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Abstract
Developments in numerical simulation of flows and high-performance computing 
influence one another. More detailed simulation methods create a permanent need 
for more computational power, while new hardware developments often require 
changes to the software to exploit new hardware features. This dependency is very 
pronounced in the case of vector-units which are featured by all modern processors 
to increase their numerical throughput but require vectorization of the software to be 
used efficiently. We study the vectorization of a simulation method that exhibits an 
inherent level of vector-parallelism. This is of particular interest as SIMD operations 
will hopefully be available with std::simd in a future C++ standard. The simulation 
method considered here results in the simultaneous solution of multiple sparse linear 
systems of equations which only differ by their main diagonal and right-hand sides. 
Such structure arises in the simulation of unsteady flow in turbomachinery by means 
of a frequency domain approach called harmonic balance.
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1 Introduction

For many applications, the simulation of turbomachinery requires the resolution of 
instationary flow phenomena to adequately predict, e.g., aeroelastic or aeroacustic 
behavior of a component. A good overview of modeling approaches for turbomachin-
ery can be found in [1]. Assuming that the phenomena of interest are periodic in time, 
the equations can be expressed in the frequency domain using a Fourier series. One 
approach, called harmonic balance [2], is increasingly adopted in industrial turboma-
chinery design, as it leads to a reduction in computing times compared to the estab-
lished Unsteady Reynolds Averaged Navier–Stokes (URANS) method by up to two 
orders of magnitude [3].

In this paper, we study the vectorization of this simulation method that exhibits an 
inherent level of vector-parallelism which results in the simultaneous solution of mul-
tiple sparse linear systems of equations which only differ by their main diagonal and 
right-hand sides.

We implement and benchmark these techniques into the Sparse linear system solver 
library Spliss, a modern HPC library for solving block sparse linear algebra problems 
that is developed at the German Aerospace Center (DLR); see, e.g., [4]. Spliss is espe-
cially well-suited to solve the problem at hand, since its modular and templatized struc-
ture allows us to build onto its existing performant solvers.

We introduce a new data-type in Spliss, the MultiScalar, which contains a compile-
time constant number of aligned scalars. Using this MultiScalar as the scalar type for 
the diagonal of a matrix and the right-hand side vector of a linear system, we can apply 
Spliss’ native linear system solvers to simultaneously solve the multiple equations in 
a single step. Since iterative solvers like GMRES or SOR repeatedly apply the system 
matrix to a vector, many load operations from different memory levels may be neces-
sary. With our approach, we only need to load the off-diagonal values of the matrix 
once instead of multiple times. In combination with suited SIMD vectorization of the 
required operations, our method achieves a significant speed-up.

We compare two approaches to implement MultiScalars, one that relies on the com-
piler to insert the vector instructions and one which leverages the Vc [5] library. This 
is of particular interest as SIMD operations will hopefully be available with std::simd 
in a future C++ standard. We carry out thorough benchmark scenarios comparing the 
different approaches for various block-sizes and provide a recommendation on when to 
use which of the two approaches.

The paper is structured as follows. In  Sect.  2, we first introduce the considered 
model problem. In Sect. 3, we give a brief introduction into current HPC architectures 
and present our particular implementations. In Sect.  4, we present numerical results 
considering vectorization ratio, timings, and Flops. Eventually, we draw a conclusion 
in Sect. 5.

2  Model problem

Computational fluid dynamics is an essential tool in the design of all types of fluid 
machinery. Of particular interest are the flows through turbomachinery, which 
convert fluid energy into rotation of a shaft and vice versa. This class of machines 
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contains pumps, compressors, turbines, wind turbines, jet engines and gas turbines. 
The flow through these machines with all unsteady phenomena is fully described by 
the Navier–Stokes equations. However, numerically resolving all turbulent scales for 
the flows under consideration, direct numerical simulation (DNS), requires far too 
much computational effort to be affordable inside a design loop.

A common remedy is the temporal averaging of the equations and modeling the 
effect of all unsteady phenomena on the time-averaged flow. This approach is called 
Reynolds-averaged Navier–Stokes (RANS) and allows to exploit rotational symme-
try and to reduce mesh resolutions to manageable magnitudes. The RANS equa-
tions have been the workhorse behind the design of most of today’s turbomachinery. 
However their inherent negligence of the unsteady interaction of rotating and sta-
tionary turbomachinery components renders it infeasible for many types of aeroelas-
ticity considerations.

This can be overcome by including larger unsteady flow phenomena into the com-
putation by means of the unsteady RANS (URANS) method. While URANS cap-
tures unsteady interactions between components, it comes at the cost of no longer 
allowing to assume rotational symmetry of the flow field. Furthermore URANS 
computations exhibit a transient phase, where the initially assumed flow develops 
into a flow that satisfies the URANS equations. Having to simulate the full annulus 
until the flow converges to the final unsteady flow makes the URANS method about 
two orders of magnitude more expensive than RANS computations.

