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Abstract
Heterogeneous computing is the major driving factor in designing new energy-effi-
cient high-performance computing systems. Despite the broad adoption of GPUs 
and other specialized architectures, the interest in spatial architectures like field-
programmable gate arrays (FPGAs) has grown. While combining high performance, 
low power consumption and high adaptability constitute an advantage, these devices 
still suffer from a weak software ecosystem, which forces application developers to 
use tools requiring deep knowledge of the underlying system, often leaving legacy 
code (e.g., Fortran applications) unsupported. By realizing this, we describe a meth-
odology for porting Fortran (legacy) code on modern FPGA architectures, with the 
target of preserving performance/power ratios. Aimed as an experience report, we 
considered an industrial computational fluid dynamics application to demonstrate 
that our methodology produces synthesizable OpenCL codes targeting Intel Arria10 
and Stratix10 devices. Although performance gain is not far beyond that of the origi-
nal CPU code (we obtained a relative speedup of × 0.59 and × 0.63, respectively, for 
a single optimized main kernel, while only on the Stratix10 we achieved × 2.56 by 
replicating the main optimized kernel 4 times), our results are quite encouraging to 
drawn the path for further investigations. This paper also reports some major criti-
calities in porting Fortran code on FPGA architectures.
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1  Introduction

Energy efficiency has become a major concern in all the computing domains, 
since the ever-growing demand for performance is followed by an increase in 
the energy consumption of computing infrastructures. Load-Store Architec-
tures (LSA) dominated the computing landscape for long time, but they have 
been found to be inefficient. Indeed, a large fraction of the energy is spent by 
instructions (especially by floating-point instructions—[1]) and by moving data 
in and out of register files, caches, as well as it is consumed also by the control 
logic. These control-driven architectures start struggling in keeping the perfor-
mance pace when deep learning and other highly parallel algorithms have to be 
executed. As such, conventional CPUs are limited by a relative small parallelism 
exposed by the few cores, and by their relative high power consumption. Domain-
specific architectures (DSAs) like GPUs and deep-learning focused devices (e.g., 
Google TPU, Nvidia Tensor-Cores) overcome such limitations by tailoring to a 
specific class of computations. However, such advantages still remain restricted 
to specific application domains, generally making DSAs poor performing in oth-
ers. Since their infancy, field-programmable gate arrays (FPGAs) were used as 
a means for fast prototyping application-specific integrated circuits (ASICs) or 
to speed the development of the software stack for a given architecture. The fast 
progress of manufacturing processes allows FPGA manufacturers embedding an 
ever-increasing number of functional blocks, leading to reconfigurable fabrics 
capable of accommodating very complex overlay computing architectures [2, 3]. 
All this is making FPGAs more attracting, thus leading to an increased number of 
applications successfully ported on such spatial computing devices.

All the major FPGA manufacturers offer high-level synthesis (HLS)-based 
frameworks (i.e., Intel’s OpenCL-AOCL and most recently Intel oneAPI, Xilinx’s 
HLS-SDAccel, Maxeler’s dataflow compiler) to avoid the application develop-
ers the burden of optimizing their code both for (execution) time and space (i.e., 
minimizing the number of on-chip resources that are used and also limiting the 
off-chip communication as much as possible). HLS tools are generally based on 
high-level programming languages and frameworks, like C/C++ and OpenCL; 
however, there is a lack of libraries of reusable components. Despite this, writ-
ing high-performance parallel code targeting modern FPGA fabrics is still a chal-
lenging task. Notably, fBLAS [4] represents an example of the effort for offering 
a high-level library of reusable components, which preserve performance across 
various target devices. Here, the challenge is tougher than for DSAs since the 
interfaces of the components must conform to specific (high-level) standards to 
correctly exchange data each others. This introduces additional constraints to the 
compiling tool-chain that is in charge of translating high-level application codes 
into a register-transfer level (RTL) representation. Further, fBLAS re-usability is 
restricted to only C/C++ applications. Meta-programming frameworks have been 
proposed to ease the exploitation of spatial computing devices (e.g., Maxeler), 
but their broader adoption is still far, as well as their capability of coping with 
the requirements of the large body of legacy scientific codes that are in use today. 



