
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:9866–9888
https://doi.org/10.1007/s11227-023-05051-3

1 3

Implementation of a motion estimation algorithm for Intel
FPGAs using OpenCL

Manuel de Castro1 · Roberto R. Osorio2 · David L. Vilariño3 ·
Arturo Gonzalez‑Escribano1 · Diego R. Llanos1

Accepted: 9 January 2023 / Published online: 21 January 2023
© The Author(s) 2023

Abstract
Motion Estimation is one of the main tasks behind any video encoder. It is a compu-
tationally costly task; therefore, it is usually delegated to specific or reconfigurable
hardware, such as FPGAs. Over the years, multiple FPGA implementations have
been developed, mainly using hardware description languages such as Verilog or
VHDL. Since programming using hardware description languages is a complex task,
it is desirable to use higher-level languages to develop FPGA applications.The aim
of this work is to evaluate OpenCL, in terms of expressiveness, as a tool for devel-
oping this kind of FPGA applications. To do so, we present and evaluate a parallel
implementation of the Block Matching Motion Estimation process using OpenCL
for Intel FPGAs, usable and tested on an Intel Stratix 10 FPGA. The implementa-
tion efficiently processes Full HD frames completely inside the FPGA. In this work,
we show the resource utilization when synthesizing the code on an Intel Stratix 10
FPGA, as well as a performance comparison with multiple CPU implementations
with varying levels of optimization and vectorization capabilities. We also compare
the proposed OpenCL implementation, in terms of resource utilization and perfor-
mance, with estimations obtained from an equivalent VHDL implementation.

Keywords FPGA · OpenCL · Motion estimation · Video coding

1 Introduction

In recent years, there has been an increment in the generation and consumption
of video-based media, due to the popularity of video streaming services such
as Netflix, YouTube and HBO, and to the increment in usage of teleconferenc-
ing platforms as a consequence of the COVID-19 pandemic. Video, as a digital
media, contains huge amounts of information, making its uncompressed usage

 * Diego R. Llanos
 diego@infor.uva.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05051-3&domain=pdf

9867

1 3

Implementation of a motion estimation algorithm for Intel…

prohibitive. It is due to video compression that the multimedia revolution we are
experiencing is possible in the first place.

Advanced video encoders make use of Motion Estimation and Compensation
algorithms to achieve high compression rates. Motion is commonly estimated
using a Block Matching technique, which divides a given frame image into blocks
of pixels, and tries to find the closest match for each block within one or more
previously encoded frames. In this way, large blocks of pixels may be encoded as
a motion vector, a spatial reference to a matching block.

Block Matching is responsible for the highest compression gains in video cod-
ing. It is a computing-intensive task, but it is also desirable to be performed in
real time in a multitude of scenarios. Due to the embedded or low-consumption
nature of most of the devices that perform video coding tasks, hardware solu-
tions are more popular than programmable ones. Thus, Block Matching is usually
implemented by means of application specific hardware, including Application
Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs),
dedicated hardware in Graphic Computing Units (GPUs), and multimedia coproc-
essors in General Purpose Processors (GPPs).

A large number of techniques and heuristics have been proposed to reduce
the computational load of Block Matching. Hence, modern implementations try
to minimize the sum of absolute differences between pixels; although the more
costly (and more accurate) sum of squared differences was originally proposed.
In addition, the Full Search algorithm [1] gives the best results, but heuristics
such as Diamond Search [2] greatly reduce the number of computations. Motion
vectors can also be predicted, narrowing the search space. Finally, some papers
propose comparing the value of only some pixels in the blocks, or even averaged
values. All these techniques reduce the number of computations at the expense
of reducing accuracy. As an additional step, modern video standards implement
fractional Motion Estimation in order to further improve compression.

Video encoders often allow the accuracy level to be selected, so the user can
prioritize either the encoding time or the compression ratio. This makes sense,
as the encoder may work both in a real-time encoding scenario, or in an offline
application in which content is encoded just once, but it is transmitted, stored,
and reproduced many times.

FPGA devices are rising in popularity as accelerators in supercomputers since
they are able to accelerate problems that other accelerators, namely SIMD ones
such as GPUs, are not. Besides, FPGAs offer higher energy efficiency (i.e., per-
formance per watt) than CPUs and GPUs for many interesting HPC applications.
ASICs, for their part, might offer even higher performance and energy efficiency
for specific applications; however, they lack the flexibility of FPGAs, which
makes them unsuitable for general-purpose computing. Nevertheless, FPGAs
are often programmed using Hardware Description Languages (HDLs), such as
VHDL and Verilog. These languages have high development costs, specially for
software programmers, due to their low-level scope. To ease these costs, High
Level Synthesis (HLS) design environments have been developed, such as Xilinx
HLS [3], and SystemC [4]. These leverage high-level programming languages,

9868 M. de Castro et al.

1 3

generally C-based ones, to abstract most of the low-level details and bring FPGA
programming closer to software programming.

OpenCL [5] has also been adapted to work as an HLS environment targeting
FPGA devices. As a framework, it uses a C-based high level language to program
hardware accelerators. It is a choice of special interest, given the widespread adop-
tion of the framework in the HPC community to develop applications targeting het-
erogeneous systems, especially those using GPUs. OpenCL’s main focus is to enable
code portability among different kinds of heterogeneous devices. Thus, unlike other
HLS environments, OpenCL can be used to develop programs that target at the same
time CPUs, GPUs, FPGAs, and other kinds of accelerators. Moreover, as OpenCL
is already a well-known language among many members of the HPC community, its
adoption for developing HPC applications targeting FPGAs should be more straight-
forward than using other HLS environments.

With the increasing popularity of heterogeneous systems in media centers com-
prising, among others, high-end data center FPGAs, we consider OpenCL a promis-
ing choice for implementing high-efficiency video processing applications. To the
best of our knowledge, there is not any previous implementation of Motion Esti-
mation on FPGAs using OpenCL. More specifically, Intel offers implementations
targeting GPUs, but none for FPGAs. This is somewhat surprising, coming from a
company that is both an FPGA manufacturer and an earlier supporter of OpenCL.

While it is commonly assumed that leveraging accelerators using OpenCL should
bring clear benefits to the task in terms of speed-up and/or power consumption, this
is not always the case. Particularly, FPGAs have two very important disadvantages
compared to GPCPUs and GPGPUs: Lower clock speed and larger power consump-
tion per computation. Engineers are able to overcome or partially compensate these
disadvantages by exploiting the main strengths of FPGAs: Fine and coarse grain par-
allelism, and low overhead in computations. It is well known that Block Matching
exhibits high parallelism, which FPGAs are able to exploit. In this work, we demon-
strate that OpenCL is well suited to detect and exploit the existing parallelism. On
top of that, OpenCL offers flexibility and ease of programming, which is crucial to
achieve the level of productivity required for the development of modern systems.

In our research, we target the acceleration of Motion Estimation on FPGAs. With
the large number of possible implementations, we plan to reduce the development
cost by using OpenCL. In this paper, we have tackled the most straightforward
implementation, Full Search, as well as a preliminary implementation of Diamond
Search. We have assessed the capabilities of OpenCL to describe and synthesize
fully parallel architectures.

The main goal of this work is to test the expressiveness of OpenCL as a design
language for Block Matching Motion Estimation and other similar applications,
assessing the quality of the implementation and comparing it to hand-optimized
ones. To contribute to open science, the source codes and compilation reports gener-
ated during the development of this work are freely available on the following repos-
itory: https:// gitlab. com/ mande ca/ me_ opencl.

