
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:11895–11933
https://doi.org/10.1007/s11227-023-05098-2

1 3

MECInOT: a multi‑access edge computing and industrial
internet of things emulator for the modelling and study
of cybersecurity threats

Sergio Ruiz‑Villafranca1 · Javier Carrillo‑Mondéjar2 ·
Juan Manuel Castelo Gómez1 · José Roldán‑Gómez3

Accepted: 3 February 2023 / Published online: 3 March 2023
© The Author(s) 2023

Abstract
In recent years, the Industrial Internet of Things (IIoT) has grown rapidly, a fact that
has led to an increase in the number of cyberattacks that target this environment
and the technologies that it brings together. Unfortunately, when it comes to using
tools for stopping such attacks, it can be noticed that there are inherent weaknesses
in this paradigm, such as limitations in computational capacity, memory and net-
work bandwidth. Under these circumstances, the solutions used until now in con-
ventional scenarios cannot be directly adopted by the IIoT, and so it is necessary to
develop and design new ones that can effectively tackle this problem. Furthermore,
these new solutions must be tested in order to verify their performance and viability,
which requires testing architectures that are compatible with newly introduced IIoT
topologies. With the aim of addressing these issues, this work proposes MECInOT,
which is an architecture based on openLEON and capable of generating test sce-
narios for the IIoT environment. The performance of this architecture is validated by
creating an intelligent threat detector based on tree-based algorithms, such as deci-
sion tree, random forest and other machine learning techniques. Which allows us to
generate an intelligent and to demonstrate, we could generate an intelligent threat
detector and demonstrate the suitability of our architecture for testing solutions in
IIoT environments. In addition, by using MECInOT, we compare the performance of
the different machine learning algorithms in an IIoT network. Firstly, we present the
benefits of our proposal, and secondly, we describe the emulation of an IIoT envi-
ronment while ensuring the repeatability of the experiments.

Keywords  Industrial internet of things · Multi-access edge computing · Machine
learning · Cybersecurity

 *	 Sergio Ruiz‑Villafranca
	 sergio.rvillafranca@uclm.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05098-2&domain=pdf

11896	 S. Ruiz‑Villafranca et al.

1 3

1  Introduction

The industrial environment has undergone massive changes since the First Indus-
trial Revolution, with the latest revolution being called Industry 4.0 or the Indus-
trial Internet of Things (IIoT). Emerging technologies and implementations such
as the Internet of Things (IoT), Artificial Intelligence (AI) and 5 G networks have
converged with traditional Operational Technology (OT) protocols and devices to
improve the performance and efficiency of the enterprise [1]. Some recent pro-
posals from the research community [2] have even started mentioning Industry
5.0, which has the same basic goal of solving the problems related to the integra-
tion of IIoT into traditional industry, but while the approach followed in Indus-
try 4.0 has been to implement an independent integration for each company,
focusing on the advantages and the functionalities of the technologies related to
IIoT, Industry 5.0 adopts a different focus, trying to highlight the importance of
innovation and research to support the industry in its service to humanity. Thus,
Industry 5.0 pays particular attention the points related to resilience, sustainabil-
ity and human-centric values, with the support of the technologies considered in
Industry 4.0 adding the advances in biotechnology and renewable and energy-
efficiency technologies [3].

One of the proposed solutions is Multi-Access Edge Computing (MEC), which
has been created as the successor to Edge Computing and is designed to bring
the advantages of cloud computing closer to companies, and to give support to
emerging technologies. Its main objective is to improve the network performance
of cloud applications, as well as to enable the implementation of new applications
that are delay-sensitive, such as autonomous driving or virtual reality applica-
tions. In addition, MEC facilitates the implementation of IIoT since the concept
itself already brings together some of the technologies considered in it [4]. How-
ever, the convergence of OT protocols and Information Technology (IT) proto-
cols, together with the inclusion of IoT applications and web applications, can
produce cybersecurity risks if this process does not follow the good practices
required in implementation. Moreover, the risks are higher in critical infrastruc-
tures, which could increase losses for companies and states and have a debili-
tating effect on sectors such as security, national economic security, national
public health or safety. Another aspect to take into account is that many devices
found in these infrastructures are not likely to be updated periodically [5]. As a
result, these infrastructures are a perfect target for attackers and their strategies,
as their techniques change and evolve rapidly. This insecure context can be found
in others environments, such as industrial plants, private health care, or indus-
tries related to smart city functionalities, each of which has specific requirements
that are different from those of critical infrastructures [6, 7]. Thanks to the use
of Machine Learning (ML) and AI algorithms, cybersecurity researchers can use
the data left by attackers or researchers themselves on their network or applica-
tion to train multiple tools. As a way to monitor and avoid (or reduce) the impact
of these attacks, these tools are becoming the perfect solution for the cyberde-
fence department of companies. Recently, Federated Learning and Adversarial

11897

1 3

MECInOT: a multi‑access edge computing and industrial internet…

Networks have been improved in order to use the data collected by the devices in
the network, and then train the models with them, which results in these models
being more sensitive to changes and new attacks [8]. Unfortunately, evaluating
the feasibility and performance of these threat detectors when deployed in low-
resource environments such as IIoT is not straightforward, since an architecture is
needed for generating reproducible experimentation scenarios while taking into
account the specific characteristics of IIoT environments.

There are some related works that have tried to address this problem. The first
one is openLEON [9], which is used as the basis of our proposal. However, open-
LEON does not implement any service related to IIoT. Another interesting proposal
is the IIoT Testbed [10], which is an emulator focused on the deployment of an IIoT
application to monitor different metrics. The limitation of this tool is the low level
of flexibility in its scenario, as it is focused only on the IIoT application deployed,
thus making it impossible for use in the study and modelling of IIoT networks and
the related experimentation, and it requires a tool to design and deploy networks that
follow the IIoT paradigm.

With these issues in mind, this paper presents MECInOT, an emulator built on top
of OpenLEON [9] for facilitating the modelling and deployment of an IIoT topol-
ogy. MECInOT allows the deployment of OT and IT applications up to the edge
data centre topology. MECInOT has also been designed with special attention to
cybersecurity research, providing different tools for the proposed scenarios in which
different attacks on the network and application layers can be carried out. In this
regard, we use MECInOT to collect network data while attacks are taking place in
the emulation of the scenarios, and then to implement an Intrusion Detection System
(IDS) based on different ML algorithms. The use of ML in threat detection offers an
advantage over the use of rules found in most commercial IDS. These advantages
are due primarily to the inability of rule-based systems to detect unknown or new
attacks, in addition to the difficulties that such systems have in operating in highly
dynamic environments such as IIoT scenarios [11]. Therefore, the trend is towards
the machine-learning-based approach, and in this work we intend to implement the
IDS to validate our emulator in the field of cybersecurity research by adopting such
an approach.

MECInOT, which is the emulator present in this work is available in a Github1
repository, and the dataset used is also available online2.

The rest of this paper is organised as follows. In Sect. 2, we review the proposals
from the research community regarding emulators for MEC, the IoT and the IIoT.
Section 3 describes the technical background of our study. The emulator developed
in this experiment is presented in Sect. 4, together with the applications for each OT,
IoT and IT protocol and the attacks implemented on it. In Sect. 5, we evaluate the
performance of the proposal, using the CPU usage parameter as a reference, and we
present the attacks implemented on the emulator and the generation of malicious

1  Link to Github repository: https://​github.​com/​C4den​aX/​MECIn​OT.
2  Link to dataset: https://​data.​mende​ley.​com/​datas​ets/​xstyj​wrc5r/​draft?a=​44053​8fd-​e139-​4e06-​8885-​
10778​5f518​07.

https://github.com/C4denaX/MECInOT
https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807
https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807

11898	 S. Ruiz‑Villafranca et al.

1 3

data. By using these data, in Sect. 6 we describe the methodology followed to make
an IDS using ML algorithms and analyse the results obtained by it. Finally, Sects. 7
and 8 correspond to the conclusions that can be drawn from this experiment and the
future work planned, respectively.

2 � Related work

This section presents a study of the most important pieces of research focusing on
the emulation of IIoT and MEC scenarios.

A work which implements an IIoT context in its design is the IIoT Testbed emula-
tor [10]. This emulator allows the emulation of IIoT applications based on Data Dis-
tribution Service (DDS) middleware, allowing the users to manage different indus-
trial processes, including the modification of multiple parameters, such as Quality of
Service (QoS), of the different services and functionalities emulated. The creation
of new IIoT processes and their management is performed by using a web interface,
making the use of the emulator easier for the users without the need to understand
the whole architecture of the emulator. However, the IIoT Testbed is a very limited
tool in terms of its functionality and flexibility when it comes to creating new condi-
tions for the scenario that it proposes. This is mainly because the tool is focused on
the management of the process and its related data. In fact, the IIoT Testbed emula-
tor cannot success fully meet the needs of different experiments in creating multi-
ple scenarios and IIoT topologies with different devices and protocols used by the
applications. Also, MEC is not considered during the design and implementation of
this emulator. This is the case of rest of the proposals described in this section, but
in the opposite sense, that is to say that Edge Computing is considered but industrial
protocol applications are not.

A work that considers MEC in its proposal is [12], which establishes a devel-
opment environment for the deployment of applications based on Fog Computing
and MEC architectures. This emulator allows the creation, design and definition of
networks, the deployment of multiple edge nodes, and the implementation of IoT
applications. Moreover, the emulator allows the analysis of the performance of each
node deployed and of the network that interconnects them, in order to check whether
there are any errors or misconfigurations in the scenario defined or the performance
of the application deployed. However, to execute Fogify it is necessary for the user
to have an in-depth knowledge of how to use it, as well as some fundamentals on
the tool in charge of its deployment, namely Docker Swarm. In addition, this type of
tool can lose the support of the community in favour of other popular ones such as
Kubernetes. Furthermore, the emulator does not support the inclusion of OT proto-
cols or new IT or IoT protocols, making it impossible to create a heterogeneous IIoT
scenario.

