
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:15390–15414
https://doi.org/10.1007/s11227-023-05243-x

1 3

BejaGNN: behavior‑based Java malware detection
via graph neural network

Pengbin Feng1 · Li Yang2 · Di Lu2 · Ning Xi1 · Jianfeng Ma1

Accepted: 29 March 2023 / Published online: 17 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
As a popular platform-independent language, Java is widely used in enterprise appli-
cations. In the past few years, language vulnerabilities exploited by Java malware
have become increasingly prevalent, which cause threats for multi-platform. Secu-
rity researchers continuously propose various approaches for fighting against Java
malware programs. The low code path coverage and poor execution efficiency of
dynamic analysis limit the large-scale application of dynamic Java malware detec-
tion methods. Therefore, researchers turn to extracting abundant static features to
implement efficient malware detection. In this paper, we explore the direction of
capturing malware semantic information by using graph learning algorithms and
present BejaGNN (Behavior-based Java malware detection via Graph Neural Net-
work), a novel behavior-based Java malware detection method using static analy-
sis, word embedding technique, and graph neural network. Specifically, BejaGNN
leverages static analysis techniques to extract ICFGs (Inter-procedural Control
Flow Graph) from Java program files and then prunes these ICFGs to remove noisy
instructions. Then, word embedding techniques are adopted to learn semantic rep-
resentations for Java bytecode instructions. Finally, BejaGNN builds a graph neural
network classifier to determine the maliciousness of Java programs. Experimental
results on a public Java bytecode benchmark demonstrate that BejaGNN achieves
high F1 98.8% and is superior to existing Java malware detection approaches, which
verifies the promise of graph neural network in Java malware detection.

Keywords Java malware detection · Graph neural network · ICFG · Word
embedding

 * Pengbin Feng
 pbfeng@xidian.edu.cn

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05243-x&domain=pdf

15391

1 3

BejaGNN: behavior‑based Java malware detection via graph…

1 Introduction

Java, the most popular development language used in enterprise application [1],
continues to be an attractive target for attackers [2]. According to Java.com,
89% of Desktops, 3 billion mobile phones, and 97% of Enterprise Desktops in the
USA run Java. Therefore, malicious programs, vulnerabilities and exploits in Java
have become increasingly prevalent in the past few years. MITRE’s CVE dataset
recorded nearly 700 new Java vulnerabilities [3].

Recent research [2] points out that Java malware is mainly spread via malicious
attachments or phishing emails. These malware files are organized in JAR (Java
Archive) compression format, which can run on any infected system with Java
Runtime Environment (JRE). In consideration of cross-platform convenience, the
JAR file aggregates all Java class files, resources, and associated metadata into one
archive. With everyone’s focus on COVID-19, attackers recently leverage the popu-
lar COVID-19 update maps to infect computers via Java malware [4] silently. In this
attack, malicious Java applications leverage the real-time data map component to
camouflage as benign and contain a payload to steal sensitive information.

Despite receiving less attention from the research community compared to
Android, Windows, or IoT (Internet of things) malware, Java malware causes great
harm to the Java ecosystem [5]. Anti-malware industry or anti-virus software widely
adopts signature-based malware detection approaches [6]. These approaches rely on
the built signatures from huge known malware samples to match similar malware
files. The signature matching mechanism could be easily bypassed by code trans-
formation techniques [7]. To overcome this issue, researchers have proposed more
precise detection approaches via building advanced machine learning models on a
set of meaningful static or dynamic features [8–10].

With the ability to resist code obfuscation via execution within sandbox envi-
ronments, dynamic analysis techniques could still be evaded by environment-aware
and event-trigger malware [11]. In addition, dynamic analysis techniques can hardly
cover all execution paths and cause more time and resource consumption for the exe-
cution environment, which limits the practicality of these methods. Traditional static
analysis methods mainly extract syntax features such as strings or imports to iden-
tify malware samples. While syntax features achieve efficient malware detection,
these static approaches cannot capture sufficient semantic information from malware
behaviors [12]. Recently, researchers have explored image-based malware detection
approaches which leverage the booms of ML algorithms in computer vision [13–15].
These approaches usually covert raw malware binaries into pixel-based images via
various transformation methods. Then, ML algorithms can directly leverage image
features to classify malware binaries rather than behavior or signature features. Most
of these approaches treat machine code as the pixel values and convert the binary
files into grayscale images [13]. Jadeite [15] adopts an image transformation method
on ICFG of Java bytecode, which improves the accuracy of image-based malware
detection methods. Nevertheless, these image transformation methods directly use
image processing techniques on bytecode files or pruned ICFGs, which limits the
capture of informative Jimple [16] instruction semantic.

15392 P. Feng et al.

1 3

One emerging approach in ML for cybersecurity tasks is to use graph learn-
ing to capture critical information directly from program representation graph
[17–19]. In these approaches, researchers use multiple graph representation
structures, including CFG (Control Flow Graph), CDG (Control Dependence
Graph), DDG (Data Dependence Graph) or even fusion graph CPG (Code Prop-
erty Graph) [20], to denote semantic information. GNN (Graph Neural Network)
algorithms directly use these graph structures to perform malware vulnerabil-
ity detection rather than sequence-based or tree-based approaches [21]. Most of
these approaches adopt various GNN algorithms to capture attack characteristics
directly from informative graph structures without manually constructing features
via expert knowledge. With the innate ability to handle graph structures, GNN
algorithms are promising in the next-generation cyber security systems [22].

In this paper, motivated by the advantages of graph-based learning algorithms,
we explore the direction of capturing malware semantic information and propose
a novel behavior-based Java malware detection method via graph neural network.
Stand apart from existing Java malware classification methods using image-
based approaches or traditional ML algorithms, we use the ICFG at the bytecode
level to represent the behavior of Java programs and capture critical relational
patterns via GNN algorithms. Previous studies have proved that ICFG is one of
the most compelling features to capture malicious program behaviors [23–25].
After generating ICFGs, we generate node embeddings of ICFGs and leverage
advanced ML algorithms in the graph classification domain. In particular, we
perform static analysis to extract ICFG from Java bytecode files. After obtaining
these graphs, we prune these graphs to retain instructions with meaningful infor-
mation. Next, we leverage program representation methods to capture semantic
information from basic blocks inside ICFG. Finally, we use GNN to classify the
generated ICFGs to identify the maliciousness within the original Java bytecode
programs. With the help of handling complex graph structure of the GNN algo-
rithm, BejaGNN achieves superior detection performance compared to existing
approaches. Experimental results show that GNN is a promising technique in the
Java malware detection domain.

In summary, we make the following contributions:

• We propose a novel Java bytecode classification framework, namely BejaGNN,
that utilizes code embedding techniques and graph neural networks to identify
the maliciousness of Java bytecode programs. We directly use ICFG to cap-
ture behavioral features of Java bytecode programs and then build the detec-
tion model from these features to leverage the remarkable success in the graph
learning domain.

• We adopt multiple code embedding techniques and GNN algorithms to verify
the effectiveness and explore the best performance of the proposed detection
framework.

• We evaluate our approach on a public Java bytecode benchmark, which
consists of around 4k malicious and benign samples. Our proposed method
achieves 99.1%, which outperforms existing Java bytecode classification meth-
ods.

