
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:17000–17019
https://doi.org/10.1007/s11227-023-05304-1

1 3

Development an efficient AXI‑interconnect unit
between set of customized peripheral devices
and an implemented dual‑core RISC‑V processor

Demyana Emil1 · Mohammed Hamdy1 · Gihan Nagib1

Accepted: 13 April 2023 / Published online: 5 May 2023
© The Author(s) 2023

Abstract
RISC-V set architecture is playing an increasingly important role in processor tech-
nology due to its open instructions which allow researchers to build and improve
computing systems. However, many RISC-V architectures exist in multi-core archi-
tecture with complex designs, large area, and high-power consumption. This paper
studies an open-source multi-core RISC-V processor in a simple design with less
power consumption. The processor depends on an open-source single RISC-V core
processor, Taiga. Two cores of Taiga are integrated on a single chip while address-
ing issues related to cache coherence, interconnect, and memory design. A solution
has been developed to achieve data coherence between implemented caches and the
main memory; its architecture depends on the snoopy protocol. A hardware-cus-
tomized peripheral unit has been implemented to achieve the management process
among operated cores’ tasks. For more consistent and highly controlled memory
storage, the main memory unit has been designed in dual-port based on a specific
protocol in the interface, and 8192 lines and word addressable unit. As the UART
is common in several devices and processors for communication, the UART as a
peripheral customized device has been appended for communication with other
devices. The processor has been implemented in System Verilog HDL and exten-
sively tested on various testbenches to ensure correct functionality. Hence, the sys-
tem performance has been evaluated using the CoreMark benchmark, and achieved
4.605 CoreMark/MHz on Zedboard (FPGA Xilinx family) with a maximum operat-
ing frequency 98 MHz. The results indicate that the processor performs comparably
to state-of-the-art multi-core processors, while offering a simpler and more power-
efficient design. Overall, the research demonstrates the potentialof RISC-V architec-
ture in creating a simple and power-efficient multi-core RISC-V processor.

Keywords Interconnect unit · Cache coherence · RISC-V multicore · Hardware
synthesizable memory · System verilog · RTL

 * Demyana Emil
 Dem11@fayoum.edu.eg

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05304-1&domain=pdf

17001

1 3

Development an efficient AXI‑interconnect unit between set…

1 Introduction

Single-core processors have reached their potential due to physical limitations. To
achieve higher performance, parallel processing techniques can be used at both
the hardware and software levels. Multicore processors have become popular for
various applications including personal computers, supercomputers, and smart-
phones. RISC-V is a new RISC instruction set architecture that is open-source
and categorized into several sets. These sets can be implemented based on a spe-
cific design target. Since their introduction in 2011, RISC-V designs have been
recognized for their high performance, modularity, flexibility, and open-source
specifications and development tools.

Most multicore RISC-V processors have been implemented as a closed source
which makes it difficult for further modification and enhancement. This paper
discusses an implementation of an open multicore RISC-V processor.

While several multiprocessor RISC-V implementations exist [1–4], they are not
open-source [1, 2]. Most of those open-source works in a machine mode only and
don’t support OS [3]. Those are highly designed as soft-processor such as the RISC-
V Rocket processor [5]. It supports both in-order and out-of-order schedules. These
designs have components off-chip such as a memory controller and a main memory
and don’t aim at FPGA platforms due to the extensive resource usage.

The novelty of our design is that the processor is designed on-chip as a dual-
core processor and is extendable for more than two threads. It is optimized enough
to keep high performance. The maximum operating frequency is so near that
of the single-core Taiga. The processor is in-order but the compiler is optimized
to minimize the processor’s execution time. It is optimized to re-order and mini-
mize instructions. The design targets different FPGA platforms. It is available as
an open to provide opportunities for education and research, and academic students
to develop their skills. The proposed processor is based on the open-source single-
core RISC-V implementation by Matthews and Shannon, which includes a partial
implementation of atomic instructions [6]. The proposed design comprises two
Taiga cores, interconnecting, synchronization, and a synthesizable hardware mem-
ory [7]. Due to the small number of used cores in this design, a snoopy protocol was
applied to achieve cache coherence [8]. This protocol will be optimized to reduce
the amount of accessing memory. The management process that distributes tasks on
the two threads, depends on an implemented simple peripheral unit [9].

The rest of this article is organized as follows. Section 2 offers a review and
comparison between several state-of-the-art processors. Section 3 presents the
proposed design, including an implemented peripheral device to achieve synchro-
nization among operated cores, a UART unit for sending a specific data on serial,
a pseudocode of programs run on our processor and steps of this process. Addi-
tionally, it explains an interconnect topology connecting all peripheral devices
with working cores, and the design of the implemented memory. Section 4 dis-
cusses a noncoherent data problem and how we achieved cache coherence under
the snoopy protocol. Section 5 introduces a benchmark resultof multicore opera-
tions. Section 6 concludes the article and discusses future work.