Using the emulators Containernet and Maxinet, which are extensions of the
Mininet emulator, [13] presents a solution for the creation, design, definition and
deployment of virtual networks that users consider. These emulators use the Python
programming language, which helps the users with the deployment of the networks
through the creation of a single script. Containernet deploys the final devices as

11899

1 3

MECInOT: a multi‑access edge computing and industrial internet…

containers, providing the flexibility of this technology when creating for example,
applications, device or server functionalities. The main problem of Fogbed is that
the emulator does not include support for mobile networks, which is one of the prin-
cipal characteristics of the MEC paradigm. Also, the emulator is not IIoT-focused,
making it impossible to implement an MEC-IIoT scenario using just this emulator.
In addition, Fogbed uses the default version of Containernet, which does not allow
redundacy in the MEC topology, with all that this implies, such as the errors that
could appear with disconnections between edge nodes when the complexity of the
topology and the number of applications and services increase.

The last emulator found in the literature that can allow the deployment of these
kinds of networks is openLEON [9]. This emulator solves the problems found on
Fogbed emulator, because openLEON implements a network controller that allows
the use of spanning-tree in the topology, thus making it possible to implement
redundancy between network devices and edge nodes. In addition, the emulator
enables the use of srsLTE, which together with the corresponding hardware allows
connectivity with Long-Term Evolution (LTE) networks in MEC topology. There-
fore, openLEON is considered one of the most appropriate emulators for use in
the deployment of MEC-IIoT scenarios. However, as was mentioned with Fogbed,
openLEON is only focused on the deployment of the MEC topology, and IIoT appli-
cations and devices are not considered. This means that experimentation, research
and security checking in the context of IIoT are impossible for users. In order to
address this shortcoming, our MECInOT proposal uses openLEON as a basis for
MEC topology deployment, while integrating the deployment of IIoT networks with
their corresponding services, applications and devices. This is an added functional-
ity that to the best of our knowledge, has not been included in any proposals in the
literature.

As far as we know, there are no other works that address the emulation of MEC-
IIoT environments. This fact indicates the important contribution that our work can
make to the state of the art. Also, MECInOT introduces new functionalities and
characteristics such as MEC integration, flexibility to introduce new IIoT protocols
and IIoT services, and the integration of real devices and physical resources in the
topologies.

As a summary, Table 1, shows the characteristics of the different pieces of
research reviewed in this section.

3 � Background

In this section some technical concepts related to the emulator and machine learning
algorithms are described.

3.1 � Multi‑access edge computing

MEC, a concept standardised by the European Telecommunications Standards
Institute (ETSI), is considered the evolution of Edge Computing and is designed

11900	 S. Ruiz‑Villafranca et al.

1 3

Ta
bl

e 
1  

S
um

m
ar

y
of

 th
e

pr
op

os
al

s f
ro

m
 th

e
re

se
ar

ch
 c

om
m

un
ity

Pr
op

os
al

Te
ch

no
lo

gi
es

 u
se

d
Ed

ge
 o

rie
nt

ed
II

oT
 o

rie
nt

ed
Su

pp
or

t f
or

m

ob
ile

 n
et

w
or

ks
Fl

ex
ib

ili
ty

 to
 a

dd
 n

ew
 fu

nc
tio

na
lit

y
Ye

ar

II
oT

 te
stb

ed
 [1

0]
D

ja
ng

o
Fr

am
ew

or
k

(P
yt

ho
n)

N
o

Ye
s

N
o

It
is

 n
ot

 p
os

si
bl

e
20

18
Fo

gi
fy

 [1
2]

D
oc

ke
r S

w
ar

m
Ye

s
N

o
N

o
It

is
 p

os
si

bl
e

to
 d

efi
ne

 n
ew

 Io
T

ap
pl

ic
at

io
ns

20
20

Fo
gb

ed
 [1

3]
C

on
ta

in
er

ne
t

Ye
s

N
o

N
o

Ed
ge

 se
rv

er
s c

an
 ru

n
ne

w
 se

rv
ic

es
20

18
O

pe
nL

EO
N

 [9
]

C
on

ta
in

er
ne

t (
m

od
ifi

ed
),

sr
sL

TE
Ye

s
N

o
Ye

s
Ed

ge
 se

rv
er

s c
an

 ru
n

ne
w

 se
rv

ic
es

20
19

M
EC

In
O

T
O

pe
nL

EO
N

, D
oc

ke
r-C

om
po

se
Ye

s
Ye

s
Ye

s
It

is
 p

os
si

bl
e

to
 a

dd
 n

ew
 p

ro
to

co
l s

er
vi

ce
s a

nd

ap
pl

ic
at

io
ns

 to
 E

dg
e

Se
rv

er
s a

nd
 to

 II
oT

 to
po

lo
-

gi
es

20
22

11901

1 3

MECInOT: a multi‑access edge computing and industrial internet…

to improve the performance of communications in the Cloud Computing environ-
ment and IoT and IIoT technologies. One of the most important characteristics of
MEC is the use of virtualisation technology to provide computational resources to
applications and the heterogeneous network management that MEC must support
[4]. As it brings computational functions closer to end users than Cloud Comput-
ing, it makes it possible to reduce the latency in communications and avoid network
saturation in the Cloud Computing providers. This means that users perceive a better
performance in the applications, and it allows the development of new applications
that previously were impossible with such limitations. Also, with the use of the new
5 G mobile networks and the future 6 G ones [14], a reduction in latency between
devices can be achieved, making it possible to deploy real-time applications on this
kind of architecture.

To make it possible to implement MEC, it is necessary to use multiple virtualisa-
tion technologies, namely:

•	 Network Function Virtualization (NFV). The implementation of IIoT in tra-
ditional factories means that a large number of IoT devices and applications are
connected to industrial environments. Many of these devices use different com-
munication protocols, which in some cases will be proprietary, because these
devices are designed for specific contexts and scenarios, which in turn means
using specific network devices to manage the proprietary protocol traffic. NFV
allows network admin to avoid the use of these specific network devices to man-
age the heterogeneous and proprietary traffic, reducing the cost associated with
the deployment of the different network devices and their number, thanks to
using generic network devices. Basically, NFV is software that can be installed
on any device that can receive and send traffic. ETSI defines and determinates
the applications that NFV can support, such as connectivity functionalities,
Dynamic Host Configuration Protocol (DHCP) or Network Address Translation
(NAT) [15].

•	 Software-Defined Networking (SDN). Traditionally, in communication net-
works the data layer is defined as the management part of the network of the traf-
fic generated by the users, while the control layer manages the routing processes.
Both layers work together on the network devices, which produces a slow-down
in high-demand networks. The growth in complexity of the networks has shown
that this solution is neither scalable nor flexible. To partially solve this issue,
network administrators manually reconfigure network devices by using scripts,
which leads to misconfigurations, but in any case this becomes an immeasurably
difficult task in complex networks [16].

	  In view of these misconfigurations from network administrators, SDN tries
to solve this problem by disassociating the two layers. Thus, a specific network
architecture is defined, and the allocation of the network resources is established
thanks to network virtualisation [17].

•	 Network slicing. This technique defines different virtual networks depend-
ing on a criterion, and the allocation of the network resources is determined
according to the needs established for each virtual network. Network Slic-
ing allows the generation of multiple custom networks using the network

11902	 S. Ruiz‑Villafranca et al.

1 3

resources deployed physically. This provides flexibility when allocating the
network resources according to the needs of the virtual network, or even if
then occurs an unexpected demand for resources at a particular time [4].

•	 Service Function Chaining (SFC). The transition from traditional networks
to software-defined networks and virtualisation is a huge effort for IT teams
[18]. Thus, the principal goal of SFC is to facilitate this transition dynami-
cally. The concept of SFC is quite similar to NFV, the principal difference is
that SFC solves the problem that can appear when a service is provided indi-
vidually, and it belongs to a service chain. Thus, SFC manages the services
that are running on the network devices and which can be used at a specific
moment [17].

Figure 1 shows an example of implementation of a MEC architecture using the
basic NFV and SDN services explained above, illustrating how communica-
tion between the SDN controller and the NFV controller is performed in this
architecture.

Fig. 1   Reference MEC architecture [4]

11903

1 3

MECInOT: a multi‑access edge computing and industrial internet…

3.2 � Machine learning algorithms

Machine learning has grown rapidly in recent years in the context of comput-
ing and whole data analysis performed via other technologies such as the IoT.
ML uses this new information generated by analysis to develop applications with
new functionalities in an intelligent manner. Thus, ML provides the system with
the processes and tools to automatically extract knowledge from the data that it
receives without the need to be programmed [19].

As mentioned above, we use a machine learning approach because several
papers consider it to be best in environments where there are unknown threats,
especially if these environments are highly changeable and heterogeneous, due
to the difficulty of manually establishing rules for each type of attack. There
are comparisons that demonstrate the superiority of machine-learning-based
approaches in these contexts [20, 21]. In addition to the better performance of a
machine-learning-based IDS, it also offers certain advantages, such as:

•	 Accuracy: Machine learning algorithms can analyse large amounts of data and
identify patterns and anomalies that may be difficult for humans to spot or
define explicitly.

•	 Flexibility: Machine learning-based IDS can continuously learn and adapt to
new types of attacks and changing network environments.

•	 Anomaly detection: By modelling the normal behaviour of the system, it is
possible to detect anomalies that are completely impossible to detect for rule-
based systems.

Supervised ML techniques are considered to be those algorithms which provide
intelligent models with the construction of general hypotheses and patterns [22],
using external data instances to address the prediction of future instances from a
similar data input. The principal function of these techniques is to develop a pre-
diction model for solving classification and categorisation problems, establishing
the possible category of the incoming data [23]. This can be solved with binary
classification in the case of there being only two categories to predict, or multi-
class classification, which normally refers to the prediction of more than two cat-
egories. One must also consider the special case in which the incoming data can
be categorised into multiple categories at the same time [24].

Some algorithms that give good results in multiclass classification problems
with tabular data are the following:

•	 Decision Tree (DT). DT is a well-known supervised ML algorithm [25], and
it is also used for regression problems. This algorithm works by using tree
structures, starting from a root node and sorting down to certain leaf nodes,
whose number depends on the data and the categories. DT performs the clas-
sification with the instances, which are classified by checking the attribute
established and defined at each node of the tree until reaching a leaf node
which shows the category of the entry data. The splitting is carried out by

11904	 S. Ruiz‑Villafranca et al.

1 3

using two different criteria, namely gini and entropy, whose mathematical
equations are given by Eq. 1 and Eq. 2 [26].