15393

1 3

BejaGNN: behavior‑based Java malware detection via graph…

The rest of the paper is organized as follows. Section 2 summarizes recent work on
Java malware detection. Section 3 describes the system design of BejaGNN. Sec-
tion 4 reports the experimental settings and evaluates the detection performance of
BejaGNN. Section 5 outlines the limitations of BejaGNN. Section 6 concludes this
paper.

2 Related work

In this section, we review the malware detection methods in general and related to
Java malware.

2.1 Traditional malware detection methods

With malware continuing to compromise cyberspace security, malware detection
has received much attention from industry and academia. Conventional anti-virus
software leverages signature-based methods to perform efficient malware detection
[6]. However, these methods heavily rely on the collected known malware dataset,
which could hardly detect new malware or malware variants generated via evading
techniques [26] such as code obfuscation, packing, and encryption mechanism. At
an early age, researchers propose to extract CFG by using dynamic analysis and lev-
erage subgraph isomorphism to combat malware variants [27]. However, malware
could insert junk function calls and reshape the structure of the malware to evade
isomorphism mechanism [28].

2.2 Machine learning‑based malware detection methods

Recent research leverages advanced machine-learning approaches to automatically
infer critical malicious behavior properties, which could identify newly generated
malware variants. The machine learning methods use the behavior features of the
malware samples to perform malware classification and detection. These features
are typically extracted via static, dynamic, or hybrid analysis [29]. Static analysis
extracts statistical or string features from assembly or intermediate representative
code [30, 31]. Although static extracted features are effective in malware detection,
these methods still struggle against code obfuscation [32, 33]. On the other hand,
dynamic analysis approaches can collect runtime temporal and behavioral informa-
tion, such as a sequence of system calls and process states, to recognize malware
[34]. Younghee et al. [34] proposed a classical common behavior graph representa-
tion method that achieve high malware detection rates. MtNet [9] adopts a multi-
task learning method to improve the accuracy of dynamic malware detection. The
designed neural network structure could implement malware detection and family
classification at the same time. However, the inherent pitfalls of dynamic analy-
sis are the requirement of time and resources consumed in executing malware and
the limited coverage of the execution path, which may miss the critical part of the

15394 P. Feng et al.

1 3

malware code. These limitations hinder the preferred application of dynamic-based
approaches.

2.3 Image‑based malware detection methods

Image-based malware detection methods leverage static analysis techniques to con-
vert malware binaries into pix-based images, which owns the ability to mitigate
code obfuscation and encoding issues [35–40]. These images can be fed into mature
image classification techniques for identifying malicious samples. Pratikkumar et al.
[40] conduct a comprehensive empirical evaluation on various famous image-based
learning techniques for malware classification. Cui et al. [36] transform malicious
binary files into a two-dimensional array of a specific length. Next, a CNN classifier
is used to classify the grayscale images mapped from the two-dimensional arrays.
Jadeite [15] proposes to generate grayscale images from ICFGs of Java bytecode
files, which considers the program’s semantics information and improves the detec-
tion performance. Nevertheless, the image processing-based approach, achieving
extraordinary results in malware detection, encodes malware into an abstract image,
which limits the exploration of Jimple instruction semantics and increases the dif-
ficulty in providing explainable results.

2.4 Java malware detection methods

In this paper, we focus on malware detection on the Java platform as the widespread
application of Java in enterprise platforms and the rapidly increasing malware in
the wild [41]. Android applications, written in Java, have received much attention
for their malicious detection [42]. Several approaches adopt similar image transfor-
mation approaches to perform Android malware detection [43–45]. For example,
Ding et al. [43] proposes a bytecode image-based malware detection approach. It
extracts bytecode files from the files of Android applications and treats each byte
in this file as pixel values. Then, the bytecode files are transformed into grayscale
images. Finally, the CNN classifier is used to identify maliciousness from the gener-
ated images. Vasan et al. [39] leverages a color-mapping mechanism to convert the
raw Android applications into images and then perform malware detection and fam-
ily classification on these images. These approaches treat the raw binaries as images
for using advanced computer vision algorithms but miss the semantic execution
information of these malware files.

Although being developed by Java language, Android applications are different
from Java programs from the following aspects: a) organize in different file formats
(.class vs .dex); b) execute in different virtual machine system (Dalvik Virtual
Machine vs Java Virtual Machine); c) Android mainly focuses on the mobile plat-
form; meanwhile, Java is widely used in the enterprise; d) Java programs only have
one main method, while Android applications are based on complex component
and configuration mechanism. These differences hinder the Android malware detec-
tion methods from applying to the Java malware programs. Few works in the lit-
erature investigate Java malware detection [46]. Jarhead [47] performs simple static

15395

1 3

BejaGNN: behavior‑based Java malware detection via graph…

analysis to extract string features and trains machine learning algorithms for Java
malware detection. Gassen et al. [48] propose a dynamic analysis-based method to
combat common obfuscation techniques. JMD [49] combines symbolic execution
and instrumentation techniques with dynamic analysis to improve malware detec-
tion. Kumar et al. [50] design a lexical analysis-based approach to identify code
obfuscation. Recently, researchers have proposed to perform Java malware program
detection by using static and dynamic analysis [11, 51]. Apart from these methods
mentioned above, we design a novel Java malware detection approach, BejaGNN,
which combines word embedding techniques and GNN algorithms to capture criti-
cal Jimple semantic information from the ICFG representations of Java programs.

3 System design

The goal of BejaGNN is to directly learn critical behavior features from the ICFG
structure for malicious Java application detection. Figure 1 presents the overall
architecture of our malware detection system, BejaGNN, which consists of three
main components, namely ICFG Extraction, Node Embedding Generation and GNN
Classification ICFG extraction firstly leverages static analysis to transform a Java
bytecode file, in the form of JAR format, into an ICFG structure. Then, node embed-
ding generation captures semantic information from basic blocks inside ICFG by
using program representation methods. Finally, GNN classification takes the ICFG
structure as input and trains a GNN classifier to perform malicious bytecode file
identification. In the following, we introduce the details of each component.

3.1 ICFG extraction

In this component, BejaGNN extracts the Inter-Procedural Control Flow Graph
(ICFG) from the Java bytecode file via Soot [52] analysis framework. ICFG is a
direct graph that covers the execution order of all instructions within a program. In
the ICFG graph, the nodes represent sequentially executed program instructions, and
the edges denote execution orders between nodes.

The JAR file is packed in a compressed format and consists of one or more class
(Java bytecode) files compiled from Java source code. BejaGNN first leverage
Soot to convert the Java bytecode included in the JAR file into Jimple intermedi-
ate representation. Soot is a popular analysis framework and provides a convenient

Fig. 1 Architecture of BejaGNN system

15396 P. Feng et al.

1 3

intermediate representation for customized static analysis. Thus, it is widely used
for various analysis purposes, including security problem [53], bug finds [54] and
privacy issues [55], etc. Then, BejaGNN uses Heros [56] to build the ICFG from
Jimple representation of the whole Java program. Heros is built on top of Soot and
owns the ability to perform inter-procedural dataflow analysis.

The Soot analysis framework provides the functionality of generating ICFG
in DOT format, which is easy to visualize and handle. Figure 2 presents a simple
example to illustrate the ICFG extraction process. Figure 2 presents a simple Java
program with two functions func1 and add. In this program, func1() invokes
add(), and each function contains several instructions. The right part of Fig. 2
shows a graph representation of Jimple ICFG without meaningless variable defini-
tions and initializations. In the graph, the nodes represent Jimple instructions, and
the edges between nodes denote the control flow between instructions.