7463

1 3

Accelerating legacy applications with spatial computing…

As a matter of fact, Fortran-based applications remain out of the support of such 
frameworks.

While heterogeneous-oriented programming frameworks provide a clear pathway 
for ’code portability,’ ’performance portability’ challenge across multiple devices is 
not yet fully addressed. For instance, Zohouri et al. [5] showed that porting OpenCL 
code optimized for GPU devices on FPGAs ended in a functionally correct code 
on the latter devices, but paid in terms of performance. Conversely, code optimized 
for FPGAs allowed to achieve better power efficiency. Recently, Intel introduced the 
oneAPI framework  [6], which leverage on high-level coding to smoothly support 
CPUs, GPUs and FPGAs. Similarly, AMD offers tools easing the code acceleration 
using GPUs and FPGAs.

The main drawback of these frameworks is the limited support of high-level lan-
guages that is restricted to C/C++ (although, AMD supports Fortran acceleration 
but only targeting specific features available on their processors’ lineup). The prob-
lem is exacerbated by the fact that a large body of scientific applications is written 
using the various standards of the Fortran programming language. To fill the gap 
between these (legacy) applications and the capability of exploiting performance 
boost given by heterogeneous devices, effective methodologies to connect applica-
tion codes with the lower programming substrate should be considered. Aimed in 
part as an experience report, the main purpose of this work is to define a meth-
odological approach to guide the reader in the way of accelerating legacy Fortran 
applications using FPGA devices. The work presented in this paper arose in the con-
text of funded European projects, where one of the objectives was that of evaluating 
the performance improvement of HPC applications with heterogeneous hardware, 
including FPGAs. As such, we had access to a specific licensed code used to sup-
port the simulation and design of aeronautical components. (More specifically, we 
targeted a specific application in the computational fluid dynamics domain—CFD.) 
Despite we were limited in the number of target routines that could be disclosed, 
experimental results provided a glimpse of the potential benefit in using FPGA 
devices for accelerating Fortran codes, as we achieved a relative speedup over the 
CPU version of × 2.56 (Intel Stratix10) when the main kernel is replicated multiple 
times, although the performance remained quite below in the case replication strat-
egy is not used for both the devices we considered (i.e., × 0.63 for the Intel Stratix10 
and × 0.59 for the Intel Arria10). Similarly, we show a power consumption estima-
tion in the order of three fourth of the maximum nominal one (i.e., around 200W 
for the Stratix10 case and around 50W for the mid-range Intel Arria10 device). Fur-
thermore, we show that with our methodology, a synthesizable code is achievable, 
as well as the approach can be largely automatized. Although these results are still 
not able to fully demonstrate performance advantage of the FPGA version of the tar-
geted code, they are encouraging for driving further investigations.

1.1 � Paper contribution

The large base of applications daily used by scientists and engineers is written using 
high-level programming languages which are not able to exploit performance and 
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energy efficiency benefits brought by modern hardware accelerators. One notable 
example can be found in Fortran applications, for which the support offered by het-
erogeneous-oriented programming frameworks is poor. Indeed, while some sort of 
support can be found for GPU targets, FPGAs totally lack any such support.

This paper has the major contribution in filling the gap between CPU-focused 
Fortran applications and the capabilities offered by modern FPGA devices. While 
experimental demonstration targeted Intel mid-range and high-end devices, the pro-
posed methodological approach is not stuck to any specific feature of such devices, 
being thus portable across vendors. Specifically, we derived a methodology to map 
a selected Fortran routine (acceleration target) on an equivalent HLS synthesizable 
code, which can be accelerated on a FPGA device. To this purpose, our methodol-
ogy is composed of three main steps, as follows:

•	 (Automatic) translation of the original Fortran routine to be accelerated into a 
HLS-friendly language (OpenCL and C/C++ in our setup);

•	 Creation of the additional FPGA kernel(s) and data handling support code;
•	 Creation of data wrappers to properly map Fortran data structures with C/C++ 

types and data structures.