17002 D. Emil et al.

1 3

2 Comparison of RISC‑V processors

Several RISC-V processors were reviewed and compared in terms of performance
parameters and architecture level. The sweRV-EH2 processor was designed for
small systems such as microcontrollers [10]. It has small tightly coupled memory
in place of a cache. Additionally, the processor works in machine mode only. The
Andes processor was designed as single-core but supports multicore functionality
based on RISC-V ISA [11]. However, it does not contain a data cache (D-Cache)
and fixed latency execution units. Moreover, the design is not open source.

The Taiga processor is a RISC-V single-core open-source processor [12]. Taiga
is ready to support an operating system, as it was implemented with D-Cache and
instruction cache (I-Cache). Each cache is 16 KB. The processor supports a variable
latency unit, especially in the execution stage; making it available to add extra units
with variable latency, and it also has atomic instructions. The design is modular with
a variable-length pipeline, thereby enabling the addition of new functional units
[6]. Additionally, it has an option of adding cache units, multiplication units, effi-
cient division units, and two- or four-way set-associative (16 or 32 KB, respectively)
caches. It supports three privilege modes: machine, supervised, and user levels [13].
The design can interface with various protocols, namely, AXI interface [14], Avalon
interface [15], and Wishbone interface [16]. It was written in System Verilog HDL.

The below table shows the scores of the Taiga processor compared with those
of other single-core RISC-V processors in two benchmarks. These benchmarks are
standard for usages such as Dhrtsone and CoreMark. These scores are published
results (Table 1).

The Lagorta project is an implementation of a superscalar multi-core platform
based on a RISC-V processor [21]. Initially, developed as RV64I. It was later
extended to a multi-core asymmetric processor. The project has implemented atomic
instructions for the synchronization processes between multi-core processors and
solved the problem of cache coherence in the P-Mesh system developed by OpenPi-
ton, which is an open-source design. However, the Lagorta project has some limita-
tions, such as being partially designed using Verilog HDL, which can be confusing
for hardware developers. Additionally, it does not use standard HDLs such as Chiesl.
The system is also not on-chip.

Table 1 Comparison among single RISC-V core processors on different benchmarks

Taiga is the proposed single-core processor for the dual-core processor

Core name Dhrystone (DMIPS/MHz) CoreMark/MHz

Taiga 1.65 2.63
Rudolv [17] 0.736 … 1.815 (depending on

Dhrystone implementation
1.354

PicoRV32 [18, 19] 0.516 –
Advpub, RISC-V 32-bit microcontroller on

65-nm silicon-on-thin-BOX (SOTB) [20]
1.27 2.4

Ariane – 2.45

17003

1 3

Development an efficient AXI‑interconnect unit between set…

PlackParrot [22] is an open multi-core RISC-V processor with four cores and six
pipeline stages. It supports atomic instructions, single- and double-precision float-
ing point operations, integer multiplication and division, compressed, fence instruc-
tions, and CSR instructions. It solves the problem of cache coherence based on the
directory-controller protocol and has been designed using SystemVerilog HDL. It
includes a built-in SoC design with accelerators and is capable of working on Linux
systems. The project has achieved a CoreMark/MHz of 3.04 on an FPGA as pub-
lished. SoC is mostly a target design for high performance but it is a challenge to
save the dissipated power and not exceed the resource usage of an operated FPGA
kit. We have achieved these factors in our design. The proposed design aims to
address these challenges while providing an on-chip dual-core processor that can be
extended to multiple threads while maintaining high performance. It is optimized to
minimize execution time and supports cache coherence under the snoopy protocol.
Additionally, it is available as open-source.

3 The proposed design

The proposed dual-core processor is built upon the single-core Taiga processor. Fig-
ure 1 depicts the block diagram of the Taiga processor.

The single-core design includes two types of memory: SIM-memory and local
memory. SIM-memory is a 4 GB simulation memory that is used at the simulation
level and is not synthesizable. It interfaces using the AXI protocol. On the other
hand, local memory is a small-sized read/write (R/W) memory that is faster than the
main memory for storing data and instructions.

The local memory is a HW synthesizable that is used on FPGA instead of the
unsynthesizable main memory. (The design is configured to work on either the
Local memory or the SIM-memory but the Local memory was only used in the sin-
gle-core operation)

Fig. 1 Taiga open-source single-
core block diagram

17004 D. Emil et al.

1 3

Taiga: is a single-core RISC-V processor that serves as a foundation for the pro-
posed dual-core processor.

L2-arbiter: is an arbiter entity transferring requests from Taiga (more than one
core) to the memory based on the round-robin arbitration method. A round-robin
is a simple algorithm and a methodology for arbitration among multiple threads in
cyclic order.

Finally, Axi-To-Arbiter converts arbiter request signals to AXI channels’ signals
enabling communication between the Taiga processor and memory.

Figure 2 depicts the block diagram of the proposed dual-core procressor.

3.1 Core management unit

The core management unit (CMU) is responsible for managing the operation of
the cores in the proposed dual-core processor. The CMU includes a storage buffer
with 32 locations in size, with each location index representing the core number.
For example, location zero represents the state of core_1, location one represents
the state of core_2, and so on. The other locations are reserved for future appended
threads. The task of the CMU is to stop or run each core, and it does so use two
output control signals halt1 and halt2. These signals are responsible for halting or
unhalting core_1 and core_2, respectively. Control messages sent from software to
the CMU update these signals.

