compiler is optimized 
to minimize the processor’s execution time. It is optimized to re-order and mini-
mize instructions. The design targets different FPGA platforms. It is available as 
an open to provide opportunities for education and research, and academic students 
to develop their skills. The proposed processor is based on the open-source single-
core RISC-V implementation by Matthews and Shannon, which includes a partial 
implementation of atomic instructions [6]. The proposed design comprises two 
Taiga cores, interconnecting, synchronization, and a synthesizable hardware mem-
ory [7]. Due to the small number of used cores in this design, a snoopy protocol was 
applied to achieve cache coherence [8]. This protocol will be optimized to reduce 
the amount of accessing memory. The management process that distributes tasks on 
the two threads, depends on an implemented simple peripheral unit [9].

The rest of this article is organized as follows. Section 2 offers a review and 
comparison between several state-of-the-art processors. Section  3 presents the 
proposed design, including an implemented peripheral device to achieve synchro-
nization among operated cores, a UART unit for sending a specific data on serial, 
a pseudocode of programs run on our processor and steps of this process. Addi-
tionally, it explains an interconnect topology connecting all peripheral devices 
with working cores, and the design of the implemented memory. Section 4 dis-
cusses a noncoherent data problem and how we achieved cache coherence under 
the snoopy protocol. Section 5 introduces a benchmark resultof multicore opera-
tions. Section 6 concludes the article and discusses future work.
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2  Comparison of RISC‑V processors

Several RISC-V processors were reviewed and compared in terms of performance 
parameters and architecture level. The sweRV-EH2 processor was designed for 
small systems such as microcontrollers [10]. It has small tightly coupled memory 
in place of a cache. Additionally, the processor works in machine mode only. The 
Andes processor was designed as single-core but supports multicore functionality 
based on RISC-V ISA [11]. However, it does not contain a data cache (D-Cache) 
and fixed latency execution units. Moreover, the design is not open source.

The Taiga processor is a RISC-V single-core open-source processor [12]. Taiga 
is ready to support an operating system, as it was implemented with D-Cache and 
instruction cache (I-Cache). Each cache is 16 KB. The processor supports a variable 
latency unit, especially in the execution stage; making it available to add extra units 
with variable latency, and it also has atomic instructions. The design is modular with 
a variable-length pipeline, thereby enabling the addition of new functional units 
[6]. Additionally, it has an option of adding cache units, multiplication units, effi-
cient division units, and two- or four-way set-associative (16 or 32 KB, respectively) 
caches. It supports three privilege modes: machine, supervised, and user levels [13]. 
The design can interface with various protocols, namely, AXI interface [14], Avalon 
interface [15], and Wishbone interface [16]. It was written in System Verilog HDL.

The below table shows the scores of the Taiga processor compared with those 
of other single-core RISC-V processors in two benchmarks. These benchmarks are 
standard for usages such as Dhrtsone and CoreMark. These scores are published 
results (Table 1).

The Lagorta project is an implementation of a superscalar multi-core platform 
based on a RISC-V processor [21]. Initially, developed as RV64I. It was later 
extended to a multi-core asymmetric processor. The project has implemented atomic 
instructions for the synchronization processes between multi-core processors and 
solved the problem of cache coherence in the P-Mesh system developed by OpenPi-
ton, which is an open-source design. However, the Lagorta project has some limita-
tions, such as being partially designed using Verilog HDL, which can be confusing 
for hardware developers. Additionally, it does not use standard HDLs such as Chiesl. 
The system is also not on-chip.

