
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:9866–9888
https://doi.org/10.1007/s11227-023-05051-3

1 3

Implementation of a motion estimation algorithm for Intel 
FPGAs using OpenCL

Manuel de Castro1 · Roberto R. Osorio2 · David L. Vilariño3 · 
Arturo Gonzalez‑Escribano1 · Diego R. Llanos1

Accepted: 9 January 2023 / Published online: 21 January 2023 
© The Author(s) 2023

Abstract
Motion Estimation is one of the main tasks behind any video encoder. It is a compu-
tationally costly task; therefore, it is usually delegated to specific or reconfigurable 
hardware, such as FPGAs. Over the years, multiple FPGA implementations have 
been developed, mainly using hardware description languages such as Verilog or 
VHDL. Since programming using hardware description languages is a complex task, 
it is desirable to use higher-level languages to develop FPGA applications.The aim 
of this work is to evaluate OpenCL, in terms of expressiveness, as a tool for devel-
oping this kind of FPGA applications. To do so, we present and evaluate a parallel 
implementation of the Block Matching Motion Estimation process using OpenCL 
for Intel FPGAs, usable and tested on an Intel Stratix 10 FPGA. The implementa-
tion efficiently processes Full HD frames completely inside the FPGA. In this work, 
we show the resource utilization when synthesizing the code on an Intel Stratix 10 
FPGA, as well as a performance comparison with multiple CPU implementations 
with varying levels of optimization and vectorization capabilities. We also compare 
the proposed OpenCL implementation, in terms of resource utilization and perfor-
mance, with estimations obtained from an equivalent VHDL implementation.

Keywords FPGA · OpenCL · Motion estimation · Video coding

1 Introduction

In recent years, there has been an increment in the generation and consumption 
of video-based media, due to the popularity of video streaming services such 
as Netflix, YouTube and HBO, and to the increment in usage of teleconferenc-
ing platforms as a consequence of the COVID-19 pandemic. Video, as a digital 
media, contains huge amounts of information, making its uncompressed usage 
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prohibitive. It is due to video compression that the multimedia revolution we are 
experiencing is possible in the first place.

Advanced video encoders make use of Motion Estimation and Compensation 
algorithms to achieve high compression rates. Motion is commonly estimated 
using a Block Matching technique, which divides a given frame image into blocks 
of pixels, and tries to find the closest match for each block within one or more 
previously encoded frames. In this way, large blocks of pixels may be encoded as 
a motion vector, a spatial reference to a matching block.

Block Matching is responsible for the highest compression gains in video cod-
ing. It is a computing-intensive task, but it is also desirable to be performed in 
real time in a multitude of scenarios. Due to the embedded or low-consumption 
nature of most of the devices that perform video coding tasks, hardware solu-
tions are more popular than programmable ones. Thus, Block Matching is usually 
implemented by means of application specific hardware, including Application 
Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), 
dedicated hardware in Graphic Computing Units (GPUs), and multimedia coproc-
essors in General Purpose Processors (GPPs).

A large number of techniques and heuristics have been proposed to reduce 
the computational load of Block Matching. Hence, modern implementations try 
to minimize the sum of absolute differences between pixels; although the more 
costly (and more accurate) sum of squared differences was originally proposed. 
In addition, the Full Search algorithm [1] gives the best results, but heuristics 
such as Diamond Search [2] greatly reduce the number of computations. Motion 
vectors can also be predicted, narrowing the search space. Finally, some papers 
propose comparing the value of only some pixels in the blocks, or even averaged 
values. All these techniques reduce the number of computations at the expense 
of reducing accuracy. As an additional step, modern video standards implement 
fractional Motion Estimation in order to further improve compression.

Video encoders often allow the accuracy level to be selected, so the user can 
prioritize either the encoding time or the compression ratio. This makes sense, 
as the encoder may work both in a real-time encoding scenario, or in an offline 
application in which content is encoded just once, but it is transmitted, stored, 
and reproduced many times.

FPGA devices are rising in popularity as accelerators in supercomputers since 
they are able to accelerate problems that other accelerators, namely SIMD ones 
such as GPUs, are not. Besides, FPGAs offer higher energy efficiency (i.e., per-
formance per watt) than CPUs and GPUs for many interesting HPC applications. 
ASICs, for their part, might offer even higher performance and energy efficiency 
for specific applications; however, they lack the flexibility of FPGAs, which 
makes them unsuitable for general-purpose computing. Nevertheless, FPGAs 
are often programmed using Hardware Description Languages (HDLs), such as 
VHDL and Verilog. These languages have high development costs, specially for 
software programmers, due to their low-level scope. To ease these costs, High 
Level Synthesis (HLS) design environments have been developed, such as Xilinx 
HLS [3], and SystemC [4]. These leverage high-level programming languages, 
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generally C-based ones, to abstract most of the low-level details and bring FPGA 
programming closer to software programming.

OpenCL [5] has also been adapted to work as an HLS environment targeting 
FPGA devices. As a framework, it uses a C-based high level language to program 
hardware accelerators. It is a choice of special interest, given the widespread adop-
tion of the framework in the HPC community to develop applications targeting het-
erogeneous systems, especially those using GPUs. OpenCL’s main focus is to enable 
code portability among different kinds of heterogeneous devices. Thus, unlike other 
HLS environments, OpenCL can be used to develop programs that target at the same 
time CPUs, GPUs, FPGAs, and other kinds of accelerators. Moreover, as OpenCL 
is already a well-known language among many members of the HPC community, its 
adoption for developing HPC applications targeting FPGAs should be more straight-
forward than using other HLS environments.