The fact that the interactions between rotating and stationary parts are periodic 
in time gives rise to methods that only model the time-periodic behavior. Conse-
quently, an approach in between RANS and URANS is to solve the equations in the 
frequency domain and to restrict the unsteadiness to a selected number of base fre-
quencies and harmonics thereof.

One approach for frequency-domain simulation in turbomachinery which allows 
for the nonlinear interaction between the mean flow and the harmonics is the har-
monic balance approach [2].

After spatial discretization, e.g., through a finite-volume discretization, the semi-
discrete Navier–Stokes equations take the form

where R denotes the balance of fluxes and sources for the conservative flow state 
q = (�, �u, �v, �w, �E) comprising density � , u, v, w, the momentum in the three spa-
tial directions, and internal energy density E. The periodic behavior of this flow state 
can be approximated by taking the real part of a finite Fourier series of a base fre-
quency � and multiple non-negative harmonics q̂k

(1)
�q

�t
+ R(q) = 0,

(2)q(x, t) = Re

[
K∑

k=0

q̂k(x)e
ik𝜔

]

.
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The residual R(q) can be transformed analogously. The time derivative transforms 
to a multiplication with ik� in the frequency domain which yields a system of equa-
tions in the frequency domain

This system can be solved by pseudo-time stepping, similar to the steady RANS 
problem, albeit in the frequency domain [6] with a pseudo-time � , i.e.,

This set of equations is solved by an Euler backward approach for stability reasons. 
For the determination of the solution update Δq̂ = q̂m+1 − q̂m , implicit pseudo-time 
stepping requires the solution of a linear system of equations

Note that due to the nonlinearity of R, the pseudo-time operator would couple all 
harmonics and therefore would contain K2 coupled linear systems of equations. Each 
system is of size (Nc ⋅ Nd) × (Nc ⋅ Nd) , where Nc denotes the number of grid cells and 
Nd the degrees of freedom per grid cell. In the case of finite-volume discretizations 
and when turbulence models are solved in a loosely coupled manner Nd = 5 , where 
Nd is the number of physical variables describing the flow state. Larger values of Nd 
would arise in a Discontinuous Galerkin (DG) discretization. For details on DG, we 
refer to, e.g., [7, 8].

To avoid the quadratic growth of the linear system with K, the linearization 
may be based on the zeroth harmonic, yielding

where I is the identity matrix.
This is a sequence of one real-valued and K complex-valued linear systems 

of size (Nc ⋅ Nd) × (Nc ⋅ Nd) . In practical implementations, the systems are repre-
sented as a sparse Nc × Nc matrix of dense blocks each being Nd × Nd in size. 
Note that only the entries on the main diagonal itself are complex-valued. How-
ever, the whole dense Nd × Nd blocks on the diagonal are stored as complex. 
This is done for the ease of implementing block diagonal preconditioners such as 
occurring in Jacobi iterations or successive overrelaxation (SSOR).

These systems share their off-diagonal entries and differ only in the main diag-
onal and right-hand sides

(3)ik𝜔q̂k +
�R(q)k = 0.

(4)
𝜕q̂

𝜕𝜏
+ ik𝜔q̂k +

�R(q)k = 0.

(5)AΔq̂ = −�R(q).

(6)

(
(

1

Δ𝜏
+ ik𝜔

)
I +

𝜕R

𝜕q

||
||q̂0

)

Δq̂m
k
= −�Rk(q),

(7)(D + J)Δq̂m
k
= −�Rk(q),
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where D designates the complex-valued diagonal matrix and J the linearization of 
the residual. This structure lends itself to a vectorized solution method, since the 
main diagonal, forming the majority of data, would only have to be transported once 
over the memory bus instead of K + 1 times in the sequential approach.

In many CFD-related applications, we find typical block or stencil sizes of, e.g., 
5 or 7 which do not lend themselves to SIMD operations naturally; see also the gen-
eral introduction into computer architecture in the next section. The vectorization 
over multiple linear systems is thus an attractive alternative.

3  Computer architecture and SIMD vectorization

3.1  General introduction

Today’s supercomputers feature multiple levels of parallelism; see, e.g., [9] for more 
details. On the highest level, multiple compute nodes communicate through a net-
work. Each node consists of one or multiple CPU sockets, each with multiple cores. 
A node may also contain further accelerators such as GPUs or vector processors. 
Typically, the hardware in one node shares a memory address space even though 
there are multiple physical memories with different access speeds when accessed 
from different parts of the node (NUMA). A hierarchy of caches helps to bridge 
the gap between relatively slow main memory compared to the high performance 
of current processing units. On the lowest level, each CPU core (similar also for 
accelerators) consists of a pipeline of units that execute the desired instructions. One 
unit usually completes one instruction every cycle but needs multiple cycles to pro-
cess it (latency). Similar to GPUs and vector processors, the CPU units allow to 
perform the same operation with multiple elements of data (Single Instruction Mul-
tiple Data: SIMD). Most Current CPU architectures have floating-point units with a 
SIMD width of 256 or 512 bit and allow to calculate one fused-multiply-add (FMA) 
instruction with vectors of 4 or 8 double-precision numbers, respectively, 8 or 16 
single-precision numbers. CPUs for servers/HPC systems usually have 2 FMA units 
per core (superscalarity). To fully leverage the performance of one CPU core, one 
thus needs about hundred to several hundreds of independent floating-point opera-
tions to fill the pipeline.