Table 1  Comparison among single RISC-V core processors on different benchmarks

Taiga is the proposed single-core processor for the dual-core processor

Core name Dhrystone (DMIPS/MHz) CoreMark/MHz

Taiga 1.65 2.63
Rudolv [17] 0.736 … 1.815 (depending on 

Dhrystone implementation
1.354

PicoRV32 [18, 19] 0.516 –
Advpub, RISC-V 32-bit microcontroller on 

65-nm silicon-on-thin-BOX (SOTB) [20]
1.27 2.4

Ariane – 2.45
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PlackParrot [22] is an open multi-core RISC-V processor with four cores and six 
pipeline stages. It supports atomic instructions, single- and double-precision float-
ing point operations, integer multiplication and division, compressed, fence instruc-
tions, and CSR instructions. It solves the problem of cache coherence based on the 
directory-controller protocol and has been designed using SystemVerilog HDL. It 
includes a built-in SoC design with accelerators and is capable of working on Linux 
systems. The project has achieved a CoreMark/MHz of 3.04 on an FPGA as pub-
lished. SoC is mostly a target design for high performance but it is a challenge to 
save the dissipated power and not exceed the resource usage of an operated FPGA 
kit. We have achieved these factors in our design. The proposed design aims to 
address these challenges while providing an on-chip dual-core processor that can be 
extended to multiple threads while maintaining high performance. It is optimized to 
minimize execution time and supports cache coherence under the snoopy protocol. 
Additionally, it is available as open-source.

3  The proposed design

The proposed dual-core processor is built upon the single-core Taiga processor. Fig-
ure 1 depicts the block diagram of the Taiga processor.

The single-core design includes two types of memory: SIM-memory and local 
memory. SIM-memory is a 4 GB simulation memory that is used at the simulation 
level and is not synthesizable. It interfaces using the AXI protocol. On the other 
hand, local memory is a small-sized read/write (R/W) memory that is faster than the 
main memory for storing data and instructions.

The local memory is a HW synthesizable that is used on FPGA instead of the 
unsynthesizable main memory. (The design is configured to work on either the 
Local memory or the SIM-memory but the Local memory was only used in the sin-
gle-core operation)

Fig. 1  Taiga open-source single-
core block diagram
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Taiga: is a single-core RISC-V processor that serves as a foundation for the pro-
posed dual-core processor.

L2-arbiter: is an arbiter entity transferring requests from Taiga (more than one 
core) to the memory based on the round-robin arbitration method. A round-robin 
is a simple algorithm and a methodology for arbitration among multiple threads in 
cyclic order.

Finally, Axi-To-Arbiter converts arbiter request signals to AXI channels’ signals 
enabling communication between the Taiga processor and memory.

Figure 2 depicts the block diagram of the proposed dual-core procressor.

3.1  Core management unit

The core management unit (CMU) is responsible for managing the operation of 
the cores in the proposed dual-core processor. The CMU includes a storage buffer 
with 32 locations in size, with each location index representing the core number. 
For example, location zero represents the state of core_1, location one represents 
the state of core_2, and so on. The other locations are reserved for future appended 
threads. The task of the CMU is to stop or run each core, and it does so use two 
output control signals halt1 and halt2. These signals are responsible for halting or 
unhalting core_1 and core_2, respectively. Control messages sent from software to 
the CMU update these signals.

Fig. 2  Top design of dual Taiga 
RISC-V Core



17005

1 3

Development an efficient AXI‑interconnect unit between set…

In addition to the storage buffer, the CMU includes a control register called 
the core enable register. This register includes a status bit called "CTS" (core task 
select), which guides each thread for its current task.

Figure 3 shows the format of the CMU registers, providing a visual representation 
of the various components and their relationships to one another within the CMU.

The proposed dual-core processor includes several control bits that are used to 
manage the operation of the cores. These control bits are managed by a control cir-
cuit that coordinates their operation and ensures that the cores are executing instruc-
tions as intended.

The WRV (work at reset vector bit) is used to indicate that a core is in default 
mode.

WSA (work at a specific address bit) is used to indicate that a core is not in 
default and is executing instructions from a specific address.

Halt bit is a control bit that can be set to stop a core or cleared to run a core. 
When the Halt bit is set, the core stops executing instructions at the current PC and 
stops fetching the next instruction. Finally, the CTS bit (core task select) is a control 
bit that guides each thread for its current task. If it equals zero, the current task is 
related to Core_1. Otherwise, it is related to core_2.