With the increasing popularity of heterogeneous systems in media centers com-
prising, among others, high-end data center FPGAs, we consider OpenCL a promis-
ing choice for implementing high-efficiency video processing applications. To the 
best of our knowledge, there is not any previous implementation of Motion Esti-
mation on FPGAs using OpenCL. More specifically, Intel offers implementations 
targeting GPUs, but none for FPGAs. This is somewhat surprising, coming from a 
company that is both an FPGA manufacturer and an earlier supporter of OpenCL.

While it is commonly assumed that leveraging accelerators using OpenCL should 
bring clear benefits to the task in terms of speed-up and/or power consumption, this 
is not always the case. Particularly, FPGAs have two very important disadvantages 
compared to GPCPUs and GPGPUs: Lower clock speed and larger power consump-
tion per computation. Engineers are able to overcome or partially compensate these 
disadvantages by exploiting the main strengths of FPGAs: Fine and coarse grain par-
allelism, and low overhead in computations. It is well known that Block Matching 
exhibits high parallelism, which FPGAs are able to exploit. In this work, we demon-
strate that OpenCL is well suited to detect and exploit the existing parallelism. On 
top of that, OpenCL offers flexibility and ease of programming, which is crucial to 
achieve the level of productivity required for the development of modern systems.

In our research, we target the acceleration of Motion Estimation on FPGAs. With 
the large number of possible implementations, we plan to reduce the development 
cost by using OpenCL. In this paper, we have tackled the most straightforward 
implementation, Full Search, as well as a preliminary implementation of Diamond 
Search. We have assessed the capabilities of OpenCL to describe and synthesize 
fully parallel architectures.

The main goal of this work is to test the expressiveness of OpenCL as a design 
language for Block Matching Motion Estimation and other similar applications, 
assessing the quality of the implementation and comparing it to hand-optimized 
ones. To contribute to open science, the source codes and compilation reports gener-
ated during the development of this work are freely available on the following repos-
itory: https:// gitlab. com/ mande ca/ me_ opencl.

The rest of the paper is organized as follows. Section 2 discusses related work 
on the field of Motion Estimation implementations for FPGAs; Sect.  3 describes 
the Block Matching Motion Estimation process; Sect.  4 describes the framework 

https://gitlab.com/mandeca/me_opencl
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used to develop the solution (OpenCL for Intel FPGAs); Sect. 5 details the develop-
ment process of our proposal, and the features of the different versions developed; 
Sect. 6 evaluates our proposals and OpenCL as a tool for developing video process-
ing applications targeting FPGAs; and lastly, sect. 7 discusses the conclusions and 
future work.

2  Related work

Block Matching Motion Estimation is the cornerstone in most advanced video 
encoders. It is a task that involves high amounts of computation, even when the 
search of similar blocks is restricted to the closest vicinity. It is the most expensive 
task in video coding, in terms of computation time.

For this reason, research works have sought for fast and efficient architectures 
to accomplish this task [6]. Beyond the basic Full Search algorithm, several alter-
natives have been proposed [7–9] that achieve great computational savings at the 
cost of only a small loss in accuracy. Also, architectures able to deal with variable 
block sizes [10] and fractional pixel interpolation [11] allow data compression to be 
maximized.

The use of FPGAs as accelerators in video encoding is of great interest. FPGA-
specific implementations take advantage of the availability of embedded memories, 
which allow for fast access to internally cached data [12, 13].

The advent of high-level hardware synthesis languages, such as OpenCL, opens 
a new era in the implementation of custom architectures. Previous work discussing 
OpenCL as a framework for developing FPGA applications and its benefits includes 
[14–16].

While some works have been published about implementing Block Matching 
using OpenCL, proving its validity to accelerate the task, the targeted platforms are 
either CPUs or GPUs [17–20], as FPGAs are still programmed using HDLs or other 
HLSs. To the best of our knowledge, no OpenCL implementation that also targets 
FPGAs has been previously published, and Xilinx HLS is the highest level language 
for which Block Matching architectures have been published.

In [21], an architecture for Motion Estimation that is not FPGA oriented is pro-
posed, and implements Diamond Search. In [22], an FPGA-based programmable 
processor with multiple processing units oriented to H.264 video coding is pro-
posed. They both have in common that parallel processing is achieved by means of 
multiple parallel memories.

Finally, in [23] a highly parallel architecture for Motion Estimation in H.265 is 
proposed. There are some interesting similarities with our work. First, data access 
is achieved by implementing sets of 64 parallely-accessed memory blocks, as 
many as pixels in an 8 × 8 block. Second, results for a FPGA implementation are 
given that concur with the ones obtained in our work. Chiefly, the combined area 
of Motion Vector generator and cost estimator is less than 34% of the available 
LUTs (in an old Arria II device), which is significantly less than the 52% required 
by the interpolator. Therefore, as in our work, implementing a highly parallel 
architecture for Motion Estimation is the way to achieve high processing speed, 



9870 M. de Castro et al.

1 3

and it is not limited by resource utilization. The speed in the referenced paper is 
limited to 200 MHz but, again, this is due to using an old device. However, this 
work is different from our contribution in many important aspects. First, unlike 
our work, the referenced paper is not restricted to full-pixel Motion Estimation, 
but also implements fractional-pixel Motion Estimation by means of interpola-
tion. Second, full-pixel Motion Estimation is computed for 8 × 8 pixel blocks, and 
Sum of Absolute Differences results for 16 × 16 and larger blocks are obtained by 
adding up results for 8 × 8 blocks. In our work, Motion Estimation is computed 
for 16 × 16 blocks directly. Finally, it has been implemented using VHDL, instead 
of a high level language as we do.

3  Block matching motion estimation

Motion Estimation (ME) is a process by which the motion vectors that describe 
changes among different video frames are determined. In video coding, Block 
Matching Motion Estimation is used to compress video files by reducing temporal 
redundancies, and has been used since the inception of video encoders. It is the main 
component of inter-frame prediction, and provides the highest compression gains in 
any video standard, such as AVC or HEVC. Nevertheless, it is also the most com-
putationally costly task performed in video coding, corresponding to more than half 
the computation time of the whole process.

