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Abstract
As a popular platform-independent language, Java is widely used in enterprise appli-
cations. In the past few years, language vulnerabilities exploited by Java malware 
have become increasingly prevalent, which cause threats for multi-platform. Secu-
rity researchers continuously propose various approaches for fighting against Java 
malware programs. The low code path coverage and poor execution efficiency of 
dynamic analysis limit the large-scale application of dynamic Java malware detec-
tion methods. Therefore, researchers turn to extracting abundant static features to 
implement efficient malware detection. In this paper, we explore the direction of 
capturing malware semantic information by using graph learning algorithms and 
present BejaGNN (Behavior-based Java malware detection via Graph Neural Net-
work), a novel behavior-based Java malware detection method using static analy-
sis, word embedding technique, and graph neural network. Specifically, BejaGNN 
leverages static analysis techniques to extract ICFGs (Inter-procedural Control 
Flow Graph) from Java program files and then prunes these ICFGs to remove noisy 
instructions. Then, word embedding techniques are adopted to learn semantic rep-
resentations for Java bytecode instructions. Finally, BejaGNN builds a graph neural 
network classifier to determine the maliciousness of Java programs. Experimental 
results on a public Java bytecode benchmark demonstrate that BejaGNN achieves 
high F1 98.8% and is superior to existing Java malware detection approaches, which 
verifies the promise of graph neural network in Java malware detection.
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1 Introduction

Java, the most popular development language used in enterprise application [1], 
continues to be an attractive target for attackers [2]. According to Java.com, 
89% of Desktops, 3 billion mobile phones, and 97% of Enterprise Desktops in the 
USA run Java. Therefore, malicious programs, vulnerabilities and exploits in Java 
have become increasingly prevalent in the past few years. MITRE’s CVE dataset 
recorded nearly 700 new Java vulnerabilities [3].

Recent research [2] points out that Java malware is mainly spread via malicious 
attachments or phishing emails. These malware files are organized in JAR (Java 
Archive) compression format, which can run on any infected system with Java 
Runtime Environment (JRE). In consideration of cross-platform convenience, the 
JAR file aggregates all Java class files, resources, and associated metadata into one 
archive. With everyone’s focus on COVID-19, attackers recently leverage the popu-
lar COVID-19 update maps to infect computers via Java malware [4] silently. In this 
attack, malicious Java applications leverage the real-time data map component to 
camouflage as benign and contain a payload to steal sensitive information.

Despite receiving less attention from the research community compared to 
Android, Windows, or IoT (Internet of things) malware, Java malware causes great 
harm to the Java ecosystem [5]. Anti-malware industry or anti-virus software widely 
adopts signature-based malware detection approaches [6]. These approaches rely on 
the built signatures from huge known malware samples to match similar malware 
files. The signature matching mechanism could be easily bypassed by code trans-
formation techniques [7]. To overcome this issue, researchers have proposed more 
precise detection approaches via building advanced machine learning models on a 
set of meaningful static or dynamic features [8–10].

With the ability to resist code obfuscation via execution within sandbox envi-
ronments, dynamic analysis techniques could still be evaded by environment-aware 
and event-trigger malware [11]. In addition, dynamic analysis techniques can hardly 
cover all execution paths and cause more time and resource consumption for the exe-
cution environment, which limits the practicality of these methods. Traditional static 
analysis methods mainly extract syntax features such as strings or imports to iden-
tify malware samples. While syntax features achieve efficient malware detection, 
these static approaches cannot capture sufficient semantic information from malware 
behaviors [12]. Recently, researchers have explored image-based malware detection 
approaches which leverage the booms of ML algorithms in computer vision [13–15]. 
These approaches usually covert raw malware binaries into pixel-based images via 
various transformation methods. Then, ML algorithms can directly leverage image 
features to classify malware binaries rather than behavior or signature features. Most 
of these approaches treat machine code as the pixel values and convert the binary 
files into grayscale images [13]. Jadeite [15] adopts an image transformation method 
on ICFG of Java bytecode, which improves the accuracy of image-based malware 
detection methods. Nevertheless, these image transformation methods directly use 
image processing techniques on bytecode files or pruned ICFGs, which limits the 
capture of informative Jimple [16] instruction semantic.
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One emerging approach in ML for cybersecurity tasks is to use graph learn-
ing to capture critical information directly from program representation graph 
[17–19]. In these approaches, researchers use multiple graph representation 
structures, including CFG (Control Flow Graph), CDG (Control Dependence 
Graph), DDG (Data Dependence Graph) or even fusion graph CPG (Code Prop-
erty Graph) [20], to denote semantic information. GNN (Graph Neural Network) 
algorithms directly use these graph structures to perform malware vulnerabil-
ity detection rather than sequence-based or tree-based approaches [21]. Most of 
these approaches adopt various GNN algorithms to capture attack characteristics 
directly from informative graph structures without manually constructing features 
via expert knowledge. With the innate ability to handle graph structures, GNN 
algorithms are promising in the next-generation cyber security systems [22].