The CMU control for read and write (R/W) operations is designed as a com-
binational circuit. For read operations, the available read addresses range from 
0 × 60,000,000 to 0 × 6000001f, with each address representing the state of a specific 
thread as formatted in Fig. 3. However, address 0 × 60,000,004 represents the core 
enable register (CEReg).

Writing operations occur on a CMU control status register (CCSR) addressed by 
0 × 60,000,000. The CCSR receives 8-bit data which is decoded to perform a spe-
cific action, such as halting or running a core. For example, if the software sends 
0 × 00 to the CCSR, it means halt core2, and if it sends 0 × 07, it means run core1.

Core1 is controlled as the last core, as mentioned at the above decoding process, 
as it is assumed a default thread. The default thread is the first thread to be executed 

bit 1-bit 0-bit

WRA_1 WSA_1 Halt_1

(a) Core1_Status_Reg (C1SReg)

2-

2-bit 1-bit 0-bit

WRA_2 WSA_2 Halt_2

(b) Core2_Status_Reg (C2SReg)

2-bit                       1-bit                0-bit

- - CTS

(c) Core_Enable_Reg (CEReg)

Fig. 3  Structure of CMU registers
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and is never halted, but it waits at a specific address (addressed by the program 
counter) until other threads finish their tasks. Additionally, Core1 shares any other 
thread in distributed tasks (shared tasks).

Inkscape [23] has been used as a drawing tool, to develop the later diagrams.
Figure  4 provides a comparison of timing diagrams between read and write 

(R/W) operations in the proposed dual-core processor. The example shown in the 
figure involves unhalting core2 (a write operation) and reading the state of an arbi-
trary thread (a read operation).

3.2  UART 

The proposed dual-core processor includes a transmitter/receiver circuits module as 
additional peripheral unit. This module is capable of sending and receiving one byte 
at a time and operates at standard baud rates such as 200, 2400, 4800, 9600, and 
115,200 bps. The built-in baud rate for the module is 115200 bps, and it can only be 
modified by the hardware developer.

Figure  5 shows the pseudocode for the transmitter circuit, which is designed 
using the methodology generated on the Nandland site [24].

Overall, the transmitter circuit in the proposed dual-core processor is designed 
to efficiently transmit data on a byte-by-byte basis, using standard baud rates and 
a five-state machine to ensure reliable and accurate communication with external 
devices or circuits.

The transmitter circuit (Tx) is implemented as a five-state machine synchronized 
with the system clock. Firstly, an idle state indicates that Tx is valid. Then, if the 
UDR contains data, TX sends a start bit with a value of zero to indicate the start of 
transmission.

After sending the start bit, the Tx sends the 8-bit data, bit by bit, until all bits 
have been transmitted. Once the eighth bit of data has been sent, the Tx sends a stop 

Fig. 4  Timing diagram of write and read operations on the CMU
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bit with a value of one to indicate the end of transmission. The stop bit is configured 
to be one bit.

Finally, Tx takes one clock cycle to deactivate operated tasks that were performed 
during the transmission, such as setting a busy flag. This state is the clean-up state.

The receiver circuit is also implemented as a five-state machine, with the same 
states as the transmitter circuit (Idle, start-bit, receive 8-bit data, stop-bit, and clean-
up state). The UART data register, which stores the one-byte data, is addressed 
by 0 × 60,000,100 and 0 × 60,000,101 in the case of transmitting and receiving, 
respectively.

3.3  AXI‑interconnect unit

The AXI-interconnect unit, serves as a communication channel, delivering the 
requests of the two threads to the CMU and the UART. The choice of an interface 
protocol is essential because it simplifies the operation of a component that affects 
the hardware design area and delay. The AXI-interconnect unit is named as such 
because it depends on the AXI protocol for interfacing with the dual-processor.

AXI has a five-channels for interfacing, separating the read interface from the 
writing one that has simplified the unit architecture. It was designed based on multi-
plexer topology (MuxT) and is a soft on-FPGA network [25]. R/W operations based 
on a multiplexer topology (MuxT). The MuxT topology is used for both read and 
write operations, with the read operation being separate from the write operation.