The rest of the paper is organized as follows. Section 2 discusses related work
on the field of Motion Estimation implementations for FPGAs; Sect. 3 describes
the Block Matching Motion Estimation process; Sect. 4 describes the framework

https://gitlab.com/mandeca/me_opencl

9869

1 3

Implementation of a motion estimation algorithm for Intel…

used to develop the solution (OpenCL for Intel FPGAs); Sect. 5 details the develop-
ment process of our proposal, and the features of the different versions developed;
Sect. 6 evaluates our proposals and OpenCL as a tool for developing video process-
ing applications targeting FPGAs; and lastly, sect. 7 discusses the conclusions and
future work.

2 Related work

Block Matching Motion Estimation is the cornerstone in most advanced video
encoders. It is a task that involves high amounts of computation, even when the
search of similar blocks is restricted to the closest vicinity. It is the most expensive
task in video coding, in terms of computation time.

For this reason, research works have sought for fast and efficient architectures
to accomplish this task [6]. Beyond the basic Full Search algorithm, several alter-
natives have been proposed [7–9] that achieve great computational savings at the
cost of only a small loss in accuracy. Also, architectures able to deal with variable
block sizes [10] and fractional pixel interpolation [11] allow data compression to be
maximized.

The use of FPGAs as accelerators in video encoding is of great interest. FPGA-
specific implementations take advantage of the availability of embedded memories,
which allow for fast access to internally cached data [12, 13].

The advent of high-level hardware synthesis languages, such as OpenCL, opens
a new era in the implementation of custom architectures. Previous work discussing
OpenCL as a framework for developing FPGA applications and its benefits includes
[14–16].

While some works have been published about implementing Block Matching
using OpenCL, proving its validity to accelerate the task, the targeted platforms are
either CPUs or GPUs [17–20], as FPGAs are still programmed using HDLs or other
HLSs. To the best of our knowledge, no OpenCL implementation that also targets
FPGAs has been previously published, and Xilinx HLS is the highest level language
for which Block Matching architectures have been published.

In [21], an architecture for Motion Estimation that is not FPGA oriented is pro-
posed, and implements Diamond Search. In [22], an FPGA-based programmable
processor with multiple processing units oriented to H.264 video coding is pro-
posed. They both have in common that parallel processing is achieved by means of
multiple parallel memories.

Finally, in [23] a highly parallel architecture for Motion Estimation in H.265 is
proposed. There are some interesting similarities with our work. First, data access
is achieved by implementing sets of 64 parallely-accessed memory blocks, as
many as pixels in an 8 × 8 block. Second, results for a FPGA implementation are
given that concur with the ones obtained in our work. Chiefly, the combined area
of Motion Vector generator and cost estimator is less than 34% of the available
LUTs (in an old Arria II device), which is significantly less than the 52% required
by the interpolator. Therefore, as in our work, implementing a highly parallel
architecture for Motion Estimation is the way to achieve high processing speed,

9870 M. de Castro et al.

1 3

and it is not limited by resource utilization. The speed in the referenced paper is
limited to 200 MHz but, again, this is due to using an old device. However, this
work is different from our contribution in many important aspects. First, unlike
our work, the referenced paper is not restricted to full-pixel Motion Estimation,
but also implements fractional-pixel Motion Estimation by means of interpola-
tion. Second, full-pixel Motion Estimation is computed for 8 × 8 pixel blocks, and
Sum of Absolute Differences results for 16 × 16 and larger blocks are obtained by
adding up results for 8 × 8 blocks. In our work, Motion Estimation is computed
for 16 × 16 blocks directly. Finally, it has been implemented using VHDL, instead
of a high level language as we do.

3 Block matching motion estimation

Motion Estimation (ME) is a process by which the motion vectors that describe
changes among different video frames are determined. In video coding, Block
Matching Motion Estimation is used to compress video files by reducing temporal
redundancies, and has been used since the inception of video encoders. It is the main
component of inter-frame prediction, and provides the highest compression gains in
any video standard, such as AVC or HEVC. Nevertheless, it is also the most com-
putationally costly task performed in video coding, corresponding to more than half
the computation time of the whole process.

ME divides the current encoding frame into non-overlapped small blocks, called
macroblocks. The size of the macroblocks can be variable and irregular, but 16 × 16
is a usual choice in classic encoders. ME is applied over all the macroblocks in the
frame, attempting to find for each one of them the most similar macroblock among a
set of candidates from a reference frame (a previously encoded frame). Thus, blocks
of pixels can be represented in the encoded video as a motion vector representing
the movement of the similar macroblock, the index of the reference frame in which
the similar macroblock is found, and the prediction error to reconstruct the original
macroblock.

The set of candidate macroblocks to be checked is determined by a search area
and a search method. The search area is usually restricted to the vicinity of the rela-
tive position of the macroblock, but in the reference frame. Figure 1 shows the sub-
division of frames into macroblocks, and an example of the search area for a given
macroblock. Inside the search area, the candidate macroblocks are overlapped, i.e.,
any block of pixels inside the search area that has the same dimensions as the mac-
roblock to be encoded is a valid candidate.

To determine the most similar macroblock among the candidates, similarity crite-
ria are used, such as Sum of Absolute Differences (SAD) and Sum of Squared Error
(SSE), between the macroblock to be encoded and the candidates. SAD is the most
commonly used option in video encoders due to its low computational complexity,
even though SSE is more accurate. It is computed as shown in Eq. 1, where w and h
are the width and height of the macroblock, respectively, Ref is the candidate mac-
roblock, and Cur is the current macroblock.

9871

1 3

Implementation of a motion estimation algorithm for Intel…

As can be seen, the SAD for a candidate macroblock is computed from multi-
ple independent subtractions. Given the high amount of candidate blocks that can
be processed per macroblock, and the high amount of macroblocks to process per
frame, ME offers great optimization opportunities through parallel implementations.
At the same time, while the computation of each candidate might be independent
too, the accessed data are partially overlapped, allowing for techniques that exploit
locality to increase throughput.

Concerning the search method used to determine which candidates in the search
area should be computed, there are multiple choices. Full Search [1] computes
every possible candidate, always finding the optimal solution. Figure 2 illustrates
how Full Search could be performed for a given macroblock and its correspond-
ing search area. However, Full Search is not a viable option in real-time encoding
scenarios. Other methods use heuristics to reduce considerably the amount of can-
didates computed to accelerate the task, allowing for suboptimal solutions. These
include, among others, Three Step Search [24], New Three Step Search [25], Four
Step Search [26], Block-Based Gradient Descent Search [27], Diamond Search [9],
Hexagon Search [28], and Test Zone Search [29].

4 OpenCL for Intel FPGAs

Our proposed implementation is developed using OpenCL for Intel FPGAs. This
section introduces OpenCL and the OpenCL for Intel FPGAs framework.

(1)SAD =

w−1∑

j=0

h−1∑

i=0

|Refi,j − Acti,j|

Fig. 1 Division of a frame into macroblocks, and search area corresponding to a given macroblock

9872 M. de Castro et al.

1 3

4.1 OpenCL standard

OpenCL [5] is an open standard for parallel programming in heterogeneous systems.
Its main aim is to allow the user to write portable parallel programs among different
kinds of computing systems such as CPUs, GPUs, and other accelerators, with mini-
mal-to-no changes in the source code targeting different systems. Thus, all available
resources in the system can be exploited to achieve high performance.