•	 Random Forest (RF). The RF classifier is an ensemble classification model
used in various areas of application [27]. This algorithm makes a parallel
ensemble fit many DTs in parallel using different datasets or subsamples of
the same dataset to train them. The output is the majority solution of the trees
or the average result [26].

•	 Naive Bayes (NB). The NB algorithm is based on Bayes theorem, which
makes the assumption of the independence between each pair of features that
are allocated to the entry data of the model, and its definition is given by Eq. 3
[28]. The principal advantage compared with other approaches is that NB
only needs a small amount of training data to quickly estimate the parameters
needed. However, the main problem of this algorithm is that its performance
can be affected by the strong assumptions of feature independence [26].

•	 Stochastic Gradient Descent (SGD) [29]. SGD is an iterative algorithm
for the optimisation of the results with an objective function with appropri-
ate properties. This algorithm allows a reduction in the computational cost
of training, especially in high-dimensional optimisation problems, allowing
faster iterations at the cost of a lower convergence rate. SGD is usually applied
to problems of text classification and natural language processing. However,
the algorithm can produce worse results for feature scaling and needs the
hyperparameter tuning of some parameters, such as the number of iterations
and the regularisation parameter.

•	 Support Vector Machine (SVM) [30]. SVM is a supervised ML algorithm
used in various fields and kinds of problems, especially classification prob-
lems. SVM uses statistical learning approaches and classifies the input data by
determining a set of support vectors. The main goal of SVM is find the opti-
mal hyperplane for the classification of new data. In our work, the SVM model
developed is optimised with SGD.

There are other possible state-of-the-art algorithms, such as neural networks and
their different architectures [31]. However, in classification problems with tabular
data they present certain disadvantages, especially in IoT and IIoT environments,
where there are resource constraints. These limitations are as follows:

(1)Entropy ∶ H(x) = −

n∑

i=1

p(xi)log2p(xi)

(2)Gini(E) = 1 −

c∑

i=1

p2
i

(3)P(A‖B) = P(B‖A) ⋅ P(A)
P(B)

11905

1 3

MECInOT: a multi‑access edge computing and industrial internet…

•	 Complexity: Neural networks can be complex models to train and require con-
siderable computational resources. This can make them difficult to implement
and run, especially for large datasets.

•	 Overfitting: Neural networks are prone to overfitting, especially when working
with small datasets. This means that they may perform well on the training data
but may not generalise well to new data.

•	 Lack of interpretability: Neural networks can be difficult to interpret and it can
be hard to understand how they make predictions. This can make it difficult to
understand the factors that are driving the predictions and to identify any poten-
tial biases in the model.

•	 Time-consuming: Training a neural network can be time-consuming, especially
for large datasets. This can make it difficult to use neural networks in real-time
applications, where quick predictions are necessary.

•	 Require more data: Neural networks generally require more data to achieve good
performance than other machine learning algorithms. This can be a disadvantage
if the dataset is small or if there are certain types of data that are difficult to col-
lect.

Overall, while neural networks can be powerful tools for tabular data classification,
they can also be complex and time-consuming to work with and may not be the best
choice in all cases. Other machine learning algorithms, such as decision trees or ran-
dom forests, may be more suitable in certain situations [32].

For these reasons it has been decided not to validate the emulator with neural net-
works, although future experimentation in which the architecture is validated with
deep learning architectures of low computational cost would certainly be of interest
[33].

4 � MECInOT proposal

This section provides the details of the design and the methodology that have been
followed in developing MECInOT.

4.1 � Design

When designing MECInOT, we considered that the emulator should include the fol-
lowing features:

•	 Offer a realistic emulation of physical scenarios. It should allow to users to
carry out experiments and proofs of concepts, and to obtain data in the same way
as when using a real topology, without the need to use physical devices.

•	 Provide the possibility and flexibility to develop different scenarios depend-
ing on the research needs. Thanks to the use of the virtualisation of devices
using containers, it is possible to easily modify the number of devices, their

11906	 S. Ruiz‑Villafranca et al.

1 3

functionality, or even the definition and deployment of multiple virtual subnet-
works, with each one having a specific function or implementation.

•	 Facilitate the insertion of real devices in emulated scenarios. The possibility
may arise in an experiment of having to use real devices in an emulated sce-
nario in order to validate the performance results. In this proposal it is possi-
ble to introduce new metrics such as collisions, packet delays or device perfor-
mance. Therefore, thanks to the virtualisation technologies used by MECInOT,
real devices can be integrated into the scenarios deployed by the emulator, new
network devices such as IoT gateways can be implemented. Also the integration
of physical radio for specific protocols such as Zigbee, Z-Wave, or 6lowpan is
available.

•	 Enable cybersecurity research. The main goal during the design of MECI-
nOT was to develop an emulator that make it possible to carry out cybersecurity
research in the MEC-IIoT context. Consequently, the emulator provides the users
with different scripts and a malicious container that allow them to easily per-
form different types of attacks in their scenarios, generate malicious data, and

Fig. 2   MECInOT architecture

11907

1 3

MECInOT: a multi‑access edge computing and industrial internet…

check the impact that these attacks have on the topologies. Also, through the
design of the emulator, these attacks can have a consequences on the real devices
connected to the emulated scenarios, providing more options for validating and
obtaining results.

Figure 2 shows the MECInOT architecture, in which we can see the different func-
tionalities considered during the design of the emulator.

4.2 � MECInOT deployment methodology

In a real Industry 4.0 scenario, it is mandatory to deploy each device of the indus-
trial network or enterprise network, and provide them with an individual network
configuration that covers the specific needs of the scenario. In MECInOT, the first
step is to virtualise the machine which creates, manages and deploys the industrial
private network, as well as the machine which deploys the MEC architecture. Next,
the communication between the industrial network and the MEC architecture is
defined. To make this possible, both the machines must have the IP address of the
same private subnetwork, configuring the network adapter of the virtual machines in
bridge mode.

It is necessary to define the subnetwork addresses that are going to be used by
the virtualised IIoT devices and the MEC virtual subnetwork. In MECInOT, the
emulated IIoT devices are deployed using the container technology tool Docker-
Compose, which facilitates and speeds up the deployment and the implementation
of changes in the virtual scenarios. For this reason, the configuration of the virtual
IIoT networks is given by this tool, which allows the users define multiple subnet-
works for each scenario. For MEC architecture deployment, the network configura-
tion used is the default one established by the openLEON emulator with multiple
Edge servers that will run the multiple IIoT services of the scenarios. In addition, it
is necessary to establish a correct routing configuration on the IIoT network machine
in order to enable correct communication between IIoT subnetworks and the MEC
subnetwork. Once this process has been carried out, the communication between
IIoT and MEC hosts should be tested to check whether it is correct.

The last step consists in deploying the MEC-IIoT architecture in which the exper-
iments are going to be performed. This architecture is comprised of the IIoT devices,
which are already implemented in the emulator scenarios provided, and the network
topologies described in the following sections.

Figure 3 shows the communication the between different steps mentioned above.

4.3 � IIoT topology

With the purpose of emulating the network of an Industry 4.0 factory, MECInOT
implements a business network using the interface created by Docker-Compose
to deploy the different Docker containers, each of which corresponds to an IIoT
device in the virtual factory. In addition, the emulator allows the users to define and

11908	 S. Ruiz‑Villafranca et al.

1 3

implement different subnets with the most common protocols that can be found in
an IIoT scenario, with these being:

•	 IoT protocols. MECInOT includes IoT applications that rely on the most com-
monly used protocols in this context: Message Queuing Telemetry Transport
(MQTT), Constrained Application Protocol (CoAP) and Advanced Message
Queuing Protocol (AMQP) [34, 35].

•	 OT protocols. The protocols added to MECInOT are versions of the industrial
protocols which use the TCP transport protocol: Modbus/TCP, which is the most
widely used industrial standard and protocol [36]; S7COMM, which is the pro-
prietary communication protocol used by the Programmable Logic Controller
(PLC) of Siemens [37]; and Open Platform Communications United Architec-
ture (OPC UA), which is considered as one of the protocols that allows the con-
vergence of OT and IT protocols [35].

•	 IT protocols. This group of protocols includes those that are widely used by
Internet users, such as the Hypertext Transfer Protocol (HTTP) [38].

As mentioned above, the design of MECInOT is focused on enabling cybersecurity
research in MEC-IIoT scenarios. Consequently, the emulator provides a set of tools
that allow users to carry out attacks in these scenarios, thus making it possible to
evaluate the impact of such attacks, as well as the risks and the costs that these could
entail in the particular context studied. This toolset is currently built into an attack-
ing node using the Kali Linux distribution image which ca be run in a Docker Con-
tainer on the IIoT network.

Fig. 3   MECInOT deployment methodology

11909

1 3

MECInOT: a multi‑access edge computing and industrial internet…

To evaluate the impact of a possible attack on the infrastructure deployed with
the emulator, different types of attacks are employed. These attacks belong to the
following categories:

•	 Packet manipulation. To carry out this type of attack, the attacker node must
use the Man in the Middle attack to capture the packets and modify them. The
changes made to the packets are focused on the data field of each protocol in the
emulated scenario. The rest of the fields do not change.

•	 Brute force. The attack uses a dictionary of users and passwords to make mul-
tiple login attempts to try and access devices and services. Thus, MECInOT has
a script that performs the dictionary brute force attack on a login form of a web
server that can be running on a PLC or edge node.

•	 Attacks with payloads in HTTP frames. These attacks aim to exploit the
Shellshock vulnerability [39], which is a software bug found on some web serv-
ers that can be used to gain access to the machine on which the service is run-
ning. A script is made to automatise the process of gaining access to the machine
shell. This vulnerability is exploited by sending an HTTP packet with a modified
User-Agent field that contains the specific payload.

•	 Network scanning. The emulator includes a tool that allows different scanning
methods to be carried out automatically. The scanning methods implemented are
TCP SYN, TCP connect, UDP, TCP NULL, TCP FIN, TCP XMAS, and TCP
ACK.