Figure 6 shows the block diagram of the two peripheral devices, the CMU and 
the UART interfacing with the AXI interconnect unit. This figure also shows the 
writing Muxes of the AXI-interconnect.

The figure shows the interconnection between the processor and the two PDs. 
The black block is a controller that differentiates requests coming to the CMU from 
those coming to the UART. That depends on the address mapping of Table 2.

Case (current state)

Begin 

Idle: start to send 1 (referring to stop) on serial and jump to start-bit state in case of coming 

data

Start-bit: send 0 on serial (start-bit) and announce that UART is active and jump to 

send-data state

Send-data: start to send 8-bit data then jump to stop-bit state

Stop-bit: send 1 on serial and announce that UART isn’t active. Then, jump to clean-up state

Clean-up: stay here only one clock cycle. Then, jump to the idle state

End 

Endcase 

Fig. 5  Pseudocode of UART transmitter module
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CMU and UART have specific I/O signals interfaced with the AXI intercon-
nect. These signals are described as:

AXI interface_1: is an AXI interface connecting the core_1 to our 
AXI-interconnect.

AXI interface_2: is an AXI interface connecting the core_2 to our 
AXI-interconnect.

UART Interfaces:o_Tx_Byte: is 8-bit data to be transmitted on serial.o_Tx_
DV: is the valid data signal that indicates new data existing on o_Tx_Byte.i_Tx_
Done: is an input done signal. It points to that the UART has finished 8-bit data 
transmission.i_Tx_Active: in the case of being high (which equals one), it means 
that UART is busy.

S_machine: is a 3-bit signal indicating the current state of the UART.
CLKS_PER_BIT: is the number of clock cycles per bit that the UART takes to 

send one bit on serial.i_Clock: is the input system clock.i_Rx_DV: indicates that 
8-bit of data exists in the receiving UDR.i_Rx_Byte: is the received 8-bit of data.

CMU Interfaces:
W_Address: is a 32-bit address line of the writing operation.

Fig. 6  Block diagram of the interconnection between the processor and peripheral devices

Table 2  Memory map of 
peripheral devices

Bus system

Peripheral device Address space

CMU From 0 × 60,000,000 to 0 × 600000ff
UART (transmitter) 0 × 60,000,100 & 0 × 60,000,200 & 

0 × 60,001,000
UART (receiver) 0 × 60,000,101 & 0 × 60,000,201
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W_data: is 32-bit written data.
R_address: is a 32-bit address line of a read operation.
Arvalid: indicates that the read address bus has been updated by a valid address.
R_data: is 32-bit read data.
R_valid: indicates validating the read data bus.
W_valid: indicates validating the write data bus.
Aw_valid: indicates validating the write address bus.
Core_1 is prioritized to access the CMU over the other core, given its status as 

the default core. If both cores attempt to access the CMU simultaneously, Core_1 
is granted access and the other core’s request is queued for a maximum one clock 
cycle. However, parallel accesses to the CMU are infrequent as requests to halt/
unhalt either core. They are typically made at the beginning and the end of an oper-
ated task.

On the other hand, either core can access the UART, with the first accessed core 
dominating the path to the transmitter (Tx) of the UART. If a core needs to send a 
specific sequence of 8-bit data, it can send to reserve the UART Tx by sending a 
request to lock it. This reservation prevents other threads from accessing the Tx until 
the transmission is complete. However, if the sender only has a single byte of data 
to transmit there is no need to reserve the Tx. Tx remains busy until it transmits the 
entire series of data has been transmitted.

The token flag, located at address 0 × 60,001,000, is used to reserve the UART 
Tx. The sender core requests to take the token flag to prevent other threads from 
accessing the UART transmitter. If either core sends a request (one) to this address 
before the other, it reserves the Tx. At the last byte of data transmission, the sender 
sends zero on the same address to unlock the Tx.

The busy status bit, located at address 0 × 60,000,200, is checked first before 
data transfer to ensure that the UART Tx is available. The data valid bit, located at 
address 0 × 60,000,101, indicates the presence of data in the receiver’s UDR.