There are some additional constraints for using SIMD instructions: ideally, the data 
should be stored in a contiguous array that starts at an aligned memory address (an 
address that is a multiple of the SIMD width). In addition, the code should access inde-
pendent, consecutive chunks of data of size of the SIMD width. If the array length 
is not a multiple of the SIMD width, a remainder loop (without SIMD operations) is 
needed or a special masked SIMD operation must be added for the last few elements. 
Therefore, it is common practice to insert some zeros to obtain a data layout that allows 
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better SIMD processing (padding) as the compiler can usually not adjust the data layout 
(which is used across multiple files and in external interfaces). It is then the task of the 
compiler optimization to transform loops to a suitable form for vectorization. Subse-
quent compiler passes then analyze data dependencies and, if successful, replace single 
operations by SIMD instructions in the generated machine code. Such compiler-based 
vectorization (autovectorization) for SIMD units has been a research topic for several 
years [10]. However, due to the inherent complexity of the required code transforma-
tions and problems in automatic data flow analysis for C and C++, compilers may not 
vectorize every given vectorizable code. A programmer can perform these transforma-
tions by hand, however inserting vector-instructions via intrinsics is tedious, architec-
ture-dependent and usually impairs readability. Therefore, SIMD-libraries like Vc [5] 
provide a suitable abstraction level to use SIMD features in a portable way across dif-
ferent CPU instruction sets. After modifying the program such that loops are split into 
vectorizable chunks, a programmer replaces the data type of floating point variables 
by the vector-libraries type, which represents an array of multiple data and abstracts 
simultaneous operations. During compilation, the abstraction is replaced by the suit-
able machine instructions.

SIMD vectorization on AVX, AVX2 or AVX-512 to obtain speedups for classical 
algorithms has become an active research topic. The authors of [11, 12] used vectoriza-
tion to improve the performance of Quick- and MergeSort algorithms. In [13], vectori-
zation was used to speed up FFT algorithms. The authors of [14] considered stencil-
based operations and [15] used AVX2 and AVX-512 to accelerate mesh-free particle 
hydrodynamics. Also recently, the authors of  [16] adapted the Gram–Schmidt algo-
rithm, which is at the core of many numerical applications, for vectorized execution.

Besides improved execution speed when using SIMD architecture, another ben-
efit may come from energy savings when making best use of the available hardware 
architecture, see, e.g.,  [17]. In  [18], the same authors have considered scalability for 
AVX-512 extensions. Interestingly, the authors of [14] could show energy savings of 
20 percent although the vectorized program had the same execution time as its scalar 
counterpart.

The previous articles and book chapters only form a nonexhaustive list of recent 
applications of SIMD vectorization. For more applications, see also the book [19] on 
SIMD using AVX, AVX2, and AVX-512.

This work focuses on the node-level performance. To ease the performance analysis, 
we consider the Roofline performance model [20] which states that the performance is 
either limited by the maximal in-core performance Pmax or by data transfers. The maxi-
mal in-core performance depends on the mix of operations (and possible dependen-
cies between them) and assumes that all required data is readily available in the nearest 
cache level. The data transfers are characterized through the main memory bandwidth 
bm , respectively, the bandwidth of the slowest data path used. Depending on the algo-
rithm, the computational intensity Ic may change. The computational intensity specifies 
the number of (floating-point) operations per transferred byte. Combining these defini-
tions, we obtain the Roofline performance:
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If the data transfers are the limiting factor, the algorithm is called memory-bound. 
If, in contrast, the (floating-point) operations are the limiting factor, the algorithm is 
called compute-bound (or core-bound). Characteristic values for the peak memory 
bandwidth and the peak performance are shown in Table 1.

3.2  Realization in sparse linear system solver library

The Sparse Linear System Solver library Spliss is a novel block sparse linear library 
that is developed for large-scale CFD simulations; see [4]. Spliss is currently used 
in modern HPC CFD solver frameworks in aerospace and engineering, such as 
CODA [22] and TRACE [3]. Spliss is designed as a modern C++ library and relies 
heavily on templatization. This allows for a decoupling of abstract linear solvers and 
matrix format implementations on the one hand and concrete data types on the other 
hand.

Spliss employs distributed and shared memory parallelization. The former is 
realized via an internal abstraction layer which allows the usage of either two-sided 
MPI [23] or one-sided GASPI [24] communication as backend.