ME divides the current encoding frame into non-overlapped small blocks, called 
macroblocks. The size of the macroblocks can be variable and irregular, but 16 × 16 
is a usual choice in classic encoders. ME is applied over all the macroblocks in the 
frame, attempting to find for each one of them the most similar macroblock among a 
set of candidates from a reference frame (a previously encoded frame). Thus, blocks 
of pixels can be represented in the encoded video as a motion vector representing 
the movement of the similar macroblock, the index of the reference frame in which 
the similar macroblock is found, and the prediction error to reconstruct the original 
macroblock.

The set of candidate macroblocks to be checked is determined by a search area 
and a search method. The search area is usually restricted to the vicinity of the rela-
tive position of the macroblock, but in the reference frame. Figure 1 shows the sub-
division of frames into macroblocks, and an example of the search area for a given 
macroblock. Inside the search area, the candidate macroblocks are overlapped, i.e., 
any block of pixels inside the search area that has the same dimensions as the mac-
roblock to be encoded is a valid candidate.

To determine the most similar macroblock among the candidates, similarity crite-
ria are used, such as Sum of Absolute Differences (SAD) and Sum of Squared Error 
(SSE), between the macroblock to be encoded and the candidates. SAD is the most 
commonly used option in video encoders due to its low computational complexity, 
even though SSE is more accurate. It is computed as shown in Eq. 1, where w and h 
are the width and height of the macroblock, respectively, Ref is the candidate mac-
roblock, and Cur is the current macroblock.
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As can be seen, the SAD for a candidate macroblock is computed from multi-
ple independent subtractions. Given the high amount of candidate blocks that can 
be processed per macroblock, and the high amount of macroblocks to process per 
frame, ME offers great optimization opportunities through parallel implementations. 
At the same time, while the computation of each candidate might be independent 
too, the accessed data are partially overlapped, allowing for techniques that exploit 
locality to increase throughput.

Concerning the search method used to determine which candidates in the search 
area should be computed, there are multiple choices. Full Search [1] computes 
every possible candidate, always finding the optimal solution. Figure  2 illustrates 
how Full Search could be performed for a given macroblock and its correspond-
ing search area. However, Full Search is not a viable option in real-time encoding 
scenarios. Other methods use heuristics to reduce considerably the amount of can-
didates computed to accelerate the task, allowing for suboptimal solutions. These 
include, among others, Three Step Search [24], New Three Step Search [25], Four 
Step Search [26], Block-Based Gradient Descent Search [27], Diamond Search [9], 
Hexagon Search [28], and Test Zone Search [29].

4  OpenCL for Intel FPGAs

Our proposed implementation is developed using OpenCL for Intel FPGAs. This 
section introduces OpenCL and the OpenCL for Intel FPGAs framework.

(1)SAD =

w−1∑

j=0

h−1∑

i=0

|Refi,j − Acti,j|

Fig. 1  Division of a frame into macroblocks, and search area corresponding to a given macroblock
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4.1  OpenCL standard

OpenCL [5] is an open standard for parallel programming in heterogeneous systems. 
Its main aim is to allow the user to write portable parallel programs among different 
kinds of computing systems such as CPUs, GPUs, and other accelerators, with mini-
mal-to-no changes in the source code targeting different systems. Thus, all available 
resources in the system can be exploited to achieve high performance.

The OpenCL programming model differentiates between host and devices, both 
at an application level and at a system resources level. The host is the CPU that 
executes the main part of the program and coordinates the devices, whereas the 
devices are the computational units of the systems, such as CPUs, GPUs, FPGAs, 
or other accelerators, which are intended to execute and accelerate computationally-
intensive parts of the program. Device-executed code is written as kernel functions 
using OpenCL C language (a C99 dialect). The host code is commonly written in C 
or C++, although it can also be written in other languages such as Python. Figure 3 
shows the interactions between host and devices during a common OpenCL pro-
gram execution.

4.2  OpenCL for Intel FPGAs

Included in Intel’s oneAPI suite is the Intel FPGA SDK for OpenCL (which we refer 
to in this work as “OpenCL for FPGAs”). This framework allows the compilation of 
OpenCL kernels into Intel FPGA bitstreams, being compliant with the OpenCL 1.0 
standard. Since the compilation times for FPGA applications are very high, OpenCL 
for Intel FPGAs only allows for the offline compilation of kernels (i.e., not in execu-
tion time, as regular OpenCL programs usually do). To ease the debugging process, 

Fig. 2  Computation of the similarity between a macroblock and all the candidates in a search area. The 
similarity value is the sum of the absolute values of the 256 computed subtractions (the lower, the more 
similar)



9873

1 3

Implementation of a motion estimation algorithm for Intel…

it also provides FPGA emulation capabilities. Thus, an emulation kernel can be 
compiled in seconds and executed on CPU to check its correctness.

During the compilation process of an Intel FPGA kernel, the compiler generates a 
compilation report. This contains useful information regarding the FPGA bitstream 
being generated, such as the working frequency of the design, the amount of FPGA 
resources used, loop performance analysis, memory hierarchy usage, and design 
schematics.

OpenCL for Intel FPGAs allows fine-tuning of the kernels via preprocessor direc-
tives (C pragmas) and compilation flags. The user can control, for example, how the 
kernel’s loops are pipelined or unrolled, in which type of memory the arrays should 
be allocated, or the amount of vector lanes to use.

5  Our proposal

In this section, we describe the methodology followed when developing our pro-
posal, as well as the features of the final versions.