Figure 7 shows the timing diagram of the reading and writing transactions of the 
interconnect unit.

3.4  Main memory design

The proposed dual-port memory unit is designed to work synchronously for read 
and write operations, with portA designated for read operations and portB for write 
operations. The memory unit is synthesizable and has been designed to operate on-
FPGA. It communicates with the two cores of the dual-core processor based on 
the AXI protocol interface. Figure  8 provides a dual-port synchronized memory 
Xilinx-supported.

The dual-port memory unit is instantiated at an outer control module that inter-
faces with the dual-core processor using the AXI protocol. This control module 
samples each AXI request first and then passes the required control, address, and 
data to the dual-port memory buses (as shown in Fig. 8). The dual-port memory 
unit has been configured with 8192 address lines, which can be configured by the 
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hardware (HW) developer. When a read instruction is executed, the memory unit 
sends a block of memory that is four words in-depth.

3.5  Steps of parallelism

The program tasks in the proposed dual-core processor are manually distributed 
between the two cores. The software developer can divide the main task into dual-
core or single-core tasks based on the task size or the developer’s target. This 
approach can be particularly useful if the second core is implemented as a co-pro-
cessor for a specific task. The software developer also has control over whether to 
operate the two threads in parallel. The CMU is the responsible unit for receiving 
and responding to control messages to operate or stop the two threads.

Algorithm 1 provides a structure for a distributed program on the dual-proces-
sor, where Core2 is the second core, and Core1 is the first and default core. The 
“C2Fin” variable indicates when Core2 has finished its task, and the CTS vari-
able is a logic bit of the CMU’s CEReg.

At the beginning of the program execution, both the CTS bit and the “C2Fin” 
variable are cleared. Core1 runs by default and begins fetching the first instruc-
tions as long as the CTS bit is zero. Once Core1 starts running, it sends a control 
message to the CMU to unhalt Core2. The CMU responds by unhalting Core2 
and setting the CTS bit.

When the CTS bit becomes one, core2 begins executing its corresponding task. 
At the end of core2’s task, it updates “C2Fin” by one. Core2 then sends another 
control message to halt itself. As soon as “C2Fin” is set, core1 continues to oper-
ate other tasks if they exist.

Fig. 7  Timing diagram of write and read operations for the CMU via AXI interconnect
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This module has:

Input preload_file, Lines, Start_address

Input clk, logic [$clog2(Lines)-1:0] addr_a, // portA is a read port

Input en_a,

Output logic[31:0] data_out_a,

Input logic [$clog2(Lines)-1:0] addr_b,  // portB is write port

Input logic [3:0] be_b, // it is a byte enable control signal

Input logic [31:0] data_in_b

logic [31:0] ram [Lines-1:0];

initial

begin

$readmemh (preload_file,ram, 0, Lines-1); 

end

always_ff @ (posedge clk) begin

if (en_a)

data_out_a <= ram[addr_a];

end

generate

genvar i;

for (i=0; i < 4; i++) begin

always_ff @ (posedge clk) begin

if (be_b[i]) begin

ram[addr_b][8*i+:8] <= data_in_b[8*i+:8];

end

end

end

endgenerate

endmodule

Fig. 8  dual-port memory unit
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4  Cache coherence

Cache coherence is essential in ensuring that the memory system of a multiproces-
sor is coherent and consistent. To achieve cache coherence between these two cores 
in the proposed dual-core processor, a unit controller has been designed based on 
the snoopy protocol [26]. The snoopy protocol is suitable for this processor because 
it currently has only two threads, making it a low number.

The use of a simple protocol is preferable in a dual-core processor, and one such 
protocol is the snoopy protocol for cache coherence [27]. Figure 9 provides a visual 
representation of the snoopy circuit and its interface.

The snoop circuit, as shown in Fig. 9, is implemented inside the L2-arbiter and 
works in conjunction with other functions in the processor. The store variable is a 
logic bit that indicates whether the address on the address bus is related to a write or 
read instruction.