Considering all unique nodes from ICFG graphs of our entire Jimple instructions
as features would influence the effectiveness and efficiency of Java malware detec-
tion via importing noises and increasing training time. Therefore, BejaGNN removes
meaningless nodes in the generated ICFG. Specifically, we remove meaningless
instructions, such as variable definitions and initializations, which are necessary
for the correct execution of Java programs but hardly contribute to understanding
program execution semantics. For the remaining instructions, BejaGNN leverages
Node Embedding Generation and GNN Classification components to extract critical
information.

3.2 Node embedding generation

To convert ICFG into structures that are applicable to graph neural networks, we
need to extract numerical vectors that summarize the semantic information of each
node. We treat Jimple instructions as words to generate node embeddings that cap-
ture semantic information via the state-of-the-art NLP technique Word2Vec. The
NLP embedding technique has been proven to be effective in capturing informative
semantics from malware [57, 58]. Before generating node embeddings, we normal-
ize the Jimple instructions to remove meaningless code differences. In this paper, we
refer to meaningless code differences as opcodes within the same category, various

Fig. 2 Simple Java program with corresponding Jimple ICFG

15397

1 3

BejaGNN: behavior‑based Java malware detection via graph…

numeric constant values, and local variable definitions. Opcodes within the same
category may denote operations toward different types of objects but cause similar
effects to the program. Numeric values are infinite, and their semantics are diffi-
cult to capture. Same local variables from Java programs usually represent differ-
ent objects. The normalized process could reduce the possibility of entering instruc-
tions with a low occurrence in the training data, or are absent from the training data,
and further mitigate the OOV (out-of-vocabulary) [59] problems. The generation of
node embedding consists of normalization and Word2Vec.

3.2.1 Normalization

In this step, the Jimple instructions are scanned one by one along the execution
sequence of the Java program. Before further processing, we narrow down the
diversity of the Jimple instructions by removing meaningless instructions that are
greatly affected by the programmers’ coding habits. In addition, a majority of Jimple
instructions share similar semantic information (e.g., specialinvoke and vir-
tualinvoke), such as operand types and definition forms. Although diverse Jim-
ple instructions provide detailed information for Java programs, they significantly
increase the burdens of security analysis. Instruction normalization is necessary
means to improve efficiency in the security research domain, such as binary diffing
[60], patch detection [61], and even malware detection [62]. According to our obser-
vation on all extracted Jimple instructions, BejaGNN performs instruction normali-
zation via the following rules: (1) replacing all variable definitions as unified “var”
to reduce differences introduced by huge variable names; (2) replacing all numeric
constant values with “num” to reduce wide range of changes; (3) replacing the Jim-
ple instructions within one category as one simplified representation to focus on the
semantic information of each instruction.

Figure 3 shows an example of Jimple normalization process. In Fig. 3, the
Jimple instruction virtualinvoke, store.i and load.i respectively
belong to category invoke, store and load. Thus, the original instructions

Fig. 3 Normalization process of Jimple Instructions

15398 P. Feng et al.

1 3

are replaced with the instruction categories according to the normalization rules.
The load variables i0 and i1 are replaced with var, and the constant number is
replaced with num. Other meta-information within instructions, such as constant
string, class name, class name, and fields, are reserved to ensure integrity.

3.2.2 Word2Vec

In this phase, BejaGNN represents each normalized Jimple instruction with a
dense and real-valued vector, which covers semantic information according to
its surrounding context. The context represents neighbor instructions within one
function. Figure 4 shows the workflow of Word2Vec, which consists of instruc-
tion grouping, Word2Vec modeling, and embedding generation.

Instruction grouping. BejaGNN firstly builds Jimple instruction vocabulary
extracted from all Java bytecode files. Then, it constructs instruction groups by
matching each instruction with its local context. Let Ji denotes the ith instruc-
tions, and c represents half of the window size. For each instruction Ji , its local
context {Ji−c, Ji−c+1, ..., Ji+c−1, Ji+c} consists of ahead and behind neighborhood
instructions within one function. Accordingly, BejaGNN generates 2c instruction
groups by matching Ji with each instruction in its context.

Word2Vec Modeling. After generating instruction groups, BejaGNN lever-
ages the Word2Vec algorithm to train an instruction embedding model by tak-
ing each instruction group as a training instance. This embedding model only
needs training once because it is shared by all Jimple instructions. During the
training process, each instruction is firstly represented in the one-hot encoding
form. In the Continuous Bag of Words (CBOW) model, the Word2Vec matches
the target instructions with context instructions. It takes Ji as output and context
{Ji−c, Ji−c+1, ..., Ji+c−1, Ji+c} as input and learns an embedding space which maxi-
mizes the similarity between the instruction and its context instructions. On the
contrary, in the Skip-gram model, the Word2Vec predicts the context instructions
with the target instructions and turns around the input and output. The objective
of Word2Vec is presented as follows:

Fig. 4 Workflow of Word2Vec

15399

1 3

BejaGNN: behavior‑based Java malware detection via graph…

where C represents context instructions of each target instruction Ji . p(Jc ∣ Ji) is
defined as

where vJc and vJi are the embedding representations of instruction Jc and Ji.
Embedding Generation. After training the Word2Vec modeling with the matched

Jimple instruction groups, BejaGNN generates two s × d weight matrices W and
W ′ , where s denotes the size of Jimple instruction vocabulary and d represents the
dimension of embeddings. In particular, BejaGNN chooses the default matrix W to
represent the embeddings of all Jimple instructions. For example, the instruction
embedding of Ji is located at the ith row of W. Thus, the matrix W serves as the
embedding search table for target Jimple instruction.

3.2.3 Alternative embedding methods

BejaGNN adopted multiple embedding methods: Word2Vec, GloVe, FastText and
Doc2Vec, and compared their performance to select the most effective method to
embed Jimple intermediate code.

GloVe [63] owns the ability to preserve the co-occurrence probability of instruc-
tions. The inner product between the two instruction embeddings by GloVe repre-
sents the cosine similarity and the probability of co-occurrence. Thus, GloVe takes
into consideration of the statistical information within the entire instruction vocabu-
lary, which makes it easier to capture the semantic information of each instruction.
GloVe defines the instruction–instruction co-occurrence matrix X, whose entries Xi,k
represent the number of times instruction Jk occurs in the context of instruction Ji ,
and Xi =

∑
k Xik denotes the number of times any instruction appears in the context

of instruction Ji . The cost function of this model is shown as follows:

where vi and vk represent the embeddings of instructions Ji and Jk , bi and bk denote
the additional biases, and f (Xi,k) is a weighting function generalized the similarity
between instructions.

