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Abstract
This study aims to use a machine learning (ML)-based enhanced diagnosis and sur-
vival model to predict heart disease and survival in heart failure by combining the 
cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algo-
rithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-
heuristic feature selection algorithms. To achieve this, experiments are conducted 
on the Cleveland heart disease dataset and the heart failure dataset collected from 
the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO 
algorithms for feature selection are applied for different population sizes and are 
realized based on the best fitness values. For the original dataset of heart disease, the 
maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) 
when compared to logistic regression (LR), support vector machine (SVM), Gauss-
ian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the 
heart disease prediction F-score of 99.72% is obtained using KNN for population 
sizes 60 with FPA by selecting eight features. For the original dataset of heart fail-
ure, the maximum prediction F-score of 70% is obtained using LR and RF compared 
to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction 
F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by 
selecting five features. Experimental findings show that the applied meta-heuristic 
algorithms with ML algorithms significantly improve prediction performances com-
pared to performances obtained from the original datasets. The motivation of this 
paper is to select the most critical and informative feature subset through meta-heu-
ristic algorithms to improve classification accuracy.

Şevket Ay, Ekin Ekinci and Zeynep Garip contributed equally to this work.

 * Ekin Ekinci 
 ekinekinci@subu.edu.tr

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05132-3&domain=pdf


11798 Ş. Ay et al.

1 3

Keywords Meta-heuristic algorithms · Machine learning · Feature selection · 
Classification · Heart disease · Heart failure

1 Introduction

Heart disease is a significant public health problem and has become the leading 
cause of death worldwide. Classic heart disease symptoms can be palpitations, 
shortness of breath, swelling in the legs and abdomen, fatigue/weakness, indiges-
tion, hiccups and difficulty in swallowing, cough, headache, back and neck pain, 
fainting, and bruising [1]. Heart disease can be broken down into heart failure, 
coronary artery disease, vascular disease, irregular heartbeats, and many other 
categories [2]. Among heart diseases, heart failure has become the leading cause 
of death worldwide [3]. The most common symptom of this disease is the inabil-
ity of the heart to pump the blood that the body needs. However, heart disease 
and heart failure symptoms do not play an active role in the early diagnosis of the 
disease to survive it. Furthermore, early precautions play a critical role in pre-
venting life-threatening risks.

Biomarkers, defined as all kinds of biological signs, play a crucial role in 
patients’ early diagnosis and survival [4]. However, much data are produced daily 
in the healthcare industry. In the absence of modern technology, early diagno-
sis and survival of disease have become complex tasks. Therefore, intelligent 
methods are needed to make early diagnoses and disease survival from this large 
amount of data. Intelligent methods are in the field of ML.

ML is the core sub-field of artificial intelligence and can learn linear and non-
linear patterns from massive volumes of data. On the other hand, medical data are 
also complex and quite large. Considering all this, ML has become increasingly 
helpful and is being used in predicting disease or survival in the medical field. 
SVM has been trained for breast cancer [5–7], allergy [8, 9], COVID-19 [10–12] 
diagnosis and survival. NB has been used for the diagnosis and survival of diabe-
tes [13, 14], and chronic kidney disease [15–17]. The decision tree has achieved 
good accuracy in diagnosing, and surviving cancer diseases [6, 18–22]. Neural 
networks have been used to classify psychological diseases [23–25]. In Alzhei-
mer’s and Parkinson’s disease diagnosis, ensemble classifiers have been applied 
often, with success [26–28]. Bayesian networks have also been used to diagnose 
and survive many diseases [29–33]. LR is also one of the methods used in diag-
nosing and surviving diseases [34, 35]. ML methods are also used in diagnosing 
autism [36, 37]. There are many studies on blood disease diagnosis in the lit-
erature, namely thalassemia, blood cancer, malaria, and so on, with ML [38–42]. 
Celiac disease prediction with ML is one of the topics studied in recent years [43, 
44]. KNN is one of the most used classification algorithms in many disease diag-
noses, and survival [45–50].

Although ML plays an important role in diagnosing many diseases, as we 
mentioned above, the formation of high-dimensional datasets and the fact that 
these datasets may contain many irrelevant and unnecessary features are a critical 
disadvantage in learning algorithms. In this case, the burden of ML algorithms 
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should be lightened. Therefore, feature selection is a significant factor in mini-
mizing complexity, irrelevant, and redundant features. It can increase how 
effectively learning algorithms work. Finding the optimum feature subset in 
high-dimensional feature datasets is nevertheless classified as an NP-hard prob-
lem. The search space will expand exponentially as the number of features rises 
since a dataset with N features contains a 2N−1 number of feature subsets. As a 
result, meta-heuristic algorithms have been used to identify the subset of fea-
tures because exact algorithms cannot produce the desired result in a reasonable 
amount of time [51].

Several meta-heuristic algorithms have been developed and used in the literature 
to address feature selection issues: genetic algorithm (GA) [52], simulated annealing 
(SA) [53], ant colony optimization (ACO) [54], differential evolution (DE) [55], par-
ticle swarm optimization (PSO) [56], artificial bee colony (ABC) [57], firefly algo-
rithm (FFA) [58], gravitational search algorithm (GSA) [59], grey wolf optimizer 
(GWO) [60], salp swarm algorithm (SSA) [61], bat algorithm (BA) [62], emperor 
penguin optimizer (EPO) [63], equilibrium optimizer (EO) [64], atom search opti-
mization (ASO) [65], dragonfly algorithm [66], slime mould algorithm (SMA) [67], 
golden eagle optimizer (GEO) [68], duck travel optimization (DTO) [69], and so on.

In this study, we answer the questions can an effective feature selection be made 
with meta-heuristic algorithms, can successful performances be achieved with the 
selected features, and what is the effect of the population size and, thus, fitness value 
on feature selection? The experiments are conducted on the Cleveland heart disease 
dataset [70] and the heart failure dataset collected from the Faisalabad Institute of 
Cardiology [71] published at UCI.