The snoopy circuit receives the 32-bit address of each core during a write instruc-
tion and passes it to an invalidation-response FIFO. This FIFO sends an invalidation 
request to each thread in case of an invalid address. The invalid address could be due 
to the snoopy circuit or other functions, such as synchronizing instructions.
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Figure 10 shows the block diagram of implemented FIFOS related to the snoop 
circuit and other tasks of the L2 arbiter. The default task related to synchronizing 
instructions is given higher priority.

Figure 10 shows the data flow of snoop requests on snoop and invalidation_
response and input FIFOs. Input-FIFO is for invalidation addresses of tasks like 
synchronization. Snoop_FIFO’s size depends on the expected number of invalida-
tion requests of the input-FIFO. AT most, one request comes for each two clock 
cycles into the input_FIFO. The invalidation_response_FIFO takes one clock 
cycle to pop its input data. Therefore, the snoop-FIFO was sized as four in-depth 
rather than avoiding unexpected overflow issues. The pseudocode for the snoop 
control circuit implementation is shown in the figure below (Fig. 11).

Fig. 9  Snoopy circuit interfaced 
with the two threads

Fig. 10  L2-arbiter hierarchy FIFOS with the snoop-fifo
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5  Result and discussion

To verify the multi-processor, both standard and non-standard benchmarks have 
been used Fig. 12 illustrates the data flow of the top design for the test bench. The 
AXI-HW memory receives the program and each core fetches its related tasks based 
on Algorithm  1. If a halt/unhalt request (control message) reaches the AXI inter-
connect, it delivers it to the CMU based on the core highest priority. The CMU 
then updates the output halts signal to run/stop the operated threads. In each cache 
operation, especially during storing transactions, the owner core sends an invalida-
tion request to the other thread via the snoop circuit implemented at the L2 arbiter. 
If address matching occurs, the listener invalidates the address’s tagline. Each core 
can send on serial. If it requires sending a specific series of data, it can reserve the 
UART. Then, it should send a control message to release the UART.

Based on the RTL rules [28–30], the design was successfully implemented. Fig-
ure 13 shows the RTL blocks of the top design

Table 3 compares the resource usage of the proposed dual-core processor with 
other multi-processors and shows the stages of the optimization process. The Worst 
Negative Slack (WNS) is a positive value of 0.105 ns, and the Worst Hold Slack 
(WHS) is also positive with a value of 0.024 ns. The Total Negative Slack (TNS) 
and Total Hold Slack (THS) are both zero, indicating that the timing constraints 
have been met successfully.

Define a FIFO of addresses to be snooped [Number of operated cores].

For (loop on the number of working cores by index i) begin

For (loop on the number of working cores by index j) 

If (i !=j) begin

   Snoop_fifo[j].push = request[i].writing // indicates writing transaction 

   Snoop_fifo[j].data_in = request[i].address 

End

End

For (loop on the number of working cores by index i) begin

 Invalidation_fifo[i]. pop = request[i].invalidation_ack 

 Request[i]. invalidation_address = Invalidation_fifo[i].data_out 

 Invalidation_fifo[i]. push = synchronizing_invalidation_request | size of snoop_fifo[i] 

> 0

Invalidation_fifo[i].data_in = (synchronizing _invalidation_request) ? 

input_fifo[i].data_out : snoop_fifo[i].data_out

Snoop_fifo[i].pop = (not synchronizing _invalidation_request & size of snoop_fifo[i] > 

0) 

End 

Fig. 11  Pseudocode of appending snoop circuit inside L2 arbiter
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In Vivado, there are several strategies available for implementation, such as per-
formance, placement, physical optimization, area optimization, and power optimi-
zation. Overall, the use of the performance-retiming strategy and the optimization 
process has resulted in a highly efficient and optimized dual-core processor with 
excellent performance and low power consumption. The power dissipation of the 
processor at a 98 MHz operating frequency is 0.325 watts.