5.1  Development process

We decided to develop the kernels in an incremental manner, analyzing how 
OpenCL implements each small feature of the algorithm before adding anything 
else. During such analysis, we compile the same kernel several times, tweaking 
certain parameters and compare the resulting compilation reports. The compilation 
reports generated by HLS frameworks usually present good theoretical performance 
evaluations, which can be used instead of more costly, experimental studies to make 
comparisons between different kernel versions, which are more appropriate for near-
production kernel versions. Nevertheless, Intel’s reports do not provide an estimate 
for the design’s latency. When provided, this metric is useful to evaluate a kernel’s 

Fig. 3  Different executable components of an OpenCL application and their interactions
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performance in an absolute, end-user friendly way, as it can be used alongside the 
reported working frequency to estimate the kernel’s execution time. In this work, the 
main theoretical results used to evaluate a kernel’s quality were the design’s working 
frequency, the memory type used to implement the buffers, the resource utilization, 
and the loop performance analysis.

We decided from the beginning to develop a kernel targeting the Intel Stratix 
10 FPGA, a data center FPGA model. Being a data center FPGA, the high amount 
of resources it contains is suitable for developing complex, resource-consuming 
OpenCL kernels without compromising their performance. Among all the existent 
data center FPGA models, the Stratix 10 model was chosen because it is a state-of-
the-art FPGA device. One downside choosing a data center FPGA poses is that the 
FPGA and proposed designs will not be applicable to low-consumption and embed-
ded computing scenarios. In those cases, other FPGA models, including those of 
other vendors such as Xilinx, may be more suitable, together with smaller-footprint 
designs.

We used the naäve C implementation found at [30] as baseline, and decided 
that our proposal would work with 16 × 16 pixel macroblocks, and 46 × 46 pixel 
search areas. The first kernel we developed only performed the SAD operation on 
the FPGA. Being a small kernel, it allowed us to delve into all the characterization 
parameters that OpenCL for Intel FPGAs present, in order to tweak the kernels. The 
second kernel we developed processed individual macroblocks, with all their 961 
Full Search candidates, on the FPGA. The design that Intel’s compiler returned for 
both kernels seemed reasonable enough, resembling what a low-level manual imple-
mentation could look like (with additional circuitry for internal OpenCL logic). 
After this, the development of a full-frame-processing kernel started.

5.2  Final full search versions

Two Block Matching implementations using Full Search have been implemented 
as OpenCL kernels targeting Intel FPGAs. Both versions work with Full HD video 
frames ( 1 920 × 1 080 pixels), a luminance component only (as it is often done in 
other works in the field), fully inside the FPGA. The macroblock size is 16 × 16 pix-
els, and the search area is 46 × 46 pixels, for a total of 961 candidate macroblocks 
computed per macroblock. The frames are extended 8 pixels in height by duplicating 
the pixels on the last line 8 times, to allow for an exact division of the frame in mac-
roblocks. Each frame contains exactly 8 160 macroblocks, which results in 7 344 000 
motion vectors computed per frame.

Both kernels receive, as parameters, pointers to the current and reference frames, 
and three pointers to store the kernel results: The minimum SAD found for each 
macroblock, the x component of the motion vectors corresponding to the minimum 
SAD, and the y component of the motion vectors corresponding to the minimum 
SAD.

All buffers of pixels, including current and reference frames, macroblock and 
search area, are represented using one-dimensional arrays of bytes. Each pixel is 
represented by a single unsigned byte, which encodes the brightness of the pixel; 
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i.e., 0 represents a fully black pixel, whereas 255 represents a fully white pixel. 
Color information is discarded, as it is not very useful for performing Motion Esti-
mation. The bigger buffers, corresponding to both frames, are stored in global FPGA 
memory (DDR4), and the smaller buffers, macroblock and search area, are stored in 
faster internal FPGA memory.

Our proposal is able to achieve a high acceleration by exploiting two main tech-
niques which complement each other:

• Memory hierarchy exploitation. Local OpenCL memory, which is synthesized 
as internal FPGA memory, presents a data throughput which is orders of magni-
tude faster than global memory. By preloading highly reused data in local mem-
ory before the computation, the performance of our proposal is considerably 
increased. Specifically, the current macroblock and search area are allocated in 
internal memory. The current macroblock, which is 256 bytes in size, is imple-
mented using 128 MLAB registers. The current search area, which is 2 116 bytes 
in size, is implemented using 2 internal M10K SRAMs. However, this buffer is 
replicated 256 times to allow 256 concurrent accesses, which results in a total 
usage of 512 M10Ks to allocate the current search area.

• Sum of Absolute Differences parallelization. The SAD operation, which is the 
computational cornerstone of Block Matching Motion Estimation, consists of 
multiple independent operations: as many as pixels for the chosen macroblock 
size. In our implementation, the amount of operations is 256, although this num-
ber can vary, usually between 16 and 4096. By unrolling the main loop of the 
SAD operation, these computations can be parallelized. The degree of paralleli-
zation is dependent on the amount of resources available in the FPGA, as well as 
memory throughput. In the case of our target FPGA, the amount of resources is 
more than enough to fully parallelize the 256 operations.

By exploiting both techniques simultaneously, our proposal is able to compute 1 
SAD operation per clock cycle: the internal memory feeds the computational logic 
256 bytes (pixels) per clock cycle; and the computational logic computes the 256 
SAD subtractions fully in parallel, in a single clock cycle. Consequently, the compu-
tation of a macroblock can be carried out in as few clock cycles as candidate mac-
roblocks are in the corresponding search area. Thus, the bottleneck for the imple-
mentation shifts from the computation to the preloading of the data in the internal 
FPGA memory buffers (macroblock and search area).

Our kernels are highly parallel, thus requiring a relatively high amount of FPGA 
resources to synthesize all the parallel computation logic. The computation logic 
is replicated as many times as needed to achieve the specified degree of parallel-
ism. Our target FPGA, the Intel Stratix 10, is a data center FPGA containing a high 
amount of resources, so that we could design our kernels without worrying about 
resource limitations. When targeting smaller FPGAs, it is advisable to reduce the 
degree of parallelism to adapt the kernel to the reduced amount of resources, at the 
expense of higher computation latencies.