The contribution of the study is summarized as follows:

• To decrease the overall feature dimension and improve the overall classification 
accuracy of the ML algorithms, we have made a meta-heuristic-based feature 
selection. In other words, reducing the dimension of the feature space leads to 
more accurate and quicker classification.

• To observe the impact of feature selection algorithms and the population size on 
the results, we have proposed a comparative study.

• According to the classification results, although we could not comment on the 
population size, it has been observed that WOA tends to select fewer features 
than others.

• While the most successful classification has been achieved with KNN, it has 
been seen that the classifications made with the reduced features by the CS algo-
rithm are more successful on average.

• The novelty of this study can be summarized as a comparative study examin-
ing the effect of meta-heuristic algorithms for feature selection and classification 
performance. Comparative studies have been conducted with CS, FPA, WOA, 
and HHO on two heart-related disease datasets. There are no similar comparative 
analyses, according to our best knowledge.
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The remaining sections of the paper are structured as follows. The literature review 
is carried out in Sect. 2. In Sect. 3, datasets and pre-processing steps, the theoreti-
cal and mathematical background of feature selection, and classification algorithms 
are discussed in detail. In Sect.  4, the results of all experiments are analysed and 
discussed in detail. In the last section, the conclusion and future direction have been 
given in detail.

2  Literature review

In studies conducted for years, ML techniques have also been applied to heart dis-
eases and heart failure for diagnosing and survival tasks. The various works that dis-
cuss the Cleveland Heart Disease dataset and the heart failure dataset are described 
in this section.

The studies which used the University of California Irvine’s (UCI) Cleveland 
Heart Disease Records are summarized here. Beulah et al. developed an ensemble-
based diagnosis system for heart disease along with Brute force feature selection 
and obtained an accuracy of 85.48% with majority voting [72]. In Reddy et  al.’s 
study, rough set theory-based selected features were classified with an adaptive 
genetic algorithm with fuzzy logic (AGAFL) and were revealed an average of 90% 
accuracy [73]. Kolukısa et al. applied ML algorithms with dimension reduction by 
using linear discriminant analysis (LDA), hybrid feature selection algorithm, and 
medical doctors’ recommendation-based feature selection [74]. 81.84% accuracy 
with SVM using medical doctors’ recommendation-based features was obtained. Li 
et al. developed a heart disease classification system by using ML algorithms [75]. 
In this system, in addition to the four classical feature selection algorithms, they 
used their own proposed fast conditional mutual information (FCMIM) algorithm 
and, with FCMIM-SVM, achieved an accuracy of 92.37%. Gupta et al. applied six 
classification algorithms with backward elimination and Pearson correlation coeffi-
cient for heart disease identification and achieved an accuracy of 88.16% with Naive 
Bayes [76]. Garate-Escamila et  al. proposed a heart disease classification system 
and chi-square and principal component analysis (CHI-PCA) with RFs obtained the 
highest accuracy, with 98.7% [77]. In Tougui et al.’s study, experiments were con-
ducted using different environments with ML algorithms [78]. The study showed 
that MATLAB’s ANN model was the best, with an accuracy of 85.86%. In [79], 
hybrid RF with a linear model (HRFLM) technique was applied to the heart disease 
dataset and found to have 88.7% accuracy. In [80], cluster-based decision tree learn-
ing (CDTL)-based feature selection with RF classification was applied, and 89.30% 
accuracy was obtained. Rani et al. developed an optimized hybrid decision support 
system to diagnose heart disease [81]. RandomizedSearchCV with RF gave an accu-
racy of 86.60%. In another study, Deepika and Balaji developed an MLP integrated 
with enhanced Brownian motion based on the dragonfly algorithm (MLP-EBMDA) 
feature selection algorithm and obtained accuracy at the rate of 94.28% [82]. In 
another study, Srinivas and Katarya found 94.7% accuracy by using hyOPTXg, 
which predicted heart disease with an optimized XGBoost classifier [83]. Lutimath 
et al. applied genetic algorithms for heart disease prediction tasks [84]. Gnoguem 



11801

1 3

A comparative analysis of meta‑heuristic optimization…

et al. combined decision tree, RF, KNN, and LR based on the maximum weighted 
sum of prediction with an accuracy of 92.10% [85]. Mohapatra et al. proposed an 
ANN, LR, and NB ensemble, and in terms of accuracy, the proposed model outper-
formed compared with AdaBoost and RF [86]. In Anderies et al.’s study, six differ-
ent ML algorithms were compared, and SVM and LR achieved the best accuracy of 
79% [87]. Shaw et al. applied maximum entropy, RF, and SVM to the dataset and 
obtained an accuracy level of 92.67% [88]. Goyal proposed lion optimization-based 
feature selection (LOFS) based on SVM, ANN, and DT. LOFS-ANN gave the best 
accuracy of 90.5% [89].

The studies which used the heart failure dataset collected from the Faisalabad 
Institute of Cardiology and at the Allied Hospital in Faisalabad are summarized 
here. In Chicco and Jurman’s study, the authors showed that binary classification 
of electronic health records of patients with cardiovascular heart problems using 
machine learning was done successfully [3]. It was also observed that the fea-
tures selected based on machine learning and those selected based on biostatis-
tics were compatible. Oladimeji and Oladimeji applied KNN, SVM, NB, and RF 
with four different feature selection algorithms [90]. Furthermore, they saw that 
while feature selection increased the performance of some algorithms, it caused 
a decrease in the performance of others. Another study used machine learning 
ensemble trees to construct a model for predicting heart failure survival. Over 
the various ensemble tree algorithms, Extreme Gradient Boosting (XGBoost) 
was shown to produce the most accurate results [91]. In [92], ensemble tree 
algorithms with feature selection were used for predicting heart failure sur-
vival. It was seen that feature selection significantly increased the classification 
performance of the models. Aloss et  al. applied crow search algorithm-based 
five different ML algorithms to the dataset [93]. Swetha et  al. applied several 
machine learning algorithms and achieved 99.1% accuracy with XGBoost [94]. 
In Kameswara et  al.’s study, AdaBoost with Synthetic Minority Oversampling 
Technique (SMOTE) was applied, and an accuracy of 96.34% was obtained [95]. 
Karakuş and Er applied ANN, fine Gaussian SVM, fine KNN, weighted KNN, 
subspace KNN, boosted trees, and bagged trees to predict survival from heart 
failure and achieved an accuracy of 100% [96].