For shared memory parallelization, Spliss uses the Alpaka (abstraction library 
for parallel kernels) framework  [25], a performance portable, platform independ-
ent abstraction layer that allows using multiple (possibly different) accelerators con-
currently. This enables Spliss to use, for example, OpenMP threads or CUDA for 
NVidia GPUs with the same high-level implementation.

Spliss implements a collection of common sparse linear system solvers such as 
CG and GMRES and allows for the application of preconditioners such as (Block)-
Gauss–Seidel or SOR. It supports several sparse (block) matrix formats with either 
fixed or varying block size. Due to templatization, these matrix formats and algo-
rithms can operate on any arithmetic data type, such as double, float, complex or a 
user defined data type.

P = min(Pmax, Ic ⋅ bm).

Table 1  Hardware characteristics of a 14-core Intel Xeon Scalable Processor Skylake Gold 6123 that is 
used for the numerical experiments measured using likwid-bench [21]

We use an axpy memory benchmark with an array size of 1  GB instead of the usual STREAM [20] 
benchmark as it better reflects the memory access pattern of our implementation. The hardware also sup-
ports AVX512 instructions (512 bit SIMD width instead of 256 bit with AVX2) but we do not use them 
in this paper, as explained in Sect. 4

Benchmark Measurement

Double precision performance (AVX2 FMA) 645 GFlop/s
Memory bandwidth (AVX2 AXPY) 80 GByte/s
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3.2.1  Realization of SIMD operations on multiple scalars

To efficiently execute SIMD operations on multiple scalars, we introduce the Multi-
Scalar object as a custom data type which contains a compile-time constant number 
of aligned scalars. We have implemented two different realizations of MultiScalars, 
our naive implementation uses a member which is an array of scalars while the Vc-
based implementation derives from Vc::SimdArray.

Together with the MultiScalar object itself, we need a mask object which is of the 
size of the MultiScalar and allows the comparison of MultiScalars.

The concept of the naive MultiScalar implementation is given in  Fig.  1(left). 
The Vc-based MultiScalar is only slightly more complex. In particular, it needs 
some additional lines of code for the definition of a corresponding MaskType. 
In Fig. 1(right), we present our VcAuto implementation which lets Vc decide on the 
used vector length and which does not automatically introduce padding. For gen-
eral padding, we would need to introduce another constant value validEntries. This 
number can then differ from Size which would be the size of the MultiScalar with 
padding. We present the realizations of simple MultiScalar comparison or addition 
operators in the appendix.

Fig. 1  Naive (left) and Vc-based (right) MultiScalar implementations



14692 M. J. Kühn et al.

1 3

For the case of complex diagonals, we extend the concept of MultiScalar to Com-
plexMultiScalar. Since many operations on complex numbers (e.g., comparisons or 
additions) are based on a separate handling of real and imaginary parts, we use a 
Complex object which then holds two MultiScalars; one for the real and one for the 
imaginary part, each purple box representing one scalar value; see Fig. 2.

3.2.2  Mixed scalar‑type matrices

Owing to the application of harmonic balance problems, where, e.g., the diagonal 
blocks of a matrix can be complex-valued while the off-diagonal blocks only contain 
real-valued entries, Spliss offers the so-called CompositeMatrix. For such a matrix 
A, we define AC as the set of (diagonal) matrix blocks that are complex-valued and 
AR as the set of (off-diagonal) blocks that are real-valued. Then Ax = ACx + ARx and 
the matrix is split up into multiple separate parts, each comprising a homogeneous 
datatype. This allows for a very flexible and memory efficient assembly of mixed 
data-type matrices, or even matrices featuring additional matrix-free operators. For 
the sake of simplicity, we assume in our description that AC and AR are stored in a 
meaningful way such that the above matrix–vector-products can be executed.

Fig. 2  ComplexMultiScalar 
composed out of two MultiSca-
lars, one for the real and one for 
the imaginary entries

ComplexMultiScalar
MultiScalar MultiScalar

+ i

Fig. 3  Matrix–vector-multiplication of a CompositeMatrix with a single diagonal (left) and a MultiScalar 
with four entries on the diagonal (right)
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A very simple CompositeMatrix with only one diagonal (in purple) that can have 
a different data type than the green off-diagonal blocks is shown in  Fig.  3(left). 
The more relevant use case with multiple diagonals (i.e., MultiScalars on the 
diagonal) that have a different data type than the off-diagonal blocks can be found 
in Fig. 3(right).

The downside of the current implementation is that the vectors have to be loaded 
from memory once for the diagonal and once for the off-diagonal part. Neverthe-
less, due to the focus on block matrices, this effect becomes smaller with larger 
block sizes, since the matrix (which is loaded once) requires O(NcN

2
d
) data transfers 

whereas the vector only requires O(NcNd) transfers.
In this work, we use the CompositeMatrix to define (Complex)MultiScalar 

entries on the diagonal and real-valued entries on the off-diagonal but other choices 
are also possible. The application of real-valued off-diagonal blocks on either com-
plex- or real-valued right-hand sides then saves memory transfers and operations 
since it avoids storing (and calculating with) zeros for the imaginary part of the 
matrix entries.