FastText [64] adopts similar training methods as the Word2Vec model but repre-
sents and divides the instructions as sub-instructions. Each instruction is expressed
as a bag of character n-grams. In the form of this sub-instruction representation, the
number of vectors for each instruction is increased, and the ability to capture seman-
tic information is improved. For the instructions with a low appearance rate, Fast-
Text could increase the number of reference cases via the nature of embedding with
n-grams. Given an instruction Ji , the set of n-grams appearing in Ji is represented

(1)£(J) =
1

s

s∑
i=1

∑
c∈C

p(Jc ∣ Ji)

(2)p(Jc ∣ Ji) =
exp (vJc ⋅ vJi)∑

c ∈ C exp (vJc ⋅ vJi)
,

(3)£(J) =

s∑
i,k

f (Xi,k)(v
T
i
vk + bi + bk − log(Xi,k))

2,

15400 P. Feng et al.

1 3

as ZJi . An instruction is represented by the sum of the vector representations of its
n-grams:

Doc2Vec [65] regards the bytecode file id as a single instruction. The file id has
positional coordinates in the semantic space. Subsequently, from all the snapshots,
the context vector is created by taking the average of the position coordinates of
the other instructions. The remaining operation is the same as that of Word2Vec.
That is, Doc2Vec updates the file embedding such that the file id and the instruction
appearing in each bytecode file approach each other. In this way, the file embed-
ding is capable of constructing representations of instructions sequences of vari-
able length. Thus, even if the instructions are different, the embeddings of each file
become similar because the embedding vectors of the instructions are similar. The
Doc2Vec owns two models: Distributed Memory Model of Paragraph Vectors (PV-
DM) and Distributed Bag of Words version of the Paragraph Vector (PV-DBOW),
which takes the file id as input or output, respectively.

3.3 GNN classification

With the ability to capture comprehensive information from non-Euclidean data
structures, GNN has recently received a lot of attention via the generation of graph
embeddings [66]. In this paper, we explore the ability of GNN in Java malware
detection. Therefore, BejaGNN adopts GCN, GAT and GIN, and their performance
is compared to identify the most effective method for capturing malicious behavior
patterns.

After the processing of the Node Embedding Generation, we obtain a number
of ICFGs with corresponding node attributes. Specifically, we treat each Jimple
instruction as one node to highlight the importance of semantic information. We
define an ICFG as G = (N,E) , in which N represents the node set and E represents
the edge set. All node embeddings are combined as a new matrix X in which the i-th
row xi represents the embedding of Jimple instructions Ji . We define A as the adja-
cent matrix of the ICFG G. Then, the GNN transforms the tuple (A, X) into graph
embedding hG ∈ ℝ

d , where d is the predefined embedding dimension of the graph.
Finally, the MLP classifies the input hG into the category malware or benign.

After obtaining the tuple (A, X), GNN would capture the embedding representa-
tion of the graph G. During the graph learning process, each node J is associated
with a set of hidden representations {… , ht

J
,…} , where t denotes the t-th GNN layer

within the graph learning model and the initial representation is denoted by the node
embedding, h0

J
= vJ . At layer t + 1 , ht

J
 aggregates the t-layer hidden representations

from its neighbor nodes, which could be generalized as follows:

(4)
∑
z∈ZJi

vT
z
vc.

(5)ht+1
J

= M(ht
J
, {ht

u
, ∀u ∈ N(J)}),

15401

1 3

BejaGNN: behavior‑based Java malware detection via graph…

where M represents an aggregation function, which varies in different GNN models.
After iterative processing by T GNN layers, we finally obtain the hidden represen-
tations for each node hT

J
 . During this iterative procedure, the node information is

propagated deeper and deeper. Thus, the final hidden representations could capture
far-away neighborhood information. The embedding vector of the whole graph G is
formalized as:

The GNN model aims to generate the whole graph embeddings [67], encoding
the entire graph information into low-dimensional space by passing all node hid-
den representations through the readout function. Similarly, the node embedding is
transformed from a graph node with local information into low-dimensional space.
Different GNN models adopt multiple aggregation mechanisms. GCN is one rep-
resentative GNN, which computes node hidden representations via the following
formulas:

where Ht denotes the representations at the t-layer for all the graph nodes, and H0
is the initial embeddings generated by the Node Embedding Generation component
for all nodes. Wt is the trainable weight matrix of the t-layer GCN. � is an activation
function that is usually set as ReLU. Â = D̃

−
1

2 ÃD̃
−

1

2 , where D̃ is the degree matrix,
and Ã = A + Is . Is denotes the identity matrix.

GAT makes some improvement on the propagation rule and assumes the
neighbors’ contribution is imbalanced for different importance to the central ver-
tex. Thus, GAT adopts the attention mechanism to calculate the relative weights
between two connected nodes before the neighbor information propagation. The
output features for every node can be formalized as:

where aki represents the attention coefficient computed by a shared attention mecha-
nism and indicates the importance of node Jk ’s features to node Ji.

Similarly, GIN adopts one powerful message aggregation function, which is
shown below:

where �t is a scalar learnable parameter and MLP stands for a multi-layer perception,
which could aggregate comprehensive information.

(6)zG =

∑
hT
Ji
, i ∈ {1,… s}

s
.

(7)Ht+1 = 𝜎(ÂHtWt)

(8)hJk = �

⎛⎜⎜⎝
�

Ji∈N(Jk)

akiWhJi

⎞⎟⎟⎠
,

(9)ht+1
J

= MLPt+1

((
1 + �

t
)
ht
J
+

∑
u∈N(J)

kt
u

)
,

15402 P. Feng et al.

1 3

4 Experiments and evaluation

According to the above design, we implement a novel behavior-based Java mal-
ware detection tool, called BejaGNN, based on Soot [52], python natural lan-
guage processing Gensim module and graph learning library DGL. In this sec-
tion, we discuss the evaluation of our proposed system BejaGNN. We first
describe the experiment settings used in BejaGNN. Then, we discuss the results
of our experiments.

4.1 Experimental settings and dataset

The machine we used to extract ICFG from Java programs was a workstation with
Intel (R) Xeon (R) E5-2620 CPU (15 M Cache, 2 GHz) and 24 GB of RAM. Mean-
while, BejaGNN is evaluated on a PC equipped with Intel (R) Core (TM) i7 CPU
(6 M Cache, 2.5 GHZ), 16 GB of RAM, and NVIDIA GTX 850 M. We randomly
shuffle the dataset and split 70% for the training, 15% for validation, and the rest
15% for test.

We evaluate the performance of BejaGNN by using the dataset provided by Jade-
ite [15], which was collected from multiple public resources and is representative
of Java malware in the wild. The original dataset consists of 1816 benign and 2223
malicious Java programs. With 139 programs unable to extract effective ICFG on
our workstation, we finally obtained a benchmark dataset with 3901 Java programs.

4.2 Measure metrics

We utilized five widely used metrics: precision, recall, true negative rate, accuracy
and f1-score, to evaluate the performance of our Java malware detection approach.
These metrics are calculated based on true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). In the malware detection scene, a true positive
(TP) indicates the count of detected malware programs that are truly malicious, and
a true negative (TN) indicates the count of correctly identified benign programs. A
false positive (FP) indicates the count of detected malware programs that are actu-
ally benign, and a false negative (FN) indicates the count of undetected malware
programs. The detailed measure metrics are as follows:

• Precision The ratio of true positive programs to the total programs that are
detected as malware. Precision =

TP

TP+FP

• Recall The ratio of true positive programs to the total count of malware pro-
grams. Recall = TP

TP+FN

• True negative rate (TNR) The ratio of true negative programs to the total
benign programs. TNR =

TN

TN+FP

• Accuracy (Acc) The ratio of the sum of true positive and true negative programs
to the total count of all programs. Acc = TP+TN

TP+FP+TN+FN

15403

1 3

BejaGNN: behavior‑based Java malware detection via graph…

• F1-score (F1) The overall effectiveness denotes the harmonic mean of precision
and recall. F1 =

2×Precision×Recall

Precision+Recall

For precision, recall, true negative rate, accuracy, and f1-score, the closer to 1, the
better the detection performance. In particular, accuracy and f1-score are indicators
of overall malware detection performance.