The kernel dataflow is as follows: (1) The current macroblock is loaded from 
the current frame, residing in global memory, to internal MLAB registers; (2) the 
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corresponding search area is loaded from the reference frame, residing in global 
memory, to internal M10K SRAM; (3)  for each of the 961 candidates in the 
search area, the SAD is computed, and the minimum SAD and corresponding 
motion vector is stored in the result buffers; and (4) the next iteration begins, pro-
cessing the next macroblock. This dataflow is depicted in Fig. 4.

The two versions developed differ in the way they handle border and corner 
macroblocks. These macroblocks pose additional problems as their correspond-
ing search areas cannot be of regular size due to a lack of pixels in some of the 
directions. Our kernels deal with that problem as follows:

Fig. 4  Dataflow of the developed full search block matching motion estimation kernels
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• The first kernel adds logic to detect border macroblocks and adjust the search 
area accordingly, computing only the valid candidates. This version computes 
fewer candidates per frame on average.

• The second version works with extended frames, 15 pixels in each border, so that 
all the macroblocks have a complete search area to work with. This resembles the 
way certain video encoders, such as AVC, work. This version presents less com-
plex logic.

5.3  Preliminary diamond search version

The high amount of computation needed to perform a Full Search makes it prohibi-
tive for real-time encoding scenarios without heavy hardware acceleration. Most 
encoders use other search methods, based on heuristics, to reduce the amount of 
candidate macroblocks computed. One such method is Diamond Search [2]. We 
have developed a preliminary version of a Block Matching kernel using Diamond 
Search to test the suitability of OpenCL for developing real-time video processing 
applications for FPGAs.

The preliminary Diamond Search version developed is similar to the Full 
Search version that works with extended frames, only modifying the search 
method to use the algorithm described in [9]. Although the amount of candidates 
checked per macroblock decreases by approximately a factor of 30 with respect 
to the Full Search, this preliminary implementation did not meet our performance 
expectations. Section 6.2 further discusses these issues.

6  Evaluation

In this section, we evaluate the developed kernels in terms of resource utilization 
and performance.

To the best of our knowledge, our proposal is the first implementation of Block 
Matching Motion Estimation that uses OpenCL and targets FPGAs. Thus, we pro-
vide a performance comparison with an equivalent CPU implementation, executed 
with varying degrees of optimization in current-generation CPUs.

We also consider of much interest to evaluate OpenCL-based FPGA implemen-
tations of Block Matching Motion Estimation against optimized, low-level HDL 
implementations. For that purpose, we have developed a VHDL implementation of 
the algorithm. We provide resource utilization and performance comparisons with 
this HDL design. The VHDL design is compiled using Quartus Prime Standard 
Edition v16 when targeting Intel FPGAs, and Vivado 2020 when targeting Xilinx 
FPGAs.

The developed VHDL architecture targets to exploit as much parallelism as the 
automatically generated by OpenCL. However, it is difficult for a human engineer 
to create and test such a complex memory architecture. Therefore, a simpler, highly 
regular solution has been selected. A systolic array has been devised for storing 
and shifting the pixels from the current macroblock and search area. Systolic arrays 
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have been used for many years for implementing highly parallel application spe-
cific architectures [31], and recent examples for Motion Estimation can be found in 
the literature [32]. However, we have not found any published paper that manages 
16 × 16 macroblocks as we do. Nevertheless, systolic architectures are highly scal-
able. Therefore, the architecture described in [32] is similar to our VHDL architec-
ture, with the consideration that the cost of a 16 × 16 implementation is roughly 16 
times the cost of a 4 × 4 one.

We conclude this section by providing a brief evaluation of OpenCL as a tool for 
developing video processing applications targeting FPGAs.

6.1  Resource utilization

The resource utilization for our Full Search implementations, as reported by Intel’s 
compiler, is shown in Tables 1 and 2, both in relative and absolute terms. The FPGA 
system generated by the compiler from the kernel source files comprises the follow-
ing parts:

• Kernel system, which comprises the hardware designs for all the compiled 
OpenCL kernels, the interconnect with global memory, and the system descrip-
tion ROM.

• Static partition, which comprises the board interface and OpenCL API logic. 
This is the logic responsible for managing communications with external inter-
faces, such as PCIe. This logic is necessary to perform communications with the 
host system, and cannot be modified by the user.

Table 1  Stratix 10 resource utilization for the kernel that adds logic to detect border macroblocks, as 
reported by Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system 247 311 (27%) 433 503 (12%) 783 (1%) 1 198 (10%) 3 (0%)
Kernel system 52 468.9 (6%) 149 222 (4%) 783 (1%) 767 (7%) 5 (0%)
ME kernel logic 41 116.1 (4%) 115 539 (3%) 779 (1%) 587 (5%) 5 (0%)
ME kernel logic(estimated) 24 122 (3%) 92 840 (2%) 1 294 (1%) 678 (6%) 2.5 (0%)
Available 933 120 3 732 480 93 312 11 721 5 760

Table 2  Stratix 10 resource utilization for the kernel that works with extended frames, as reported by 
Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system 244 913 (26%) 421 377 (11%) 990 (1%) 1 187 (10%) 0 (0%)
Kernel system 50 536 (5%) 137 020 (4%) 990 (1%) 756 (6%) 0 (0%)
ME kernel logic 39 163.3 (4%) 102 273 (3%) 986 (1%) 576 (5%) 0 (0%)
ME kernel logic (estimated) 20 922.5 (2%) 72 446 (2%) 1 440 (2%) 663 (6%) 0 (0%)
Available 933 120 3 732 480 93 312 11 721 5 760
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The static partition uses a considerable amount of the FPGA resources. It is respon-
sible for the overhead seen in Tables 1 and 2 when comparing the Whole system row 
with the Kernel system row. The third row shows the total resources dedicated to the 
kernel logic only. The fourth row shows the estimates for resources dedicated to the 
kernel logic only, which are provided by the compiler before the beginning of the 
bitstream generation step.