4  Numerical results

We consider a variety of different systems to test the performance of our implemen-
tations. All test cases are based on CompositeMatrices with a maximum of seven 
nonzero blocks per row, i.e., up to six off-diagonal blocks (three left and three right 
of the diagonal with a distance of 1, 10, and 100 blocks). All these blocks (diagonal 
and off-diagonal) are fully dense and the whole system matrix is (block) sparse. Off-
diagonal blocks are always real-valued. For the diagonal blocks, we consider either 
real or complex entries. We consider examples with single diagonals as well as with 
MultiScalar or ComplexMultiScalar diagonals of different size.

We consider two edge cases with either small 5 × 5 or large 240 × 240 blocks. In 
case of small blocks, we consider a matrix with 5 ∗ 1.5 million rows. This leads to 
37.5 million nonzeros for the diagonal blocks and 225 million nonzeros in the off-
diagonal blocks of the matrix. For the larger block size, we consider a matrix with 
240 × 700 rows leading to 40.3 million nonzeros for the diagonal blocks and 229 
million nonzeros in the off-diagonal blocks.

The size of the matrices in the memory of the different tests differs by the data 
type of the diagonal as well as the precision used. We consider test cases with single 
precision (denoted FP32) or double precision (denoted FP64).

Let us provide an example on the data size for the case of 5 × 5 blocks, four com-
plex diagonals and double precision. Using a ComplexMultiScalar of size 4, the 
required storage for the diagonal blocks is then given by

SD = NNZ ∗ Nbd ∗ NMS ∗ NRC = 37.5 ∗ 106 ∗ 8 ∗ 4 ∗ 2 = 2.4 [GB],
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where NNZ denotes the number of nonzero entries stored in the diagonal, Nbd is the 
size in bytes of one double, NMS specifies the number of entries in the MultiSca-
lar and NRC is a multiplier to distinguish between real- and complex-valued entries. 
Accordingly the off-diagonal needs

bytes. Four complex double-precision vectors result in

We use gcc 10.2 and Vc 1.4.1. We perform numerical tests on a single socket with 
the hardware characteristics shown in Table  1. We do not use AVX512 SIMD 
instructions: On the one hand, our applications are strongly memory-bound so that 
the doubled floating-point rate (compared to AVX2) cannot be exploited. Further-
more, our VcPad strategy may inflict a significant performance penalty due to exces-
sive padding if the number of systems is not a multiple of 8 (which it rarely is).

We divide the numerical results section into four different sections:

Bandwidth saturation In Sect. 4.1, we briefly discuss the compute intensity of our 
application and show that we obtain saturating behavior.
Vectorization behavior In  Sect.  4.2, we show the vectorization behavior of the 
different implementations.
Timings and flops/s In Sect. 4.3, we consider timings and Flops per second for 
different numbers of diagonals and benchmarks for the different implementations.
Realistic example In  Sect.  4.4, we validate the findings using a linear matrix 
obtained from the CFD solver TRACE within a harmonic balance context.

4.1  Bandwidth saturation

For the matrix with 5 × 5 blocks and 1.5 ⋅ 5 million rows in complex arithmetic, we 
need

for the multiplication of 4 complex block diagonals with 5 × 5 blocks with 4 com-
plex vectors. For the off-diagonal part, we have one matrix with 225 million real 
entries, resulting in

Therefore, we obtain the compute intensities

SOD = 225 ∗ 106 ∗ 8 ∗ 1 ∗ 1 = 1.8 [GB]

SV = 5 ∗ 1.5 ∗ 106 ∗ 8 ∗ 4 ∗ 2 = 0.48 [GB]

37.5 ∗ 106 ∗ 4 ∗ 2 ∗ 4 = 1.2 [GFlop]

225 ∗ 106 ∗ 2 ∗ 2 ∗ 4 = 3.6 [GFlop]

IC,diag =
1.2

2.4 + 3 ∗ 0.48
≈ 0.3 [Flop/Byte]

IC,off-diag =
3.6

1.8 + 3 ∗ 0.48
≈ 1.1 [Flop/Byte]
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for the block-diagonal part and the off-diagonal parts of the computation. For bigger 
blocks and more vectors, the compute intensity increases (e.g.,  to ∼ 5.7 [Flop/Byte] 
for the off-diagonal part of the matrix with 240 × 240 blocks and 8 vectors). From 
Table 1, the machine intensity is

Thus, for the Roofline performance model all variants are memory-bound. However, 
for the cases with multiple diagonals the compute intensity is close enough to the 
machine balance that the SIMD vectorization affects the performance. This is the 
regime (compute intensity close to the machine intensity) where the Roofline model 
is too optimistic in the sense that it assumes a perfect overlap of data transfers and 
computations; more sophisticated performance models like the Execution-Cache-
Memory (ECM) model [26] could predict the performance more accurately but we 
will focus on the generic implementation and SIMD vectorization here.