•	 Denial of Service (DoS). For this type of attacks, traditional denial of service
methods have been implemented, such as Ping of the Dead [40], and methods
based on the flood or saturation of the port with a massive sending of TCP pack-
ets. In addition, these methods have been adapted depending on which proto-
col is targeted. In particular, for the AMQP protocol, fake devices are included
in order to overflow the message queue, resulting in legitimate user not being
able to establish communication with the queue. With regard to CoAP protocol,
this uses UDP as a transport protocol, which allows the implementation of the
UDP amplification attack [41]. This attack consists in using a simple modified
request to a method on a CoAP server to be received by the target machine. As
the attacker sends lightweight packets, this makes it possible to cause a denial
of service for some of the devices in the network using the CoAP server, which
sends larger packets than the attacker.

•	 Malicious device injection. In this attack, the attacker tries to find a default con-
figuration or a bad implementation of an MQTT broker in order to obtain more
information from it. This process is automatised by using a script which emulates
a new device that tries the connection to the specific topic on the MQTT broker
as a way to read whole messages that pass through it.

4.4 � MEC topology

As was mentioned above, the MEC topology is deployed using the openLEON emu-
lator. In this emulator there two key components:

11910	 S. Ruiz‑Villafranca et al.

1 3

•	 Data centre. openLEON implements this part of the topology by using the Con-
tainernet emulator [42], which is an extension of the Mininet emulator [43], thus
allowing the creation of topologies whose hosts are implemented with contain-
ers. Secondly, the architecture of the topology has a 3-level hierarchical network
structure, which is typical of a 3-tier data centre. The topology has two core
switches, and two aggregation switches for each one. Also, the architecture has
64 hosts connected between the switches found on the Top of Rack level. This
topology structure provides redundancy between network devices and hosts, thus
trying to avoid communications errors in the network. In order to do this, it is
useful to implement a spanning-tree protocol [44] on the network devices. Since
the default SDN controller implemented in Mininet does not support this func-
tionality, openLEON developers decided to implement and use RYU [45], which
is a module implemented with Python that provides support for OpenFlow to be
integrated in the topology.

•	 Mobile communication. As was mentioned in Sect. 2, this is a crucial MEC
component. The protocol used to provide mobile communication is LTE, and this
is achieved by using the srsLTE emulator [46]. In order for this emulator to run
correctly it needs a set of hardware, such as antennas and mobile LTE stations.
With this module it is possible to establish communication between the mobile
devices connected via LTE with the MEC-IIoT topology.

4.5 � MECInOT distributed deployment

With the aim of taking advantage of the container and Mininet virtualisation tech-
nologies, a distributed deployment is also defined in order to be able to use MECI-
nOT on a High Performance Computer (HPC) or cluster, and thus obtain a more
realistic and better performance than when using a single computer. This kind of
deployment allows the use of multiple MEC and IIoT topologies on the distributed
nodes of a cluster. For this implementation, it is recommended to use a container
orchestrator for the management of the containerised IIoT topologies. In addition,
it is possible to deploy multiple MEC topologies without the need to use the virtual
machine by only employing the Containernet implementation of openLEON.

Figure 4 presents a logical implementation of this type of deployment, also show-
ing the intercommunication between the nodes and topologies providing a correct
functionality and connection between the different parts of the emulator.

5 � MECInOT evaluation

In this section some examples of scenarios that can be designed and deployed with
MECInOT are described. In addition, we present an evaluation based on the cost of
CPU usage metric for the physical machine on which the emulator is run. Finally,
a cybersecurity analysis and proof of concept are carried out to check whether the
emulator can contribute to this research field with the MEC-IIot scenario deployed.

11911

1 3

MECInOT: a multi‑access edge computing and industrial internet…

5.1 � Hardware setup

For the evaluation of the proposal described in Sect. 4 we used a laptop with an
Intel i7-10875 H 2.30GHz CPU with 32 GB RAM memory, running Windows 10
20H2. In order to execute the virtual machine, the hypervisor VirtualBox 6.1.16r
was used. Finally, a Raspberry Pi Zero 2 was included as additional hardware in
order to add the possibility of deploying an IoT gateway in our scenarios.

5.2 � Industrial OT scenario

In order to evaluate this scenario we only deployed devices that specifically use
industrial or OT protocols, as mentioned in Sect. 4.3.

The scenario studied for the OPC UA protocol consisted of a client node
which was in the industrial topology, and a server node that was allocated in the
MEC topology. The basic functionality between the two nodes was a communi-
cation based on the reading of a random string that was generated by the server
node at a random time between one and nine seconds.

For the case of the S7 protocol, two client nodes were deployed, one for read-
ing and the other for writing, and these nodes were allocated in the industrial
network. A server node was also deployed in the scenario, but it belonged to
the MEC topology. The functionality provided by these nodes was very similar

Fig. 4   MECInOT logical distributed architecture

11912	 S. Ruiz‑Villafranca et al.

1 3

to that mentioned for the OPC UA protocol. The writing client wrote a random
string on the server, and then this was read by the reading node at a random time.

For the ModBus/TCP protocol, the deployment involved two clients allocated in
the industrial topology, one for writing and the other for reading, and a server node
that was deployed in the MEC network. In this scenario, the writing node wrote a
sequence of values, which could be alternately True or False, to the server, with the
reading node periodically reading the values stored on the server.

In order to provide the emulator with cybersecurity testing capabilities, an
attacker node is deployed in the industrial topology, and it can communicate with
the rest of the industrial devices and MEC servers. This node, as well as the tools,
scripts and attacks implemented, is described in Sect. 4.3.

5.3 � Industry 4.0/IIoT scenario

This scenario is an extension of the scenario detailed in Sect. 5.2, and introduces
communication between devices using IoT protocols and the emulation of users that
operate with IT protocols. This allows researchers and emulator users to implement
and deploy an example of an Industry 4.0 factory, which is connected to different
network services. In this scenario, the IoT traffic passes through an IoT gateway
which is deployed in the business network. In addition, an attacker node is intro-
duced in order to provide the user with the option of performing cyberattacks with
the new devices included.

The MQTT protocol is implemented with the aim of emulating a factory that
has multiple sensors sending the temperature in degrees Celsius every three sec-
onds. The IoT gateway is given the role of MQTT broker, acting as an intermediary
between the communication with the MQTT subscriber, which belongs to one of the
edge nodes in the MEC network, and the rest of the devices.

In the case of the CoAP protocol, a client is deployed in the industrial network
and it sends multiple messages to the IoT gateway, which performs the function of
master/server node, with these messages being read by another CoAP client allo-
cated in MEC topology.

For the AMQP protocol, a client node is deployed in the industrial network and it
publishes a random number between 33 and 126 in the RabbiMQP queue that is run-
ning on the IoT gateway. These messages are received by an AMQP client allocated
in the MEC topology.

The IT protocols that are considered and included in the scenario are the HTTP
and Hypertext Transfer Protocol Secure (HTTPS) protocols. The former implements
a login form for the factory users, and the latter does so with a video streaming
server. On the user side, they are specifically in the industrial network and have been
implemented using Python scripts that emulate their normal behaviour using the IT
applications mentioned above.

In Fig. 5, a logical schema of communication between the different parts in
this scenario is shown. In addition, it describes how communication is performed
depending on the type of traffic.

11913

1 3

MECInOT: a multi‑access edge computing and industrial internet…

5.4 � Performance analysis

Now we have described some of the scenarios that can be created and deployed with
MECInOT, we analyse its performance in these scenarios. This analysis considers
the cost in terms of computational resources associated with the deployment of the
Industry 4.0 scenario on the machine, since it is the scenario with the highest num-
ber of devices and services running simultaneously. The metric used is the CPU
usage of the host machine running Windows 10, and the tool used to obtain this met-
ric is System Monitor, which is a piece of native software for obtaining information
regarding hardware conditions and process metrics.

Fig. 5   Logical network schema of Industry 4.0/IIoT scenario

11914	 S. Ruiz‑Villafranca et al.

1 3

In Fig. 6, the evolution of CPU usage over nine minutes (the execution time of the
scenario) is shown. The metric is measured from the launch of the virtual machines
to the stopping of the emulator. We can observe the different load rate changes dur-
ing the deployment of the different parts of the emulator, and the fact that the maxi-
mum CPU usage occurs in the building and deployment of the Docker-Compose
containers.

In order to check the flexibility and how load usage varies depending on the com-
plexity of the scenario deployed, a comparison is made with the scenario that only
deploys the applications that uses OT protocols and the above mentioned one. In
this case, the OT scenario is simpler than Industry 4.0 and allows us to make the
comparison desired. Figure 7 shows the evolution of the CPU load usage during five
minutes of the execution of the OT scenario.

By comparing Figs. 6 and 7, we can see that the resources needed to run a
given scenario vary in accordance with its complexity. However, by measuring

Fig. 6   Evolution of CPU usage with the deployment of the Industry 4.0 scenario. The X-axis represents
the running time of the experiment in minutes:seconds format, and the Y-axis represents the CPU usage
percentage

Fig. 7   Evolution of CPU usage with the deployment of the OT scenario. The X-axis represents the run-
ning time of the experiment in minutes:seconds format, and the Y-axis represents the CPU usage per-
centage

11915

1 3

MECInOT: a multi‑access edge computing and industrial internet…

the median CPU usage in the two scenarios, it can be concluded that the differ-
ence between the two cases is only 2%. This means that it is possible to increase
the number of services and devices in the scenarios without generating much
higher rates of CPU usage on the host system. In addition, the maximum load
usage in the OT scenario occurs during the launch of the virtual machines of
MECInOT, while in the Industry 4.0 scenario it occurs during the event associ-
ated with the building and deployment of the containers allocated in the indus-
trial network. This experiment demonstrates the viability of deploying multiple
scenarios on a system with limited computational resources.

5.5 � Cybersecurity analysis

After evaluating the performance of the emulator, a proof of concept was con-
ducted by carrying out cyberattacks in the Industry 4.0 scenario deployed. In
this case, for the proof of concept we considered all the attacks implemented and
described in Sect. 4.3. Firstly, the manipulation attack was performed, followed
by the attacks related to http frames. Then the scanning network tools were run
in the scenario, and the DoS attacks were implemented. Finally, the malicious
device injection was run to prove its functionality. Figure 8 shows the IIoT base-
line scenario designed to explain the attacks implemented in MECInOT. In this
scenario, the legitimate nodes are shown with a green background, the legiti-
mate IIoT servers are shown with a blue background, and finally the malicious
node, which will introduce the network attacks in the scenario, is shown with a
red background. The behaviour of the malicious node in the scenario varies in
accordance with the attack that is running in the scenario.