According to the literature review, feature selection aids in improving the 
classifier’s performance, and for both datasets, there are limited studies that use 
meta-heuristic algorithms for feature selection. Research is still needed to deter-
mine the best optimization strategy for feature subset selection.

3  Proposed methodology

The proposed methodology to carry out experiments is given in Fig. 1. The heart 
disease dataset from the University of California, Irvine (UCI), and the heart 
failure dataset collected from the Faisalabad Institute of Cardiology and at the 
Allied Hospital in Faisalabad have been used for training and testing purposes. 
Then, CS, FPA, WOA, and HHO are used to select important features as crucial 
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predictors of diagnosing heart disease from the original dataset. Then, the fea-
ture sets and the original dataset are given to four different classification algo-
rithms as input.

3.1  Datasets

The datasets used in experiments are the Cleveland dataset [70] and heart failure 
clinical reports dataset [71] from UCI Machine Learning Repository. The first 
dataset consists of 303 samples; each has 14 features with two classes—healthy 
or patient. The detail of the feature set with the descriptions is listed in Table 1. 
The second dataset consists of 299 samples; each has 13 features with two 
classes—death event or not. The detail of the feature set with the descriptions is 
listed in Table 2.

The most important step after obtaining the dataset is making the data suitable 
for training by pre-processing. Checking for missing values is very important in 
the pre-processing steps. The experimental dataset is complete; there is no miss-
ing value in any feature. Then, min-max normalization is applied for numerical 
features to prevent domination among features due to their distance. Furthermore, 
all numeric features are scaled between 0 and 1. For nominal features, feature rep-
resentation is applied as pre-processing. These steps are applied to both datasets.

Encoding nominal attributes with integer values only returns a ranking. How-
ever, using ranking in the similarity calculations between samples will not pro-
vide us with an accurate comparison. To cope with this situation, nominal fea-
tures are transformed into binary features using one-hot encoding. Thus, each 
value taken by the nominal feature will be represented as a new feature. Within 
the scope of this study, we apply one-hot encoding to “cp”, “slope”, and “thal” 
features. As a result, while the “cp” feature is transformed into four new features, 
namely cp_1, cp_2, cp_3, and cp_4, “slope” and “thal” are transformed into three 

Fig. 1  System architecture
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new features separately. For example, the “cp_1” feature represents the “typical 
angina”, and if a person has “typical angina”, the value of this attribute is 1; oth-
erwise, 0. Therefore, the original 13 features become 20 features in the Cleveland 
dataset.

3.2  Meta‑heuristic algorithms

3.2.1  Cuckoo search algorithm

The CS algorithm, which uses cuckoo birds’ breeding and reproduction strategies, 
is a meta-heuristic swarm-based approach [97]. The inspiration for the development 
of this algorithm is cuckoos’ brood parasitism and laying their eggs in the nests of 
other host birds [98]. The CS is a handy method that finds applications in many 
different areas, such as test functions, medical applications, data mining, machine 
learning and deep learning applications, image processing, path planning, and engi-
neering problems [99].

The CS finds the nest and updates the position by realizing the steps below [100]:

• Each cuckoo produces only one egg at a time and randomly chooses a nest of 
parasites to hatch,

• The best parasite nest will be kept for the next generation,

Table 2  The detail of feature set of heart failure clinical reports dataset

Feature Description Type Value

age Age in years Numeric 40–95
anaemia Decrease of red blood cells or 

haemoglobin
Binary 1 = anaemia 0 = not anaemia

creatinine phosphokinase Level of the CPK enzyme in the 
blood (mcg/L)

Numeric 23–7861

diabetes If the patient has diabetes Binary 1 = diabetes 0 = not diabetes
ejection fraction Percentage of blood leaving the 

heart at each contraction (per-
centage)

Numeric 14–80

high blood pressure If the patient has hypertension Binary 1 = hypertension 0 = not
platelets Platelets in the blood (kiloplatelets/

mL)
Numeric 25,100–850,000

serum creatinine Level of serum creatinine in the 
blood (mg/dL)

Numeric 0.5–9.4

serum sodium Level of serum sodium in the blood 
(mEq/L)

Numeric 113–148

sex Woman or man Binary 1 = woman 0 = man
smoking If the patient smokes or not Binary 1 = smokes 0 = not
time Follow-up period (time) Numeric 4–285
target Death event Binary 1 = death 0 = survival
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• There is a fixed number of available parasite nests, and the probability of detec-
tion of them is Pa.

However, a biased local and global random walk is used to update the position of the 
cuckoo by adapting the Lévy flight signature algorithm. Lévy flight is proposed to point 
out the animal’s movement direction. Step length selection is drawn from the Lévy dis-
tribution, and based on step length, the algorithm moves to a new position if the new 
position is better than the current position. Otherwise, it stays in its current position and 
repeats the process. The position update process of the CS is given with (1).

In the (1), while X(t)

i
 is the current position, X(t+1)

i
 is the next position to be found. 

T represents the step size, and Levy(�) is the Lévy distribution-based random walk 
provided by � , which takes values between 1 and 3 [101]. ⊕ realizes point-to-point 
multiplication between the step size and Lévy distribution.

3.2.2  Flower pollination algorithm

FPA developed by Yang is a meta-heuristic algorithm that simulates the pollination 
process of blossoming plants [102]. The transport of flower pollen is referred to as 
flower pollination. Birds, bats, insects, and other animals are the principal actors in this 
transfer. Some flowers and insects participate in what is known as a pollinator relation-
ship. These blooms can attract only the birds involved in this cooperation. These insects 
are regarded as the primary flower pollinators.