Fig. 2 Top design of dual Taiga
RISC-V Core

17005

1 3

Development an efficient AXI‑interconnect unit between set…

In addition to the storage buffer, the CMU includes a control register called
the core enable register. This register includes a status bit called "CTS" (core task
select), which guides each thread for its current task.

Figure 3 shows the format of the CMU registers, providing a visual representation
of the various components and their relationships to one another within the CMU.

The proposed dual-core processor includes several control bits that are used to
manage the operation of the cores. These control bits are managed by a control cir-
cuit that coordinates their operation and ensures that the cores are executing instruc-
tions as intended.

The WRV (work at reset vector bit) is used to indicate that a core is in default
mode.

WSA (work at a specific address bit) is used to indicate that a core is not in
default and is executing instructions from a specific address.

Halt bit is a control bit that can be set to stop a core or cleared to run a core.
When the Halt bit is set, the core stops executing instructions at the current PC and
stops fetching the next instruction. Finally, the CTS bit (core task select) is a control
bit that guides each thread for its current task. If it equals zero, the current task is
related to Core_1. Otherwise, it is related to core_2.

The CMU control for read and write (R/W) operations is designed as a com-
binational circuit. For read operations, the available read addresses range from
0 × 60,000,000 to 0 × 6000001f, with each address representing the state of a specific
thread as formatted in Fig. 3. However, address 0 × 60,000,004 represents the core
enable register (CEReg).

Writing operations occur on a CMU control status register (CCSR) addressed by
0 × 60,000,000. The CCSR receives 8-bit data which is decoded to perform a spe-
cific action, such as halting or running a core. For example, if the software sends
0 × 00 to the CCSR, it means halt core2, and if it sends 0 × 07, it means run core1.

Core1 is controlled as the last core, as mentioned at the above decoding process,
as it is assumed a default thread. The default thread is the first thread to be executed

bit 1-bit 0-bit

WRA_1 WSA_1 Halt_1

(a) Core1_Status_Reg (C1SReg)

2-

2-bit 1-bit 0-bit

WRA_2 WSA_2 Halt_2

(b) Core2_Status_Reg (C2SReg)

2-bit 1-bit 0-bit

- - CTS

(c) Core_Enable_Reg (CEReg)

Fig. 3 Structure of CMU registers

17006 D. Emil et al.

1 3

and is never halted, but it waits at a specific address (addressed by the program
counter) until other threads finish their tasks. Additionally, Core1 shares any other
thread in distributed tasks (shared tasks).

Inkscape [23] has been used as a drawing tool, to develop the later diagrams.
Figure 4 provides a comparison of timing diagrams between read and write

(R/W) operations in the proposed dual-core processor. The example shown in the
figure involves unhalting core2 (a write operation) and reading the state of an arbi-
trary thread (a read operation).

3.2 UART

The proposed dual-core processor includes a transmitter/receiver circuits module as
additional peripheral unit. This module is capable of sending and receiving one byte
at a time and operates at standard baud rates such as 200, 2400, 4800, 9600, and
115,200 bps. The built-in baud rate for the module is 115200 bps, and it can only be
modified by the hardware developer.

Figure 5 shows the pseudocode for the transmitter circuit, which is designed
using the methodology generated on the Nandland site [24].

Overall, the transmitter circuit in the proposed dual-core processor is designed
to efficiently transmit data on a byte-by-byte basis, using standard baud rates and
a five-state machine to ensure reliable and accurate communication with external
devices or circuits.

The transmitter circuit (Tx) is implemented as a five-state machine synchronized
with the system clock. Firstly, an idle state indicates that Tx is valid. Then, if the
UDR contains data, TX sends a start bit with a value of zero to indicate the start of
transmission.

After sending the start bit, the Tx sends the 8-bit data, bit by bit, until all bits
have been transmitted. Once the eighth bit of data has been sent, the Tx sends a stop

Fig. 4 Timing diagram of write and read operations on the CMU

17007

1 3

Development an efficient AXI‑interconnect unit between set…

bit with a value of one to indicate the end of transmission. The stop bit is configured
to be one bit.

Finally, Tx takes one clock cycle to deactivate operated tasks that were performed
during the transmission, such as setting a busy flag. This state is the clean-up state.

The receiver circuit is also implemented as a five-state machine, with the same
states as the transmitter circuit (Idle, start-bit, receive 8-bit data, stop-bit, and clean-
up state). The UART data register, which stores the one-byte data, is addressed
by 0 × 60,000,100 and 0 × 60,000,101 in the case of transmitting and receiving,
respectively.

3.3 AXI‑interconnect unit

The AXI-interconnect unit, serves as a communication channel, delivering the
requests of the two threads to the CMU and the UART. The choice of an interface
protocol is essential because it simplifies the operation of a component that affects
the hardware design area and delay. The AXI-interconnect unit is named as such
because it depends on the AXI protocol for interfacing with the dual-processor.