Fig. 8   IIoT baseline schema for its cybersecurity analysis

11916	 S. Ruiz‑Villafranca et al.

1 3

5.5.1 � Manipulation attack

In order to perform a successful manipulation attack, first the attacker node must
execute a Man in the Middle attack using the arpspoof tool with the aim of being
able to capture the traffic between the victim node and the destination. The manipu-
lation attack scheme is shown in Fig. 9, which illustrates how the malicious node
is allocated in the middle of the communication between the legitimate nodes and
legitimate server, and how it returns the manipulated messages to the destination. In
MECInOT the manipulation process is carried out using a Python script on the mali-
cious node, which changes the information allocated in the data field in the corre-
sponding IIoT protocol used in the communication. Figures 10 and 11 show how the

Fig. 9   Manipulation attack schema

Fig. 10   Messages sent by the writer client

Fig. 11   Modified messages received by the reader client

11917

1 3

MECInOT: a multi‑access edge computing and industrial internet…

writer client sends strings of random characters without numbers, while the reader
client receives a string of numbers from the server. This means that the attack has
been successful and the results obtained are as expected.

5.5.2 � HTTP application attacks

Figure 12 shows the schema followed to implement and run the brute force and
payload attack against HTTP services. This schema shows how the legitimate users
transmit legitimate HTTP traffic while the malicious node introduces a huge number
of HTTP frames in the brute force attack and HTTP frames that carry a payload try-
ing to exploit a possible Shellshock vulnerability allocated in the HTTP service.

The brute force attacks in MECInOT were implemented by using the Hydra
tools, which is already installed on the attacker node of MECInOT. To launch
this attack, there is a script which runs the tool with the corresponding param-
eters to indicated in the script and the dictionary used by the nmap tool, which
is in charge of the enumeration of the services and passwords. Figure 13 shows a
screen capture of the traffic sniffed to check whether the attack has been carried
out successfully against a web server with the IP address 10.0.0.1, showing how
multiple and continuous HTTP login petitions are sent to the login form.

In order to launch the Shellshock payload, a python script is used. This script
facilitates the sending of the HTTP frames with the payload to gain access to the
device with this vulnerability, whose IP address is 10.0.0.1 in the MEC topology.

Fig. 12   HTTP applications attack schema

11918	 S. Ruiz‑Villafranca et al.

1 3

Fig. 13   Traffic generated by the brute force attack

Fig. 14   HTTP frame with malicious payload in the User-Agent field

Fig. 15   Network scanning schema

11919

1 3

MECInOT: a multi‑access edge computing and industrial internet…

Figure 14 shows an example of an HTTP packet sniffed that contains the payload
in the User-Agent field.

5.5.3 � Network scanning

Network scanning allows attackers to discover active nodes and servers that are
running at that moment. Also, the attacker receives additional information from
these devices, such as the IP address, open ports or services running. Figure 15
shows the schema for running this attack in the scenarios. The malicious node
sends the scanner packets to every possible device running in the MEC-IIoT net-
work and receives the response of each legitimate node in the network.

Fig. 16   Traffic generated by network scanning

Fig. 17   DoS attack schema

11920	 S. Ruiz‑Villafranca et al.

1 3

For the scanning functionality and implementation for the attacker node in
MECInOT, a script was developed that automatises this task by using Python and
Python-nmap modules. Figure 16 shows an example of the scanning traffic gener-
ated by the script that tries to scan the services running on the MEC servers in the
scenario.

5.5.4 � DoS attacks

The DoS attacks tested in this analysis are the generic ones mentioned in Sect. 4.3,
and the schema DoS attack against a legitimate IIoT server in the scenario by a mali-
cious node is shown in Fig. 17.

To run them, a Python script that allows launching the Ping of Death attack and
the Teardrop attack with DNS packets is included. Figures 18 and 19 show the
attacks that are launched against the edge server in the MEC topology whose IP
address is 10.0.0.1. In these figures it is possible to identify the packets that are gen-
erated by the scripts, and which allow the generation malicious DoS traffic in the
scenarios.

5.5.5 � Malicious device injection

To evaluate the MQTT malicious device injection attack, the following devices are
used: an IoT gateway with a Mosquitto broker running, two IoT devices in an IIoT
topology which send temperature data to two different topics whose definitions are
’topic1’ and ’topic2’, and the malicious IoT device run by the attacker. Figure. 20

Fig. 18   Ping of Death malicious traffic

Fig. 19   Teardrop attack traffic generated

11921

1 3

MECInOT: a multi‑access edge computing and industrial internet…

shows the attack schema implemented in the scenario to run this attack with the
devices described above.

Listing 1 shows how the malicious IoT device is implemented and how the device
tries to subscribe to the # topic. If the broker only has the default configuration, the
malicious IoT device will receive all the messages on any topic handled by the bro-
ker. Figure 21 shows how the malicious device receives the message from ’topic1’
from the first IoT device and ’topic2’ from the second one.

Under these circumstances, it can be concluded that this analysis shows that the
malicious data generated in the scenario is suitable for use in the creation of new
applications using big data and ML techniques, or simply for its analysis (Fig. 21).

Fig. 20   Malicious device injection schema

Fig. 21   Messages received on other topics by malicious device

11922	 S. Ruiz‑Villafranca et al.

1 3

6 � IDS based on ML algorithms

In this section, we describe the methodology and workflow followed to develop
the IDS based on ML algorithms. In addition, we present an analysis of the results
obtained from the algorithms selected.

6.1 � Methodology

The workflow for the development and deployment of the smart IDS is shown in
Fig. 22.

Network Deployment. The OT scenario described in Sect. 5.2 is deployed for
the IDS development. The way in which the OT services are distributed in the IIoT
topology and on the MEC edge servers is shown in Fig. 23.

Data Extraction. The raw traffic data are extracted once the scenario and attacks
are running. For the collection of network data, Wireshark is used on the SCADA
node. Finally, we analyse these network data to extract features considered for the

Listing 1   Malicious MQTT
device implementation

Fig. 22   Workflow of the experimentation

11923

1 3

MECInOT: a multi‑access edge computing and industrial internet…

input of the ML models in the following steps. The features extracted from the net-
work packets are shown in Table 2.

Data Preprocessing. In this stage, the data extracted are adapted in order to
be used with the algorithms. Firstly, the raw data have to be tagged into the

Enterprise Internal Network
192.168.1.0/24

Industrial Internet
Of Things Topology

172.18.0.0/24
Scada Node
172.18.0.1S7 Industrial Node Reader

172.18.0.2

OPC UA Industrial Node
172.18.0.5

ModBus/TCP Reader Industrial Node
172.18.0.3

S7 Industrial Node Writer
172.18.0.6

Attacker Node
172.18.0.7

Multi-Access Edge
Computing Topology

10.0.0.0/12

S7 Server Node
10.0.0.1

Modbus/TCP Server Node
10.0.0.2

OPC UA Server Node
10.0.0.3

MEC NAT
10.0.0.65

ModBus/TCP Writer Industrial Node
172.18.0.4

Fig. 23   IIoT experimentation scenario

11924	 S. Ruiz‑Villafranca et al.

1 3

Ta
bl

e 
2  

F
ea

tu
re

s e
xt

ra
ct

ed
 fr

om
 th

e
ne

tw
or

k
da

ta
 e

xt
ra

ct
io

n

Fe
at

ur
e

D
es

cr
ip

tio
n

Ty
pe

Pa
ck

et
 n

um
be

r
In

di
ca

te
s t

he
 n

um
be

r o
f a

 p
ac

ke
t.