In this paper, motivated by the advantages of graph-based learning algorithms, 
we explore the direction of capturing malware semantic information and propose 
a novel behavior-based Java malware detection method via graph neural network. 
Stand apart from existing Java malware classification methods using image-
based approaches or traditional ML algorithms, we use the ICFG at the bytecode 
level to represent the behavior of Java programs and capture critical relational 
patterns via GNN algorithms. Previous studies have proved that ICFG is one of 
the most compelling features to capture malicious program behaviors [23–25]. 
After generating ICFGs, we generate node embeddings of ICFGs and leverage 
advanced ML algorithms in the graph classification domain. In particular, we 
perform static analysis to extract ICFG from Java bytecode files. After obtaining 
these graphs, we prune these graphs to retain instructions with meaningful infor-
mation. Next, we leverage program representation methods to capture semantic 
information from basic blocks inside ICFG. Finally, we use GNN to classify the 
generated ICFGs to identify the maliciousness within the original Java bytecode 
programs. With the help of handling complex graph structure of the GNN algo-
rithm, BejaGNN achieves superior detection performance compared to existing 
approaches. Experimental results show that GNN is a promising technique in the 
Java malware detection domain.

In summary, we make the following contributions:

• We propose a novel Java bytecode classification framework, namely BejaGNN, 
that utilizes code embedding techniques and graph neural networks to identify 
the maliciousness of Java bytecode programs. We directly use ICFG to cap-
ture behavioral features of Java bytecode programs and then build the detec-
tion model from these features to leverage the remarkable success in the graph 
learning domain.

• We adopt multiple code embedding techniques and GNN algorithms to verify 
the effectiveness and explore the best performance of the proposed detection 
framework.

• We evaluate our approach on a public Java bytecode benchmark, which 
consists of around 4k malicious and benign samples. Our proposed method 
achieves 99.1%, which outperforms existing Java bytecode classification meth-
ods.
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The rest of the paper is organized as follows. Section 2 summarizes recent work on 
Java malware detection. Section 3 describes the system design of BejaGNN. Sec-
tion 4 reports the experimental settings and evaluates the detection performance of 
BejaGNN. Section 5 outlines the limitations of BejaGNN. Section 6 concludes this 
paper.

2  Related work

In this section, we review the malware detection methods in general and related to 
Java malware.

2.1  Traditional malware detection methods

With malware continuing to compromise cyberspace security, malware detection 
has received much attention from industry and academia. Conventional anti-virus 
software leverages signature-based methods to perform efficient malware detection 
[6]. However, these methods heavily rely on the collected known malware dataset, 
which could hardly detect new malware or malware variants generated via evading 
techniques [26] such as code obfuscation, packing, and encryption mechanism. At 
an early age, researchers propose to extract CFG by using dynamic analysis and lev-
erage subgraph isomorphism to combat malware variants [27]. However, malware 
could insert junk function calls and reshape the structure of the malware to evade 
isomorphism mechanism [28].

2.2  Machine learning‑based malware detection methods

Recent research leverages advanced machine-learning approaches to automatically 
infer critical malicious behavior properties, which could identify newly generated 
malware variants. The machine learning methods use the behavior features of the 
malware samples to perform malware classification and detection. These features 
are typically extracted via static, dynamic, or hybrid analysis [29]. Static analysis 
extracts statistical or string features from assembly or intermediate representative 
code [30, 31]. Although static extracted features are effective in malware detection, 
these methods still struggle against code obfuscation [32, 33]. On the other hand, 
dynamic analysis approaches can collect runtime temporal and behavioral informa-
tion, such as a sequence of system calls and process states, to recognize malware 
[34]. Younghee et al. [34] proposed a classical common behavior graph representa-
tion method that achieve high malware detection rates. MtNet [9] adopts a multi-
task learning method to improve the accuracy of dynamic malware detection. The 
designed neural network structure could implement malware detection and family 
classification at the same time. However, the inherent pitfalls of dynamic analy-
sis are the requirement of time and resources consumed in executing malware and 
the limited coverage of the execution path, which may miss the critical part of the 
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malware code. These limitations hinder the preferred application of dynamic-based 
approaches.

2.3  Image‑based malware detection methods

Image-based malware detection methods leverage static analysis techniques to con-
vert malware binaries into pix-based images, which owns the ability to mitigate 
code obfuscation and encoding issues [35–40]. These images can be fed into mature 
image classification techniques for identifying malicious samples. Pratikkumar et al. 
[40] conduct a comprehensive empirical evaluation on various famous image-based 
learning techniques for malware classification. Cui et  al. [36] transform malicious 
binary files into a two-dimensional array of a specific length. Next, a CNN classifier 
is used to classify the grayscale images mapped from the two-dimensional arrays. 
Jadeite [15] proposes to generate grayscale images from ICFGs of Java bytecode 
files, which considers the program’s semantics information and improves the detec-
tion performance. Nevertheless, the image processing-based approach, achieving 
extraordinary results in malware detection, encodes malware into an abstract image, 
which limits the exploration of Jimple instruction semantics and increases the dif-
ficulty in providing explainable results.