AXI has a five-channels for interfacing, separating the read interface from the
writing one that has simplified the unit architecture. It was designed based on multi-
plexer topology (MuxT) and is a soft on-FPGA network [25]. R/W operations based
on a multiplexer topology (MuxT). The MuxT topology is used for both read and
write operations, with the read operation being separate from the write operation.

Figure 6 shows the block diagram of the two peripheral devices, the CMU and
the UART interfacing with the AXI interconnect unit. This figure also shows the
writing Muxes of the AXI-interconnect.

The figure shows the interconnection between the processor and the two PDs.
The black block is a controller that differentiates requests coming to the CMU from
those coming to the UART. That depends on the address mapping of Table 2.

Case (current state)

Begin

Idle: start to send 1 (referring to stop) on serial and jump to start-bit state in case of coming

data

Start-bit: send 0 on serial (start-bit) and announce that UART is active and jump to

send-data state

Send-data: start to send 8-bit data then jump to stop-bit state

Stop-bit: send 1 on serial and announce that UART isn’t active. Then, jump to clean-up state

Clean-up: stay here only one clock cycle. Then, jump to the idle state

End

Endcase

Fig. 5 Pseudocode of UART transmitter module

17008 D. Emil et al.

1 3

CMU and UART have specific I/O signals interfaced with the AXI intercon-
nect. These signals are described as:

AXI interface_1: is an AXI interface connecting the core_1 to our
AXI-interconnect.

AXI interface_2: is an AXI interface connecting the core_2 to our
AXI-interconnect.

UART Interfaces:o_Tx_Byte: is 8-bit data to be transmitted on serial.o_Tx_
DV: is the valid data signal that indicates new data existing on o_Tx_Byte.i_Tx_
Done: is an input done signal. It points to that the UART has finished 8-bit data
transmission.i_Tx_Active: in the case of being high (which equals one), it means
that UART is busy.

S_machine: is a 3-bit signal indicating the current state of the UART.
CLKS_PER_BIT: is the number of clock cycles per bit that the UART takes to

send one bit on serial.i_Clock: is the input system clock.i_Rx_DV: indicates that
8-bit of data exists in the receiving UDR.i_Rx_Byte: is the received 8-bit of data.

CMU Interfaces:
W_Address: is a 32-bit address line of the writing operation.

Fig. 6 Block diagram of the interconnection between the processor and peripheral devices

Table 2 Memory map of
peripheral devices

Bus system

Peripheral device Address space

CMU From 0 × 60,000,000 to 0 × 600000ff
UART (transmitter) 0 × 60,000,100 & 0 × 60,000,200 &

0 × 60,001,000
UART (receiver) 0 × 60,000,101 & 0 × 60,000,201

17009

1 3

Development an efficient AXI‑interconnect unit between set…

W_data: is 32-bit written data.
R_address: is a 32-bit address line of a read operation.
Arvalid: indicates that the read address bus has been updated by a valid address.
R_data: is 32-bit read data.
R_valid: indicates validating the read data bus.
W_valid: indicates validating the write data bus.
Aw_valid: indicates validating the write address bus.
Core_1 is prioritized to access the CMU over the other core, given its status as

the default core. If both cores attempt to access the CMU simultaneously, Core_1
is granted access and the other core’s request is queued for a maximum one clock
cycle. However, parallel accesses to the CMU are infrequent as requests to halt/
unhalt either core. They are typically made at the beginning and the end of an oper-
ated task.

On the other hand, either core can access the UART, with the first accessed core
dominating the path to the transmitter (Tx) of the UART. If a core needs to send a
specific sequence of 8-bit data, it can send to reserve the UART Tx by sending a
request to lock it. This reservation prevents other threads from accessing the Tx until
the transmission is complete. However, if the sender only has a single byte of data
to transmit there is no need to reserve the Tx. Tx remains busy until it transmits the
entire series of data has been transmitted.

The token flag, located at address 0 × 60,001,000, is used to reserve the UART
Tx. The sender core requests to take the token flag to prevent other threads from
accessing the UART transmitter. If either core sends a request (one) to this address
before the other, it reserves the Tx. At the last byte of data transmission, the sender
sends zero on the same address to unlock the Tx.

The busy status bit, located at address 0 × 60,000,200, is checked first before
data transfer to ensure that the UART Tx is available. The data valid bit, located at
address 0 × 60,000,101, indicates the presence of data in the receiver’s UDR.

Figure 7 shows the timing diagram of the reading and writing transactions of the
interconnect unit.

3.4 Main memory design

The proposed dual-port memory unit is designed to work synchronously for read
and write operations, with portA designated for read operations and portB for write
operations. The memory unit is synthesizable and has been designed to operate on-
FPGA. It communicates with the two cores of the dual-core processor based on
the AXI protocol interface. Figure 8 provides a dual-port synchronized memory
Xilinx-supported.