4.3 Comparison of embedding methods

In the following, we evaluate the performance of BejaGNN with different node
embedding techniques.

Firstly, we set the graph learning algorithm as GCN to select the best embed-
ding techniques in our Java malware detection scene. Table 1 shows the performance
comparison of word-embedding algorithms. In the initial experiment, for GCN, the
number of layers is 2, and the batch size and hidden dim are both 8. Except for
embedding size, all word embedding algorithms are in the default setting. From
Table 1, we observe that FastText achieves the best performance by taking advan-
tage of subword learning, which is suitable for our dataset with limited tokens. The
two models of Word2vec and Doc2vec show different results, which illustrates that
the semantic information is influenced by the input–output format of context. The
Glove achieves the worst performance in our case, which may be caused by the
built co-occurrence matrix cannot accurately capture the similarity between instruc-
tions. Generally, Doc2Vec is known to show good performance in large corpus and
increases the performance with dataset size, which does not work well in our limited
tokens scene. Accordingly, we recommend applying FastText when designing a mal-
ware detection system with a limited corpus.

To compare the word embedding algorithm performance according to embed-
ding size, we experimented by increasing the embedding size by 10 units from
20 to 120 for each algorithm with different models. The comparison results are
shown in Fig. 5. From Fig. 5, we observe that the detection performance increases
with the embedding size and starts to decrease when reaching the optimal perfor-
mance. A large embedding size could carry more semantic information and fur-
ther increase the detection performance. After obtaining the optimal performance,
the model becomes overfitting and decreases performance with the embedding

Table 1 Detection performance comparison with different node embedding techniques

Bold values represent the best detection performance for each method

Node embedding Precision Recall TNR Acc F1

Word2Vec (CBOW) 0.9230 0.9489 0.8965 0.9235 0.9326
Word2Vec (Skip-gram) 0.9153 0.9752 0.8963 0.9354 0.9402
GloVe 0.8915 0.9438 0.8522 0.8997 0.9120
FastText 0.9305 0.9746 0.9109 0.9439 0.9497
Doc2Vec (PV-DM) 0.9140 0.9727 0.8868 0.9303 0.9387
Doc2Vec (PV-DBOW) 0.8998 0.9717 0.8655 0.9218 0.9312

15404 P. Feng et al.

1 3

size increase. We also infer that almost all word embedding algorithms follow
a similar law of change, and all algorithms show the optimal performance at the
embedding size 90, except for Glove. Accordingly, we recommend selecting opti-
mal word embedding algorithms according to corpus characteristics within the
dataset.

The performance of the word embedding algorithm is also affected by the con-
text instruction size, which directly determines the information quantity within
instruction embeddings. As FastText achieves the optimal performance, we then
explore its optimal context size and conduct an experiment by increasing the con-
text size by 2 units from 3 to 13. The detection performance results with vari-
ous context sizes are shown in Fig. 6. From Fig. 6, we can infer that the overall
detection performance increase with the context size and slightly changes after
the context size reach 7. The larger context size will carry more information
and improve the detection performance while increasing the time consumption

 0.8

 0.85

 0.9

 0.95

 1

 20 30 40 50 60 70 80 90 100 110 120

F1

Embedding size

W2v-c
W2v-s
Glove

Fasttext
D2v-m
D2v-w

Fig. 5 Detection performance comparison with different embedding sizes. ‘W2v-c’ denotes Word2Vec
in CBOW model. ‘W2v-s’ denotes Word2Vec in skip-gram model. ‘D2v-m’ denotes Doc2Vec in PV-DM
model. ‘D2v-W’ denotes Doc2Vec in PV-DBOW model

 0.8

 0.85

 0.9

 0.95

 1

 3 5 7 9 11 13

Pe
rfo

rm
an

ce

Context size

Precision
Recall

TNR
Acc

F1

Fig. 6 Detection performance variation with different context sizes

15405

1 3

BejaGNN: behavior‑based Java malware detection via graph…

in node embedding generation. Therefore, in our Java malware detection scene,
we set the optimal context size as 7 to take a trade-off between performance and
efficiency.

As described in Sect. 3.2, BejaGNN uses a normalization process to remove use-
less Jimple instructions, which contributes less to the semantics of the Java program.
We experiment to explore the effectiveness of our instruction normalization process.
The instruction normalization with non-normalization comparison results is shown
in Fig. 7. From Fig. 7, we can observe that the instruction normalization process
improves the detection performance from all measure metrics. This is caused by that
our normalization process removes noisy and meaningless information from instruc-
tions and further improves the representation accuracy of instruction embedding.

4.4 Comparison of GNN algorithms

After obtaining the optimal node embedding structure, we start to explore the influ-
ence of multiple GNN algorithms.

We focused on tuning hyper-parameters which significantly affect the detection
performance based on the expert knowledge from the deep learning community. The
search range of hyper-parameters and optimal values of GCN, GAT and GIN are

 0.8

 0.85

 0.9

 0.95

 1

Precision Recall TNR Acc F1

Pe
rfo

rm
an

ce

Normalization
None-normalization

Fig. 7 Detection performance comparison with instruction normalization

Table 2 Search range of hyper-parameters and optimal values for graph neural network models

Hyper-parameters GCN GAT GIN Search Range

Learning Rate 0.01 0.01 0.01 {0.1, 0.01, 0.001}
Batch Size 256 256 256 {32, 128, 256, 512}
Epochs 100 100 100 {40, 60, 80, 100, 200, 300}
Hidden Layers 2 3 3 {2, 3, 4, 5}
Hidden dim 16 10 8 {8, 16, 32, 64} for GCN and GIN
Attention heads – 10 – 6, 8, 10, 12, 14

15406 P. Feng et al.

1 3

shown in Table 2. We chose the default values implemented in the DGL library for
other hyper-parameters. From Table 2, we can observe that all three graph neural
network algorithms achieve the best performance at 100 epochs with a batch size of
256. The number of neural network layers generates the best performance in multi-
layers. The neural networks’ hidden dimensions achieve the best performance when
GCN is 16, GIN is 8, and GAT is 10.

We compare the detection performance of BejaGNN by using three GNN algo-
rithms: GCN, GIN and GAT. The optimal detection performance comparison is shown
in Table 3. The detection performance variation with epochs is shown in Fig. 8. From
Fig. 8, we can observe that our proposed Java malware detection framework achieves
good performance on all three GNN algorithms, which illustrates that the effective-
ness of our design and GNN is promising in Java malware detection. From Table 3,
we can observe that GAT provides superior detection performance. The adaptation of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

Lo
ss

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 20 40 60 80 100

A
cc

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 20 40 60 80 100

F1

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 20 40 60 80 100

Re
ca

ll

Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 20 40 60 80 100

Pr
ec

is
io

n
Epoch

GCN
GIN

GAT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 20 40 60 80 100

TN
R

Epoch

GCN
GIN

GAT

Fig. 8 Detection performance comparison of GNN algorithms with epochs

Table 3 Detection performance
comparison with different graph
neural network algorithms

Bold values represent the best detection performance for each
method

Algorithms Precision Recall TNR Acc F1

GCN 0.9701 0.9832 0.9591 0.9728 0.9767
GIN 0.9862 0.9835 0.9822 0.9813 0.9848
GAT 0.9908 0.9858 0.9881 0.9864 0.9882

15407

1 3

BejaGNN: behavior‑based Java malware detection via graph…

the powerful message aggregation function improves the detection performance of GIN
when compared with GCN, and the experiment results of this study show the increased
performance of GIN over GCN. In addition, the GAT algorithm utilizes an attention
mechanism to filter important nodes during the neighbor information propagation pro-
cess. Meanwhile, it owns the ability to handle directed graphs, which is more suitable
for our Java ICFG scene. Therefore, the experiment results of BejaGNN show that
GAT achieves the best performance when compared with GIN and GCN.