FPA takes into account four separate rules for flower constancy, pollination behav-
iour, and the pollination process [103].

• Biotic pollination is cross-pollination in which the pollinator transports pollen. This 
is a global pollination process, and the pollinator movement complies with the Lévy 
flights.

• Abiotic or self-pollination is the process of a plant or flower reproducing itself with-
out the aid of a pollinator. Because the pollen transfer distance is typically less than 
that of biotic pollination, this procedure is known as local pollination.

• Pollinators can acquire flower stability, favouring particular blooms. The flower 
constant is a mathematical expression for the likelihood of reproduction. The likeli-
hood increases in direct proportion to how similar the related flowers are.

• To manage the sort of pollination, p ∈ [0, 1] has the potential to be a key. These 
guidelines permit the use of both local and global search strategies. The greatest 
solutions are discovered nearby by using local search. Additionally, global pollina-
tion effectively prevents the problem from becoming trapped in a local optimum 
solution.

These rules must be used to construct updated equations. For instance, pollinators like 
insects transfer flower pollen gametes during the global pollination stage. Pollen can 

(1)X
(t+1)

i
= X

(t)

i
+ T ⊕ Levy(𝜆)
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travel huge distances because insects can frequently fly and cover a bigger area. (2) can 
therefore be used to represent Rule 1 and flower constancy numerically (Rule 3).

Here, the solution vector Xi for the pollen i or t iteration is Xi , and the best solution 
in the current generation or iteration is g∗ . Here, the scaling factor � is used to regu-
late the step size.

The Lévy flight step size parameter is L(�) . Insect migration can be depicted 
using the Lévy distribution as they travel great distances. The mathematical expres-
sion used by Lévy is presented in (3).

The usual gamma function is Gamma(�) in this instance, and the step size is s. This 
distribution holds true for significant steps s > 0 . Although in theory s0 >> 0 must 
exist, in practice, s0 can be as low as 0.1. Rule 2 and Rule 3 are illustrated for local 
pollination in (4).

In (4), the pollen type x(t)
j

 , x(t)
k

 comes from various flowers of the same kind of plant. 
The Lévy distribution is used to search for several solution points throughout the 
search space, which is the algorithm’s most crucial property for optimization. The 
optimization logic of the algorithm consists of locating the solution points at a great 
distance using the biotic pollination model and examining the area around the solu-
tion points using the abiotic pollination model, just like in flowers.

3.2.3  Whale optimization algorithm

Mirjalili and Lewis proposed the WOA for optimization problems, drawing inspira-
tion from humpback whales’ hunting strategies [104]. Only humpback whales have 
been observed bubble-net feeding as a method of foraging. When hunting, whales 
surround their prey by creating bubbles that travel in a circle.

Encircling Prey: Humpback whales can find and encircle their prey when hunting. 
Since the location of the optimal design in the search space is unknown in advance, 
the WOA algorithm assumes that the target prey or a state close to it is the best 
candidate solution that is now accessible [105]. Other search agents will attempt to 
move closer to the best search agent once it has been determined who the top search 
agent is. (5) and (6) illustrate the mathematical model of humpback whales’ prey 
flanking behaviour. In (5) and (6), �⃗X(t) reflects the agent’s position, t represents the 
iteration and ���⃗X∗ represents the optimal solution. In (7) and (8), �⃗A and ��⃗C indicate 
convergence values. The random number is r⃗[0, 1] , and �⃗a stands for the vector that 
decreases linearly from 2 to 0 during an iteration.

(2)X
(t+1)

i
= X

(t)

i
+ +�L(�)(g∗ − X

(t)

i
)

(3)L
𝜆Γ(𝜆)sin(

𝜋𝜆

2
)

𝜋

1

s1+𝜆
, (s >> s0 > 0)

(4)X
(t+1)

i
= X

(t)

i
+ ∈ (X

(t)

j
− X

(t)

k
)
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Bubble-Net Attacking Method: The bubble-net attacking method of humpback 
whales consists of shrinking the search environment and spiralling towards the prey 
while moving towards its prey. By decreasing the �⃗a value in (8), whales reduce their 
search environment and exhibit prey-catching behaviours. Since the value of �⃗A also 
depends on the value of �⃗a , it decreases linearly from 2 to zero. The mathematical 
model of the spiral shape formed by humpback whales while catching their prey is 
given in (9) and (10).

The distance between the whale and its preferred prey, D′ , is determined in (9) and 
(10). b is the logarithmic spiral constant, and l is a random value between [−1, 1] . 
Humpback whales have a 50% chance of selecting either a spiralling or a narrowing 
motion pattern when travelling in the direction of their prey. In (11), the p parameter 
is a random number between [0, 1].

3.2.4  Harris hawk optimization algorithm

In order to solve optimization difficulties, Heidari et al. proposed the usage of HHO, 
which was modelled after the foraging strategy of Harris hawks [106]. Hawks com-
plete multiple stages of cooperative foraging via tracking, flanking, and attacking 
[107].

Exploration Phase: Harris hawks conduct the reconnaissance phase by keeping a 
close eye on large trees or telegraph poles in search of their prey. The search behav-
iour is regarded as the global discovery phase in the HHO method. (12) provides a 
mathematical expression for global exploration tactics.

(5)��⃗D = ∣ ��⃗C ���⃗X∗(t) − �⃗X(t) ∣

(6)�⃗X(t + 1) = ∣ ���⃗X∗(t) − �⃗A.��⃗D ∣

(7)�⃗A =2 �⃗a.r⃗ − �⃗a

(8)��⃗C =2.r⃗

(9)���⃗D� = ∣ ���⃗X∗(t) − �⃗X(t) ∣

(10)�⃗X(t + 1) =���⃗D�.eblcos(2𝜋l) + ���⃗X∗(t)

(11)�⃗X(t + 1) =

{
���⃗X∗(t) − �⃗A.��⃗D p < 0.5

���⃗D�.eblcos(2𝜋l) + ���⃗X∗(t) p ≥ 0.5

(12)X
(t+1)

i
=

{
Xt
rand

− r1× ∣ Xt
rand

− 2 × r2 × xt
i
∣ q ≥ 0.5

(Xrabbit − Xt
mean

) − r3 × (lb + r4 × (ub − lb)) q < 0.5



11808 Ş. Ay et al.