The remainder of this paper is as follows. Section 2 introduces the selected test vehi-
cle routine as the target for FPGA acceleration. Its subsection details the proposed 
methodology for mapping Fortran legacy code on the FPGA high-level synthesis 
(HLS) environment. Section  3 provides the description of the used experimental 
setup, and in the subsection, we discuss the synthesis results. Here, we provide an 
overview of the performance achieved by the FPGA versions, along with an estima-
tion of the power consumption on the two experimental devices. Section 4 provides 
an overview of the most influencing works available in the literature, while Sect. 5 
concludes the work and gives a view on future activities.

2 � The FPGA acceleration test case

This work was born in the context of European-funded projects, with the main pur-
pose of investigating on porting (large) scientific and engineering applications on 
heterogeneous high-performance computing infrastructures. As such, we aimed at 
evaluating diverse acceleration platforms as target of our investigation, thus consid-
ering the FPGA as one interesting case. To this purpose, we surveyed pilot applica-
tions being part of the LEXIS project1 to determine a suitable test case. As such, this 
initial survey resulted in the selection of a Fortran code currently used in the CAE 
tool supporting the computational fluid dynamics investigations for the aeronauti-
cal turbomachinery test-bed included within the LEXIS Aeronautics Large-Scale 
Pilot led by Avio Aero. Specifically, the code that has been chosen is a smoothing 
routine of the Traf program [7, 8], which is a computational fluid dynamics (CFD) 

1  https://​lexis-​proje​ct.​eu/​web/.

https://lexis-project.eu/web/


7465

1 3

Accelerating legacy applications with spatial computing…

solver for three-dimensional Reynolds-averaged Navier–Stokes equations, devel-
oped at the University of Florence, with a special focus on turbomachinery appli-
cations. An implicit residual smoothing strategy is used to accelerate the conver-
gence. As the name suggests, the routine acts on a set of multi-dimensional arrays 
which are produced in other elaboration steps and “smooths” them by performing 
operations closely related to an implicitly computed weighted average. These multi-
dimensional arrays are closely linked to a computational grid and bring information 
related to physical parameters of the main simulation. The purpose of such smooth-
ing operation is to filter out non-physical oscillations that may appear in the residual 
field. Worth to mention here is the fact that the access to the code of the selected 
application was subject to a license, which restricted the number of routines that 
could be disclosed. Also, the majority of the routines shown inter-dependencies 
which made their use as an initial test case for our methodology more complex. To 
this end, we looked at to the smoothing routine, that did not show such drawbacks.

In fact, this routine caught our attention, since it shows interesting features that 
helped us to focus on the porting aspects of the code to the FPGA-based environ-
ment. Specifically, the routine is short and self-contained (does not rely on exter-
nal libraries) and uses only easy mathematical operations (sums, multiplications and 
divisions) on arrays of single precision floats. As such, for the sake of simplicity, 
the whole application has been stripped down to a bare minimum, keeping only a 
Fortran main entry point, which is in charge of allocating the data arrays, loading 
input test data from a file and launching the routine. One important aspect concerns 
also the way the input dataset has been generated. This is done by executing external 
Fortran routines that are not the target for the acceleration. Specifically, input data 
are the outcome of physical simulation processes which limited our capability of 
enlarging the overall dataset or modifying the structure data are organized in.

Interestingly, some test (not limited to the specific routine targeted in this work) 
has been performed using the IT4Innovations HPC facilities which allowed to 
demonstrate that a proper refactoring of the code could provide a significant per-
formance boost using hardware acceleration. Specifically, nodes equipped with 
multiple Nvidia V100 (using 16 accelerators, 4 cards per node) and Nvidia A100 
(using 32 accelerators, 8 cards per node) GPUs have been used to provide a speedup 
up to × 21.4 , with regard to the original code (as reported in a recently accepted 
paper [9]). While these experiments showed us the great potential benefit of using 
hardware acceleration, the high power consumption of such GPUs drove us to con-
sider reconfigurable devices as a further direction of investigation for a more power-
efficient acceleration solution. In fact, each V100 accelerator draws up to 300W, 
while each A100 consumes up to 400W against 225W and 75W, respectively, for the 
high-end (Intel Stratix10) and mid-range (Intel Arria10) boards tested here.