4.5 Comparison of other approaches

In the following, we compare BejaGNN with existing Java malware detection
approaches, including Jarhead [47], BIN2PNG [68] and Jadeite on the public dataset to
further verify the effectiveness of our proposed detection framework.

Jarhead is a classical Java malware detection method based on static analysis and
machine learning and supports the JAR file classification. It manually extracts 42
dimension features, consisting of statistical information of bytecode, obfuscation-
related invocation and well-known malicious operations, to represent the behavior of
the Java program. Then, a decision tree classifier is built to detect malicious programs.
BIN2PNG proposes an image processing-based malware detection method, which can
be used to convert the JAR files into grayscale images. Next, these grayscale images
are input to CNN-based classifier to build the detection model. The recently pub-
lished method, Jadeite, proposes a new image-based Java malware detection method.
It chooses to build grayscale images from the Java bytecode ICFG instead of the binary
files and selects the most informative 20 features from Jarhead. Then, it designs a com-
plex CNN-based fusion structure to jointly build a detection model based on the above
image and selected features.

The final comparison results are shown in Table 4. In Table 4, Jadeite (IL) represents
the detection model based only on the grayscale image, Jadeite (IL) denotes detection
based on informative 20 features and flattened image matrix, and Jadeite (DL) indi-
cates the final fusion model. From Table 4, we observe that our BejaGNN achieves
the highest detection performance when compared with existing approaches and even
outperforms Jadeite in fusion model form. Jarhead achieves good malware detection
performance, but enters a bottleneck. This is caused by past manually selected features
that cannot handle recent complex Java malware and require expert knowledge to refine
new representative features. The Jadeite (IL) outperforms BIN2PNG, which illustrates
that the grayscale images converted from ICFGs contain more information than those
images converted from binary files. This phenomenon indicates that the ICFG repre-
sents one informative behavior feature. In this paper, we design a GNN-based archi-
tecture to detect Java malware directly from ICFG effectively. Therefore, GNN-based
detection framework is promising in Java malware detection.

15408 P. Feng et al.

1 3

Ta
bl

e
4

 D
et

ec
tio

n
pe

rfo
rm

an
ce

 c
om

pa
ris

on
 w

ith
 e

xi
sti

ng
 a

pp
ro

ac
he

s

B
ol

d
va

lu
es

 re
pr

es
en

t t
he

 b
es

t d
et

ec
tio

n
pe

rfo
rm

an
ce

 fo
r e

ac
h

m
et

ho
d

A
pp

ro
ac

he
s

B
eh

av
io

r f
ea

tu
re

M
od

el
Pr

ec
is

io
n

Re
ca

ll
A

cc
F1

Ja
rh

ea
d

42
 M

an
ua

lly
 se

le
ct

ed
 fe

at
ur

es
D

ec
is

io
n

Tr
ee

0.
95

0.
95

0.
94

8
0.

95
B

IN
2P

N
G

G
ra

ys
ca

le
 im

ag
e

co
nv

er
te

d
fro

m
 b

in
ar

y
fil

e
C

N
N

0.
84

0.
84

0.
84

0.
83

9
Ja

de
ite

 (I
L)

G
ra

ys
ca

le
 im

ag
e

co
nv

er
te

d
fro

m
 IC

FG
C

N
N

0.
95

0.
95

0.
95

0.
95

Ja
de

ite
 (S

L)
20

 In
fo

rm
at

iv
e

fe
at

ur
es

 c
on

ca
te

na
te

d
w

ith
 fl

at
te

n
gr

ay
sc

al
e

im
ag

e
C

N
N

0.
93

0.
93

0.
92

8
0.

93

Ja
de

ite
 (D

L)
A

gg
re

ga
tio

n
of

 th
e

ab
ov

e
tw

o
fe

at
ur

e
sp

ac
es

C
N

N
 b

as
ed

 fu
si

on
 m

od
el

0.
98

0.
98

0.
98

4
0.

98
Be

ja
G

N
N

O
nl

y
IC

FG
G

N
N

0.
99

08
0.

98
58

0.
98

64
0.

98
82

15409

1 3

BejaGNN: behavior‑based Java malware detection via graph…

5 Discussion

Although BejaGNN is useful and effective for detecting Java malware, there are
still limitations in current BejaGNN systems. BejaGNN proposes a behavior-
based Java malware detection approach by using static analysis and graph neural
network algorithm to detect Java malware, which inherits the main limitations
from static analysis. Java malware may employ active code obfuscation tech-
niques, such as polymorphism mechanism, reflection invocation and dynamic
exploit loading, to modify their structure and behavior at runtime. This would
hinder the correctness and integrity of the generated ICFG, and further threaten
the detection performance of BejaGNN. The obfuscation issues may be miti-
gated by using dynamic CFG recovery approaches to construct accurate ICFG for
malware files. On the other hand, BejaGNN owns the ability to handle Java mal-
ware programs with trivial obfuscation techniques, such as identifier renaming,
data encoding, junk code insertion, etc. In addition, when applying deep learn-
ing models in security domains, almost all deep learning-based approaches suffer
from black box issues. This hinders security researchers from obtaining critical
malicious features and exploring the evolution of malicious behavior. To solve
this problem, explainable GNN models [69] can be applied to extract critical
malicious patterns from Java malware programs.

6 Conclusion and future work

Due to the pervasive and convenient nature of the Java platform, its malware con-
tinues to be a significant threat to enterprise security. In this paper, we propose
a novel approach, namely BejaGNN, to classifying Java bytecode programs by
using static analysis, code semantic representation techniques and graph neural
networks. BejaGNN leverages static analysis to extract Jimple inter-procedural
CFG, which is directly used to represent the behavior of Java programs. Then,
the word embedding technique is leveraged to capture the semantic information
from Jimple instructions. Finally, we adopt a GNN classifier to classify vector-
ized ICFG to detect maliciousness in original programs. Experimental results on
a pubic dataset demonstrated that our BejaGNN achieves superior detection per-
formance than existing Java malware detection approaches. In addition, the com-
bination of code semantic representation techniques and graph neural network
algorithms is promising in Java malware detection.

In the current prototype, we only used ICFG to represent the behavior of Java
bytecode files, which miss control dependence and data transformation informa-
tion. We plan to leverage the comprehensive fusion graph CPG to sufficiently rep-
resent the behavior of Java programs, which would enhance the applicability of
BejaGNN. Current BejaGNN only utilizes three basic GNN algorithms, which
can be improved by self-supervised learning-based GNN models [70] to cap-
ture more critical structure information. In addition, we plan to adopt advanced

15410 P. Feng et al.

1 3

program language learning models, such as HMM2Vec, ELMo, and BERT [58],
to replace current word embedding techniques, which could precisely capture the
semantic information from Jimple instructions. As combing advanced program
language learning models with graph learning algorithms would increase the
complexity, resource and time consumption of detection models, which limits the
large-scale deployment of detection methods, we plan to explore which combi-
nation mechanism is more efficient and effective to combine advanced language
models with simple learning algorithms or combine simple word embedding
models with complex learning algorithms like GNN.