The dual-port memory unit is instantiated at an outer control module that inter-
faces with the dual-core processor using the AXI protocol. This control module
samples each AXI request first and then passes the required control, address, and
data to the dual-port memory buses (as shown in Fig. 8). The dual-port memory
unit has been configured with 8192 address lines, which can be configured by the

17010 D. Emil et al.

1 3

hardware (HW) developer. When a read instruction is executed, the memory unit
sends a block of memory that is four words in-depth.

3.5 Steps of parallelism

The program tasks in the proposed dual-core processor are manually distributed
between the two cores. The software developer can divide the main task into dual-
core or single-core tasks based on the task size or the developer’s target. This
approach can be particularly useful if the second core is implemented as a co-pro-
cessor for a specific task. The software developer also has control over whether to
operate the two threads in parallel. The CMU is the responsible unit for receiving
and responding to control messages to operate or stop the two threads.

Algorithm 1 provides a structure for a distributed program on the dual-proces-
sor, where Core2 is the second core, and Core1 is the first and default core. The
“C2Fin” variable indicates when Core2 has finished its task, and the CTS vari-
able is a logic bit of the CMU’s CEReg.

At the beginning of the program execution, both the CTS bit and the “C2Fin”
variable are cleared. Core1 runs by default and begins fetching the first instruc-
tions as long as the CTS bit is zero. Once Core1 starts running, it sends a control
message to the CMU to unhalt Core2. The CMU responds by unhalting Core2
and setting the CTS bit.

When the CTS bit becomes one, core2 begins executing its corresponding task.
At the end of core2’s task, it updates “C2Fin” by one. Core2 then sends another
control message to halt itself. As soon as “C2Fin” is set, core1 continues to oper-
ate other tasks if they exist.

Fig. 7 Timing diagram of write and read operations for the CMU via AXI interconnect

17011

1 3

Development an efficient AXI‑interconnect unit between set…

This module has:

Input preload_file, Lines, Start_address

Input clk, logic [$clog2(Lines)-1:0] addr_a, // portA is a read port

Input en_a,

Output logic[31:0] data_out_a,

Input logic [$clog2(Lines)-1:0] addr_b, // portB is write port

Input logic [3:0] be_b, // it is a byte enable control signal

Input logic [31:0] data_in_b

logic [31:0] ram [Lines-1:0];

initial

begin

$readmemh (preload_file,ram, 0, Lines-1);

end

always_ff @ (posedge clk) begin

if (en_a)

data_out_a <= ram[addr_a];

end

generate

genvar i;

for (i=0; i < 4; i++) begin

always_ff @ (posedge clk) begin

if (be_b[i]) begin

ram[addr_b][8*i+:8] <= data_in_b[8*i+:8];

end

end

end

endgenerate

endmodule

Fig. 8 dual-port memory unit

17012 D. Emil et al.

1 3

4 Cache coherence

Cache coherence is essential in ensuring that the memory system of a multiproces-
sor is coherent and consistent. To achieve cache coherence between these two cores
in the proposed dual-core processor, a unit controller has been designed based on
the snoopy protocol [26]. The snoopy protocol is suitable for this processor because
it currently has only two threads, making it a low number.

The use of a simple protocol is preferable in a dual-core processor, and one such
protocol is the snoopy protocol for cache coherence [27]. Figure 9 provides a visual
representation of the snoopy circuit and its interface.

The snoop circuit, as shown in Fig. 9, is implemented inside the L2-arbiter and
works in conjunction with other functions in the processor. The store variable is a
logic bit that indicates whether the address on the address bus is related to a write or
read instruction.

The snoopy circuit receives the 32-bit address of each core during a write instruc-
tion and passes it to an invalidation-response FIFO. This FIFO sends an invalidation
request to each thread in case of an invalid address. The invalid address could be due
to the snoopy circuit or other functions, such as synchronizing instructions.

17013

1 3

Development an efficient AXI‑interconnect unit between set…

Figure 10 shows the block diagram of implemented FIFOS related to the snoop
circuit and other tasks of the L2 arbiter. The default task related to synchronizing
instructions is given higher priority.

Figure 10 shows the data flow of snoop requests on snoop and invalidation_
response and input FIFOs. Input-FIFO is for invalidation addresses of tasks like
synchronization. Snoop_FIFO’s size depends on the expected number of invalida-
tion requests of the input-FIFO. AT most, one request comes for each two clock
cycles into the input_FIFO. The invalidation_response_FIFO takes one clock
cycle to pop its input data. Therefore, the snoop-FIFO was sized as four in-depth
rather than avoiding unexpected overflow issues. The pseudocode for the snoop
control circuit implementation is shown in the figure below (Fig. 11).

Fig. 9 Snoopy circuit interfaced
with the two threads

Fig. 10 L2-arbiter hierarchy FIFOS with the snoop-fifo

17014 D. Emil et al.

1 3

5 Result and discussion

To verify the multi-processor, both standard and non-standard benchmarks have
been used Fig. 12 illustrates the data flow of the top design for the test bench. The
AXI-HW memory receives the program and each core fetches its related tasks based
on Algorithm 1. If a halt/unhalt request (control message) reaches the AXI inter-
connect, it delivers it to the CMU based on the core highest priority. The CMU
then updates the output halts signal to run/stop the operated threads. In each cache
operation, especially during storing transactions, the owner core sends an invalida-
tion request to the other thread via the snoop circuit implemented at the L2 arbiter.
If address matching occurs, the listener invalidates the address’s tagline. Each core
can send on serial. If it requires sending a specific series of data, it can reserve the
UART. Then, it should send a control message to release the UART.