CoreMark is widely used as a standard benchmark [32] for testing multiple-
core processors. In this study, the CoreMark has been distributed to work on a 
dual-core processor depending on Algorithm 1. Each core receives its parameters 

Fig. 12  Testbench module of system design

Fig. 13  RTL model of the processor
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of addresses and begins operating its three modules. Table 4 provides a compari-
son of the proposed dual-core processor with other dual- and quad-core proces-
sors in terms of CoreMark/MHz score. The benchmark was performed on a Zed-
board (Xilinx board) [33].

The design is also ready to support multi-core architecture for Operating Sys-
tems (OS), making it suitable for a range of computing applications. Furthermore, 
the processor is configured for academic research purposes, allowing researchers 
to use it for a variety of projects and experiments.

Table 3  Comparison in utilization resources among a set of RISC-V multiprocessors

Processor type Utilization resources Operating 
frequency 
(MHz)

Dual-Taiga top LUT FF BRAM DSP
6437 3161 32 8 98
6394 3161 32 8 96
6336 3185 32 8 90
6608 3071 32 8
6617 3061 32 8
6766 3063 32 8

Hydra
(4-cores)
Conventional system [31]

10,964 4181 – –

Hydra
(4-cores)
Composable system [31]

12,522 4517 – –

Rocket processor 17,144 9058 10 0 54

Table 4  Coremark result of quad- and dual-core processors

Underlined values refer to our implemented processor

CoreMark/MHz Operating 
frequency 
(MHz)

Memory configu-
ration

Vendor Number 
of cores

Taiga dual-core 
processor

4.605 98 Stack Xilinx 2

SunFire v210 2.39 1503 Heap Sun microsystems 2
Esp32 4.13 160 Stack Espressif 2
Sitara AM6442 6.525 1000 16-bit DDR4 Texas instruments 2
Ingenic × 2000 6.853 1200 DDR3L Ingenic semicon-

ductor
2

NXP 7.74 150 SRAM NXP semiconduc-
tors

2

ZCU104 3.25 1200 DDR4 Xilinx 4
Raspberri pi 4B 22.67 2145 Heap Raspberri pi 4
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The proposed dual-core processor design supports both heterogeneous sym-
metric/asymmetric computing architectures, making it versatile and adaptable to 
a range of computing needs. Heterogeneous architecture is becoming increasingly 
popular, especially in the Intel family of processors. Additionally, the processor is 
designed to be compatible with both Intel and Xilinx families of processors.

The processor is currently applicable for integer operations, but plans are in 
place to append a floating-point unit in the future.

6  Conclusion and future work

In this study, an open-source multi-processor (dual-RISC-V core) design has been 
discussed. Two peripheral devices have been presented. The CMU is for the man-
agement process between the two threads. The UART module is for sending on 
serial and is configurable to be reserved for one core for a while. Keeping on 
modularity, an AXI interconnect is designed, separated from the memory sys-
tem path, for all peripheral devices to interface with the dual-processor. Some 
memory issues are discussed, for example, the noncoherent cache. Its solution 
has depended on the snoopy protocol. The design is ready for appending extra 
custom peripheral devices. There is a high range of address space that can cover 
other units. In addition, the resource usage is less compared with other multi-pro-
cessors. The main memory depends on the AXI interface with the dual-proces-
sor. AXI protocol is FPGA sensed. The main memory is 8192 address lines and 
four words as a memory block for each reading operation. A standard benchmark 
tool (CoreMark) has been used to measure the performance. The processor has 
achieved a good result compared with the references. Also, several benchmarks 
have been developed for extensive testing. It shows how the performance of the 
design is consistent for complex programs.

In the future, we will modify the cache unit and snoopy circuit to make the lis-
tener core read data from the owner’s L1 cache in case of matching instead of the 
main memory to reduce the number of clock cycles consumed for reading updated 
data from the main memory. We will append a floating unit in single and double pre-
cision. Additionally, we can append TC to the cache module [2]. Instead of AXI HW 
memory, we can use an off-chip DDR4 memory [34, 35] with an on-chip memory 
controller [36]. The design can be optimized more to keep the maximum frequency 
as it is in single-core Taiga (104 MHz).
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