1 3

The Transition from Exploration to Exploitation: The Harris hawk’s present position 
is indicated by Xt

i
 , the position vector in each iteration is indicated by Xt+1

i
 , and the 

position vector of the prey is indicated by Xrabbit(t) . r1 , r2 , r3 , r4 , and q are random 
integers and take values between 0 and 1. The population’s upper and lower bounds 
are denoted by ub and lb, respectively. While X meant provides the average position 
values of the current population of hawks, Xt

rand
 represents a randomly chosen hawk 

from that population. (13) is used in t iterations with N hawks to find the average 
location value.

Exploitation Stage: When the Harris hawks locate their prey, they surround it in a 
circle. Hawks base their attack strategy on the way their prey behaves. Four poten-
tial strategies are suggested to represent the attack phase, each based on the prey’s 
tendency to flee and Harris hawks’ pursuit tactics. Strategies depend on the prey’s 
energy (E) for fleeing and the random number (r). To determine if the prey may 
escape the encirclement ring, apply the formula r(0, 1).

When r and E are greater and equal to 0.5, a soft siege approach is used. Hawks 
adopt a soft siege technique because their prey has enough energy to break free of 
the siege ring but no possibility of doing so. (14) represents the mathematical repre-
sentation of it. The vector distance between the available prey and the population is 
represented by the value of Δxt . J stands for the length of the prey’s jump during the 
escape, and r5(0, 1) is an equally distributed random value.

Hard siege tactic occurs when r ≥ 0.5 and E< 0.5 . The prey’s energy is also insuf-
ficient because it cannot escape. Hawks hunt with a hard siege in that situation.

When r < 0.5 and E ≥ 0.5 , a soft siege tactic with quick attacks is used. In this 
situation, the prey can escape the siege ring since it has the requisite energy. As a 
result, hawks will create a more intelligent and tactful siege ring to capture the prey. 
There are two steps in this method. The second step updates the hawks’ position 
if the first step does not get them closer to their prey. In the first step, the position 
equation (15) found in the soft siege strategy is used. (16) models the second step, 
which is the update mode. It is a s ∈ ℝ

dim-dimensional random vector. (17) defines 
the Lévy function. In this instance, u is a random number between v(0, 1) and � is 
1.5.

(13)Xt
mean

=
1

n

n∑

i=1

Xt
i

(14)
Xt+1
i

= Xrabbit − E ∗∣ ΔXt
i
∣,

ΔXt
i
= Xrabbit − Xt

i
,

J = 2 ∗ (1 − r5).

(15)Xt+1
i

=Xrabbit − E ∗∣ ΔXt
i
∣

(16)z =ΔXt
i
− E ∗ |J ∗ Xrabbit − Xt

i
| + s ∗ Levy(dim)
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When both E and r are less than 0.5, a hard siege tactic with swift attacks are used. 
Because it lacks the requisite energy, the prey in this situation cannot escape the 
siege ring. So, hawks catch their prey in a tough siege ring and then kill it. (18) rep-
resents its mathematical modelling.

3.3  Machine learning algorithms

3.3.1  Logistic regression

LR is one of the statistical methods of supervised classification algorithms. This 
algorithm has recently gained importance and is being used more and more. LR is 
used to classify data based on a logistic function that allows multivariate analysis 
and models of the binary dependent variable. The dependent variable Y is drawn 
from a binomial distribution. By using input features X (x1, x2, x3,… , xn) , LR calcu-
lates the conditional probability P(Y = 1|X) or P(Y = 0|X) to predict Y.

3.3.2  Support vector machines

SVM is an optimal classification algorithm for linear and nonlinear data. Proposed 
for binary and linear problems, SVM has become applicable to both nonlinear 
and multi-class problems. For nonlinear data, the algorithm uses kernel functions, 
namely linear, nonlinear, polynomial, radial basis function (RBF), and sigmoid, 
which provide the nonlinear mapping. Thus, original data are transformed into 
high-dimensional space, and in this new dimension, an optimal hyperline is found 
to separate data of one class from others [108]. The data that enable the hyperline 
to be found are called support vectors. If multiple classes are available, one-versus-
one (OVO) and one-versus-rest (OVR) are used to classify these data. The graphical 
illustration of SVM is given in Fig. 2.

3.3.3  Gaussian Naive Bayes

Bayesian classifier, a statistical classifier, uses Bayes’ theorem to make a probability-
based prediction. This algorithm can predict probabilities of class membership, e.g. 
the probability that new unseen data belong to a predefined class. Bayesian classi-
fiers are characterized by high accuracy and speed when applied to large databases.

(17)Levy(X) =0.01X
u − �

∣ � ∣
1

�

, � =

(
Γ(1 + �)Xsin(

��

2
)

Γ(1 + �)X2(
�−1

2
)

) 1

�

(18)
X
(t+1)

i
=

{
y if f (y) < f (Xt

i
)

z if f (z) < f (Xt
i
)
,

y = Xrabbit − E ∗∣ J ∗ Xrabbit − Xt
mean

∣,

z = y + s ∗ Levy(dim).
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Unlike Bayesian classifiers, Naive Bayes (NB) makes a simplistic assumption and 
asserts that the attributes are conditionally independent (i.e. there is no dependency 
relationship between the attributes). However, while NB works for discrete and mul-
tinomial values, it cannot classify over continuous values. The continuous values 
associated with each class are drawn from the Gaussian distribution when studying 
continuous data. Given that an X (x1, x2, x3,… , xn) and Yi, (i = 1, 2,… ,m) represent 
features of data sample and classes separately, P(X ∣ Yi) is calculated by using (19).