The OpenCL programming model differentiates between host and devices, both
at an application level and at a system resources level. The host is the CPU that
executes the main part of the program and coordinates the devices, whereas the
devices are the computational units of the systems, such as CPUs, GPUs, FPGAs,
or other accelerators, which are intended to execute and accelerate computationally-
intensive parts of the program. Device-executed code is written as kernel functions
using OpenCL C language (a C99 dialect). The host code is commonly written in C
or C++, although it can also be written in other languages such as Python. Figure 3
shows the interactions between host and devices during a common OpenCL pro-
gram execution.

4.2 OpenCL for Intel FPGAs

Included in Intel’s oneAPI suite is the Intel FPGA SDK for OpenCL (which we refer
to in this work as “OpenCL for FPGAs”). This framework allows the compilation of
OpenCL kernels into Intel FPGA bitstreams, being compliant with the OpenCL 1.0
standard. Since the compilation times for FPGA applications are very high, OpenCL
for Intel FPGAs only allows for the offline compilation of kernels (i.e., not in execu-
tion time, as regular OpenCL programs usually do). To ease the debugging process,

Fig. 2 Computation of the similarity between a macroblock and all the candidates in a search area. The
similarity value is the sum of the absolute values of the 256 computed subtractions (the lower, the more
similar)

9873

1 3

Implementation of a motion estimation algorithm for Intel…

it also provides FPGA emulation capabilities. Thus, an emulation kernel can be
compiled in seconds and executed on CPU to check its correctness.

During the compilation process of an Intel FPGA kernel, the compiler generates a
compilation report. This contains useful information regarding the FPGA bitstream
being generated, such as the working frequency of the design, the amount of FPGA
resources used, loop performance analysis, memory hierarchy usage, and design
schematics.

OpenCL for Intel FPGAs allows fine-tuning of the kernels via preprocessor direc-
tives (C pragmas) and compilation flags. The user can control, for example, how the
kernel’s loops are pipelined or unrolled, in which type of memory the arrays should
be allocated, or the amount of vector lanes to use.

5 Our proposal

In this section, we describe the methodology followed when developing our pro-
posal, as well as the features of the final versions.

5.1 Development process

We decided to develop the kernels in an incremental manner, analyzing how
OpenCL implements each small feature of the algorithm before adding anything
else. During such analysis, we compile the same kernel several times, tweaking
certain parameters and compare the resulting compilation reports. The compilation
reports generated by HLS frameworks usually present good theoretical performance
evaluations, which can be used instead of more costly, experimental studies to make
comparisons between different kernel versions, which are more appropriate for near-
production kernel versions. Nevertheless, Intel’s reports do not provide an estimate
for the design’s latency. When provided, this metric is useful to evaluate a kernel’s

Fig. 3 Different executable components of an OpenCL application and their interactions

9874 M. de Castro et al.

1 3

performance in an absolute, end-user friendly way, as it can be used alongside the
reported working frequency to estimate the kernel’s execution time. In this work, the
main theoretical results used to evaluate a kernel’s quality were the design’s working
frequency, the memory type used to implement the buffers, the resource utilization,
and the loop performance analysis.

We decided from the beginning to develop a kernel targeting the Intel Stratix
10 FPGA, a data center FPGA model. Being a data center FPGA, the high amount
of resources it contains is suitable for developing complex, resource-consuming
OpenCL kernels without compromising their performance. Among all the existent
data center FPGA models, the Stratix 10 model was chosen because it is a state-of-
the-art FPGA device. One downside choosing a data center FPGA poses is that the
FPGA and proposed designs will not be applicable to low-consumption and embed-
ded computing scenarios. In those cases, other FPGA models, including those of
other vendors such as Xilinx, may be more suitable, together with smaller-footprint
designs.

We used the naäve C implementation found at [30] as baseline, and decided
that our proposal would work with 16 × 16 pixel macroblocks, and 46 × 46 pixel
search areas. The first kernel we developed only performed the SAD operation on
the FPGA. Being a small kernel, it allowed us to delve into all the characterization
parameters that OpenCL for Intel FPGAs present, in order to tweak the kernels. The
second kernel we developed processed individual macroblocks, with all their 961
Full Search candidates, on the FPGA. The design that Intel’s compiler returned for
both kernels seemed reasonable enough, resembling what a low-level manual imple-
mentation could look like (with additional circuitry for internal OpenCL logic).
After this, the development of a full-frame-processing kernel started.

5.2 Final full search versions

Two Block Matching implementations using Full Search have been implemented
as OpenCL kernels targeting Intel FPGAs. Both versions work with Full HD video
frames (1 920 × 1 080 pixels), a luminance component only (as it is often done in
other works in the field), fully inside the FPGA. The macroblock size is 16 × 16 pix-
els, and the search area is 46 × 46 pixels, for a total of 961 candidate macroblocks
computed per macroblock. The frames are extended 8 pixels in height by duplicating
the pixels on the last line 8 times, to allow for an exact division of the frame in mac-
roblocks. Each frame contains exactly 8 160 macroblocks, which results in 7 344 000
motion vectors computed per frame.

Both kernels receive, as parameters, pointers to the current and reference frames,
and three pointers to store the kernel results: The minimum SAD found for each
macroblock, the x component of the motion vectors corresponding to the minimum
SAD, and the y component of the motion vectors corresponding to the minimum
SAD.

All buffers of pixels, including current and reference frames, macroblock and
search area, are represented using one-dimensional arrays of bytes. Each pixel is
represented by a single unsigned byte, which encodes the brightness of the pixel;

9875

1 3

Implementation of a motion estimation algorithm for Intel…

i.e., 0 represents a fully black pixel, whereas 255 represents a fully white pixel.
Color information is discarded, as it is not very useful for performing Motion Esti-
mation. The bigger buffers, corresponding to both frames, are stored in global FPGA
memory (DDR4), and the smaller buffers, macroblock and search area, are stored in
faster internal FPGA memory.

Our proposal is able to achieve a high acceleration by exploiting two main tech-
niques which complement each other:

• Memory hierarchy exploitation. Local OpenCL memory, which is synthesized
as internal FPGA memory, presents a data throughput which is orders of magni-
tude faster than global memory. By preloading highly reused data in local mem-
ory before the computation, the performance of our proposal is considerably
increased. Specifically, the current macroblock and search area are allocated in
internal memory. The current macroblock, which is 256 bytes in size, is imple-
mented using 128 MLAB registers. The current search area, which is 2 116 bytes
in size, is implemented using 2 internal M10K SRAMs. However, this buffer is
replicated 256 times to allow 256 concurrent accesses, which results in a total
usage of 512 M10Ks to allocate the current search area.

• Sum of Absolute Differences parallelization. The SAD operation, which is the
computational cornerstone of Block Matching Motion Estimation, consists of
multiple independent operations: as many as pixels for the chosen macroblock
size. In our implementation, the amount of operations is 256, although this num-
ber can vary, usually between 16 and 4096. By unrolling the main loop of the
SAD operation, these computations can be parallelized. The degree of paralleli-
zation is dependent on the amount of resources available in the FPGA, as well as
memory throughput. In the case of our target FPGA, the amount of resources is
more than enough to fully parallelize the 256 operations.

By exploiting both techniques simultaneously, our proposal is able to compute 1
SAD operation per clock cycle: the internal memory feeds the computational logic
256 bytes (pixels) per clock cycle; and the computational logic computes the 256
SAD subtractions fully in parallel, in a single clock cycle. Consequently, the compu-
tation of a macroblock can be carried out in as few clock cycles as candidate mac-
roblocks are in the corresponding search area. Thus, the bottleneck for the imple-
mentation shifts from the computation to the preloading of the data in the internal
FPGA memory buffers (macroblock and search area).