It
is

 u
se

d
as

 in
de

x
in

 th
e

da
ta

se
t

N
um

er
ic

al

Ti
m

e
Re

pr
es

en
ts

 th
e

sp
ec

ifi
c

se
co

nd
 in

 w
hi

ch
 th

e
pa

ck
et

 w
as

 c
ap

tu
re

d
du

rin
g

th
e

ex
tra

ct
io

n
N

um
er

ic
al

So
ur

ce
IP

 h
os

t s
ou

rc
e

of
 th

e
pa

ck
et

C
at

eg
or

ic
al

D
es

tin
at

io
n

IP
 h

os
t d

es
tin

at
io

n
of

 th
e

pa
ck

et
C

at
eg

or
ic

al
Pr

ot
oc

ol
Pr

ot
oc

ol
 th

at
 tr

an
sp

or
ts

 th
e

in
fo

rm
at

io
n

of
 th

e
pa

ck
et

C
at

eg
or

ic
al

sr
cP

or
t

So
ur

ce
 p

or
t u

se
d

to
 se

nd
 th

e
pa

ck
et

N
um

er
ic

al
ds

tP
or

t
D

es
tin

at
io

n
po

rt
us

ed
 to

 re
ce

iv
e

th
e

pa
ck

et
N

um
er

ic
al

Le
ng

th
To

ta
l l

en
gt

h
in

 b
yt

es
 o

f t
he

 p
ac

ke
t

N
um

er
ic

al
In

fo
A

dd
iti

on
al

 in
fo

rm
at

io
n

of
 th

e
da

ta
 th

at
 tr

an
sp

or
t t

he
 p

ac
ke

t c
ap

tu
re

d
C

at
eg

or
ic

al
tc

p_
Fl

ag
s

In
di

ca
te

s t
he

 st
at

es
 o

f t
he

 fl
ag

s o
f t

he
 T

C
P

pr
ot

oc
ol

 in
 h

ex
ad

ec
im

al
 e

nc
od

e
C

at
eg

or
ic

al
tc

p_
W

in
do

w
Si

ze
In

di
ca

te
s t

he
 si

ze
 o

f t
he

 w
in

do
w

 o
f t

he
 T

C
P

pr
ot

oc
ol

N
um

er
ic

al
D

el
ay

In
di

ca
te

s i
n

se
co

nd
s,

th
e

di
ffe

re
nc

e
in

 ti
m

e
be

tw
ee

n
tw

o
pa

ck
et

s o
f t

he
 sa

m
e

co
m

m
un

ic
at

io
n

N
um

er
ic

al
O

PC
_M

es
sa

ge
_S

iz
e

M
es

sa
ge

 le
ng

th
 o

f t
he

 O
PC

 U
A

 p
ro

to
co

l
N

um
er

ic
al

O
PC

_S
ec

.R
eq

u_
ID

In
di

ca
te

s t
he

 ID
 o

f t
he

 O
PC

 U
A

 c
om

m
un

ic
at

io
n

th
at

 re
sp

on
ds

N
um

er
ic

al
M

es
sa

ge
Ty

pe
Ty

pe
 o

f m
es

sa
ge

 in
di

ca
te

d
in

 th
e

O
PC

 U
A

 p
ro

to
co

l
C

at
eg

or
ic

al
M

es
sa

ge
_S

tri
ng

C
on

te
nt

 o
f t

he
 m

es
sa

ge
 tr

an
sp

or
te

d
in

 th
e

O
PC

 U
A

 p
ro

to
co

l
C

at
eg

or
ic

al
S7

_R
O

SC
TR

​
K

in
d

of
 d

at
a

th
at

 th
e

S7
 p

ro
to

co
l t

ra
ns

po
rts

C
at

eg
or

ic
al

S7
_D

at
a_

Le
ng

th
Si

ze
 o

f t
he

 S
7

pr
ot

oc
ol

 d
at

a
N

um
er

ic
al

S7
_F

un
ct

io
n

Fu
nc

tio
n

pe
rfo

rm
ed

 b
y

th
e

S7
 p

ac
ke

t
C

at
eg

or
ic

al
S7

_M
es

sa
ge

S7
 d

at
a

tra
ns

po
rte

d
in

 th
e

pa
ck

et
 e

nc
od

ed
 in

 b
as

e6
4

C
at

eg
or

ic
al

S7
_E

rr
or

_C
od

e
Er

ro
r c

od
e

fro
m

 S
7

pr
ot

oc
ol

 c
om

m
un

ic
at

io
n

N
um

er
ic

al
M

od
_L

en
gt

h
In

di
ca

te
s t

he
 le

ng
th

 o
f t

he
 M

od
bu

s f
ra

m
e

N
um

er
ic

al
M

od
_T

ra
ns

a_
ID

Sh
ow

s t
he

 M
od

bu
s t

ra
ns

ac
tio

n
id

N
um

er
ic

al
M

od
_F

un
ct

io
n

In
di

ca
te

s M
od

bu
s a

ct
io

n
at

 d
es

tin
at

io
n

C
at

eg
or

ic
al

M
od

_R
eq

u_
Fr

am
e

N
um

be
r o

f M
od

bu
s p

ac
ke

t t
ha

t c
or

re
sp

on
ds

 to
 th

e
re

qu
es

t
N

um
er

ic
al

M
od

_R
eq

_D
el

ay
Ti

m
e

be
tw

ee
n

M
od

bu
s r

eq
ue

sts
N

um
er

ic
al

11925

1 3

MECInOT: a multi‑access edge computing and industrial internet…

Ta
bl

e 
2  

(c
on

tin
ue

d)

Fe
at

ur
e

D
es

cr
ip

tio
n

Ty
pe

Pa
ck

et
 n

um
be

r
In

di
ca

te
s t

he
 n

um
be

r o
f a

 p
ac

ke
t.

It
is

 u
se

d
as

 in
de

x
in

 th
e

da
ta

se
t

N
um

er
ic

al

M
od

_D
at

a
M

od
bu

s m
es

sa
ge

 tr
an

sp
or

te
d

C
at

eg
or

ic
al

H
ttp

_u
se

r
Sh

ow
s t

he
 c

on
te

nt
 o

f U
se

r-A
ge

nt
 fr

om
 H

TT
P

fr
am

e
C

at
eg

or
ic

al
H

ttp
_d

at
a

Sh
ow

s t
he

 d
at

a
tra

ns
po

rte
d

in
 th

e
H

TT
P

fr
am

e
C

at
eg

or
ic

al

11926	 S. Ruiz‑Villafranca et al.

1 3

corresponding category, with the aim of enabling the models to classify them cor-
rectly. The categories tagged and the number of each one are detailed in Table 3.
Moreover, it is necessary to study them to determine which techniques to apply to
the data and which features are most relevant. For this purpose, the feature selec-
tion is performed with Extremely Random Forest [47]. In addition, some features
are combined and retaught to receive greater importance during the training of the
models.

Model Training. Once the data are ready to be used with the algorithms, namely
DT, RF, NB and SVM Linear+SGD, it is necessary to distribute the data in different
dataframes. These dataframes hold benign traffic and one type of attack or multiple
attacks. In addition, the dataframes are divided up into 70%, which uses the K-Fold
Cross-Validation technique, dividing the data into five subsets to obtain the best
model, performing an experiment per subset, while the 30% of the dataset remaining
is dedicated to the validation stage, which allows us to identify the performance of
the model when new data are introduced after the training.

Model Validation. When the training stage is finished, it is time to validate the
predictions of the final model. With the aim of evaluating whether the model cor-
rectly predicts the testing dataset, the following metrics are used: Accuracy, Preci-
sion, Recall, F1 Score and Training Time. All of these except the last one use the
information of the confusion matrix, which is constructed with the number of True
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP)
[48].

Thus, Accuracy metric score shows the percentage of predictions made correctly,
although this metric does not explain the performance of a model when a class-
imbalanced dataset is used as in our experiment. For this reason, in our analysis of
the experiment Recall, Precision and F1 Score are also included. The Recall metric
score shows the percentage that the model detects for which the packet belongs to
attacks but the classification is not correct. A high Precision metric score means
that the model does not detect many FP. The F1 Score shows the balance between
these 2 scores. The Training Time metric is also included and it shows how much
time it costs to train a model with the technique used to develop the model.

Table 3   Categories, tags associated and the number of packets for each one

Category Tag(s) Packets

Normal traffic final_clean 14634
HTTP attacks brute_http, payload_user_agent 4320
DoS attacks ping_of_death_dos, tcp_flood_dos 5533
Scanner scanner_ack, scanner_fin, scanner_tcp, scanner_udp,

scanner_xmas, scanner_null
5709

Manipulation attack manipulation 3003

11927

1 3

MECInOT: a multi‑access edge computing and industrial internet…

6.2 � Results

Table 4 shows the results for each metric and algorithm used and for each attack
considered for detection by the classification model. The analysis is divided into the
different attacks implemented and introduced into the dataset, so that the perfor-
mance of each scenario can be evaluated.

Packet manipulation attack. This type of attack is normally difficult for clas-
sifiers to detect correctly without having a good definition of the features. The
results returned by the algorithms show that the best one for detecting this attack
is RF, since it achieves a score of 96% in the metrics of Precision, Recall and
F1 Score, and 98.33% in Accuracy. However, RF has the worst result in terms
of Training Time, and, looking at the results returned by the DT algorithm, it is
possible to reduce training time without significantly sacrificing performance, as
the differences in the key metrics are around 1–2 %. In addition, when it comes
to obtaining better Precision than Recall results, NB is an attractive option, but it
has a worse F1 score than DT. Finally, the results returned by SVM Linear+SGD
are significantly worse than those of the rest of the algorithms in the study.

Table 4   Performance results for the models

Attack Algorithm Precision Recall F1 Score Accuracy Training
Time
(sec)

Packet manipulation DT 0.94 0.96 0.95 0.9791 0.0152
RF 0.96 0.96 0.96 0.9833 0.4111
GaussianNB 0.95 0.93 0.94 0.9775 0.0092
SVM Linear+SGD 0.94 0.91 0.92 0.9145 0.0181

Scanner DT 0.92 0.99 0.94 0.9992 0.0182
RF 0.92 0.99 0.94 0.9992 0.5106
GaussianNB 0.91 0.96 0.92 0.9991 0.0153
SVM Linear+SGD 0.91 0.96 0.92 0.9990 0.1564

DoS DT 1 0.97 0.98 0.9994 0.0079
RF 1 0.97 0.98 0.9994 0.2750
GaussianNB 1 0.79 0.84 0.9962 0.0088
SVM Linear+SGD 1 0.79 0.84 0.9962 0.0365

HTTP application DT 1 1 1 1 0.0079
RF 1 1 1 1 0.2750
GaussianNB 1 1 1 1 0.0088
SVM Linear+SGD 1 1 1 1 0.0136

Mixed DT 0.99 0.99 0.99 0.9993 0.0660
RF 0.99 0.99 0.99 0.9991 0.8001
GaussianNB 0.93 0.97 0.94 0.9925 0.0313
SVM Linear+SGD 0.52 0.57 0.5 0.9663 1.5971

11928	 S. Ruiz‑Villafranca et al.

1 3

Scanner attacks. For the scanners that can be run in the MEC-IIoT scenar-
ios, DT and RF return the same results for the metrics selected. Specifically,
the results are 92%, 99%, 94% and 99% for the Precision, Recall, F1 Score and
Accuracy metrics, respectively. The training time metric shows that DT is faster
than RF, and therefore it is the best algorithm to use in this case. With respect
to the NB and SVM Linear+SGD algorithms, they obtain worse results than the
algorithms mentioned above. Both NB and SVM Linear+SGD obatin the same
results, with 91% in Precision, 96% in Recall and 92% in F1 Score, with the only
difference being 0.01% in the Accuracy metric. As can be seen, the difference in
the results between DT/RF and NB/SVM Linear+SGD are not very significant.

DoS attacks. In this scenario it is possible to identify two groups of results:
the first one, with 100% in Precision, 97% in Recall, 98% in F1 Score and
99.94% in Accuracy, is the one obtained by the algorithms DT and RF. There-
fore, the best-performing one in this group, and in general, is DT as it is faster
to train than RF. Specifically, DT takes 0.0079 s to be trained, instead of the
0.2750 s that RF needs to finish the training model. The second group returns
worse results in general than the first one, with 100%, 79%, 84% and 99.62% in
the Precision, Recall, F1 Score and Accuracy metrics, respectively.