Tables 1 and 2 show that the amount of resources used by our implementations 
is relatively low. In both cases, the complete system uses around a quarter of the 
FPGAs’ resources, whereas the kernel alone uses only around 5% of any resource. 
In absolute terms, the resource utilization is high, especially if it is compared to the 
amount of resources an embedded FPGA usually has. It also shows that, for the ker-
nel logic, the compiler tends to overestimate the amount of MLABs and RAMs the 
final design will use, as well as underestimate the amount of ALMs and REGs.

To put these results into perspective, we have gathered resource utilization esti-
mates for the developed VHDL implementation. However, the synthesis tools used 
to generate the estimations did not allow us to target the Stratix 10 FPGA. Among 
the available device choices, we chose to generate estimations for the Intel Arria 
10 FPGA and the Xilinx Virtex UltraScale+ FPGA. The Arria 10 family has been 
chosen as it is a current-generation Intel FPGA family which targets scenarios with 
low-and-medium performance requirements, being the Stratix 10 family the high-
end alternative targeting more demanding scenarios. The Virtex UltraScale+ family 
has been chosen as it is another current-generation high-end FPGA targeting data 
center applications, with a performance comparable to that of the Stratix 10. The 
resource utilization estimates for the VHDL kernel are shown in Tables  3 and  4. 
It is worth noting that Xilinx and Intel use different names to refer to equivalent 
FPGA resources. For readability and ease-of-comparison reasons, Table 4 displays 
the resource estimates using Intel’s resource names, and following this conversion: 2 
Xilinx LUTs equal 1 Intel ALM, and 1 Xilinx FF equals 1 Intel REG.

To further analyze the effects OpenCL has over the resource utilization of a given 
FPGA design, we provide on Table 5 the resource utilization estimates for one of 
the OpenCL kernels when compiled for an Arria 10 FPGA. Only the resource esti-
mates for the kernel version that works with extended frames are provided, since the 
VHDL implementation more closely resembles that particular version.

The first noticeable difference is that the VHDL kernels only use ALM and REG 
resources. When comparing the resource utilization results for Arria 10 FPGAs 
(Tables 3 and 5), we can see that using OpenCL generates a design that uses 1.35× 
the ALMs and 1.94× the REGs of the VHDL implementation. These, in terms of 
total FPGA resources, account for 1% more ALMs and 1.5% more REGs. In the 
case of the resource utilization results for data center FPGAs (Tables 2 and 4), for a 
fair comparison we will only use the compiler estimated resources for the Stratix 10 
FPGA, and not the real ones. We can see that using OpenCL generates a design that 
uses 1.85× the ALMs and 2.87× the REGs of the VHDL implementation. These, 
in terms of total Stratix 10 resources, account for 1% more ALMs and 1.26% more 
REGs. It is worth noting that the VHDL design uses a systolic array to implement 
the macroblock and search area buffers and the OpenCL kernel does not. This 
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discrepancy might account for part of the reduction in the amount of REGs utilized 
by the VHDL design. However, we consider this comparison to be fair, as we tried 
to develop an equivalent OpenCL kernel that used a systolic array, but the compiler 
was unable to infer the systolic array in a similar manner to the VHDL design.

6.2  Performance

6.2.1  Experimental study against a CPU reference

The compilation reports generated by Intel’s compiler do not provide an estimate for 
the kernel’s latency, as other HLS frameworks do. Thus, we cannot provide a reli-
able evaluation of our proposal’s performance from a theoretical-only point of view. 
It is necessary to execute the kernels to measure their performance.

Before executing the different kernel versions, however, it is still useful to 
analyze and compare them using their respective working frequencies. Table  6 
shows the working frequencies of our Full Search kernels. The kernel version 
that adds logic to detect border macroblocks has a lower working frequency. This 
might result in a lower performance compared to the other kernel, even though it 

Table 3  Arria 10 GX 1150 resource utilization estimates for a VHDL implementation of Block Matching 
Motion Estimation

Intel Arria 10 ALMs REGs

ME kernel logic(estimated) 13 165 (3%) 25 235 (1.5%)
Available 427 200 1 708 000

Table 4  Virtex UltraScale+ VU13P resource utilization estimates for a VHDL implementation of Block 
Matching Motion Estimation. Data has been transformed to the equivalent Intel FPGA resources

Xilinx Virtex UltraScale+ ALMs REGs

ME kernel logic (estimated) 11 308.5 (1.31%) 25 250 (0.73%)
Available 864 000 3 456 000

Table 5  Estimated Arria 10 resource utilization for the kernel that works with extended frames, as 
reported by Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system(estimated) 109 233 (25%) 410 662 (24%) 1 448 (2%) 766 (28%) 123 (8%)
Kernel syste (estimated) 19 258 (5%) 52 090 (3%) 1 448 (2%) 274 (10%) 0 (0%)
ME kernel logic(estimated) 17 818 (4%) 48 831 (3%) 1 448 (2%) 211 (10%) 0 (0%)
Available 427 200 1 708 800 42 720 2 713 1 518
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computes fewer candidates per macroblock on average. Nevertheless, the working 
frequency alone is not enough to assert such hypothesis.