2.1 � Proposed methodology

The process of porting legacy Fortran code to modern FPGA-based environment 
requires several steps aimed at refactoring the code in such a way specific fea-
tures may become more exploitable by low-level HLS tools. In particular, code 
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refactoring is the first step needed to properly derive a kernel (i.e., the portion of 
the code that will be executed by the accelerator). To this purpose and when For-
tran code is targeted, code refactoring implies mostly removing global variables 
(which prevent to properly deal with the separated memory spaces of the host CPU 
and accelerator) and to avoid use of variable names that contains indication of the 
variable types. Such operations are referred as code normalization and are neces-
sary to properly translate the Fortran code into an equivalent C-based code. Other 
operations may involve the application of OpenCL annotations (used to drive the 
HLS compilation to extract as much as possible parallelism), pipelining and vectori-
zation. While code normalization can be achieved mostly in an automatic manner, 
some code improvements for performance gain (e.g., monolithic kernel code split 
into pipelined kernels) may require manual intervention. Despite this limitation, the 
methodology steps allow to derive a properly synthesizable code. The other steps 
involve the creation of the logic to manage data transfers between the host CPU and 
the FPGA board, instantiating a Fortran wrapper (the code linking to the C-based/
OpenCL code that drives the FPGA board and the communication with the host), 
and replacing all the calls to the original Fortran code with equivalent ones to the 
Fortran wrapper. To summarize, our methodology is based on the following main 
steps:

•	 Step-1: Code refactoring (normalization);
•	 Step-2: Translate the computing routine into a HLS-friendly language (OpenCL 

in our setup), including the use of annotation for performance improvement;
•	 Step-3: Create the C-based support code (FPGA kernel and data handling);
•	 Step-4: Create a Fortran wrapper around FPGA management and kernel han-

dlers, as well as to adapt Fortran data structures and types to C ones;
•	 Step-5: Replace original routine calls with wrapper calls.

Figure 1 shows our proposed pipeline for the effective translation of (legacy) For-
tran routines into the equivalent C-based/OpenCL code. Once isolated the tar-
get routine ( T

R
 ), the first step consists in translating the original Fortran code to 

an equivalent code targeting HLS. Here, some major challenges can be found in 
moving from Fortran code to OpenCL or even to HDL code. As mentioned in 
Sect. 1, there is almost complete lack of tools capable of automating this phase, 
except few examples (i.e., works [10, 11] as reported in Sect. 4) and considering 
some limitations. By the way, large fraction of scientific and engineering codes 
contains loops, which are thus one of the main targets of the translation process. 

Fig. 1   Proposed transformation pipeline: the target routine ( T
R
 ) in the original code passes through four 

main porting steps, ending in a code where T
R
 is replaced with kernel calls (K)
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Here, label-based loops can be converted into more manageable do-loops. This 
latter form can be (automatically) translated in the equivalent C-based version. 
When the targeted accelerator is an FPGA, the generated C-based code should be 
compliant with the requirements coming from the device vendor. Furthermore, 
the HLS tools generally consider specific dialects of the OpenCL standard, i.e., 
each vendor supports a subset of the general OpenCL standard, to which some 
custom extensions (custom annotations) are added. While the customization is 
different from vendor to vendor, a 1-to-1 mapping between annotations of one 
vendor and those of another is possible. Based on this, the final form of the 
kernel may vary, depending on the specific targeted FPGA device. Despite, the 
space for automating the translation process, some very irregular codes may still 
require manual intervention to generate a proper synthesizable code. This is the 
case of our test vehicle, which shows a quite irregular pattern of accessing the 
input arrays (i.e., irregular memory accesses), leading to a not very-optimized 
kernel using such automation approach. Indeed, multi-dimensional Fortran arrays 
(input) are allocated at run-time, while in OpenCL, we have to define the array 
size at compilation-time (we had to analyze run time execution of the original 
code to determine the proper size of the arrays); moreover, the number of array 
indexes (which is 4 in our case) required us to explicitly write the address genera-
tion logic inside each buffer (i.e., reserved memory regions in the SDRAM of the 
FPGA target board, used to communicate with the host; on the host side, similar 
memory regions are created for the same purpose).