Author contributions The authors confirm their contribution to the paper as follows: PF involved in meth-
odology, investigation and Design and original manuscript writing; LY involved in data collection and
prototype implementation; DL involved in experiments, visualization and result analysis; NX involved
in manuscript writing—review and editing and supervision; JM involved in manuscript writing—review
and editing, supervision and funding acquisition. All authors reviewed the results and approved the final
version of the manuscript.

Funding This research was funded by the Natural Science Basic Research Program of Shaanxi (Program
No.2023-JC-QN-0759).

Availability of data and materials The data that were utilized to substantiate the study’s findings are
included in the article.

Declarations

Conflict of interest The authors declare that there are no conflicts of interest regarding the publication of
this article. All authors have contributed to, read, and approved this submitted manuscript in its current
form. The authors declare that they have no competing financial interests.

Ethical approval Not applicable.

References

 1. Java.com, Learn About Java Technology. https:// www. java. com/ en/
 2. Balan G, Popescu AS (2018) Detecting java compiled malware using machine learning techniques.

In: 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC). IEEE, pp 435–439

 3. CVE Details, J, The Ultimate Security Vulnerability Datasource. https:// www. cvede tails. com/ produ
ct/ 19116/ Oracle- JDK. html? vendor_ id= 93

 4. Krebson Security, C, Live Coronavirus Map Used to Spread Malware. https:// krebs onsec urity. com/
2020/ 03/ live- coron avirus- map- used- to- spread- malwa re/

 5. Coker Z, Maass M, Ding T, Le Goues C, Sunshine J (2015) Evaluating the flexibility of the java
sandbox. In: Proceedings of the 31st Annual Computer Security Applications Conference, pp 1–10

 6. Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware detection using data mining tech-
niques. ACM Comput Surv (CSUR) 50(3):1–40

 7. You I, Yim K (2010) Malware obfuscation techniques: a brief survey. In: 2010 International Confer-
ence on Broadband, Wireless Computing, Communication and Applications. IEEE, pp 297–300

 8. Dahl GE, Stokes JW, Deng L, Yu D (2013) Large-scale malware classification using random projec-
tions and neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, pp 3422–3426

https://www.java.com/en/
https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93
https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93
https://krebsonsecurity.com/2020/03/live-coronavirus-map-used-to-spread-malware/
https://krebsonsecurity.com/2020/03/live-coronavirus-map-used-to-spread-malware/

15411

1 3

BejaGNN: behavior‑based Java malware detection via graph…

 9. Huang W, Stokes JW (2016) Mtnet: a multi-task neural network for dynamic malware classification.
In: International Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment. Springer, pp 399–418

 10. Kolosnjaji B, Zarras A, Webster G, Eckert C (2016) Deep learning for classification of malware
system call sequences. In: Australasian Joint Conference on Artificial Intelligence. Springer, pp
137–149

 11. Jha PK, Shankar P, Sujadevi V, Prabhaharan P (2018) Deepmal4j: Java malware detection employ-
ing deep learning. In: International Symposium on Security in Computing and Communication.
Springer, pp 389–402

 12. Shalaginov A, Banin S, Dehghantanha A, Franke K (2018) Machine learning aided static malware
analysis: a survey and tutorial. In: Cyber threat intelligence, pp 7–45

 13. Le Q, Boydell O, Mac Namee B, Scanlon M (2018) Deep learning at the shallow end: Malware
classification for non-domain experts. Digit Investig 26:118–126

 14. Jian Y, Kuang H, Ren C, Ma Z, Wang H (2021) A novel framework for image-based malware detec-
tion with a deep neural network. Comput Secur 109:102400

 15. Obaidat I, Sridhar M, Pham KM, Phung PH (2022) Jadeite: a novel image-behavior-based approach
for java malware detection using deep learning. Comput Secur 113:102547

 16. Vallee-Rai R, Hendren LJ (1998) Jimple: simplifying java bytecode for analyses and transforma-
tions. Technical report, McGill University

 17. Yu Z, Cao R, Tang Q, Nie S, Huang J, Wu S (2020) Order matters: semantic-aware neural networks
for binary code similarity detection. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol 34, pp 1145–1152

 18. Gao H, Cheng S, Zhang W (2021) Gdroid: android malware detection and classification with graph
convolutional network. Comput Secur 106:102264

 19. Sun Q, Abdukhamidov E, Abuhmed T, Abuhamad M (2022) Leveraging spectral representations of
control flow graphs for efficient analysis of windows malware. In: Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security, pp 1240–1242

 20. Yamaguchi F, Golde N, Arp D, Rieck K (2014) Modeling and discovering vulnerabilities with code
property graphs. In: 2014 IEEE Symposium on Security and Privacy. IEEE, pp 590–604

 21. Siow JK, Liu S, Xie X, Meng G, Liu Y (2022) Learning program semantics with code representa-
tions: an empirical study. In: 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE

 22. Bowman B, Huang HH (2021) Towards next-generation cybersecurity with graph ai. ACM SIGOPS
Oper Syst Rev 55(1):61–67

 23. Yang W, Kong D, Xie T, Gunter CA (2017) Malware detection in adversarial settings: exploiting
feature evolutions and confusions in android apps. In: Proceedings of the 33rd Annual Computer
Security Applications Conference, pp 288–302

 24. Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view context-aware approach to
android malware detection and malicious code localization. Empir Softw Eng 23(3):1222–1274

 25. Ou F, Xu J (2022) S3feature: a static sensitive subgraph-based feature for android malware detec-
tion. Comput Secur 112:102513

 26. Anderson HS, Kharkar A, Filar B, Roth P (2017) Evading machine learning malware detection.
black Hat 2017

 27. Macedo HD, Touili T (2013) Mining malware specifications through static reachability analysis. In:
European Symposium on Research in Computer Security. Springer, pp 517–535

 28. Osorio FCC, Qiu H, Arrott A (2015) Segmented sandboxing-a novel approach to malware poly-
morphism detection. In: 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE). IEEE, pp 59–68

 29. Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M (2017) A comparison of static,
dynamic, and hybrid analysis for malware detection. J Comput Virol Hacking Tech 13:1–12

 30. Hardy W, Chen L, Hou S, Ye Y, Li X (2016) Dl4md: a deep learning framework for intelligent mal-
ware detection. In: Proceedings of the International Conference on Data Science (ICDATA). The
Steering Committee of The World Congress in Computer Science, Computer, p 61

 31. Athiwaratkun B, Stokes JW (2017) Malware classification with lstm and gru language models and a
character-level cnn. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, pp 2482–2486

15412 P. Feng et al.

1 3

 32. Lakhotia A, Preda MD, Giacobazzi R (2013) Fast location of similar code fragments using
semantic’juice’. In: Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, pp 1–6

 33. Fass A, Backes M, Stock B (2019) Jstap: a static pre-filter for malicious javascript detection. In:
Proceedings of the 35th Annual Computer Security Applications Conference, pp 257–269

 34. Park YH, Reeves DS, Stamp M (2013) Deriving common malware behavior through graph clus-
tering. Comput Secur 39:419–430

 35. Yajamanam S, Selvin VRS, Di Troia F, Stamp M (2018) Deep learning versus gist descriptors
for image-based malware classification. In: 2nd International Workshop on Formal Methods for
Security Engineering (ForSE 2018), pp 553–561