An experimental study has been conducted to test the performance of our pro-
posals, including both Full Search kernels and the preliminary Diamond Search 
kernel. A reference CPU implementation has been developed to make perfor-
mance comparisons. This implementation is compiled with varying levels of opti-
mization and vectorization capabilities. The experimentation consists in repeat-
edly performing Motion Estimations over two luminance-only Full HD frames 
(8 160 macroblocks each, 16 320 different macroblocks in total). Both frames are 
read from a file as raw, one-dimensional arrays of bytes, and sent to the FPGA 
using OpenCL API. Each iteration, the current and reference frames are swapped. 
The execution time for 1 000 iterations was noted. The experimentation was con-
ducted in the Intel DevCloud platform, which comprises nodes with Stratix 10 
FPGAs, and Intel Xeon Platinum 8256 CPUs. The platform’s CPUs operate at 
3.80 GHz.

The different implementations compared in our study are: 

1. the CPU reference version, compiled with -O2 optimization level and no vectori-
zation,

2. the CPU reference version, compiled with -O2 optimization level and MMX 
vectorization (8 byte vector registers),

3. the CPU reference version, compiled with -O2 optimization level and SSE vec-
torization (16 byte vector registers),

4. the CPU reference version, compiled with -O3 optimization level and SSE vec-
torization (16 byte vector registers),

5. the FPGA version that adds border detection logic,
6. the FPGA version that works with extended frames, and
7. the preliminary Diamond Search FPGA version.

All the experimental scenarios involving an FPGA device were executed both in a 
CPU using the emulation mode, and in a real Stratix 10 FPGA.

The experimentation results are shown in Table 7. For Full Search, it can be 
seen that the version that works with extended frames achieves a slightly higher 
performance than the version that adds border detection logic. Both achieve a 
performance similar to that of the CPU reference compiled with -O3 optimiza-
tion level. However, the energy consumption of the FPGA implementations is 
expected to be significantly lower. This expectation is supported by the fact that 

Table 6  Working frequency for the versions of Block Matching Motion Estimation using Full Search, as 
developed by Intel’s compiler (aoc)

Frequency

Version with additional logic for border detection 308.00 MHz
Version that works with extended frames 316.00 MHz
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the working frequency of the CPU (3.80 GHz) is more than 12 times higher than 
that of the FPGA designs (308 and 316 MHz).

For Diamond Search, however, the results differ from the expected ones. When 
compared to Full Search, a speedup of around 30× would be expected, since the 
amount of candidate blocks computed has been reduced by around 30× on average. 
However, a speedup of only approximately 1.15× is obtained. Moreover, emulating 
the Diamond Search kernel achieves a higher performance than executing it on a 
real FPGA, which is unusual. If we compare only the times obtained in the emu-
lation executions, the Diamond Search version achieves a speedup of 25.53× with 
respect to the Full Search one. This is much closer to the expected 30× speedup. 
Such unusual behavior might indicate that the memory accesses have become the 
bottleneck for the Diamond Search version, and that our preliminary kernel uses 
memory access patterns that are inefficient for FPGA architectures. Whether this is 
a problem derived from using OpenCL, or just from an unoptimized code, is yet to 
be determined.

6.2.2  Theoretical comparison against an HDL implementation using performance 
estimations

Experimentally comparing OpenCL kernels with their corresponding HDL imple-
mentations requires not only to develop the HDL version of the kernel, but also to 
implement the communication interface with the host (e.g., PCIe hardware pro-
tocol). The latter is an enormous task that would require an extensive knowledge 
of PCIe, the transceivers in the FPGA, and even licensing protected technology. 
Regarding a theoretical-only comparison, using Intel’s compiler we do not have 
access to kernel latency data similar to that HDL synthesis tools, as well as other 
HLS synthesis tools, usually provide.

Since we consider of much interest to provide comparisons with HDL imple-
mentations, what we have done is to compare the measured data for the OpenCL 

Table 7  Performance comparison between the FPGA kernels developed and the CPU reference compiled 
with varying levels of optimization

Version Milliseconds/frame Frames per second (fps)

CPU
Sequential reference (–O2) 1627.39 0.614
–O2 + MMX 145.31 6.882
–O2 + SSE 126.64 7.896
–O3 (autovectorized with SSE) 89.49 11.174
FPGA

Emulation(CPU) Real FPGA Emulation (CPU) Real FPGA
Full search—With logic for border 

detection
1931.10 90.12 0.518 11.096

Full search—With extended frames 1796.92 88.43 0.557 11.309
Diamond Search (preliminary) 70.38 77.34 14.209 12.930
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kernels with estimated execution times from theoretical metrics of the equivalent 
VHDL design. This comparison is suboptimal, but nonetheless it provides addi-
tional insight about the behavior of OpenCL compared to HDL implementations.

We can estimate the VHDL implementation’s execution time from its latency 
and frequency. As it is the case with OpenCL for Intel FPGAs, the frequency 
is reported by the VHDL synthesis tools used. The VHDL synthesis tools used 
only allow targeting certain FPGA devices for compilation and performance 
estimations. Among the available options, we chose to target Intel Arria 10 
FPGAs (which are less powerful than Intel Stratix 10 FPGAs), and Xilinx Vir-
tex UltraScale+ FPGAs (which are data center FPGAs of similar performance to 
Intel Stratix 10 FPGAs). The reported frequencies are shown in Table 8. Regard-
ing the latency, we estimate it as follows. The implementation loads 4-byte words 
into the systolic array each clock cycle. Thus, it completely fills the systolic array 
in (16 ⋅ 16 + 46 ⋅ 46)∕4 = 616 cycles. After that, it computes one macroblock 
candidate per clock cycle, taking a total of 31 ⋅ 31 = 961 cycles to compute all 
candidates for one macroblock. That means that each macroblock is processed in 
616 + 961 = 1 577 cycles, and a whole Full HD frame in 8 160 ⋅ 1 577 = 12 868 320 
cycles.