2.4  Java malware detection methods

In this paper, we focus on malware detection on the Java platform as the widespread 
application of Java in enterprise platforms and the rapidly increasing malware in 
the wild [41]. Android applications, written in Java, have received much attention 
for their malicious detection [42]. Several approaches adopt similar image transfor-
mation approaches to perform Android malware detection [43–45]. For example, 
Ding et  al. [43] proposes a bytecode image-based malware detection approach. It 
extracts bytecode files from the files of Android applications and treats each byte 
in this file as pixel values. Then, the bytecode files are transformed into grayscale 
images. Finally, the CNN classifier is used to identify maliciousness from the gener-
ated images. Vasan et al. [39] leverages a color-mapping mechanism to convert the 
raw Android applications into images and then perform malware detection and fam-
ily classification on these images. These approaches treat the raw binaries as images 
for using advanced computer vision algorithms but miss the semantic execution 
information of these malware files.

Although being developed by Java language, Android applications are different 
from Java programs from the following aspects: a) organize in different file formats 
(.class vs .dex); b) execute in different virtual machine system (Dalvik Virtual 
Machine vs Java Virtual Machine); c) Android mainly focuses on the mobile plat-
form; meanwhile, Java is widely used in the enterprise; d) Java programs only have 
one main method, while Android applications are based on complex component 
and configuration mechanism. These differences hinder the Android malware detec-
tion methods from applying to the Java malware programs. Few works in the lit-
erature investigate Java malware detection [46]. Jarhead [47] performs simple static 
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analysis to extract string features and trains machine learning algorithms for Java 
malware detection. Gassen et al. [48] propose a dynamic analysis-based method to 
combat common obfuscation techniques. JMD [49] combines symbolic execution 
and instrumentation techniques with dynamic analysis to improve malware detec-
tion. Kumar et  al. [50] design a lexical analysis-based approach to identify code 
obfuscation. Recently, researchers have proposed to perform Java malware program 
detection by using static and dynamic analysis [11, 51]. Apart from these methods 
mentioned above, we design a novel Java malware detection approach, BejaGNN, 
which combines word embedding techniques and GNN algorithms to capture criti-
cal Jimple semantic information from the ICFG representations of Java programs.

3  System design

The goal of BejaGNN is to directly learn critical behavior features from the ICFG 
structure for malicious Java application detection. Figure  1 presents the overall 
architecture of our malware detection system, BejaGNN, which consists of three 
main components, namely ICFG Extraction, Node Embedding Generation and GNN 
Classification ICFG extraction firstly leverages static analysis to transform a Java 
bytecode file, in the form of JAR format, into an ICFG structure. Then, node embed-
ding generation captures semantic information from basic blocks inside ICFG by 
using program representation methods. Finally, GNN classification takes the ICFG 
structure as input and trains a GNN classifier to perform malicious bytecode file 
identification. In the following, we introduce the details of each component.

3.1  ICFG extraction

In this component, BejaGNN extracts the Inter-Procedural Control Flow Graph 
(ICFG) from the Java bytecode file via Soot [52] analysis framework. ICFG is a 
direct graph that covers the execution order of all instructions within a program. In 
the ICFG graph, the nodes represent sequentially executed program instructions, and 
the edges denote execution orders between nodes.

The JAR file is packed in a compressed format and consists of one or more class 
(Java bytecode) files compiled from Java source code. BejaGNN first leverage 
Soot to convert the Java bytecode included in the JAR file into Jimple intermedi-
ate representation. Soot is a popular analysis framework and provides a convenient 

Fig. 1  Architecture of BejaGNN system
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intermediate representation for customized static analysis. Thus, it is widely used 
for various analysis purposes, including security problem [53], bug finds [54] and 
privacy issues [55], etc. Then, BejaGNN uses Heros [56] to build the ICFG from 
Jimple representation of the whole Java program. Heros is built on top of Soot and 
owns the ability to perform inter-procedural dataflow analysis.

The Soot analysis framework provides the functionality of generating ICFG 
in DOT format, which is easy to visualize and handle. Figure 2 presents a simple 
example to illustrate the ICFG extraction process. Figure 2 presents a simple Java 
program with two functions func1 and add. In this program, func1() invokes 
add(), and each function contains several instructions. The right part of Fig.  2 
shows a graph representation of Jimple ICFG without meaningless variable defini-
tions and initializations. In the graph, the nodes represent Jimple instructions, and 
the edges between nodes denote the control flow between instructions.

Considering all unique nodes from ICFG graphs of our entire Jimple instructions 
as features would influence the effectiveness and efficiency of Java malware detec-
tion via importing noises and increasing training time. Therefore, BejaGNN removes 
meaningless nodes in the generated ICFG. Specifically, we remove meaningless 
instructions, such as variable definitions and initializations, which are necessary 
for the correct execution of Java programs but hardly contribute to understanding 
program execution semantics. For the remaining instructions, BejaGNN leverages 
Node Embedding Generation and GNN Classification components to extract critical 
information.