In the following, we show that our model problems still feature bandwidth-satu-
rating behavior. We compute the MatVec benchmark for the model problems with 
5 × 5 and 240 × 240 blocks on the diagonal. The MatVec benchmark conducts one 
matrix–vector-product with both the block-diagonal and the off-diagonal parts. We 
run this with MultiScalars of either 1, 4, or 8 scalars on these diagonals on 1 to 14 
cores; cf. Fig. 4. All benchmarks are executed on the machine depicted in Table 1. 
We compare the bandwidth to the bandwidth obtained with the AXPY benchmark in 
LIKWID [21]. We chose the AXPY benchmark as reference as it has a similar load-
to-store ratio. All computations update the vector (no nontemporal stores).

We can see from Fig.  4 that all cases with VcAuto achieve a high fraction 
( > 75 %) of the peak bandwidth and that they feature saturating behavior. Never-
theless, most cases are not completely saturated (more cores could further increase 

IM =
645

80
≈ 8 [Flop/Byte].

Fig. 4  Memory bandwidth of the MatVec-benchmark measured with LIKWID for 1, 4, and 8 diagonals 
with dense 5 × 5 or 240 × 240 blocks of complex entries in double precision. VcAuto uses the Vc-based 
MultiScalar where Vc decides on the used vector lengths. noVc also solves all systems simultaneously 
but only uses a naive array-based MultiScalar implementation
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the performance), especially the case with 240 × 240 blocks and 1 diagonal scales 
almost linearly with the number of cores. As the cases with 240 × 240 blocks and 
more diagonals achieve a higher bandwidth even though they have a higher compute 
intensity, this indicates sub-optimal compiler optimization. The less degressive scal-
ing of the implementation without Vc in comparison already indicates a better utili-
zation of the compute performance when using Vc. This observation will be further 
investigated in the following sections.

4.2  Vectorization behavior

In this section, we compare the naive MultiScalar implementation, denoted noVc, 
with the padded implementation, denoted VcPad, as well as with the implementa-
tion, where potential padding is decided by Vc, denoted VcAuto. Finally, we also 
provide compiler-obtained vectorization for a sequential solution of the systems 
with different diagonals. Note that padding of, e.g., a MultiScalar of size 3 to size 4 
can help to make the code more suitable for SIMD vectorization. However, it comes 
at the cost of storing and transferring additional zeros (4/3 of the original date trans-
fers required for the vectors).

In the following figures, we present the vectorization ratio as the ratio of all flops 
conducted in a vectorized way, e.g., in 128 or 256 bit length, divided by the total 
number of flops conducted. As expected, we see from Fig. 5 that vectorization of 

Fig. 5  Vectorization ratios for -O2 (left column) and -O3 optimization (right column) for 5 × 5 (top row) 
and 240 × 240 (bottom row) blocks of complex entries on the diagonal. Seq. systems corresponds to a 
sequential solve of the systems. VcPad uses a padded Vc-based MultiScalar on the diagonals to solve all 
systems simultaneously. Similarly, VcAuto uses a Vc-based MultiScalar where Vc decides on the used 
vector lengths. noVc also solves all systems simultaneously but only uses a naive array-based MultiScalar 
implementation. Dotted lines correspond to scalar execution, dashed lines represent the share of FP_128 
vectorization and solid lines FP_256 vectorization. FP_512 is not used
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VcPad is always at 256 bit since MultiScalars are padded to this size. For VcAuto, 
we observe that practically no padding is used. For instance, in all cases, we see that 
vectorization for VcAuto MultiScalar of size 7 is done with one third to lengths 64, 
128, and 256 bits. For Vc-based implementations, we see that vectorization does 
not depend on optimization flags (see left column for O2 and right column for O3 
in Fig. 5). We explicitly consider both O2 and O3 optimization, as it is common for 
scientific and engineering codes, to enable only the O2 optimization level. Compil-
ers provide a multitude of parameters which influence vectorization and which can 

Fig. 6  MatVec Benchmark timings for diagonals with dense 5x5 blocks of real (top row) and complex 
(bottom row) entries and single (left) and double (right) precision. Dashed lines represent execution with 
-O2 optimization, solid lines represent execution with -O3 optimization. Other notation as in Fig. 5

Fig. 7  MatVec Benchmark timings for diagonals with dense 240 × 240 blocks of real (top row) and com-
plex (bottom row) entries and single (left) and double (right) precision. Dashed lines represent execution 
with -O2 optimization, solid lines represent execution with -O3 optimization. Other notation as in Fig. 5
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be tuned to increase the amount of auto-vectorized loops. However, it turned out that 
this greatly depends on the compiler type, version and the program to be vectorized. 
It must be looked at carefully, as non-standard settings can have detrimental effects 
on performance or even correctness. As the focus of this paper is the library-based 
approach to vectorization, we decided to only use the common optimization options 
O2 and O3. In particular, we avoided any option that let the compiler deviate from 
the IEEE 754 standard, to avoid changes in result accuracy.