Based on the RTL rules [28–30], the design was successfully implemented. Fig-
ure 13 shows the RTL blocks of the top design

Table 3 compares the resource usage of the proposed dual-core processor with
other multi-processors and shows the stages of the optimization process. The Worst
Negative Slack (WNS) is a positive value of 0.105 ns, and the Worst Hold Slack
(WHS) is also positive with a value of 0.024 ns. The Total Negative Slack (TNS)
and Total Hold Slack (THS) are both zero, indicating that the timing constraints
have been met successfully.

Define a FIFO of addresses to be snooped [Number of operated cores].

For (loop on the number of working cores by index i) begin

For (loop on the number of working cores by index j)

If (i !=j) begin

 Snoop_fifo[j].push = request[i].writing // indicates writing transaction

 Snoop_fifo[j].data_in = request[i].address

End

End

For (loop on the number of working cores by index i) begin

 Invalidation_fifo[i]. pop = request[i].invalidation_ack

 Request[i]. invalidation_address = Invalidation_fifo[i].data_out

 Invalidation_fifo[i]. push = synchronizing_invalidation_request | size of snoop_fifo[i]

> 0

Invalidation_fifo[i].data_in = (synchronizing _invalidation_request) ?

input_fifo[i].data_out : snoop_fifo[i].data_out

Snoop_fifo[i].pop = (not synchronizing _invalidation_request & size of snoop_fifo[i] >

0)

End

Fig. 11 Pseudocode of appending snoop circuit inside L2 arbiter

17015

1 3

Development an efficient AXI‑interconnect unit between set…

In Vivado, there are several strategies available for implementation, such as per-
formance, placement, physical optimization, area optimization, and power optimi-
zation. Overall, the use of the performance-retiming strategy and the optimization
process has resulted in a highly efficient and optimized dual-core processor with
excellent performance and low power consumption. The power dissipation of the
processor at a 98 MHz operating frequency is 0.325 watts.

CoreMark is widely used as a standard benchmark [32] for testing multiple-
core processors. In this study, the CoreMark has been distributed to work on a
dual-core processor depending on Algorithm 1. Each core receives its parameters

Fig. 12 Testbench module of system design

Fig. 13 RTL model of the processor

17016 D. Emil et al.

1 3

of addresses and begins operating its three modules. Table 4 provides a compari-
son of the proposed dual-core processor with other dual- and quad-core proces-
sors in terms of CoreMark/MHz score. The benchmark was performed on a Zed-
board (Xilinx board) [33].

The design is also ready to support multi-core architecture for Operating Sys-
tems (OS), making it suitable for a range of computing applications. Furthermore,
the processor is configured for academic research purposes, allowing researchers
to use it for a variety of projects and experiments.

Table 3 Comparison in utilization resources among a set of RISC-V multiprocessors

Processor type Utilization resources Operating
frequency
(MHz)

Dual-Taiga top LUT FF BRAM DSP
6437 3161 32 8 98
6394 3161 32 8 96
6336 3185 32 8 90
6608 3071 32 8
6617 3061 32 8
6766 3063 32 8

Hydra
(4-cores)
Conventional system [31]

10,964 4181 – –

Hydra
(4-cores)
Composable system [31]

12,522 4517 – –

Rocket processor 17,144 9058 10 0 54

Table 4 Coremark result of quad- and dual-core processors

Underlined values refer to our implemented processor

CoreMark/MHz Operating
frequency
(MHz)

Memory configu-
ration

Vendor Number
of cores

Taiga dual-core
processor

4.605 98 Stack Xilinx 2

SunFire v210 2.39 1503 Heap Sun microsystems 2
Esp32 4.13 160 Stack Espressif 2
Sitara AM6442 6.525 1000 16-bit DDR4 Texas instruments 2
Ingenic × 2000 6.853 1200 DDR3L Ingenic semicon-

ductor
2

NXP 7.74 150 SRAM NXP semiconduc-
tors

2

ZCU104 3.25 1200 DDR4 Xilinx 4
Raspberri pi 4B 22.67 2145 Heap Raspberri pi 4

17017

1 3

Development an efficient AXI‑interconnect unit between set…

The proposed dual-core processor design supports both heterogeneous sym-
metric/asymmetric computing architectures, making it versatile and adaptable to
a range of computing needs. Heterogeneous architecture is becoming increasingly
popular, especially in the Intel family of processors. Additionally, the processor is
designed to be compatible with both Intel and Xilinx families of processors.

The processor is currently applicable for integer operations, but plans are in
place to append a floating-point unit in the future.