Our kernels are highly parallel, thus requiring a relatively high amount of FPGA
resources to synthesize all the parallel computation logic. The computation logic
is replicated as many times as needed to achieve the specified degree of parallel-
ism. Our target FPGA, the Intel Stratix 10, is a data center FPGA containing a high
amount of resources, so that we could design our kernels without worrying about
resource limitations. When targeting smaller FPGAs, it is advisable to reduce the
degree of parallelism to adapt the kernel to the reduced amount of resources, at the
expense of higher computation latencies.

The kernel dataflow is as follows: (1) The current macroblock is loaded from
the current frame, residing in global memory, to internal MLAB registers; (2) the

9876 M. de Castro et al.

1 3

corresponding search area is loaded from the reference frame, residing in global
memory, to internal M10K SRAM; (3) for each of the 961 candidates in the
search area, the SAD is computed, and the minimum SAD and corresponding
motion vector is stored in the result buffers; and (4) the next iteration begins, pro-
cessing the next macroblock. This dataflow is depicted in Fig. 4.

The two versions developed differ in the way they handle border and corner
macroblocks. These macroblocks pose additional problems as their correspond-
ing search areas cannot be of regular size due to a lack of pixels in some of the
directions. Our kernels deal with that problem as follows:

Fig. 4 Dataflow of the developed full search block matching motion estimation kernels

9877

1 3

Implementation of a motion estimation algorithm for Intel…

• The first kernel adds logic to detect border macroblocks and adjust the search
area accordingly, computing only the valid candidates. This version computes
fewer candidates per frame on average.

• The second version works with extended frames, 15 pixels in each border, so that
all the macroblocks have a complete search area to work with. This resembles the
way certain video encoders, such as AVC, work. This version presents less com-
plex logic.

5.3 Preliminary diamond search version

The high amount of computation needed to perform a Full Search makes it prohibi-
tive for real-time encoding scenarios without heavy hardware acceleration. Most
encoders use other search methods, based on heuristics, to reduce the amount of
candidate macroblocks computed. One such method is Diamond Search [2]. We
have developed a preliminary version of a Block Matching kernel using Diamond
Search to test the suitability of OpenCL for developing real-time video processing
applications for FPGAs.

The preliminary Diamond Search version developed is similar to the Full
Search version that works with extended frames, only modifying the search
method to use the algorithm described in [9]. Although the amount of candidates
checked per macroblock decreases by approximately a factor of 30 with respect
to the Full Search, this preliminary implementation did not meet our performance
expectations. Section 6.2 further discusses these issues.

6 Evaluation

In this section, we evaluate the developed kernels in terms of resource utilization
and performance.

To the best of our knowledge, our proposal is the first implementation of Block
Matching Motion Estimation that uses OpenCL and targets FPGAs. Thus, we pro-
vide a performance comparison with an equivalent CPU implementation, executed
with varying degrees of optimization in current-generation CPUs.

We also consider of much interest to evaluate OpenCL-based FPGA implemen-
tations of Block Matching Motion Estimation against optimized, low-level HDL
implementations. For that purpose, we have developed a VHDL implementation of
the algorithm. We provide resource utilization and performance comparisons with
this HDL design. The VHDL design is compiled using Quartus Prime Standard
Edition v16 when targeting Intel FPGAs, and Vivado 2020 when targeting Xilinx
FPGAs.

The developed VHDL architecture targets to exploit as much parallelism as the
automatically generated by OpenCL. However, it is difficult for a human engineer
to create and test such a complex memory architecture. Therefore, a simpler, highly
regular solution has been selected. A systolic array has been devised for storing
and shifting the pixels from the current macroblock and search area. Systolic arrays

9878 M. de Castro et al.

1 3

have been used for many years for implementing highly parallel application spe-
cific architectures [31], and recent examples for Motion Estimation can be found in
the literature [32]. However, we have not found any published paper that manages
16 × 16 macroblocks as we do. Nevertheless, systolic architectures are highly scal-
able. Therefore, the architecture described in [32] is similar to our VHDL architec-
ture, with the consideration that the cost of a 16 × 16 implementation is roughly 16
times the cost of a 4 × 4 one.

We conclude this section by providing a brief evaluation of OpenCL as a tool for
developing video processing applications targeting FPGAs.

6.1 Resource utilization

The resource utilization for our Full Search implementations, as reported by Intel’s
compiler, is shown in Tables 1 and 2, both in relative and absolute terms. The FPGA
system generated by the compiler from the kernel source files comprises the follow-
ing parts:

• Kernel system, which comprises the hardware designs for all the compiled
OpenCL kernels, the interconnect with global memory, and the system descrip-
tion ROM.

• Static partition, which comprises the board interface and OpenCL API logic.
This is the logic responsible for managing communications with external inter-
faces, such as PCIe. This logic is necessary to perform communications with the
host system, and cannot be modified by the user.

Table 1 Stratix 10 resource utilization for the kernel that adds logic to detect border macroblocks, as
reported by Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system 247 311 (27%) 433 503 (12%) 783 (1%) 1 198 (10%) 3 (0%)
Kernel system 52 468.9 (6%) 149 222 (4%) 783 (1%) 767 (7%) 5 (0%)
ME kernel logic 41 116.1 (4%) 115 539 (3%) 779 (1%) 587 (5%) 5 (0%)
ME kernel logic(estimated) 24 122 (3%) 92 840 (2%) 1 294 (1%) 678 (6%) 2.5 (0%)
Available 933 120 3 732 480 93 312 11 721 5 760

Table 2 Stratix 10 resource utilization for the kernel that works with extended frames, as reported by
Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system 244 913 (26%) 421 377 (11%) 990 (1%) 1 187 (10%) 0 (0%)
Kernel system 50 536 (5%) 137 020 (4%) 990 (1%) 756 (6%) 0 (0%)
ME kernel logic 39 163.3 (4%) 102 273 (3%) 986 (1%) 576 (5%) 0 (0%)
ME kernel logic (estimated) 20 922.5 (2%) 72 446 (2%) 1 440 (2%) 663 (6%) 0 (0%)
Available 933 120 3 732 480 93 312 11 721 5 760

9879

1 3

Implementation of a motion estimation algorithm for Intel…

The static partition uses a considerable amount of the FPGA resources. It is respon-
sible for the overhead seen in Tables 1 and 2 when comparing the Whole system row
with the Kernel system row. The third row shows the total resources dedicated to the
kernel logic only. The fourth row shows the estimates for resources dedicated to the
kernel logic only, which are provided by the compiler before the beginning of the
bitstream generation step.

Tables 1 and 2 show that the amount of resources used by our implementations
is relatively low. In both cases, the complete system uses around a quarter of the
FPGAs’ resources, whereas the kernel alone uses only around 5% of any resource.
In absolute terms, the resource utilization is high, especially if it is compared to the
amount of resources an embedded FPGA usually has. It also shows that, for the ker-
nel logic, the compiler tends to overestimate the amount of MLABs and RAMs the
final design will use, as well as underestimate the amount of ALMs and REGs.