3.2  Node embedding generation

To convert ICFG into structures that are applicable to graph neural networks, we 
need to extract numerical vectors that summarize the semantic information of each 
node. We treat Jimple instructions as words to generate node embeddings that cap-
ture semantic information via the state-of-the-art NLP technique Word2Vec. The 
NLP embedding technique has been proven to be effective in capturing informative 
semantics from malware [57, 58]. Before generating node embeddings, we normal-
ize the Jimple instructions to remove meaningless code differences. In this paper, we 
refer to meaningless code differences as opcodes within the same category, various 

Fig. 2  Simple Java program with corresponding Jimple ICFG
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numeric constant values, and local variable definitions. Opcodes within the same 
category may denote operations toward different types of objects but cause similar 
effects to the program. Numeric values are infinite, and their semantics are diffi-
cult to capture. Same local variables from Java programs usually represent differ-
ent objects. The normalized process could reduce the possibility of entering instruc-
tions with a low occurrence in the training data, or are absent from the training data, 
and further mitigate the OOV (out-of-vocabulary) [59] problems. The generation of 
node embedding consists of normalization and Word2Vec.

3.2.1  Normalization

In this step, the Jimple instructions are scanned one by one along the execution 
sequence of the Java program. Before further processing, we narrow down the 
diversity of the Jimple instructions by removing meaningless instructions that are 
greatly affected by the programmers’ coding habits. In addition, a majority of Jimple 
instructions share similar semantic information (e.g., specialinvoke and vir-
tualinvoke), such as operand types and definition forms. Although diverse Jim-
ple instructions provide detailed information for Java programs, they significantly 
increase the burdens of security analysis. Instruction normalization is necessary 
means to improve efficiency in the security research domain, such as binary diffing 
[60], patch detection [61], and even malware detection [62]. According to our obser-
vation on all extracted Jimple instructions, BejaGNN performs instruction normali-
zation via the following rules: (1) replacing all variable definitions as unified “var” 
to reduce differences introduced by huge variable names; (2) replacing all numeric 
constant values with “num” to reduce wide range of changes; (3) replacing the Jim-
ple instructions within one category as one simplified representation to focus on the 
semantic information of each instruction.

Figure  3 shows an example of Jimple normalization process. In Fig.  3, the 
Jimple instruction virtualinvoke, store.i and load.i respectively 
belong to category invoke, store and load. Thus, the original instructions 

Fig. 3  Normalization process of Jimple Instructions
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are replaced with the instruction categories according to the normalization rules. 
The load variables i0 and i1 are replaced with var, and the constant number is 
replaced with num. Other meta-information within instructions, such as constant 
string, class name, class name, and fields, are reserved to ensure integrity.

3.2.2  Word2Vec

In this phase, BejaGNN represents each normalized Jimple instruction with a 
dense and real-valued vector, which covers semantic information according to 
its surrounding context. The context represents neighbor instructions within one 
function. Figure 4 shows the workflow of Word2Vec, which consists of instruc-
tion grouping, Word2Vec modeling, and embedding generation.

Instruction grouping. BejaGNN firstly builds Jimple instruction vocabulary 
extracted from all Java bytecode files. Then, it constructs instruction groups by 
matching each instruction with its local context. Let Ji denotes the ith instruc-
tions, and c represents half of the window size. For each instruction Ji , its local 
context {Ji−c, Ji−c+1, ..., Ji+c−1, Ji+c} consists of ahead and behind neighborhood 
instructions within one function. Accordingly, BejaGNN generates 2c instruction 
groups by matching Ji with each instruction in its context.

Word2Vec Modeling. After generating instruction groups, BejaGNN lever-
ages the Word2Vec algorithm to train an instruction embedding model by tak-
ing each instruction group as a training instance. This embedding model only 
needs training once because it is shared by all Jimple instructions. During the 
training process, each instruction is firstly represented in the one-hot encoding 
form. In the Continuous Bag of Words (CBOW) model, the Word2Vec matches 
the target instructions with context instructions. It takes Ji as output and context 
{Ji−c, Ji−c+1, ..., Ji+c−1, Ji+c} as input and learns an embedding space which maxi-
mizes the similarity between the instruction and its context instructions. On the 
contrary, in the Skip-gram model, the Word2Vec predicts the context instructions 
with the target instructions and turns around the input and output. The objective 
of Word2Vec is presented as follows:

Fig. 4  Workflow of Word2Vec
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where C represents context instructions of each target instruction Ji . p(Jc ∣ Ji) is 
defined as

where vJc and vJi are the embedding representations of instruction Jc and Ji.
Embedding Generation. After training the Word2Vec modeling with the matched 

Jimple instruction groups, BejaGNN generates two s × d weight matrices W and 
W ′ , where s denotes the size of Jimple instruction vocabulary and d represents the 
dimension of embeddings. In particular, BejaGNN chooses the default matrix W to 
represent the embeddings of all Jimple instructions. For example, the instruction 
embedding of Ji is located at the ith row of W. Thus, the matrix W serves as the 
embedding search table for target Jimple instruction.

3.2.3  Alternative embedding methods

BejaGNN adopted multiple embedding methods: Word2Vec, GloVe, FastText and 
Doc2Vec, and compared their performance to select the most effective method to 
embed Jimple intermediate code.