HTTP application attacks. The results for the HTTP attacks implemented in
the scenario show that all the algorithms achieve 100% in for all the metrics.
The reason for this is that the parameters considered for the models are able to
detect the attacks easily thanks to the information in the HTTP frames for pay-
load attacks, and the time delay between packets for brute force attacks. There-
fore the selection of the best algorithm should be based on another metric, such
as the resources needed to run the model or the training time of the models,
depending on the needs of each scenario in which the IDS will be implemented.
When using the training time it is possible to determine that the best algorithm
for this type of attacks is DT, with 0.0079 s.

Mixed attacks. This case is the most realistic scenario that it is possible to
find in real Industry 4.0 factories when they are under attack from multiple
attackers at the same time. Under these circumstances, the results obtained in
this experiment are crucial in order to select the algorithm to be used for the
IDS implementation. The best results are achieved by the DT and RF algo-
rithms, which obtain 99% for every metric. The main difference between them
is the training time, with a better result being achieved by the DT algorithm.
In addition, it is important to highlight the poor results returned by the SVM
Linear+SGD algorithm for the Precision, Recall and F1 Score metrics, with
these being around 50%. This is particularly curious when the Accuracy metric
shows 99.63%, which means that SVM Linear+SGD does not correctly classify
the packets and is probably grouping most of them in to a single class.

Finally, an analysis of the metrics shows that the best options for all the testing
scenarios are DT and RF, since both of them return similar results. As has been
mentioned during the analysis of each case, the main difference between the two
solutions is in the Training Time metric. This metric gives an idea of how much
time it takes to train the model with a specific parameter, and how it could scale
when the dataset size increases. Furthermore, NB produces very similar results

11929

1 3

MECInOT: a multi‑access edge computing and industrial internet…

to DT with a difference in performance of around 1-6 % in the Packet Manipu-
lation, Scanner, HTTP and Mixed attacks. However, the results obtained in the
DoS attacks are significantly worse than the DT and RF algorithms. Lastly, the
worst ML algorithm included in the analysis is SVM Linear+SGD, with a per-
formance similar to NB in the Packet Manipulation, Scanning, DoS and HTTP
attacks. However, it obtains the worst performance for the Mixed attacks and in
all cases returns the longest Training Time.

7 � Conclusion

In this work, MCEInOT, a cybersecurity-oriented emulator for the deployment of
MEC-IIoT topologies for experimentation in this context has been presented. It
provides cybersecurity researchers with different tools for carrying out network
and application attacks in any scenario deployed with the emulator, support-
ing IIoT, IoT and IT protocol-based applications. In addition, it has been shown
that our proposal can be used to extract data from network attacks made on the
network on which the experimentation scenario is deployed, and then use these
data to train different ML algorithms to be deployed as an IDS for the MEC-IIoT
topology. The experiment has allowed us to evaluate some ML algorithms for
classification purposes, namely DT, RF, NB and SVM Linear+SGD. Although
they provide quite similar performances in some situations, the DT and RF
achieve the best general results, with the training time metric showing that DT
obtains better results than RF.

8 � Future work

In this section, we describe several future projects that could improve the emulator,
as well as some lines for additional research that could derive from this experiment.

•	 Optimisation of the container images. It would be highly beneficial to
reduce the size of the containers in the scenario in order to improve the speed
and resource consumption during the deployment of the topology of the appli-
cation nodes.

•	 Unification of the emulator on a single virtual machine. In order to prop-
erly use the emulator on a single computer, it is necessary to run two virtual
machines and interconnect them using a private network. This produces an
overuse of computational and network resources that could be avoided if the
two virtual machines were joined into a single one.

•	 Extend experiments with other ML and Deep Learning (DL) techniques. In
this work, a study of 4 ML algorithms for the development of an IDS was carried
out. However, there is the option of testing additional ML techniques such as
kernel-based algorithms or boosting-tree algorithms. Even some lightweight DL
approaches could be considered for integration into MEC-IIoT environments.

11930	 S. Ruiz‑Villafranca et al.

1 3

•	 Study of implementation of the IDS in the scenario. Once it has been decided
which ML algorithm to select to implement the IDS, it is necessary to deploy it
in the scenario and study its performance when the attacks are running. There-
fore, it would be useful to analyse the possible implementations of the IDS given
the possibilities offered by the inclusion of an MEC topology in the IIoT sce-
nario. In addition, various IDS architecture proposals can be implemented, using
MEC as the principal component to control the traffic or deploy the smart IDS
on each device in order to detect possible anomalies individually.

•	 Implementing new network functionalities. MECInOT is mainly an emula-
tor oriented for use in the cybersecurity field, so it would be interesting to
implement other network functionalities such as firewalls, or topologies with
a cyberdefence architecture in mind near the implementation of a Demilitar-
iesed Zone (DMZ), in order to improve the quality and the possibilities during
experimentation.

•	 Introduction of new applications into scenarios. Thanks to the possibilities
that openLEON provides when deploying different MEC topologies, it would
be interesting to offer the option of implementing new emerging technologies
oriented to wards security and privacy. One example would be the smart con-
tracts based on blockchain to preserve the privacy and integrity of the data.

•	 Inclusion of specific attacks for the different protocols. The attacks
included and described in MECInOT are specifically designed for carrying out
generic network cyberattacks in the scenarios that the emulator can deploy.
However, it would be useful to add new types of attacks that are focused on
exploiting vulnerabilities found on OT and IoT devices or in their protocols.
In addition, these attacks should consider not only IIoT vulnerabilities but also
those associated with the services and the virtualisation functions in the MEC
paradigm [49].

Author Contributions  Sergio Ruiz-Villafranca conceived and designed the emulator and experiments,
performed the experiments, analysed the data, performed the computation work, prepared figures and
or tables, authored or reviewed drafts of the paper, and approved the final draft. Javier Carrillo-Monde-
jar conceived and designed the experiments, performed the experiments, prepared figures and or tables,
authored or reviewed drafts of the paper, and approved the final draft. Juan Manuel Castelo Gómez con-
ceived and designed the emulator, analysed the data, performed the computation work, prepared fig-
ures and or tables, authored or reviewed drafts of the paper, and approved the final draft. Jose Roldan-
Gomez analysed the data, performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work was supported by the University of Castilla-La Mancha under the predoctoral contract
PI001482 and the postdoctoral contract 2021-POST-20518, both financed by the European Social Fund
Plus (FSE+), by the JCCM under the project SBPLY/21/180501/000195, and by the Spanish Education,
Culture and Sports Ministry under grants FPU 17/03105. Also, this work is part of the R &D project
PID2021-123627OB-C52, funded by the MCIN and the European Regional Development Fund: “a way
of making Europe”.

11931

1 3

MECInOT: a multi‑access edge computing and industrial internet…

Data availability statement  The data used in this work are available in the following link: https://​data.​
mende​ley.​com/​datas​ets/​xstyj​wrc5r/​draft?a=​44053​8fd-​e139-​4e06-​8885-​10778​5f518​07.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Ethical approval  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Ivanov D, Tang C, Dolgui A, Battini D, Das A (2020) Researchers’ perspectives on industry
4.0: multi-disciplinary analysis and opportunities for operations management. Int J Product Res
201:1–24. https://​doi.​org/​10.​1080/​00207​543.​2020.​17980​35

	 2.	 Maddikunta PKR, Pham Q-V, Deepa N, Dev K, Gadekallu TR, Ruby R, Liyanage M (2022)
Industry 5.0: A survey on enabling technologies and potential applications. J Indust Inform Inte-
grat 26:100257. https://​doi.​org/​10.​1016/j.​jii.​2021.​100257

	 3.	 Xu X, Lu Y, Vogel-Heuser B, Wang L (2021) Industry 4.0 and industry 5.0-inception, concep-
tion and perception. J Manufact Syst 61:530–535. https://​doi.​org/​10.​1016/j.​jmsy.​2021.​10.​006

	 4.	 Filali A, Abouaomar A, Cherkaoui S, Kobbane A, Guizani M (2020) Multi-access edge comput-
ing: A survey. IEEE Access 8:197017–197046

	 5.	 Dhirani LL, Armstrong E, Newe T (2021) Industrial iot, cyber threats, and standards landscape:
Evaluation and roadmap. Sensors 21(11):3901

	 6.	 Iaiani M, Tugnoli A, Bonvicini S, Cozzani V (2021) Analysis of cybersecurity-related incidents
in the process industry. Reliab Eng Syst Safety 209:107485. https://​doi.​org/​10.​1016/j.​ress.​2021.​
107485

	 7.	 Shen M, Liu A, Huang G, Xiong NN, Lu H (2021) Attdc: an active and traceable trust data col-
lection scheme for industrial security in smart cities. IEEE Int Things J 8(8):6437–6453. https://​
doi.​org/​10.​1109/​JIOT.​2021.​30491​73

	 8.	 Chander B, Pal S, De D, Buyya R (2022). In: De D, Buyya R, Pal S (eds) Artificial intelligence-
based internet of things for industry 5.0. Springer, Cham, pp 3–45

	 9.	 Fiandrino C, Pizarro A, Mateo P, Andrés Ramiro C, Ludant N, Widmer J (2019) Openleon: an
end-to-end emulation platform from the edge data center to the mobile user. Comput Commun
148:17–26. https://​doi.​org/​10.​1016/j.​comcom.​2019.​08.​024

	10.	 Auliva RS, Sheu R-K, Liang D, Wang W-J (2018) Iiot testbed: A dds-based emulation tool for
industrial iot applications. In: 2018 International Conference on System Science and Engeering
(ICSSE), pp. 1–4. https://​doi.​org/​10.​1109/​ICSSE.​2018.​85200​91

	11.	 Luo G, Chen Z, Mohammed BO (2022) A systematic literature review of intrusion detection
systems in the cloud-based IoT environments. Concurr Computat Pract Exp 34(10):6822. https://​
doi.​org/​10.​1002/​cpe.​6822