To put these results into perspective, we have gathered resource utilization esti-
mates for the developed VHDL implementation. However, the synthesis tools used
to generate the estimations did not allow us to target the Stratix 10 FPGA. Among
the available device choices, we chose to generate estimations for the Intel Arria
10 FPGA and the Xilinx Virtex UltraScale+ FPGA. The Arria 10 family has been
chosen as it is a current-generation Intel FPGA family which targets scenarios with
low-and-medium performance requirements, being the Stratix 10 family the high-
end alternative targeting more demanding scenarios. The Virtex UltraScale+ family
has been chosen as it is another current-generation high-end FPGA targeting data
center applications, with a performance comparable to that of the Stratix 10. The
resource utilization estimates for the VHDL kernel are shown in Tables 3 and 4.
It is worth noting that Xilinx and Intel use different names to refer to equivalent
FPGA resources. For readability and ease-of-comparison reasons, Table 4 displays
the resource estimates using Intel’s resource names, and following this conversion: 2
Xilinx LUTs equal 1 Intel ALM, and 1 Xilinx FF equals 1 Intel REG.

To further analyze the effects OpenCL has over the resource utilization of a given
FPGA design, we provide on Table 5 the resource utilization estimates for one of
the OpenCL kernels when compiled for an Arria 10 FPGA. Only the resource esti-
mates for the kernel version that works with extended frames are provided, since the
VHDL implementation more closely resembles that particular version.

The first noticeable difference is that the VHDL kernels only use ALM and REG
resources. When comparing the resource utilization results for Arria 10 FPGAs
(Tables 3 and 5), we can see that using OpenCL generates a design that uses 1.35×
the ALMs and 1.94× the REGs of the VHDL implementation. These, in terms of
total FPGA resources, account for 1% more ALMs and 1.5% more REGs. In the
case of the resource utilization results for data center FPGAs (Tables 2 and 4), for a
fair comparison we will only use the compiler estimated resources for the Stratix 10
FPGA, and not the real ones. We can see that using OpenCL generates a design that
uses 1.85× the ALMs and 2.87× the REGs of the VHDL implementation. These,
in terms of total Stratix 10 resources, account for 1% more ALMs and 1.26% more
REGs. It is worth noting that the VHDL design uses a systolic array to implement
the macroblock and search area buffers and the OpenCL kernel does not. This

9880 M. de Castro et al.

1 3

discrepancy might account for part of the reduction in the amount of REGs utilized
by the VHDL design. However, we consider this comparison to be fair, as we tried
to develop an equivalent OpenCL kernel that used a systolic array, but the compiler
was unable to infer the systolic array in a similar manner to the VHDL design.

6.2 Performance

6.2.1 Experimental study against a CPU reference

The compilation reports generated by Intel’s compiler do not provide an estimate for
the kernel’s latency, as other HLS frameworks do. Thus, we cannot provide a reli-
able evaluation of our proposal’s performance from a theoretical-only point of view.
It is necessary to execute the kernels to measure their performance.

Before executing the different kernel versions, however, it is still useful to
analyze and compare them using their respective working frequencies. Table 6
shows the working frequencies of our Full Search kernels. The kernel version
that adds logic to detect border macroblocks has a lower working frequency. This
might result in a lower performance compared to the other kernel, even though it

Table 3 Arria 10 GX 1150 resource utilization estimates for a VHDL implementation of Block Matching
Motion Estimation

Intel Arria 10 ALMs REGs

ME kernel logic(estimated) 13 165 (3%) 25 235 (1.5%)
Available 427 200 1 708 000

Table 4 Virtex UltraScale+ VU13P resource utilization estimates for a VHDL implementation of Block
Matching Motion Estimation. Data has been transformed to the equivalent Intel FPGA resources

Xilinx Virtex UltraScale+ ALMs REGs

ME kernel logic (estimated) 11 308.5 (1.31%) 25 250 (0.73%)
Available 864 000 3 456 000

Table 5 Estimated Arria 10 resource utilization for the kernel that works with extended frames, as
reported by Intel’s compiler (aoc)

ALMs REGs MLABs RAMs DSPs

Whole system(estimated) 109 233 (25%) 410 662 (24%) 1 448 (2%) 766 (28%) 123 (8%)
Kernel syste (estimated) 19 258 (5%) 52 090 (3%) 1 448 (2%) 274 (10%) 0 (0%)
ME kernel logic(estimated) 17 818 (4%) 48 831 (3%) 1 448 (2%) 211 (10%) 0 (0%)
Available 427 200 1 708 800 42 720 2 713 1 518

9881

1 3

Implementation of a motion estimation algorithm for Intel…

computes fewer candidates per macroblock on average. Nevertheless, the working
frequency alone is not enough to assert such hypothesis.

An experimental study has been conducted to test the performance of our pro-
posals, including both Full Search kernels and the preliminary Diamond Search
kernel. A reference CPU implementation has been developed to make perfor-
mance comparisons. This implementation is compiled with varying levels of opti-
mization and vectorization capabilities. The experimentation consists in repeat-
edly performing Motion Estimations over two luminance-only Full HD frames
(8 160 macroblocks each, 16 320 different macroblocks in total). Both frames are
read from a file as raw, one-dimensional arrays of bytes, and sent to the FPGA
using OpenCL API. Each iteration, the current and reference frames are swapped.
The execution time for 1 000 iterations was noted. The experimentation was con-
ducted in the Intel DevCloud platform, which comprises nodes with Stratix 10
FPGAs, and Intel Xeon Platinum 8256 CPUs. The platform’s CPUs operate at
3.80 GHz.

The different implementations compared in our study are:

1. the CPU reference version, compiled with -O2 optimization level and no vectori-
zation,

2. the CPU reference version, compiled with -O2 optimization level and MMX
vectorization (8 byte vector registers),

3. the CPU reference version, compiled with -O2 optimization level and SSE vec-
torization (16 byte vector registers),

4. the CPU reference version, compiled with -O3 optimization level and SSE vec-
torization (16 byte vector registers),

5. the FPGA version that adds border detection logic,
6. the FPGA version that works with extended frames, and
7. the preliminary Diamond Search FPGA version.

All the experimental scenarios involving an FPGA device were executed both in a
CPU using the emulation mode, and in a real Stratix 10 FPGA.

The experimentation results are shown in Table 7. For Full Search, it can be
seen that the version that works with extended frames achieves a slightly higher
performance than the version that adds border detection logic. Both achieve a
performance similar to that of the CPU reference compiled with -O3 optimiza-
tion level. However, the energy consumption of the FPGA implementations is
expected to be significantly lower. This expectation is supported by the fact that

Table 6 Working frequency for the versions of Block Matching Motion Estimation using Full Search, as
developed by Intel’s compiler (aoc)

Frequency

Version with additional logic for border detection 308.00 MHz
Version that works with extended frames 316.00 MHz

9882 M. de Castro et al.

1 3

the working frequency of the CPU (3.80 GHz) is more than 12 times higher than
that of the FPGA designs (308 and 316 MHz).

For Diamond Search, however, the results differ from the expected ones. When
compared to Full Search, a speedup of around 30× would be expected, since the
amount of candidate blocks computed has been reduced by around 30× on average.
However, a speedup of only approximately 1.15× is obtained. Moreover, emulating
the Diamond Search kernel achieves a higher performance than executing it on a
real FPGA, which is unusual. If we compare only the times obtained in the emu-
lation executions, the Diamond Search version achieves a speedup of 25.53× with
respect to the Full Search one. This is much closer to the expected 30× speedup.
Such unusual behavior might indicate that the memory accesses have become the
bottleneck for the Diamond Search version, and that our preliminary kernel uses
memory access patterns that are inefficient for FPGA architectures. Whether this is
a problem derived from using OpenCL, or just from an unoptimized code, is yet to
be determined.