GloVe [63] owns the ability to preserve the co-occurrence probability of instruc-
tions. The inner product between the two instruction embeddings by GloVe repre-
sents the cosine similarity and the probability of co-occurrence. Thus, GloVe takes 
into consideration of the statistical information within the entire instruction vocabu-
lary, which makes it easier to capture the semantic information of each instruction. 
GloVe defines the instruction–instruction co-occurrence matrix X, whose entries Xi,k 
represent the number of times instruction Jk occurs in the context of instruction Ji , 
and Xi =

∑
k Xik denotes the number of times any instruction appears in the context 

of instruction Ji . The cost function of this model is shown as follows:

where vi and vk represent the embeddings of instructions Ji and Jk , bi and bk denote 
the additional biases, and f (Xi,k) is a weighting function generalized the similarity 
between instructions.

FastText [64] adopts similar training methods as the Word2Vec model but repre-
sents and divides the instructions as sub-instructions. Each instruction is expressed 
as a bag of character n-grams. In the form of this sub-instruction representation, the 
number of vectors for each instruction is increased, and the ability to capture seman-
tic information is improved. For the instructions with a low appearance rate, Fast-
Text could increase the number of reference cases via the nature of embedding with 
n-grams. Given an instruction Ji , the set of n-grams appearing in Ji is represented 

(1)£(J) =
1

s

s∑
i=1

∑
c∈C

p(Jc ∣ Ji)

(2)p(Jc ∣ Ji) =
exp (vJc ⋅ vJi )∑

c ∈ C exp (vJc ⋅ vJi )
,

(3)£(J) =

s∑
i,k

f (Xi,k)(v
T
i
vk + bi + bk − log(Xi,k))

2,
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as ZJi . An instruction is represented by the sum of the vector representations of its 
n-grams:

Doc2Vec [65] regards the bytecode file id as a single instruction. The file id has 
positional coordinates in the semantic space. Subsequently, from all the snapshots, 
the context vector is created by taking the average of the position coordinates of 
the other instructions. The remaining operation is the same as that of Word2Vec. 
That is, Doc2Vec updates the file embedding such that the file id and the instruction 
appearing in each bytecode file approach each other. In this way, the file embed-
ding is capable of constructing representations of instructions sequences of vari-
able length. Thus, even if the instructions are different, the embeddings of each file 
become similar because the embedding vectors of the instructions are similar. The 
Doc2Vec owns two models: Distributed Memory Model of Paragraph Vectors (PV-
DM) and Distributed Bag of Words version of the Paragraph Vector (PV-DBOW), 
which takes the file id as input or output, respectively.

3.3  GNN classification

With the ability to capture comprehensive information from non-Euclidean data 
structures, GNN has recently received a lot of attention via the generation of graph 
embeddings [66]. In this paper, we explore the ability of GNN in Java malware 
detection. Therefore, BejaGNN adopts GCN, GAT and GIN, and their performance 
is compared to identify the most effective method for capturing malicious behavior 
patterns.

After the processing of the Node Embedding Generation, we obtain a number 
of ICFGs with corresponding node attributes. Specifically, we treat each Jimple 
instruction as one node to highlight the importance of semantic information. We 
define an ICFG as G = (N,E) , in which N represents the node set and E represents 
the edge set. All node embeddings are combined as a new matrix X in which the i-th 
row xi represents the embedding of Jimple instructions Ji . We define A as the adja-
cent matrix of the ICFG G. Then, the GNN transforms the tuple (A, X) into graph 
embedding hG ∈ ℝ

d , where d is the predefined embedding dimension of the graph. 
Finally, the MLP classifies the input hG into the category malware or benign.

After obtaining the tuple (A, X), GNN would capture the embedding representa-
tion of the graph G. During the graph learning process, each node J is associated 
with a set of hidden representations {… , ht

J
,…} , where t denotes the t-th GNN layer 

within the graph learning model and the initial representation is denoted by the node 
embedding, h0

J
= vJ . At layer t + 1 , ht

J
 aggregates the t-layer hidden representations 

from its neighbor nodes, which could be generalized as follows:

(4)
∑
z∈ZJi

vT
z
vc.

(5)ht+1
J

= M(ht
J
, {ht

u
, ∀u ∈ N(J)}),
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where M represents an aggregation function, which varies in different GNN models. 
After iterative processing by T GNN layers, we finally obtain the hidden represen-
tations for each node hT

J
 . During this iterative procedure, the node information is 

propagated deeper and deeper. Thus, the final hidden representations could capture 
far-away neighborhood information. The embedding vector of the whole graph G is 
formalized as:

The GNN model aims to generate the whole graph embeddings [67], encoding 
the entire graph information into low-dimensional space by passing all node hid-
den representations through the readout function. Similarly, the node embedding is 
transformed from a graph node with local information into low-dimensional space. 
Different GNN models adopt multiple aggregation mechanisms. GCN is one rep-
resentative GNN, which computes node hidden representations via the following 
formulas:

where Ht denotes the representations at the t-layer for all the graph nodes, and H0 
is the initial embeddings generated by the Node Embedding Generation component 
for all nodes. Wt is the trainable weight matrix of the t-layer GCN. � is an activation 
function that is usually set as ReLU. Â = D̃

−
1

2 ÃD̃
−

1

2 , where D̃ is the degree matrix, 
and Ã = A + Is . Is denotes the identity matrix.