6 Conclusion and future work

In this study, an open-source multi-processor (dual-RISC-V core) design has been
discussed. Two peripheral devices have been presented. The CMU is for the man-
agement process between the two threads. The UART module is for sending on
serial and is configurable to be reserved for one core for a while. Keeping on
modularity, an AXI interconnect is designed, separated from the memory sys-
tem path, for all peripheral devices to interface with the dual-processor. Some
memory issues are discussed, for example, the noncoherent cache. Its solution
has depended on the snoopy protocol. The design is ready for appending extra
custom peripheral devices. There is a high range of address space that can cover
other units. In addition, the resource usage is less compared with other multi-pro-
cessors. The main memory depends on the AXI interface with the dual-proces-
sor. AXI protocol is FPGA sensed. The main memory is 8192 address lines and
four words as a memory block for each reading operation. A standard benchmark
tool (CoreMark) has been used to measure the performance. The processor has
achieved a good result compared with the references. Also, several benchmarks
have been developed for extensive testing. It shows how the performance of the
design is consistent for complex programs.

In the future, we will modify the cache unit and snoopy circuit to make the lis-
tener core read data from the owner’s L1 cache in case of matching instead of the
main memory to reduce the number of clock cycles consumed for reading updated
data from the main memory. We will append a floating unit in single and double pre-
cision. Additionally, we can append TC to the cache module [2]. Instead of AXI HW
memory, we can use an off-chip DDR4 memory [34, 35] with an on-chip memory
controller [36]. The design can be optimized more to keep the maximum frequency
as it is in single-core Taiga (104 MHz).

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Code availability All block design files that are developed by this work, are open and available on a
Google drive link: https:// drive. google. com/ file/d/ 1lFkQ GpzdT s8649 PjTVW IRpyz ekbg8 GXJ/ view? usp=
share_ link.

https://drive.google.com/file/d/1lFkQGpzdTs8649PjTVWIRpyzekbg8GXJ/view?usp=share_link
https://drive.google.com/file/d/1lFkQGpzdTs8649PjTVWIRpyzekbg8GXJ/view?usp=share_link

17018 D. Emil et al.

1 3

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Li J, Zhang S, Bao C (2022) DuckCore: a fault-tolerant processor core architecture based on the
RISC-V ISA. Electronics. https:// doi. org/ 10. 3390/ elect ronic s1101 0122

 2. Semidynamics: High Bandwidth RISC-V IP Core (2020). https:// semid ynami cs. com/ produ cts/ atrev
ido

 3. SCR1 RISC-V Core (2019) https:// github. com/ synta core/ scr1
 4. RV12 RISC-V 32/64-bit CPU Core (2018). http:// roalo gic. github. io/ RV12
 5. Asanovi K, et al. (2016) The rocket chip generator. EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016–17
 6. Matthews E, Shannon L (2017) TAIGA: a configurable RISC-V soft-processor framework for het-

erogeneous computing systems research. Semantic Scholar
 7. Leyva-Santes NI et al (2019) Lagarto I RISC-V multi-core: research challenges to build and inte-

grate a network-on-chip. In: Torres M, Klapp J (eds) Supercomputing. Springer, Cham. https:// doi.
org/ 10. 1007/ 978-3- 030- 38043-4_ 20

 8. Jang H et al (2021) Developing a multicore platform utilizing open RISC-V cores. IEEE Access
9:120010–120023. https:// doi. org/ 10. 1109/ ACCESS. 2021. 31084 75

 9. Emil D, et al. (2022) Dual-RvCore32IMA: imlementation of a peripheral device to manage opera-
tions of two RvCores. In: 4th International Conference on Intelligent Computing, Information and
Control Systems

 10. EH2 SweRV RISC-V CoreTM design RTL (2020) https:// github. com/ chips allia nce/
Cores- SweRV- EH2

 11. AndesCoreTM AX45 (2018) http:// www. andes tech. com/ en/ produ cts- solut ions/ andes core- proce ssors/
riscv- ax45/

 12. Taiga RISC-V processor (2019) https:// gitlab. com/ sfu- rcl/ Taiga
 13. Waterman A, Asanović K, Hauser J (2021) The RISC_V instruction set manual volume II: privi-

leged architecture. University of California, Berkeley
 14. Holdings ARM (2019) AMBA AXI and ACE protocol specification, ARM IHI 0022H.c
 15. Intel: Avalon ® Interface specifications (2020)
 16. Sharma M, Kumar D (2012) Design and synthesis of wishbone bus dataflow interface architecture

for SoC integration. IEEE Xplore. https:// doi. org/ 10. 1109/ INDCON. 20120 64207 29
 17. RudolV by bobbl-RISC-V processor (2020) https:// www. libre cores. org/ bobbl/ rudolv
 18. PicoRV32 -A Size-Optimized RISC-V CPU (2017) https:// github. com/ cliff ordwo lf/ picor v32
 19. PicoRV32 processor score. https:// riscv. org/ excha nge/ cores- socs/
 20. Hoang TT, Duran C, Nguyen KD, Dang TK, Nguyen QNQ, Than PH, Tran XT, Le DH, Tsukamoto