6.2.2 Theoretical comparison against an HDL implementation using performance
estimations

Experimentally comparing OpenCL kernels with their corresponding HDL imple-
mentations requires not only to develop the HDL version of the kernel, but also to
implement the communication interface with the host (e.g., PCIe hardware pro-
tocol). The latter is an enormous task that would require an extensive knowledge
of PCIe, the transceivers in the FPGA, and even licensing protected technology.
Regarding a theoretical-only comparison, using Intel’s compiler we do not have
access to kernel latency data similar to that HDL synthesis tools, as well as other
HLS synthesis tools, usually provide.

Since we consider of much interest to provide comparisons with HDL imple-
mentations, what we have done is to compare the measured data for the OpenCL

Table 7 Performance comparison between the FPGA kernels developed and the CPU reference compiled
with varying levels of optimization

Version Milliseconds/frame Frames per second (fps)

CPU
Sequential reference (–O2) 1627.39 0.614
–O2 + MMX 145.31 6.882
–O2 + SSE 126.64 7.896
–O3 (autovectorized with SSE) 89.49 11.174
FPGA

Emulation(CPU) Real FPGA Emulation (CPU) Real FPGA
Full search—With logic for border

detection
1931.10 90.12 0.518 11.096

Full search—With extended frames 1796.92 88.43 0.557 11.309
Diamond Search (preliminary) 70.38 77.34 14.209 12.930

9883

1 3

Implementation of a motion estimation algorithm for Intel…

kernels with estimated execution times from theoretical metrics of the equivalent
VHDL design. This comparison is suboptimal, but nonetheless it provides addi-
tional insight about the behavior of OpenCL compared to HDL implementations.

We can estimate the VHDL implementation’s execution time from its latency
and frequency. As it is the case with OpenCL for Intel FPGAs, the frequency
is reported by the VHDL synthesis tools used. The VHDL synthesis tools used
only allow targeting certain FPGA devices for compilation and performance
estimations. Among the available options, we chose to target Intel Arria 10
FPGAs (which are less powerful than Intel Stratix 10 FPGAs), and Xilinx Vir-
tex UltraScale+ FPGAs (which are data center FPGAs of similar performance to
Intel Stratix 10 FPGAs). The reported frequencies are shown in Table 8. Regard-
ing the latency, we estimate it as follows. The implementation loads 4-byte words
into the systolic array each clock cycle. Thus, it completely fills the systolic array
in (16 ⋅ 16 + 46 ⋅ 46)∕4 = 616 cycles. After that, it computes one macroblock
candidate per clock cycle, taking a total of 31 ⋅ 31 = 961 cycles to compute all
candidates for one macroblock. That means that each macroblock is processed in
616 + 961 = 1 577 cycles, and a whole Full HD frame in 8 160 ⋅ 1 577 = 12 868 320
cycles.

Table 9 shows the estimated performance the VHDL implementation would
achieve when executed in the chosen FPGAs, assuming a memory throughput high
enough that the architecture never stalls. As it can be seen, the VHDL design would
theoretically achieve more that 2× , on an Arria 10, and 3× , on a Virtex UltraScale+,
the performance of the equivalent OpenCL kernel on a Stratix 10. It is worth noting
that Arria 10 FPGAs are current-generation less-powerful alternatives to Stratix 10
FPGAs, and it is expected that the execution of the VHDL design on a Stratix 10
would achieve even higher performances.

If the VHDL design were executed in an FPGA with a working frequency
of 316 MHz, the same achieved by the equivalent OpenCL kernel, we estimate it
could achieve a performance of 40.72 milliseconds per frame, or 24.556 fps. This is
slightly more than 2× the performance noted for the OpenCL kernel. The difference

Table 8 Working frequency for a VHDL implementation of Block Matching Motion Estimation using
Full Search, when synthesized for 2 different FPGA families

Target device Frequency

Intel Arria 10 333 MHz
Xilinx Virtex UltraScale+ 475 MHz

Table 9 Estimated performance
for a VHDL implementation
of Block Matching Motion
Estimation using Full Search,
when executed in 2 FPGA
families

Target device Estimated mil-
liseconds / frame

Estimated
frames per
second (fps)

Intel Arria 10 38.64 25.878
Xilinx Virtex UltraScale+ 27.09 36.912

9884 M. de Castro et al.

1 3

in performance with the estimated VHDL design could be caused by the following
factors:

• The OpenCL design presents a latency of around double that of the VHDL
design,

• The memory throughput of a real FPGA is not high enough to execute the design
described without stalling, or

• A combination of the two above points.

6.3 Evaluation of OpenCL as a tool for developing FPGA solutions

The main aim of this work is to evaluate OpenCL as a tool for developing video
processing applications targeting FPGAs. The multiple kernels developed, together
with the development process, allow us to form an opinion on that regard.

We consider OpenCL to be an interesting option when developing HPC applica-
tions targeting FPGAs. It efficiently abstracts away low-level electronic details from
the programmer, allowing users to write FPGA applications using a more famil-
iar language. The main advantage OpenCL has over any other HLS language is its
broad adoption in HPC environments.

We noted that using OpenCL incurs a resource and performance penalty over
low-level HDL implementations. This is to be expected, however. We believe the
performance achieved by the OpenCL kernels to still be comparable to that of opti-
mized CPU implementations. We also believe the resource penalty to be of little
impact in the overall design when targeting a data center FPGA, as we did. Conse-
quently, we consider these drawbacks to be a fair trade-off for the reduction in devel-
opment efforts enabled by OpenCL.

Nevertheless, we have detected key issues with OpenCL as a tool for develop-
ing FPGA applications. First of all, its low portability to and from other accelera-
tors breaks OpenCL’s main philosophy. To accelerate the same application using an
FPGA and another accelerator, the programmer would have to write two different
kernels. In addition, OpenCL for Intel FPGAs poses other limitations to the pro-
grammer, such as requesting the use of the OpenCL standard v1.0.

We also consider the compilation reports not returning any estimate for the ker-
nels’ latency, as other HLS frameworks do, to be an important drawback. In addi-
tion, some information that is provided seems to be inaccurate or misleading. For
example, the information provided by the Schedule Viewer (Beta), which does not
accurately depict a kernel’s global flow.

We have detected that OpenCL has problems synthesizing certain codes. Specifi-
cally, we were not able to synthesize a kernel version that used a systolic array to
implement the current macroblock and search area, similarly to the VHDL imple-
mentation developed.

Overall, we consider OpenCL for Intel FPGAs to be a promising choice for pro-
gramming HPC applications on FPGAs using HLS. Nevertheless, it still lacks matu-
rity in certain aspects, and thus it is not yet an optimal working environment.

9885

1 3

Implementation of a motion estimation algorithm for Intel…

7 Conclusions

In this work, we have researched the viability of using OpenCL for Intel FPGAs
(Intel FPGA SDK for OpenCL) to implement Block Matching Motion Estima-
tion algorithms for video encoding and compression tasks. To do so, we have
developed two OpenCL kernels performing Block Matching using the Full Search
method, and one preliminary kernel using Diamond Search. Our proposals work
with Full HD frames (1 920 × 1 080 pixels) completely inside the FPGA. The
SAD operations are computed entirely in parallel, and the Full Search kernels
achieve high performance thanks to an efficient exploitation of the FPGA’s inter-
nal memory by means of OpenCL’s local memory features.