GAT makes some improvement on the propagation rule and assumes the 
neighbors’ contribution is imbalanced for different importance to the central ver-
tex. Thus, GAT adopts the attention mechanism to calculate the relative weights 
between two connected nodes before the neighbor information propagation. The 
output features for every node can be formalized as:

where aki represents the attention coefficient computed by a shared attention mecha-
nism and indicates the importance of node Jk ’s features to node Ji.

Similarly, GIN adopts one powerful message aggregation function, which is 
shown below:

where �t is a scalar learnable parameter and MLP stands for a multi-layer perception, 
which could aggregate comprehensive information.

(6)zG =

∑
hT
Ji
, i ∈ {1,… s}

s
.

(7)Ht+1 = 𝜎(ÂHtWt)

(8)hJk = �

⎛⎜⎜⎝
�

Ji∈N(Jk)

akiWhJi

⎞⎟⎟⎠
,

(9)ht+1
J

= MLPt+1

((
1 + �

t
)
ht
J
+

∑
u∈N(J)

kt
u

)
,
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4  Experiments and evaluation

According to the above design, we implement a novel behavior-based Java mal-
ware detection tool, called BejaGNN, based on Soot [52], python natural lan-
guage processing Gensim module and graph learning library DGL. In this sec-
tion, we discuss the evaluation of our proposed system BejaGNN. We first 
describe the experiment settings used in BejaGNN. Then, we discuss the results 
of our experiments.

4.1  Experimental settings and dataset

The machine we used to extract ICFG from Java programs was a workstation with 
Intel (R) Xeon (R) E5-2620 CPU (15 M Cache, 2 GHz) and 24 GB of RAM. Mean-
while, BejaGNN is evaluated on a PC equipped with Intel (R) Core (TM) i7 CPU 
(6 M Cache, 2.5 GHZ), 16 GB of RAM, and NVIDIA GTX 850 M. We randomly 
shuffle the dataset and split 70% for the training, 15% for validation, and the rest 
15% for test.

We evaluate the performance of BejaGNN by using the dataset provided by Jade-
ite [15], which was collected from multiple public resources and is representative 
of Java malware in the wild. The original dataset consists of 1816 benign and 2223 
malicious Java programs. With 139 programs unable to extract effective ICFG on 
our workstation, we finally obtained a benchmark dataset with 3901 Java programs.

4.2  Measure metrics

We utilized five widely used metrics: precision, recall, true negative rate, accuracy 
and f1-score, to evaluate the performance of our Java malware detection approach. 
These metrics are calculated based on true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN). In the malware detection scene, a true positive 
(TP) indicates the count of detected malware programs that are truly malicious, and 
a true negative (TN) indicates the count of correctly identified benign programs. A 
false positive (FP) indicates the count of detected malware programs that are actu-
ally benign, and a false negative (FN) indicates the count of undetected malware 
programs. The detailed measure metrics are as follows:

• Precision The ratio of true positive programs to the total programs that are 
detected as malware. Precision =

TP

TP+FP

• Recall The ratio of true positive programs to the total count of malware pro-
grams. Recall = TP

TP+FN

• True negative rate (TNR) The ratio of true negative programs to the total 
benign programs. TNR =

TN

TN+FP

• Accuracy (Acc) The ratio of the sum of true positive and true negative programs 
to the total count of all programs. Acc = TP+TN

TP+FP+TN+FN
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• F1-score (F1) The overall effectiveness denotes the harmonic mean of precision 
and recall. F1 =

2×Precision×Recall

Precision+Recall

For precision, recall, true negative rate, accuracy, and f1-score, the closer to 1, the 
better the detection performance. In particular, accuracy and f1-score are indicators 
of overall malware detection performance.

4.3  Comparison of embedding methods

In the following, we evaluate the performance of BejaGNN with different node 
embedding techniques.

Firstly, we set the graph learning algorithm as GCN to select the best embed-
ding techniques in our Java malware detection scene. Table 1 shows the performance 
comparison of word-embedding algorithms. In the initial experiment, for GCN, the 
number of layers is 2, and the batch size and hidden dim are both 8. Except for 
embedding size, all word embedding algorithms are in the default setting. From 
Table 1, we observe that FastText achieves the best performance by taking advan-
tage of subword learning, which is suitable for our dataset with limited tokens. The 
two models of Word2vec and Doc2vec show different results, which illustrates that 
the semantic information is influenced by the input–output format of context. The 
Glove achieves the worst performance in our case, which may be caused by the 
built co-occurrence matrix cannot accurately capture the similarity between instruc-
tions. Generally, Doc2Vec is known to show good performance in large corpus and 
increases the performance with dataset size, which does not work well in our limited 
tokens scene. Accordingly, we recommend applying FastText when designing a mal-
ware detection system with a limited corpus.