	12.	 Moysis S, Zacharias G, Demetris T, George P, Marios D D (2020) Fogify: A fog computing
emulation framework. In: Proceedings of the 5th ACM/IEEE Symposium on Edge Computing.
SEC ’20. Association for Computing Machinery. New York, NY, USA

https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807
https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/00207543.2020.1798035
https://doi.org/10.1016/j.jii.2021.100257
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.ress.2021.107485
https://doi.org/10.1016/j.ress.2021.107485
https://doi.org/10.1109/JIOT.2021.3049173
https://doi.org/10.1109/JIOT.2021.3049173
https://doi.org/10.1016/j.comcom.2019.08.024
https://doi.org/10.1109/ICSSE.2018.8520091
https://doi.org/10.1002/cpe.6822
https://doi.org/10.1002/cpe.6822

11932	 S. Ruiz‑Villafranca et al.

1 3

	13.	 Coutinho A, Greve F, Prazeres C, Cardoso J (2018) Fogbed: A rapid-prototyping emulation envi-
ronment for fog computing. In: 2018 IEEE International Conference on Communications (ICC),
pp. 1–7. https://​doi.​org/​10.​1109/​ICC.​2018.​84230​03

	14.	 Rodrigues TK, Liu J, Kato N (2021) Application of cybertwin for offloading in mobile multiac-
cess edge computing for 6g networks. IEEE Int Things J 8(22):16231–16242. https://​doi.​org/​10.​
1109/​JIOT.​2021.​30953​08

	15.	 Liu J, Li Q, Cao R, Tang W, Qiu G (2020) Mininet: an extremely lightweight convolutional
neural network for real-time unsupervised monocular depth estimation. ISPRS J Photog Remote
Sens 166:255–267

	16.	 Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2014) Software-
defined networking: a comprehensive survey. Proceed IEEE 103(1):14–76

	17.	 Pham Q-V, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang W-J, Ding Z (2020) A survey of
multi-access edge computing in 5g and beyond: fundamentals, technology integration, and state-
of-the-art. IEEE Access 8:116974–117017

	18.	 Liyanage M, Porambage P, Ding AY (2018) Five driving forces of multi-access edge computing.
arXiv preprint arXiv:​1810.​00827

	19.	 Mahesh B (2020) Machine learning algorithms-a review. Int J Sci Res (IJSR) 9:381–386
	20.	 Roldán J, Boubeta-Puig J, Luis Martínez J, Ortiz G (2020) Integrating complex event processing

and machine learning: An intelligent architecture for detecting iot security attacks. Expert Syst
Appl 149:113251. https://​doi.​org/​10.​1016/j.​eswa.​2020.​113251

	21.	 Suthishni DNP, Kumar KSS (2022) A Review on Machine Learning based Security Approaches
in Intrusion Detection System. In: 2022 9th International Conference on Computing for Sustain-
able Global Development (INDIACom), pp. 341–348. https://​doi.​org/​10.​23919/​INDIA​Com54​
597.​2022.​97632​61

	22.	 Mohammed M, Khan MB, Bashier EBM (2016) Machine learning: algorithms and applications.
CRC Press

	23.	 Azuaje F, Witten IEF (2006) Witten ih, frank e: data mining: practical machine learning tools and
techniques. Biomed Eng Online 5:1–2

	24.	 Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN
Comput Sci 2(3):1–21

	25.	 Salzberg SL (1994) C45: programs for machine learning by j ross quinlan. Mach Learn 16(3):235–
240. https://​doi.​org/​10.​1007/​BF009​93309

	26.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer
P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res
12:2825–2830

	27.	 Breiman L (2001) Random forests. Mach Learn 45:5–32. https://​doi.​org/​10.​1023/A:​10109​50718​922
	28.	 John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. In: Proceed-

ings of the Eleventh Conference on Uncertainty in Artificial Intelligence. UAI’95, pp. 338–345.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

	29.	 Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:​
1609.​04747

	30.	 Mohammadi M, Rashid TA, Karim SHT, Aldalwie AHM, Tho QT, Bidaki M, Rahmani AM, Hos-
seinzadeh M (2021) A comprehensive survey and taxonomy of the svm-based intrusion detection
systems. J Net Comput Appl 178:102983. https://​doi.​org/​10.​1016/j.​jnca.​2021.​102983

	31.	 Smys S, Chen JIZ, Shakya S (2020) Survey on neural network architectures with deep learning. J
Soft Comput Parad (JSCP) 2(03):186–194

	32.	 Shwartz-Ziv R, Armon A (2022) Tabular data: deep learning is not all you need. Inform Fus 81:84–
90. https://​doi.​org/​10.​1016/j.​inffus.​2021.​11.​011

	33.	 Roveri M (2023) Is tiny deep learning the new deep learning? Computational Intelligence and data
analytics. Springer, London, pp 23–39

	34.	 Mishra B, Kertesz A (2020) The use of mqtt in m2m and iot systems: a survey. IEEE Access
8:201071–201086

	35.	 Silva D, Carvalho LI, Soares J, Sofia RC (2021) A performance analysis of internet of things net-
working protocols: evaluating mqtt, coap, opc ua. Appl Sci 11(11):4879

	36.	 Goldenberg N, Wool A (2013) Accurate modeling of modbus/tcp for intrusion detection in scada
systems. Int J Crit Infrast Protect 6(2):63–75. https://​doi.​org/​10.​1016/j.​ijcip.​2013.​05.​001

	37.	 Hui H, McLaughlin K, Sezer S (2021) Vulnerability analysis of s7 plcs: manipulating the security
mechanism. Int J Crit Infrast Protect 35:100470. https://​doi.​org/​10.​1016/j.​ijcip.​2021.​100470

https://doi.org/10.1109/ICC.2018.8423003
https://doi.org/10.1109/JIOT.2021.3095308
https://doi.org/10.1109/JIOT.2021.3095308
http://arxiv.org/abs/1810.00827
https://doi.org/10.1016/j.eswa.2020.113251
https://doi.org/10.23919/INDIACom54597.2022.9763261
https://doi.org/10.23919/INDIACom54597.2022.9763261
https://doi.org/10.1007/BF00993309
https://doi.org/10.1023/A:1010950718922
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.1016/j.jnca.2021.102983
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.ijcip.2013.05.001
https://doi.org/10.1016/j.ijcip.2021.100470

11933

1 3

MECInOT: a multi‑access edge computing and industrial internet…

	38.	 Lederer S, Müller C, Timmerer C (2012) Dynamic adaptive streaming over http dataset. In: Pro-
ceedings of the 3rd Multimedia Systems Conference, pp. 89–94

	39.	 Mary C (2015) Shellshock attack on linux systems-bash. Int Res J Eng Technol 2(8):1322–1325
	40.	 Abdollahi A, Fathi M (2020) An intrusion detection system on ping of death attacks in iot networks.

Wirel Person Commun 112(4):2057–2070
	41.	 Thomas DR, Clayton R, Beresford AR (2017) 1000 days of udp amplification ddos attacks. In: 2017

APWG Symposium on Electronic Crime Research (eCrime), pp. 79–84. IEEE
	42.	 Peuster M, Karl H, van Rossem S (2016) Medicine: Rapid prototyping of production-ready network

services in multi-pop environments. In: 2016 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN), pp. 148–153. https://​doi.​org/​10.​1109/​NFV-​SDN.​
2016.​79194​90

	43.	 Kaur K, Singh J, Ghumman NS (2014) Mininet as software defined networking testing platform. In:
International Conference on Communication, Computing & Systems (ICCCS), pp. 139–42

	44.	 Grygorash O, Zhou Y, Jorgensen Z (2006) Minimum spanning tree based clustering algorithms.
In: 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), pp.
73–81. IEEE

	45.	 Asadollahi S, Goswami B, Sameer M (2018) Ryu controller’s scalability experiment on software
defined networks. In: 2018 IEEE International Conference on Current Trends in Advanced Comput-
ing (ICCTAC), pp. 1–5. IEEE

	46.	 Gomez-Miguelez I, Garcia-Saavedra A, Sutton P, Serrano P, Cano C, Leith D (2016) srslte: an
open-source platform for lte evolution and experimentation, pp. 25–32. https://​doi.​org/​10.​1145/​
29801​59.​29801​63

	47.	 Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach learn 63(1):3–42
	48.	 Handelman GS, Kok HK, Chandra RV, Razavi AH, Huang S, Brooks M, Lee MJ, Asadi H (2019)

Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods.
Am J Roentgenol 212(1):38–43

	49.	 Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog et al.: a survey and analysis of
security threats and challenges. Future Generat Comput Syst 78:680–698. https://​doi.​org/​10.​1016/j.​
future.​2016.​11.​009

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Sergio Ruiz‑Villafranca1 · Javier Carrillo‑Mondéjar2 ·
Juan Manuel Castelo Gómez1 · José Roldán‑Gómez3

	 Javier Carrillo‑Mondéjar
	 jcarrillo@unizar.es

	 Juan Manuel Castelo Gómez
	 juanmanuel.castelo@uclm.es

	 José Roldán‑Gómez
	 roldangjose@uniovi.es

1	 University of Castilla-La Mancha, Campus Universitario s/n, Albacete 02006, Spain
2	 University of Zaragoza, Zaragoza, Spain
3	 Department of Computer Science, University of Oviedo, Gijón, Spain

https://doi.org/10.1109/NFV-SDN.2016.7919490
https://doi.org/10.1109/NFV-SDN.2016.7919490
https://doi.org/10.1145/2980159.2980163
https://doi.org/10.1145/2980159.2980163
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1016/j.future.2016.11.009

	MECInOT: a multi-access edge computing and industrial internet of things emulator for the modelling and study of cybersecurity threats
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Multi-access edge computing
	3.2 Machine learning algorithms

	4 MECInOT proposal
	4.1 Design
	4.2 MECInOT deployment methodology
	4.3 IIoT topology
	4.4 MEC topology
	4.5 MECInOT distributed deployment

	5 MECInOT evaluation
	5.1 Hardware setup
	5.2 Industrial OT scenario
	5.3 Industry 4.0IIoT scenario
	5.4 Performance analysis
	5.5 Cybersecurity analysis
	5.5.1 Manipulation attack
	5.5.2 HTTP application attacks
	5.5.3 Network scanning
	5.5.4 DoS attacks
	5.5.5 Malicious device injection

	6 IDS based on ML algorithms
	6.1 Methodology
	6.2 Results

	7 Conclusion
	8 Future work
	References