 36. Cui Z, Du L, Wang P, Cai X, Zhang W (2019) Malicious code detection based on cnns and
multi-objective algorithm. J Parallel Distrib Comput 129:50–58

 37. Cho M, Kim J-S, Shin J, Shin I (2020) Mal2d: 2d based deep learning model for malware detec-
tion using black and white binary image. IEICE Trans Inf Syst 103(4):896–900

 38. Nisa M, Shah JH, Kanwal S, Raza M, Khan MA, Damaševičius R, Blažauskas T (2020) Hybrid
malware classification method using segmentation-based fractal texture analysis and deep convo-
lution neural network features. Appl Sci 10(14):4966

 39. Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) Imcfn: image-based mal-
ware classification using fine-tuned convolutional neural network architecture. Comput Netw
171:107138

 40. Prajapati P, Stamp M (2021) An empirical analysis of image-based learning techniques for
malware classification. In: Malware analysis using artificial intelligence and deep learning, pp
411–435

 41. Acar A, Lu L, Uluagac AS, Kirda E (2019) An analysis of malware trends in enterprise networks.
In: International Conference on Information Security. Springer, pp 360–380

 42. Qiu J, Zhang J, Luo W, Pan L, Nepal S, Xiang Y (2020) A survey of android malware detection with
deep neural models. ACM Comput Surv (CSUR) 53(6):1–36

 43. Ding Y, Wu R, Xue F (2018) Detecting android malware using bytecode image. In: International
Conference on Cognitive Computing. Springer, pp 164–169

 44. Xiao X, Yang S (2019) An image-inspired and cnn-based android malware detection approach. In:
2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
pp 1259–1261

 45. Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD (2022) Efficientnet convolutional neural
networks-based android malware detection. Comput Secur 115:102622

 46. Pizzolotto D, Fellin R, Ceccato M (2019) Oblive: seamless code obfuscation for java programs and
android apps. In: 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, pp 629–633

 47. Schlumberger J, Kruegel C, Vigna G (2012) Jarhead analysis and detection of malicious java applets.
In: Proceedings of the 28th Annual Computer Security Applications Conference, pp 249–257

 48. Gassen J, Chapman JP (2014) Honeyagent: detecting malicious java applets by using dynamic anal-
ysis. In: 2014 9th International Conference on Malicious and Unwanted Software: The Americas
(MALWARE). IEEE, pp 109–117

 49. Herrera A, Cheney B (2015) Jmd: a hybrid approach for detecting java malware. In: Proceedings of
the 13th Australasian Information Security Conference (AISC 2015). vol 27, p 30

 50. Kumar R, Vaishakh ARE (2016) Detection of obfuscation in java malware. Procedia Comput Sci
78:521–529

 51. Pinheiro R, Lima S, Fernandes S, Albuquerque E, Medeiros S, Souza D, Monteiro T, Lopes P, Lima
R, Oliveira J et al. (2019) Next generation antivirus applied to jar malware detection based on runt-
ime behaviors using neural networks. In: 2019 IEEE 23rd International Conference on Computer
Supported Cooperative Work in Design (CSCWD). IEEE, pp 28–32

 52. Lam P, Bodden E, Lhoták O, Hendren L (2011) The soot framework for java program analysis: a
retrospective. In: Cetus Users and Compiler Infastructure Workshop (CETUS 2011). vol 15

 53. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P
(2014) Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Not 49(6):259–269

 54. Nistor A, Song L, Marinov D, Lu S (2013) Toddler: detecting performance problems via similar
memory-access patterns. In: 2013 35th International Conference on Software Engineering (ICSE).
IEEE, pp 562–571

15413

1 3

BejaGNN: behavior‑based Java malware detection via graph…

 55. Holzinger P, Hermann B, Lerch J, Bodden E, Mezini M (2017) Hardening java’s access control by
abolishing implicit privilege elevation. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, pp 1027–1040

 56. Bodden E (2012) Inter-procedural data-flow analysis with ifds/ide and soot. In: Proceedings of the
ACM SIGPLAN International Workshop on State of the Art in Java Program Analysis, pp 3–8

 57. Chandak A, Lee W, Stamp M (2021) A comparison of word2vec, hmm2vec, and pca2vec for mal-
ware classification. In: Malware analysis using artificial intelligence and deep learning, pp 287–320

 58. Kale AS, Pandya V, Di Troia F, Stamp M (2022) Malware classification with word2vec, hmm2vec,
bert, and elmo. J Comput Virol Hacking Tech 19:1–16

 59. Kwon O, Kim D, Lee S-R, Choi J, Lee S (2021) Handling out-of-vocabulary problem in hangeul
word embeddings. In: Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp 3213–3221

 60. Duan Y, Li X, Wang J, Yin H (2020) Deepbindiff: learning program-wide code representations for
binary diffing. In: Network and Distributed System Security Symposium

 61. Xu Y, Xu Z, Chen B, Song F, Liu Y, Liu T (2020) Patch based vulnerability matching for binary
programs. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, pp 376–387

 62. Xu K, Li Y, Deng RH, Chen K (2018) Deeprefiner: multi-layer android malware detection sys-
tem applying deep neural networks. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS &P). IEEE, pp 473–487

 63. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp 1532–1543

 64. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword informa-
tion. Trans Assoc Comput Linguist 5:135–146

 65. Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International
Conference on Machine Learning. PMLR, pp 1188–1196

 66. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks:
a review of methods and applications. AI Open 1:57–81

 67. Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey of graph embedding: Problems,
techniques, and applications. IEEE Trans Knowl Data Eng 30(9):1616–1637

 68. Mercaldo F, Santone A (2020) Deep learning for image-based mobile malware detection. J Comput
Virol Hacking Tech 16(2):157–171

 69. Yuan H, Yu H, Gui S, Ji S (2022) Explainability in graph neural networks: a taxonomic survey.
IEEE Trans Pattern Anal Mach Intell 45(5):5782–5799

 70. Xie Y, Xu Z, Zhang J, Wang Z, Ji S (2022) Self-supervised learning of graph neural networks: a
unified review. IEEE Trans Pattern Anal Mach Intell 45(2):2412–2429

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Pengbin Feng1 · Li Yang2 · Di Lu2 · Ning Xi1 · Jianfeng Ma1

 Li Yang
 yangli@xidian.edu.cn

 Di Lu
 dlu@xidian.edu.cn

15414 P. Feng et al.

1 3

 Ning Xi
 nxi@xidian.edu.cn

 Jianfeng Ma
 jfma@mail.xidian.edu.cn

1 School of Cyber Engineering, Xidian University, Xi’an 710071, Shaanxi, China
2 School of Computer Science & Technology, Xidian University, Xi’an 710071, Shaanxi, China

	BejaGNN: behavior-based Java malware detection via graph neural network
	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional malware detection methods
	2.2 Machine learning-based malware detection methods
	2.3 Image-based malware detection methods
	2.4 Java malware detection methods

	3 System design
	3.1 ICFG extraction
	3.2 Node embedding generation
	3.2.1 Normalization
	3.2.2 Word2Vec
	3.2.3 Alternative embedding methods

	3.3 GNN classification

	4 Experiments and evaluation
	4.1 Experimental settings and dataset
	4.2 Measure metrics
	4.3 Comparison of embedding methods
	4.4 Comparison of GNN algorithms
	4.5 Comparison of other approaches

	5 Discussion
	6 Conclusion and future work
	References