To compare the word embedding algorithm performance according to embed-
ding size, we experimented by increasing the embedding size by 10 units from 
20 to 120 for each algorithm with different models. The comparison results are 
shown in Fig. 5. From Fig. 5, we observe that the detection performance increases 
with the embedding size and starts to decrease when reaching the optimal perfor-
mance. A large embedding size could carry more semantic information and fur-
ther increase the detection performance. After obtaining the optimal performance, 
the model becomes overfitting and decreases performance with the embedding 

Table 1  Detection performance comparison with different node embedding techniques

Bold values represent the best detection performance for each method

Node embedding Precision Recall TNR Acc F1

Word2Vec (CBOW) 0.9230 0.9489 0.8965 0.9235 0.9326
Word2Vec (Skip-gram) 0.9153 0.9752 0.8963 0.9354 0.9402
GloVe 0.8915 0.9438 0.8522 0.8997 0.9120
FastText 0.9305 0.9746 0.9109 0.9439 0.9497
Doc2Vec (PV-DM) 0.9140 0.9727 0.8868 0.9303 0.9387
Doc2Vec (PV-DBOW) 0.8998 0.9717 0.8655 0.9218 0.9312
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size increase. We also infer that almost all word embedding algorithms follow 
a similar law of change, and all algorithms show the optimal performance at the 
embedding size 90, except for Glove. Accordingly, we recommend selecting opti-
mal word embedding algorithms according to corpus characteristics within the 
dataset.

The performance of the word embedding algorithm is also affected by the con-
text instruction size, which directly determines the information quantity within 
instruction embeddings. As FastText achieves the optimal performance, we then 
explore its optimal context size and conduct an experiment by increasing the con-
text size by 2 units from 3 to 13. The detection performance results with vari-
ous context sizes are shown in Fig. 6. From Fig. 6, we can infer that the overall 
detection performance increase with the context size and slightly changes after 
the context size reach 7. The larger context size will carry more information 
and improve the detection performance while increasing the time consumption 
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in node embedding generation. Therefore, in our Java malware detection scene, 
we set the optimal context size as 7 to take a trade-off between performance and 
efficiency.

As described in Sect. 3.2, BejaGNN uses a normalization process to remove use-
less Jimple instructions, which contributes less to the semantics of the Java program. 
We experiment to explore the effectiveness of our instruction normalization process. 
The instruction normalization with non-normalization comparison results is shown 
in Fig.  7. From Fig.  7, we can observe that the instruction normalization process 
improves the detection performance from all measure metrics. This is caused by that 
our normalization process removes noisy and meaningless information from instruc-
tions and further improves the representation accuracy of instruction embedding.

4.4  Comparison of GNN algorithms

After obtaining the optimal node embedding structure, we start to explore the influ-
ence of multiple GNN algorithms.

We focused on tuning hyper-parameters which significantly affect the detection 
performance based on the expert knowledge from the deep learning community. The 
search range of hyper-parameters and optimal values of GCN, GAT and GIN are 
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Fig. 7  Detection performance comparison with instruction normalization

Table 2  Search range of hyper-parameters and optimal values for graph neural network models

Hyper-parameters GCN GAT GIN Search Range

Learning Rate 0.01 0.01 0.01 {0.1, 0.01, 0.001}
Batch Size 256 256 256 {32, 128, 256, 512}
Epochs 100 100 100 {40, 60, 80, 100, 200, 300}
Hidden Layers 2 3 3 {2, 3, 4, 5}
Hidden dim 16 10 8 {8, 16, 32, 64} for GCN and GIN
Attention heads – 10 – 6, 8, 10, 12, 14
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shown in Table 2. We chose the default values implemented in the DGL library for 
other hyper-parameters. From Table 2, we can observe that all three graph neural 
network algorithms achieve the best performance at 100 epochs with a batch size of 
256. The number of neural network layers generates the best performance in multi-
layers. The neural networks’ hidden dimensions achieve the best performance when 
GCN is 16, GIN is 8, and GAT is 10.

We compare the detection performance of BejaGNN by using three GNN algo-
rithms: GCN, GIN and GAT. The optimal detection performance comparison is shown 
in Table 3. The detection performance variation with epochs is shown in Fig. 8. From 
Fig. 8, we can observe that our proposed Java malware detection framework achieves 
good performance on all three GNN algorithms, which illustrates that the effective-
ness of our design and GNN is promising in Java malware detection. From Table 3, 
we can observe that GAT provides superior detection performance. The adaptation of 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80  100

Lo
ss

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100

A
cc

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100

F1

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100

Re
ca

ll

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100

Pr
ec

is
io

n
Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0  20  40  60  80  100

TN
R

Epoch

GCN
GIN

GAT

Fig. 8  Detection performance comparison of GNN algorithms with epochs

Table 3  Detection performance 
comparison with different graph 
neural network algorithms

Bold values represent the best detection performance for each 
method

Algorithms Precision Recall TNR Acc F1

GCN 0.9701 0.9832 0.9591 0.9728 0.9767
GIN 0.9862 0.9835 0.9822 0.9813 0.9848
GAT 0.9908 0.9858 0.9881 0.9864 0.9882
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the powerful message aggregation function improves the detection performance of GIN 
when compared with GCN, and the experiment results of this study show the increased 
performance of GIN over GCN. In addition, the GAT algorithm utilizes an attention 
mechanism to filter important nodes during the neighbor information propagation pro-
cess. Meanwhile, it owns the ability to handle directed graphs, which is more suitable 
for our Java ICFG scene. Therefore, the experiment results of BejaGNN show that 
GAT achieves the best performance when compared with GIN and GCN.