In (19), while � represents the mean , � represents the standard deviation of the ith 
class.

The graphical illustration of GNB is given in Fig. 3.

3.3.4  Random forest

RF classification is a popular machine learning method for developing predictive 
models in many research areas. RFs are a collection of classification and regression 
trees that use binary splits on features to make predictions. Decision trees are easy to 
use in practice, but the decision tree’s accuracy could be higher for large datasets. In 
the RF, many classification and regression trees are created with randomly selected 
training datasets and random subsets of features to create models. The results of 

(19)P(X ∣ Yi) =
1

√
2��

e
−(X−�)2

2�2

Fig. 2  The graphical illustration of SVM [109]
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multiple weak decision trees are combined to make accurate predictions. Conse-
quently, an RF often provides higher accuracy compared with decision trees.

In RF, generalization error is represented in terms of the strength of each random 
tree and the correlation between them [111]. For the kth tree in a random forest, a 
random vector �k is produced. The independence rule requires that the random vector 
�k be independent of earlier random vectors �1,… , �k−1 , yet with the same distribu-
tion as those earlier random vectors. To combine tree classifiers h1(x), h2(x),… , hkx 
the margin function is described as follows:

In (20), xk represents the mean value, and I is the indicator function. The generaliza-
tion error based on the margin function is given with (21).

X is the training data, and Y represents the class labels. The upper bound for gener-
alization error is given in (22).

In (22), p is the mean correlation between classifiers, and s is the strength of the 
ensemble. Therefore, the strength of each classifier inside the forest and the correla-
tion between the random trees affect generalization error. The generalization error 
reaches a limit as the number of trees grows.

The graphical illustration of RF is given in Fig. 4.

(20)mg(X, Y) = xkI(hk(x) = Y) − maxj≠Y (xkI(hk(x) = J)).

(21)PE ∗= Px,ymg(X, Y) < 0

(22)PE ∗⋚ p
(1 − s2)

s2

Fig. 3  The graphical illustration of GNB [110]
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3.3.5  K‑nearest neighbour

KNN is one of the most preferred prediction algorithms, which saves the train-
ing data and only constructs the model once new unseen data need to be classi-
fied. In this algorithm, data are represented as points in Euclidean space. The 
nearest neighbour is defined in terms of the Euclidean distance. The target func-
tion can be discrete or real-valued. For discrete values, KNN assigns the class 
value most common in the K learning example, closest to the new data among 
the training examples.

The Euclidean distance between two data, say, X1 = (x11, x12,… , x1n) and 
X2 = (x21, x22,… , x2n) , is calculated based on (23).

The most important problem with this algorithm is determining K, the number of 
neighbours. One of the methods to be used to determine K is the elbow function. 
The elbow function represents the cost function arising from different facets of K. 
However, the improvement in error rate decreases as K increases. The value of K at 
which the improvement in the biased values becomes small and reaches the maxi-
mum is called the elbow, and at this value, one should stop examining the data fur-
ther [113].

The graphical illustration of KNN for K=3 and K=5 is given in Fig. 5.

(23)dist(X1,X2) =

√∑n

i=1
(x1i − x1i)

2

Fig. 4  The graphical illustration of RF [112]
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4  Experimental study

In this section, the Cleveland dataset and heart failure are used to evaluate the 
effects of the CS, FPA, WOA, and HOA algorithms on the classification accu-
racy of machine learning algorithms.

4.1  Experimental setup and evaluation metrics

All the experiments are performed on Google Colab on a system configuration; 
GPU Tesla k80 with 12 GB of GDDR5 VRAM, and Intel Xeon Processor with two 
2.20-GHz cores and 13 GB RAM. We use Sklearn1 library, none of the libraries 
on the Python platform, to develop machine learning algorithms. To realize experi-
ments, the dataset split for each algorithm and model parameters should be deter-
mined separately at first. For KNN, the K value is only the parameter that should be 
determined. It is not a correct approach to randomly specify this parameter. Based 
on the elbow method, the number of nearest neighbours is set to K = 3 for both 
datasets. For LR, we employ the liblinear, which provides optimization by using the 
coordinate descent method. In addition, we use an L2 penalty to prevent overfitting 
and set the C parameter equal to 1.0. C-support vector classification (SVC), an SVM 
implementation in libsvm library with RBF kernel, is used. Regularization param-
eter C is selected as 1. The smoothing value for GNB is used as 1e−9 . The number 
of estimators is selected as 100, and to measure the information gain Gini index is 
used for RF. CS, FPA, WOA, and HHO are used to select a subset of features.

The algorithms are compared based on F-score and validated within the dataset 
as 80% train set and 20% test set. Where true positive (TP) is the number of truly 
classified heart disease/survival patients, false positive (FP) shows the number of 
non-patients/survival predicted as heart disease/death patients. False negative (FN) 

Fig. 5  The graphical illustration of KNN [114]

1 https:// scikit- learn. org/ stable/.

https://scikit-learn.org/stable/
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is the incorrect classification of heart disease/death patients as non-patients/survival. 
True negative (TN) is the number of correctly classified non-patients/survival. The 
formulas of performance metrics in terms of TP, FP, FN, and TN are given with 
(24)–(26).

In addition to the F-score, the area under the receiver operating characteristic (ROC) 
curve (AUC) value is used to evaluate the performance of each model. The AUC 
provides an overall assessment of performance across all potential classification cri-
teria. The AUC value is between 0 and 1. If the value is close to 1, the model has a 
strong capacity for classification.

4.2  Experimental results

The main motivation behind the feature selection step is to select a subset of features 
that best represent the dataset. In order to analyse the effect of population size, we 
set the population size as 10, 30, 60, and 100 and the iteration size as 1000. Due to 
random conditions in the mete-heuristic algorithms, the algorithms are repeated 20 
times to verify the test function. Tables 3 and 4 represent the fitness values, includ-
ing the minimum (min), which is the best; maximum (max), which is the worst; 
and standard deviation (std), average (avg), and selected features for the best for 
Cleveland dataset and heart failure dataset, respectively. Feature selection is real-
ized to understand the efficiency of the meta-heuristic algorithms on classification 
problems.