For sequential solutions as well as the naive noVc implementation, we do not see 
any vectorization by the compiler with O2 flag; see left column in Fig. 5. We see 

Fig. 8  Obtained performance with different benchmarks for 4, 8, 12, and 16 diagonals with dense 5 × 5 
blocks of real entries in single precision. Other notation as in Fig. 5

Fig. 9  Obtained performance with different benchmarks for 1, 4, 8, and 12 diagonals with dense 5 × 5 
blocks of complex entries in double precision. Other notation as in Fig. 5
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modest vectorization with O3 flag but this is far below the vectorization as achieved 
by Vc-based implementations; see right column in Fig. 5.

4.3  Timings and flops

The results on timings and Flops can be divided into two different categories. 
In Fig. 6 and Fig. 7, we consider the MatVec benchmark for one up to 16 diagonals 
and 5 × 5 or 240 × 240 sized blocks, respectively. Results are presented for O2 and 
O3 optimization, single and double precision as well as real- and complex-valued 
diagonals. In Figs. 8, 9, 10 and 11, we consider five different benchmarks for dif-
ferent block sizes and different precision. We consider O3 optimization and real- as 
well as complex-valued diagonals.

Fig. 10  Obtained performance with different benchmarks for 4, 8, 12, and 16 diagonals with dense 
240 × 240 blocks of real entries in single precision. Other notation as in Fig. 5

Fig. 11  Obtained performance with different benchmarks for 1, 4, 8, and 12 diagonals with dense 
240 × 240 blocks of complex entries in double precision. Other notation as in Fig. 5
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In Figs. 6 and 7, we see that different optimization flags make a huge difference 
for the naive MultiScalar implementation while for single systems as well as Vc-
based implementations the optimization gain is smaller. For Vc, O2 optimization 
already yields best performance in some cases.

For Vc-based implementations, we see that the best performance is obtained for 
the number of diagonals that fits a multiple 256-byte width, i.e., eight or 16 for sin-
gle precision and four or eight (in some cases also 12 or 16) for double precision.

We generally see that the padded Vc-MultiScalar behaves suboptimally for sys-
tems with a small number of diagonals. This is due to the relatively large padding 
to four (double precision) or eight (single precision) diagonals. Here, the Vc-Mul-
tiScalar, where vector widths are derived automatically (VcAuto), yields much bet-
ter results. However, for a badly chosen number of diagonals (i.e., seven for double 
precision), VcAuto conducts three SIMD operation of length 256, 128, and 64 bytes 
instead of two 256-bytes operations for VcPad; see also Fig. 5).

For a small number of diagonals, VcAuto and the naive noVc approach perform 
similarly well. In case of small block sizes ( 5 × 5 ), the noVc performs best for dou-
ble precision and more than four diagonals (except eight). On the other hand, for 
eight double precision diagonals VcAuto still performs best on small block sizes 
( 5 × 5 ). For single precision, independent of the block size, or double precision and 
large block sizes ( 240 × 240 ) the picture is clear. Here, VcAuto performs best for all 
multiples of 256-bytes widths.

In Figs.  8,  9,  10 and  11, we consider five different benchmarks. Besides the 
previous MatVec benchmark, we test a colored matrix vector product ColMatVec 
with three different colors. Furthermore, we test a block Jacobi BlockJac and block 
Gauss–Seidel BlockGS iteration scheme, where the preconditioner is computed as 
the LU decomposition of the block diagonal matrix. In the resulting timings and 
Flops, we only consider the iteration scheme, not the setup of the preconditioner. 
Finally, we also test a GMRES iteration scheme. For all three iterative schemes, a 
modest number of iterations smaller 10 is conducted. As we do not want to compare 
the different benchmarks (e.g., BlockJac vs. GMRES), the number of iterations is 
not important.

Fig. 12  Left: The structure of the linear system Matrix. Right: Results for four different numbers of 
higher harmonics and double/single precision
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The Flop count that we present only includes intended Flops that we need for 
the corresponding result. That means, that an addition of two MultiScalars with one 
value each padded up to four values will only result in one Flop, not in four. Conse-
quently, the GFlops/s obtained with VcPad are low for small numbers of diagonals.

Except for the case of 12 complex diagonals in double precision and small 5 × 5 
blocks, the VcAuto MultiScalar implementation always achieve the most Flops per 
second (or are within a range of some percent of the best performance).