4.5  Comparison of other approaches

In the following, we compare BejaGNN with existing Java malware detection 
approaches, including Jarhead [47], BIN2PNG [68] and Jadeite on the public dataset to 
further verify the effectiveness of our proposed detection framework.

Jarhead is a classical Java malware detection method based on static analysis and 
machine learning and supports the JAR file classification. It manually extracts 42 
dimension features, consisting of statistical information of bytecode, obfuscation-
related invocation and well-known malicious operations, to represent the behavior of 
the Java program. Then, a decision tree classifier is built to detect malicious programs. 
BIN2PNG proposes an image processing-based malware detection method, which can 
be used to convert the JAR files into grayscale images. Next, these grayscale images 
are input to CNN-based classifier to build the detection model. The recently pub-
lished method, Jadeite, proposes a new image-based Java malware detection method. 
It chooses to build grayscale images from the Java bytecode ICFG instead of the binary 
files and selects the most informative 20 features from Jarhead. Then, it designs a com-
plex CNN-based fusion structure to jointly build a detection model based on the above 
image and selected features.

The final comparison results are shown in Table 4. In Table 4, Jadeite (IL) represents 
the detection model based only on the grayscale image, Jadeite (IL) denotes detection 
based on informative 20 features and flattened image matrix, and Jadeite (DL) indi-
cates the final fusion model. From Table 4, we observe that our BejaGNN achieves 
the highest detection performance when compared with existing approaches and even 
outperforms Jadeite in fusion model form. Jarhead achieves good malware detection 
performance, but enters a bottleneck. This is caused by past manually selected features 
that cannot handle recent complex Java malware and require expert knowledge to refine 
new representative features. The Jadeite (IL) outperforms BIN2PNG, which illustrates 
that the grayscale images converted from ICFGs contain more information than those 
images converted from binary files. This phenomenon indicates that the ICFG repre-
sents one informative behavior feature. In this paper, we design a GNN-based archi-
tecture to detect Java malware directly from ICFG effectively. Therefore, GNN-based 
detection framework is promising in Java malware detection.
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5  Discussion

Although BejaGNN is useful and effective for detecting Java malware, there are 
still limitations in current BejaGNN systems. BejaGNN proposes a behavior-
based Java malware detection approach by using static analysis and graph neural 
network algorithm to detect Java malware, which inherits the main limitations 
from static analysis. Java malware may employ active code obfuscation tech-
niques, such as polymorphism mechanism, reflection invocation and dynamic 
exploit loading, to modify their structure and behavior at runtime. This would 
hinder the correctness and integrity of the generated ICFG, and further threaten 
the detection performance of BejaGNN. The obfuscation issues may be miti-
gated by using dynamic CFG recovery approaches to construct accurate ICFG for 
malware files. On the other hand, BejaGNN owns the ability to handle Java mal-
ware programs with trivial obfuscation techniques, such as identifier renaming, 
data encoding, junk code insertion, etc. In addition, when applying deep learn-
ing models in security domains, almost all deep learning-based approaches suffer 
from black box issues. This hinders security researchers from obtaining critical 
malicious features and exploring the evolution of malicious behavior. To solve 
this problem, explainable GNN models [69] can be applied to extract critical 
malicious patterns from Java malware programs.

6  Conclusion and future work

Due to the pervasive and convenient nature of the Java platform, its malware con-
tinues to be a significant threat to enterprise security. In this paper, we propose 
a novel approach, namely BejaGNN, to classifying Java bytecode programs by 
using static analysis, code semantic representation techniques and graph neural 
networks. BejaGNN leverages static analysis to extract Jimple inter-procedural 
CFG, which is directly used to represent the behavior of Java programs. Then, 
the word embedding technique is leveraged to capture the semantic information 
from Jimple instructions. Finally, we adopt a GNN classifier to classify vector-
ized ICFG to detect maliciousness in original programs. Experimental results on 
a pubic dataset demonstrated that our BejaGNN achieves superior detection per-
formance than existing Java malware detection approaches. In addition, the com-
bination of code semantic representation techniques and graph neural network 
algorithms is promising in Java malware detection.

In the current prototype, we only used ICFG to represent the behavior of Java 
bytecode files, which miss control dependence and data transformation informa-
tion. We plan to leverage the comprehensive fusion graph CPG to sufficiently rep-
resent the behavior of Java programs, which would enhance the applicability of 
BejaGNN. Current BejaGNN only utilizes three basic GNN algorithms, which 
can be improved by self-supervised learning-based GNN models [70] to cap-
ture more critical structure information. In addition, we plan to adopt advanced 



15410 P. Feng et al.

1 3

program language learning models, such as HMM2Vec, ELMo, and BERT [58], 
to replace current word embedding techniques, which could precisely capture the 
semantic information from Jimple instructions. As combing advanced program 
language learning models with graph learning algorithms would increase the 
complexity, resource and time consumption of detection models, which limits the 
large-scale deployment of detection methods, we plan to explore which combi-
nation mechanism is more efficient and effective to combine advanced language 
models with simple learning algorithms or combine simple word embedding 
models with complex learning algorithms like GNN.
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