According to Tables 3 and 4, it can be seen that the applied meta-heuristic algo-
rithms could effectively select fewer features.

When the results of the Cleveland dataset are examined, the following conclu-
sions are reached. CS selects 40% of the initial feature set (8 out of 20) for popu-
lation sizes 10 and 60 and selects 45% of the initial feature set (9 out of 20) for 
population sizes 30 and 100. The best fitness value of 0.0190 is obtained with a 
population size of 60. The worst fitness value of 0.0357 is obtained with a popula-
tion size of 10. It has been seen that from the initial feature set FPA selects 30% 
(6 out of 20), 35% (7 out of 20), 40% (8 out of 20), and 45% (9 out of 20) for the 
population sizes 10, 30, 60, and 100, respectively. The best fitness value of 0.0038 is 
obtained with a population size of 60. The worst fitness value of 0.0524 is obtained 
with a population size of 10. WOA selects 20% (4 out of 20) for the population size 
of 10, 25% (5 out of 20) for the population sizes of 30, and 60 and 40% (8 out of 20) 
for the population size of 100. The best fitness value of 0.0362 is obtained with a 

(24)Precision =
TP

TP + FP

(25)Recall =
TP

TP + FN

(26)F1−Score =2 ×
Precision × Recall

Precision + Recall
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population size of 100. The worst fitness value of 0.0668 is obtained with a popula-
tion size of 10. HHO selects 75% (15 out of 20), 25% (5 out of 20), 30% (6 out of 
20), and 40% (8 out of 20) features from the initial feature set for the population 
sizes of 10, 30, 60, and 100, respectively, while HHO achieves the best fitness value 
of 0.0362 with a population size of 100, and the worst fitness value of 0.0514 with a 
population size of 30.

Heart failure dataset results can be summarized as follows. CS selects on average 
33.33% (4 out of 12) for population size 10, selects on average 58.33% (7 out of 12) 
for population size 30, and for population sizes 60 and 100 algorithm selects 25% 
(3 out of 12) of the initial feature set. The best fitness value of 0.0245 is obtained 
with a population size of 60. The worst fitness value of 0.0684 is obtained with a 
population size of 100. FPA selects on average 41.67% (5 out of 12) for the popula-
tion sizes 10, 60, and 100 and selects on average 33.33% (4 out of 12) for population 
size 30. The best fitness value of 0.0114 is obtained with a population size of 10. 
The worst fitness value of 0.0481 is obtained with a population size of 60. WOA 
selects on average 16.67% (2 out of 12) for the population size of 10 and 100, on 
average 33.33% (4 out of 12) for the population size of 30 and 25% (3 out of 12) for 
the population size of 60. The best fitness value of 0.1573 is obtained with a popula-
tion size of 100. The worst fitness value of 0.181 is obtained with a population size 
of 30. HHO selects, on average, 16.67% (2 out of 12) for population sizes 10 and 60, 
on average 8.33% (1 out of 12) for population size 30, and the average of 41.67% (5 
out of 12) 100. HHO achieves the best fitness value of 0.0236 with a population size 
of 10 and the worst fitness value of 0.0668 with a population size of 30.

Table 5  F-score values for Cleveland dataset

Algorithm Population size LR (%) SVM (%) MNB (%) RF (%) KNN (%)

CS 10 85.23 80.19 81.88 81.96 96.69
30 88.52 91.79 88.52 83.60 98.36
60 88.51 91.79 88.52 90.09 98.36

100 86.88 86.88 80.28 81.88 98.35
FPA 10 85.23 88.51 81.88 83.56 94.99

30 86.88 83.49 85.24 81.88 95.06
60 85.23 85.23 80.32 78.68 99.72

100 88.52 88.51 85.23 80.32 96.69
WOA 10 88.51 83.61 81.88 88.51 93.39

30 85.24 86.88 83.60 83.56 95.06
60 81.94 86.88 76.74 83.56 94.08

100 85.18 81.88 80.19 85.23 96.67
HHO 10 90.16 86.88 49.18 87.88 96.72

30 86.88 88.88 83.60 90.14 95.07
60 87 90.14 83.60 88.51 94.99

100 81.94 85.23 78.68 76.74 96.69
Original dataset 85 85 87 85 88
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Table 5 and Table 6 compare the F-score of LR, SVM, MNB, RF, and KNN clas-
sifiers based on the meta-heuristic algorithms under the same conditions. The KNN 
algorithm outperforms the LR, SVM, MNB, and RF on both datasets by providing 
F-score between 92.06% and 99.72%. As we can see, all meta-heuristic algorithms 
significantly decreased the number of features and enhanced the KNN classifier’s 
predictive capability. The overall classification performance remained close when 
comparing the original and feature-selected datasets for the remaining classifiers.

In order to measure the effect of feature selection on classification in detail, it is 
necessary to compare the feature selection-based results with the results obtained 
from the original datasets. When the results for the Cleveland dataset are examined, 
LR, SVM, MNB and RF show both improvement and worsening in performance. 
At the same time, KNN achieves an increase for each population size of each meta-
heuristic algorithm. The highest increase is 11.72% obtained with KNN with FPA 
for population size 60. The algorithm shows an F-score of 99.72% in this case. From 
here, the best representative features of the Cleveland dataset are age, fbs, exang, 
oldpeak, ca, cp_1, thal_2, slope_0. The results for the heart failure dataset show 
that LR, MNB, and RF show both improvements and worsens in performance. At 
the same time, SVM and KNN achieve an increase for each population size of each 
meta-heuristic algorithm. The highest increase is 37.45% obtained with KNN with 
HHO for population size 10. The algorithm shows an F-score of 97.45% in this case. 
The best representative features of the heart failure dataset are age and time.