Table  9 shows the estimated performance the VHDL implementation would 
achieve when executed in the chosen FPGAs, assuming a memory throughput high 
enough that the architecture never stalls. As it can be seen, the VHDL design would 
theoretically achieve more that 2× , on an Arria 10, and 3× , on a Virtex UltraScale+, 
the performance of the equivalent OpenCL kernel on a Stratix 10. It is worth noting 
that Arria 10 FPGAs are current-generation less-powerful alternatives to Stratix 10 
FPGAs, and it is expected that the execution of the VHDL design on a Stratix 10 
would achieve even higher performances.

If the VHDL design were executed in an FPGA with a working frequency 
of 316 MHz, the same achieved by the equivalent OpenCL kernel, we estimate it 
could achieve a performance of 40.72 milliseconds per frame, or 24.556 fps. This is 
slightly more than 2× the performance noted for the OpenCL kernel. The difference 

Table 8  Working frequency for a VHDL implementation of Block Matching Motion Estimation using 
Full Search, when synthesized for 2 different FPGA families

Target device Frequency

Intel Arria 10 333 MHz
Xilinx Virtex UltraScale+ 475 MHz

Table 9  Estimated performance 
for a VHDL implementation 
of Block Matching Motion 
Estimation using Full Search, 
when executed in 2 FPGA 
families

Target device Estimated mil-
liseconds / frame

Estimated 
frames per 
second (fps)

Intel Arria 10 38.64 25.878
Xilinx Virtex UltraScale+ 27.09 36.912
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in performance with the estimated VHDL design could be caused by the following 
factors:

• The OpenCL design presents a latency of around double that of the VHDL 
design,

• The memory throughput of a real FPGA is not high enough to execute the design 
described without stalling, or

• A combination of the two above points.

6.3  Evaluation of OpenCL as a tool for developing FPGA solutions

The main aim of this work is to evaluate OpenCL as a tool for developing video 
processing applications targeting FPGAs. The multiple kernels developed, together 
with the development process, allow us to form an opinion on that regard.

We consider OpenCL to be an interesting option when developing HPC applica-
tions targeting FPGAs. It efficiently abstracts away low-level electronic details from 
the programmer, allowing users to write FPGA applications using a more famil-
iar language. The main advantage OpenCL has over any other HLS language is its 
broad adoption in HPC environments.

We noted that using OpenCL incurs a resource and performance penalty over 
low-level HDL implementations. This is to be expected, however. We believe the 
performance achieved by the OpenCL kernels to still be comparable to that of opti-
mized CPU implementations. We also believe the resource penalty to be of little 
impact in the overall design when targeting a data center FPGA, as we did. Conse-
quently, we consider these drawbacks to be a fair trade-off for the reduction in devel-
opment efforts enabled by OpenCL.

Nevertheless, we have detected key issues with OpenCL as a tool for develop-
ing FPGA applications. First of all, its low portability to and from other accelera-
tors breaks OpenCL’s main philosophy. To accelerate the same application using an 
FPGA and another accelerator, the programmer would have to write two different 
kernels. In addition, OpenCL for Intel FPGAs poses other limitations to the pro-
grammer, such as requesting the use of the OpenCL standard v1.0.

We also consider the compilation reports not returning any estimate for the ker-
nels’ latency, as other HLS frameworks do, to be an important drawback. In addi-
tion, some information that is provided seems to be inaccurate or misleading. For 
example, the information provided by the Schedule Viewer (Beta), which does not 
accurately depict a kernel’s global flow.

We have detected that OpenCL has problems synthesizing certain codes. Specifi-
cally, we were not able to synthesize a kernel version that used a systolic array to 
implement the current macroblock and search area, similarly to the VHDL imple-
mentation developed.

Overall, we consider OpenCL for Intel FPGAs to be a promising choice for pro-
gramming HPC applications on FPGAs using HLS. Nevertheless, it still lacks matu-
rity in certain aspects, and thus it is not yet an optimal working environment.
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7  Conclusions

In this work, we have researched the viability of using OpenCL for Intel FPGAs 
(Intel FPGA SDK for OpenCL) to implement Block Matching Motion Estima-
tion algorithms for video encoding and compression tasks. To do so, we have 
developed two OpenCL kernels performing Block Matching using the Full Search 
method, and one preliminary kernel using Diamond Search. Our proposals work 
with Full HD frames ( 1 920 × 1 080 pixels) completely inside the FPGA. The 
SAD operations are computed entirely in parallel, and the Full Search kernels 
achieve high performance thanks to an efficient exploitation of the FPGA’s inter-
nal memory by means of OpenCL’s local memory features.

Our proposals have been developed targeting Intel Stratix 10 FPGAs, which 
are appropriate for intensive computations. The resource utilization for these 
FPGAs is relatively low for all kernels, using less than 10% of the resources for 
the kernel logic, and around 25% for the entire system.

We have conducted an experimental study comparing our Full Search imple-
mentations with a CPU reference version, compiled with varying levels of opti-
mization and vectorization. The experimental results show that our Full Search 
proposals achieve a performance similar to that of the CPU reference when com-
piled with -O3 and SSE vectorization. We have also compared one of our Full 
Search implementations with estimates from an equivalent low-level VHDL 
implementation, in terms of resource utilization and performance. We observe 
that using OpenCL incurs an overhead in the resource utilization for the kernel 
logic, estimated to be of less than 2% of the total FPGA resources. It also incurs a 
performance penalty, achieving the OpenCL kernel a performance of around 47% 
that which was ideally estimated for the VHDL design.

We conclude that using high-level languages produces architectures that are 
close to those implemented manually, with a potential overhead in terms of area 
that we assess to be affordable in HPC applications targeting data center FPGAs. 
The advantages of using high-level languages are shorter design cycles, being 
less error-prone and flexibility.

The future work includes analyzing the problems detected with the Diamond 
Search implementation and fixing them, as well as expanding the experimentation 
to make comparisons with GPU and hybrid OpenCL-HDL implementations.
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