Our proposals have been developed targeting Intel Stratix 10 FPGAs, which
are appropriate for intensive computations. The resource utilization for these
FPGAs is relatively low for all kernels, using less than 10% of the resources for
the kernel logic, and around 25% for the entire system.

We have conducted an experimental study comparing our Full Search imple-
mentations with a CPU reference version, compiled with varying levels of opti-
mization and vectorization. The experimental results show that our Full Search
proposals achieve a performance similar to that of the CPU reference when com-
piled with -O3 and SSE vectorization. We have also compared one of our Full
Search implementations with estimates from an equivalent low-level VHDL
implementation, in terms of resource utilization and performance. We observe
that using OpenCL incurs an overhead in the resource utilization for the kernel
logic, estimated to be of less than 2% of the total FPGA resources. It also incurs a
performance penalty, achieving the OpenCL kernel a performance of around 47%
that which was ideally estimated for the VHDL design.

We conclude that using high-level languages produces architectures that are
close to those implemented manually, with a potential overhead in terms of area
that we assess to be affordable in HPC applications targeting data center FPGAs.
The advantages of using high-level languages are shorter design cycles, being
less error-prone and flexibility.

The future work includes analyzing the problems detected with the Diamond
Search implementation and fixing them, as well as expanding the experimentation
to make comparisons with GPU and hybrid OpenCL-HDL implementations.

Acknowledgements This work has been funded by the Consejería de Educación of Junta de Castilla y
León, Project PROPHET-2 (VA226P20), and Ministerio de Economía, Industria y Competitividad of
Spain, European Regional Development Fund (ERDF) program: Project PCAS (TIN2017-88614-R).
David L. Vilariño is funded by Ministerio de Economía, Industria y Competitividad of Spain (PID2019-
104834 GB-I00). Roberto R. Osorio is funded by the Ministry of Science and Innovation of Spain
(PID2019-104184RB-I00 / AEI / 10.13039/501100011033), and by Xunta de Galicia and FEDER funds
of the EU (Centro de Investigacion de Galicia accreditation 2019-2022, ref. ED431G 2019/01; Consoli-
dation Program of Competitive Reference Groups, ref. ED431C 2021/30). This work was also supported
in part by grant TED2021-130367B-I00 funded by MCIN/AEI/10.13039/501100011033 and by “Euro-
pean Union NextGenerationEU/PRTR”.

Author Contributions MDC, RRO and DRL wrote the main manuscript text. MDC and RRO carried out
the technical development of the proposed solutions. MDC, RRO, DLV and AGE designed and carried
out the experimentation. All authors reviewed the manuscript.

9886 M. de Castro et al.

1 3

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Consejería de Educación of Junta de Castilla y León, Spain: VA226P20. Ministerio de Economía,
Industria y Competitividad, Spain, European Regional Development Fund (ERDF) program: TIN2017-
88614-R. Ministerio de Economía, Industria y Competitividad, Spain: PID2019-104834 GB-I00. Ministe-
rio de Ciencia e Innovación, Spain: PID2019-104184RB-I00 / AEI / 10.13039/501100011033, TED2021-
130367B-I00 funded by MCIN/AEI/10.13039/501100011033. Xunta de Galicia (Spain) and FEDER
funds of the EU (ED431G 2019/01, ED431C 2021/30).

Data availability The source codes and compilation reports generated during the development of this
work are freely available on the following repository: https:// gitlab. com/ mande ca/ me_ opencl.

Declarations

Conflict of interest The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Chen M-J, Chen L-G, Chiueh T-D (1994) One-dimensional full search motion estimation algorithm
for video coding. IEEE Trans Circuits Syst Video Technol 4(5):504–509. https:// doi. org/ 10. 1109/ 76.
322998

 2. Tham JY, Ranganath S, Ranganath M, Kassim AA (1998) A novel unrestricted center-biased
diamond search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol
8(4):369–377. https:// doi. org/ 10. 1109/ 76. 709403

 3. O’Loughlin D, Coffey A, Callaly F, Lyons D, Morgan F (2014) xilinx vivado high level synthesis:
Case studies https:// doi. org/ 10. 1049/ cp. 2014. 0713

 4. Panda PR (2001) Systemc: a modeling platform supporting multiple design abstractions. In: Pro-
ceedings of the 14th International Symposium on Systems Synthesis, pp 75–80 https:// doi. org/ 10.
1145/ 500001. 500018

 5. Khronos et al. OpenCL Working Group (2022) The OpenCL Specification, version 1.0. 29, 8
December 2008. Página principal: https:// www. khron os. org/ opencl/, accessed July

 6. Chen L-G, Chen W-T, Jehng Y-S, Chiuch T-D (1991) An efficient parallel motion estimation algo-
rithm for digital image processing. IEEE Trans Circuits Syst Video Technol 1(4):378–385. https://
doi. org/ 10. 1109/ 76. 120779

 7. Ghanbari M (1990) The cross-search algorithm for motion estimation. IEEE Trans Commun TCOM
10(1109/26):57512

 8. Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation.
IEEE Trans Circuits Syst Video Technol 4(4):438–442. https:// doi. org/ 10. 1109/ 76. 313138

 9. Zhu S, Ma K-K (2000) A new diamond search algorithm for fast block-matching motion estimation.
IEEE Trans Image Process 9(2):287–290. https:// doi. org/ 10. 1109/ 83. 821744

https://gitlab.com/mandeca/me_opencl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/76.322998
https://doi.org/10.1109/76.322998
https://doi.org/10.1109/76.709403
https://doi.org/10.1049/cp.2014.0713
https://doi.org/10.1145/500001.500018
https://doi.org/10.1145/500001.500018
https://www.khronos.org/opencl/
https://doi.org/10.1109/76.120779
https://doi.org/10.1109/76.120779
https://doi.org/10.1109/76.313138
https://doi.org/10.1109/83.821744

9887

1 3

Implementation of a motion estimation algorithm for Intel…

 10. Yap S, Mccanny JV (2004) A vlsi architecture for variable block size video motion estimation. Cir-
cuits and Syst II Express Briefs IEEE Trans on 51:384–389. https:// doi. org/ 10. 1109/ TCSII. 2004.
829555

 11. Chen YH, Chen TC, Chien SY, Huang YW, Chen LG (2008) Vlsi architecture design of frac-
tional motion estimation for H.264/AVC. Signal Process Syst 53:335–347. https:// doi. org/ 10. 1007/
s11265- 008- 0213-7

 12. Seyid K, Richaud A, Capoccia R, Leblebici Y (2018) FPGA-based hardware implementation of
real-time optical flow calculation. IEEE Trans Circuits Syst Video Technol 28(1):206–216. https://
doi. org/ 10. 1109/ TCSVT. 2016. 25987 03

 13. Ryszko A, Wiatr K (2001) Motion estimation operation implemented in FPGA chips for real-time
image compression. In: ISPA. Proceedings of the 2nd International Symposium on Image and Sig-
nal Processing and Analysis. In: Conjunction with 23rd international conference on information
technology interfaces (IEEE Cat., pp. 399–404 (2001). https:// doi. org/ 10. 1109/ ISPA. 2001. 938663

 14. Almomany A (2020) An opencl-based parallel acceleration of asobel edge detection algorithm using
intelfpga technology. South Afr Comput J 37:3–26

 15. Almomany A, Ayyad W, Jarrah A (2022) Optimized implementation of an improved knn classifica-
tion algorithm using intel fpga platform: Covid-19 case study. J King Saud Univ Comput Inf Sci.
https:// doi. org/ 10. 1016/j. jksuci. 2022. 04. 006