A, Suzaki K, Pham CK (2020) Low-power high-performance 32-bit RISC-V Microcontroller on
65-nm silicon-on-thin-BOX (SOTB). IEICE Electron Express 1:2. https:// doi. org/ 10. 1587/ elex. 17.
20200 282

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics11010122
https://semidynamics.com/products/atrevido
https://semidynamics.com/products/atrevido
https://github.com/syntacore/scr1
http://roalogic.github.io/RV12
https://doi.org/10.1007/978-3-030-38043-4_20
https://doi.org/10.1007/978-3-030-38043-4_20
https://doi.org/10.1109/ACCESS.2021.3108475
https://github.com/chipsalliance/Cores-SweRV-EH2
https://github.com/chipsalliance/Cores-SweRV-EH2
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax45/
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax45/
https://gitlab.com/sfu-rcl/Taiga
https://doi.org/10.1109/INDCON.201206420729
https://www.librecores.org/bobbl/rudolv
https://github.com/cliffordwolf/picorv32
https://riscv.org/exchange/cores-socs/
https://doi.org/10.1587/elex.17.20200282
https://doi.org/10.1587/elex.17.20200282

17019

1 3

Development an efficient AXI‑interconnect unit between set…

 21. Ramírez C, Hernández C, Morales CR, García GM, Villa LA, Ramírez MA (2017) Lagarto I—Una
plataforma hardware/software de arquitectura de computadoras para la academia e investigación.
Res Comput Sci 137:19–28

 22. Petrisko D, Gilani F, Wyse M, Jung DC, Davidson S, Gao P, Zhao C, Azad Z, Canakci S, Veluri B,
Guarino T, Joshi A, Oskin M, Taylor MB (2020) BlackParrot: an agile open-source RISC-V multi-
core for accelerator SoCs. IEEE Comput Sci 40:93–102

 23. Moini et al.: INKSCAPE (2021) https:// inksc ape. org/ relea se/1. 1.1/ windo ws/
 24. Nandland. http:// www. nandl and. com
 25. Dimitrakopoulos G, Kachris C, Kalligeros E (2011) Scalable arbiters and multiplexers for on-FGPA

interconnection networks. In: 2011 21st International Conference on Field Programmable Logic and
Applications, Chania, Greece, pp 90–96. https:// doi. org/ 10. 1109/ FPL. 2011. 26

 26. Alshehri M, Almakdi S, Alazeb A (2015) Cache coherence mechanisms. Int J Eng Innov Technol
(IJEIT) 4:158–167

 27. Ulfsnes R (2013) Design of a snoop filter for snoop based cache coherency protocols. Semantic
Scholar

 28. Gayathri S, Taranath TC (2017) RTL synthesis of case study using design compiler. In: Interna-
tional Conference on Electrical, Electronics, Communication, Computer, and Optimization Tech-
niques (ICEECCOT), pp 1–7. https:// doi. org/ 10. 1109/ ICEEC COT. 2017. 82846 03

 29. Zhang Y, Ren H, Khailany B (2020) Opportunities for RTL and gate level simulation using GPUs
(invited talk). In: IEEE/ACM International Conference on Computer Aided Design (ICCAD)

 30. Alam SA, Gregg D, Gambardella G, Blott M, Preusser T (2022) On the RTL implementation of finn
matrix vector compute unit

 31. Marshall B, Page D, Pham T, Whale M (2022) HYDRA: a multicore RISC-V with cryptographi-
cally useful modes of operation

 32. Gal-On S, Levy M Exploring CoreMarkAM a benchmark maximizing simplicity and efficacy
 33. Zedboard Digilent. https:// digil ent. com/ refer ence/_ media/ zedbo ard: zedbo ard_ ug. pdf
 34. DDR4 Memory Standard. https:// www. kings ton. com/ en/ memory/ ddr4- overv iew
 35. DDR4 SDRAM Specification (2014) Chapter 1 &2, Samsung Electronics
 36. DDR4Memory controller. https:// github. com/ anant hbhat 94/ DDR4M emory Contr oller

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Demyana Emil1 · Mohammed Hamdy1 · Gihan Nagib1

 Mohammed Hamdy
 Mhm00@fayoum.edu.eg

 Gihan Nagib
 Gna00@fayoum.edu.eg

1 Faculty of Engineering, Fayoum University, Fayoum City, Egypt

https://inkscape.org/release/1.1.1/windows/
http://www.nandland.com
https://doi.org/10.1109/FPL.2011.26
https://doi.org/10.1109/ICEECCOT.2017.8284603
https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf
https://www.kingston.com/en/memory/ddr4-overview
https://github.com/ananthbhat94/DDR4MemoryController

	Development an efficient AXI-interconnect unit between set of customized peripheral devices and an implemented dual-core RISC-V processor
	Abstract
	1 Introduction
	2 Comparison of RISC-V processors
	3 The proposed design
	3.1 Core management unit
	3.2 UART
	3.3 AXI-interconnect unit
	3.4 Main memory design
	3.5 Steps of parallelism

	4 Cache coherence
	5 Result and discussion
	6 Conclusion and future work
	References