Performance comparisons by AUC value are given in Tables  7 and 8. When 
the results are evaluated according to AUC, it is clearly seen that feature selection 
improves the performance of algorithms. It is observed that the AUC value, which 

Table 6  F-score values for heart failure dataset

Algorithm Population size LR (%) SVM (%) MNB (%) RF (%) KNN (%)

CS 10 80.0 71.5 80.06 78.46 94.59
30 73.33 68.25 75.30 68.50 97.35
60 77.5 69.19 80.06 74.88 97.35

100 71.1 64.28 70.69 72.21 92.06
FPA 10 72 65.56 67.71 74.88 95.55

30 68.25 70.69 68.25 75.30 97.35
60 72.5 68.78 68.25 73.75 94.59

100 80.0 71.5 80.06 78.46 94.81
WOA 10 65.74 64.28 78.02 64.28 97.35

30 65.71 70.69 81.68 74.35 92.36
60 65.71 63.06 70.69 71.29 95.0

100 76.66 77.5 73.04 72.81 92.36
HHO 10 68.33 61.48 62.87 69.19 97.45

30 75.30 76.44 80.06 76.44 92.06
60 65.71 65.71 71.50 70.69 92.06

100 66.7 63.36 70 72.81 92.36
Original dataset 70 57 64 70 60
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is 0.85 in the Cleveland dataset, increased up to 0.98 due to feature selection. In the 
heart failure dataset, it is observed that the AUC value obtained as 0.55 increased up 
to 0.98.

Table 7  AUC values for 
Cleveland dataset

Algorithm Population size LR SVM MNB RF KNN

CS 10 0.94 0.93 0.92 0.90 0.97
30 0.94 0.93 0.91 0.91 0.99
60 0.94 0.94 0.94 0.91 0.94

100 0.92 0.91 0.85 0.89 0.96
FPA 10 0.94 0.92 0.90 0.91 0.94

30 0.92 0.90 0.84 0.89 0.95
60 0.90 0.89 0.86 0.86 0.98

100 0.94 0.94 0.92 0.93 0.97
WOA 10 0.94 0.92 0.93 0.90 0.94

30 0.93 0.87 0.88 0.89 0.93
60 0.90 0.92 0.89 0.92 0.94

100 0.93 0.93 0.90 0.91 0.96
HHO 10 0.96 0.93 0.83 0.94 0.98

30 0.93 0.93 0.92 0.91 0.94
60 0.94 0.94 0.88 0.90 0.95

100 0.91 0.91 0.85 0.91 0.95
Original dataset 0.86 0.87 0.88 0.87 0.85

Table 8  AUC values for heart 
failure dataset

Algorithm Population size LR SVM MNB RF KNN

CS 10 0.81 0.77 0.82 0.84 0.93
30 0.82 0.80 0.85 0.87 0.95
60 0.82 0.80 0.81 0.80 0.95

100 0.79 0.71 0.80 0.80 0.90
FPA 10 0.82 0.79 0.78 0.83 0.93

30 0.79 0.73 0.80 0.85 0.96
60 0.77 0.75 0.77 0.79 0.93

100 0.82 0.77 0.81 0.85 0.91
WOA 10 0.79 0.68 0.81 0.73 0.98

30 0.83 0.78 0.83 0.87 0.91
60 0.79 0.72 0.79 0.71 0.93

100 0.83 0.80 0.84 0.87 0.92
HHO 10 0.77 0.75 0.75 0.77 0.96

30 0.82 0.78 0.81 0.86 0.92
60 0.79 0.77 0.79 0.81 0.93

100 0.82 0.78 0.77 0.82 0.93
Original dataset 0.77 0.72 0.76 0.84 0.55
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The comparison of the F-score of the applied models with alternatives in 
the literature is given in Tables 9 and 10 for Cleveland and heart failure datasets, 
respectively.

5  Conclusions

Medicine researchers regard prediction as critical for possible heart disease 
patients. It is challenging to choose the best representative features for medical 
research. The Cleveland and heart failure datasets are used to select features using 
CS, FPA, WOA, and HHO. Furthermore, the relevant characteristics obtained are 
fed into several classifiers for classification, including KNN, LR, SVM, GNB, 
and RF. The best features are identified using an optimization technique, improv-
ing the appropriate classifier’s accuracy. For the Cleveland dataset, KNN demon-
strates superior prediction performance on FPA-selected features for the popula-
tion size of 60. In the Cleveland dataset, the F-score for heart disease prediction 
is 99.72%. Also, for the heart failure dataset, KNN demonstrates superior predic-
tion performance on HHO-selected features for the population size of 10. In the 
heart failure dataset, the F-score for survival prediction is 97.45%.

Future work is analysing various forms of heart disease datasets, such as heart 
sound signals and electrocardiogram (ECG) signals, to evaluate the strength of 
the applied algorithms.

Table 9  Comparison for Cleveland dataset

Literature Year Model F-score (%)

Patro et al. [115] 2020 Accuracy-Based Weighted Ageing Classifier 
Ensemble (AB-WAE)

93

Ambrish et al. [116] 2021 LR 87.10
Zhenya and Zhang [117] 2021 Ensemble 88.8
El-Shafiey et al. [118] 2022 Hybrid GA and PSO based on RF (GAPSO-RF) 95
Hera et al. [119] 2022 Multi-Tier Ensemble (MTE) 79.14
Our study 2022 FPA-KNN 99.72

Table 10  Comparison for heart failure dataset

Literature Year Model F-score (%)

Chicco and Jurman [3] 2020 Feature Ranking+LR 71.9
Ishaq et al. [120] 2021 SMOTE+Extra Tree Classifier 91.88
Nishat et al. [121] 2022 SMOTE-edited nearest neighbour 

(SMOTE-ENN) + LR
88.4

Karakuş and Er [96] 2022 Fine Gaussian SVM 100
Our study 2022 HHO-KNN 97.45
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