 16. Almomany A, Jarrah A, Al Assaf AH (2022) Fcm clustering approach optimization using parallel
high-speed intel fpga technology. J Electr Comput Eng 2022:11. https:// doi. org/ 10. 1155/ 2022/ 82602
83

 17. Marth E, Marcus G (2010) Parallelization of the x264 encoder using opencl. In: ACM SIGGRAPH
2010 Posters. SIGGRAPH ’10. Association for Computing Machinery, New York, NY, USA.
https:// doi. org/ 10. 1145/ 18368 45. 18369 23

 18. Zhang J, Nezan JF, Cousin JG (2012) Implementation of motion estimation based on heterogeneous
parallel computing system with OpenCL, pp 41–45. https:// doi. org/ 10. 1109/ HPCC. 2012. 16

 19. Shahid U, Ahmed A, Martina M, Masera G, Magli E (2015) Parallel H.264/AVC fast rate-distortion
optimized motion estimation by using a graphics processing unit and dedicated hardware. IEEE
Trans Circuits Syst Video Technol. https:// doi. org/ 10. 1109/ TCSVT. 2014. 23511 11

 20. Melo M, Smaniotto G, Maich H, Agostini L, Zatt B, Rosa L, Porto M (2016) A parallel motion esti-
mation solution for heterogeneous system on chip. In: 2016 29th Symposium on Integrated Circuits
and Systems Design (SBCCI), pp 1–6. https:// doi. org/ 10. 1109/ SBCCI. 2016. 77240 63

 21. Sanchez G, Porto M, Agostini L (2013). A hardware friedly motion estimation algorithm for the
emergent hevc standard and its low power hardware design. In: 2013 IEEE International Conference
on Image Processing, pp 1991–1994 https:// doi. org/ 10. 1109/ ICIP. 2013. 67384 10

 22. Núñez-Yáñez JL, Nabina A, Hung E, Vafiadis G (2012) Cogeneration of fast motion estimation pro-
cessors and algorithms for advanced video coding. IEEE Trans Very Large Scale Integr (VLSI) Syst
20:437–448

 23. Pastuszak G, Trochimiuk M (2015) Algorithm and architecture design of the motion estima-
tion for the h.265/hevc 4k-uhd encoder. J Real-Time Image Process. https:// doi. org/ 10. 1007/
s11554- 015- 0516-4

 24. Koga T, Iinuma K, Hirano A, Iijima Y, Ishiguro T (1981) Motion-compensated interframe coding
for video conferencing. Proc Natl Telesyst Conf 81:G3–G5

 25. Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation.
IEEE Trans Syst Video Technol 4(4):438–442. https:// doi. org/ 10. 1109/ 76. 313138

 26. Po L-M, Ma W-C (1996) A novel four-step search algorithm for fast block motion estimation. IEEE
Trans Syst Video Technol 6(3):313–317. https:// doi. org/ 10. 1109/ 76. 499840

 27. Liu L-K, Feig E (1996) A block-based gradient descent search algorithm for block motion esti-
mation in video coding. IEEE Trans Syst Video Technol 6(4):419–422. https:// doi. org/ 10. 1109/ 76.
510936

 28. Zhu C, Lin X, Chau L-P (2002) Hexagon-based search pattern for fast block motion estimation.
IEEE Trans Syst Video Technol 12:349–355. https:// doi. org/ 10. 1109/ TCSVT. 2002. 10034 74

 29. Sullivan G, Ohm JR, Wiegand T (2012) Overview of the high efficiency video coding (hevc) stand-
ard. IEEE Trans Syst Video Technol. https:// doi. org/ 10. 1109/ TCSVT. 2012. 22211 91

 30. Olav Lillevold, K., Danielsen, R (1996)TMN encoder. https:// gitlab. inria. fr/ citi- lab/ dycto n/-/ blob/
master/ src/ platf orm_ tlm/ softw are/ h263/ mot_ est.c, accessed June 2022

 31. Komarek T, Pirsch P (1989) Array architectures for block matching algorithms. IEEE Trans Circuits
Syst 36(10):1301–1308. https:// doi. org/ 10. 1109/ 31. 44346

https://doi.org/10.1109/TCSII.2004.829555
https://doi.org/10.1109/TCSII.2004.829555
https://doi.org/10.1007/s11265-008-0213-7
https://doi.org/10.1007/s11265-008-0213-7
https://doi.org/10.1109/TCSVT.2016.2598703
https://doi.org/10.1109/TCSVT.2016.2598703
https://doi.org/10.1109/ISPA.2001.938663
https://doi.org/10.1016/j.jksuci.2022.04.006
https://doi.org/10.1155/2022/8260283
https://doi.org/10.1155/2022/8260283
https://doi.org/10.1145/1836845.1836923
https://doi.org/10.1109/HPCC.2012.16
https://doi.org/10.1109/TCSVT.2014.2351111
https://doi.org/10.1109/SBCCI.2016.7724063
https://doi.org/10.1109/ICIP.2013.6738410
https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1109/76.313138
https://doi.org/10.1109/76.499840
https://doi.org/10.1109/76.510936
https://doi.org/10.1109/76.510936
https://doi.org/10.1109/TCSVT.2002.1003474
https://doi.org/10.1109/TCSVT.2012.2221191
https://gitlab.inria.fr/citi-lab/dycton/-/blob/master/src/platform_tlm/software/h263/mot_est.c
https://gitlab.inria.fr/citi-lab/dycton/-/blob/master/src/platform_tlm/software/h263/mot_est.c
https://doi.org/10.1109/31.44346

9888 M. de Castro et al.

1 3

 32. Lu L, McCanny JV, Sezer S (2007) Systolic array based architecture for variable block-size motion
estimation. In: Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pp
160–168. https:// doi. org/ 10. 1109/ AHS. 2007. 103

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Manuel de Castro1 · Roberto R. Osorio2 · David L. Vilariño3 ·
Arturo Gonzalez‑Escribano1 · Diego R. Llanos1

 Manuel de Castro
 manuel@infor.uva.es

 Roberto R. Osorio
 roberto.osorio@udc.es

 David L. Vilariño
 david.vilarino@usc.es

 Arturo Gonzalez-Escribano
 arturo@infor.uva.es

1 Departamento de Informática, Universidad de Valladolid, Escuela de Ingeniería Informática,
Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid, Spain

2 CITIC, Computer Architecture Group, Universidade da Coruña, Campus de Eviña s/n,
15008 A Coruña, Spain

3 Departamento de Electrónica y Computación, Universidad de Santiago de Compostela, Campus
Vida s/n, 15782 Santiago de Compostela, Spain

https://doi.org/10.1109/AHS.2007.103

	Implementation of a motion estimation algorithm for Intel FPGAs using OpenCL
	Abstract
	1 Introduction
	2 Related work
	3 Block matching motion estimation
	4 OpenCL for Intel FPGAs
	4.1 OpenCL standard
	4.2 OpenCL for Intel FPGAs

	5 Our proposal
	5.1 Development process
	5.2 Final full search versions
	5.3 Preliminary diamond search version

	6 Evaluation
	6.1 Resource utilization
	6.2 Performance
	6.2.1 Experimental study against a CPU reference
	6.2.2 Theoretical comparison against an HDL implementation using performance estimations

	6.3 Evaluation of OpenCL as a tool for developing FPGA solutions

	7 Conclusions
	Acknowledgements
	References