4.4  Realistic example from the CFD solver TRACE

To validate the benchmark results, we tested the MultiScalar implementation in a 
realistic use case. Figure  12 shows the sparse matrix structure extracted from the 
CFD solver TRACE [3] for the simulation of a transonic compressor fan. The dis-
cretization results from a structured mesh consisting of about one million finite vol-
ume cells. Each entry of the sparse matrix consists of a dense 5 × 5 matrix block. A 
harmonic balance solution which features N higher harmonics will require N addi-
tional equally structured linear matrices with a complex diagonal to be solved. As 
before, we solve these systems using different approaches. First, we use the classical 
approach without MultiScalars and solve the systems sequentially. Second and third, 
we compare the performance of our own naive MultiScalar implementation against 
one implementation using the Vc library. In TRACE, typically, a colored block 
Gauss–Seidel approach is used with a fixed number of iterations. The library Spliss 
inverts the 5 × 5 blocks on the diagonal using an LU decomposition. To exclude 
effects of distributed MPI parallelization, the system is solved on a single node com-
prising 32 cores (System specification: Sky Lake Xeon(R) Silver 4216). The results 
are shown in Fig.  12 for single precision, double precision and different numbers 
of higher harmonics considered, i.e., N ∈ {4, 5, 7, 8} . To allow for comparison, we 
used a fixed number of 200 iterations.

Let us note that all systems represented by one MultiScalar are always computed 
together. The iteration process can then be stopped if either one or all approxima-
tions have reached the convergence criterion. This means that, under certain con-
ditions, some systems are solved unnecessarily precise. Such kind of algorithmic 
losses are not considered here.

For the case of sequentially solved systems, a proportional increase in comput-
ing time can be observed as expected. For double precision, the computing time is 
about twice the amount as for single precision. For either four or eight entries of a 
MultiScalar, the Vc-based implementation yields an improvement of about a factor 
of two. For odd numbers which do not fully fill a SIMD register, the own (naive) 
implementation relying on the compiler is faster in some cases. For numbers filling 
a SIMD register or being a multiple of it, the naive implementation is slower. Com-
pared to sequential solution of the systems, the use of Vc-based implementation of 
the MultiScalar always reduces the computational time significantly.
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5  Conclusion

In this paper, we presented three implementations of MultiScalars. The first imple-
mentation is a naive C++ implementation while the second and third one make use 
of the Vc library  [5]. Hereby, we conduct the parallel solution of linear systems, 
which only differ for a limited number of matrix entries. These systems may natu-
rally arise from computational fluid dynamics problems as described in Sect. 2. The 
parallel solution of these systems is conducted using SIMD operations allowing the 
concurrent processing of, e.g., four double precision numbers.

Since our model problems are memory-bound, we see that we benefit from lower 
memory transfer using our CompositeMatrices. However, we also benefit from 
SIMD parallelism realized on the diagonal blocks of the matrices. We observe limits 
on default compiler vectorization for naive MultiScalar implementations (denoted 
noVc); on the other hand, we see that Vc-based implementations (denoted VcPad 
and VcAuto) vectorize well; see Fig. 5. Insights into the different implementations 
is given in  Fig.  1. However, our Vc-based implementations (VcPad and VcAuto) 
do not perform best for all use cases. As vectorization is well achieved with these 
implementations, the number of systems to be solved in parallel should be chosen 
carefully. For instance, for 256 bit sized SIMD registers and double precision sys-
tems, our padded Vc-implementation always solves multiples of four systems. This 
means that for just two systems to be solved, two systems are solved in padding. 
The VcAuto implementation would then only vectorize with length 128 bit and solve 
both systems without overhead. However, this implementation is disadvantageous 
if seven double precision systems need to be solved. Then vectorization is done in 
256, 128, and 64 bit size; see, e.g., Fig. 5. Due to the heavily templated nature of our 
C++ library, offering both VcPad and VcAuto variants would double the amount of 
code to be compiled and increase the complexity for the user. We therefore offer this 
choice for experts when building the library and document best practices for choos-
ing the number of systems to be solved simultaneously instead.

Choosing the number of systems to be solved in parallel in accordance with the 
SIMD width can lead to a substantial reduction of computation time. As expected, 
the solution of systems in parallel is substantially faster than sequentially solving 
these systems. Additionally, the Vc-based implementations also outperform the 
naive MultiScalar implementation considerably; see Figs. 6, 7, 8, 9, 10 and 11. This 
effect grows with the block sizes.

For a realistic, memory-bound example with small-sized 5 × 5 diagonal blocks, 
we finally achieve a speedup of factor two compared to a sequential solution of 
four or eight systems. We also obtain a significant reduction in computation time 
by using the Vc-based MultiScalar implementations against the presented naive 
implementation. Further advantages of SIMD execution could result from lower 
total energy consumption. However, this was not measured and is subject to future 
research. Specifically, when a standardized SIMD data type is available in C++, an 
implementation based on masked AVX-512 operations should be investigated in the 
light of energy efficiency compared to the variants discussed here.
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Appendix: Simple addition and comparison operators for the naive 
MultiScalar
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