A second challenge can be found in the way the original code is written (often 
this aspect refers to the body of a loop). Here, the code should be first normal-
ized to better expose features that allow to generate (efficient) RTL structures. 
To address this latter challenge, tools like those described by  [12] and in  [13] 
can be used. In particular, these works driven us in the implementation phase 
of our methodology. Among the operations involved in the code normalization 
phase, we can highlight: (1) the need of translating all non-program code units 
into modules which are then used through an explicit export declaration; (2) the 
need of removing some deprecated features largely exploited in old legacy codes 
(e.g., Fortran 77), such as implicit typing, the absence of a module system, or 
the absence of intended access declarations for subroutine arguments; and (3) the 
need of removing the use of global variables which need to be passed as inputs in 
the kernel function(s). This latter point, in fact, is directly connected to way mem-
ory objects are used in a heterogeneous execution system. The general accepted 
model when dealing with hardware accelerators is that of keeping host memory 
(physically) separated from that of the accelerator. Then, the code to be acceler-
ated is embedded into a kernel that is then implicitly or explicitly called in the 
original code (K blocks in Fig. 1). As such, the kernel code is directly executed 
on the acceleration device, while the host code abstracts the necessary machinery 
for transferring data in and out the accelerator. Thus, such model implies that host 
memory and accelerator (global) memory were managed and addressed as physi-
cally separated memories. Moving data from the host to the accelerator (and vice 
versa) is done by an explicit copy operation.
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2.1.1 � Implementation approach

The first implementation of the smoothing routine (we refer to this as smoothcl—
baseline) in OpenCL was a simple, naïve translation of the Fortran code to a sin-
gle OpenCL kernel, with very limited optimizations. The specific implementation 
followed the OpenCL guidelines for a single work-item kernel; thus, the original 
loops were explicitly preserved and synthesized as pipelined data paths and finite 
state machines (FSMs). Indeed, we found NDRange kernel structure providing any 
advantage, since the high dimensionality of the arrays and the specific memory 
access patterns prevented the synthesized circuit to achieve good performance. In 
fact, while NDRange kernels provide an easy means for parallelizing the operations 
performed on multi-dimensional arrays, they need to use the (slow) global memory 
of the device to synchronize each others. Furthermore, the FPGA vendor suggests 
the use of single work-item structure to perform more aggressive optimizations on 
the synthesized circuit. Given that, the loops were handled as streams of single oper-
ations performed in parallel on the elements of the data arrays (vectorization). Sev-
eral iterations of the OpenCL code compilation, synthesis and running session on 
the target devices have been done in order to fulfill the bare minimum performance 
requirements (i.e., performance is in line with that of the CPU-only counterpart) for 
the routine and to reduce as much as possible the amount of FPGA resources con-
sumed. Multiple copies of the processing kernel can be instantiated to further boost 
the performance of the accelerator.

A C-based FPGA management code takes care of all the operations needed to 
support the FPGA board programming, as well as those related to kernel discov-
ery, declaration and execution. Furthermore, this code is in charge of managing 
the creation of data buffers within the on-board SDRAM banks, and to manage the 
data transfer to and from the FPGA board (with regard to the host). The kernel and 
FPGA management codes, although fairly repetitive in their structure, count for a 
quite larger number of lines if compared to the original Fortran code (i.e., more than 
a thousand lines of code compared to less than 200 lines of Fortran code). When 
moving on multiple parallel kernels, the lines of code ratio further increase. (Indeed, 
the C-based code has to take care also of the concurrent execution and needed syn-
chronization among the kernels.)

The latest step of our proposed methodology consists in writing a Fortran wrapper, 
which is in charge of directly linking the FPGA management code to the Fortran entry 
point. Thanks to this wrapper, we can effectively replace the original residual smooth-
ing routine code. More specifically, this wrapper unpacks the original data structure, 
isolates the arrays that need to be copied to the board (global memory) for the smooth-
ing operation, and simply calls the FPGA management code (which in turns embeds 
the call to the FPGA kernels). The processed data arrays are then copied back from the 
board (global memory) to the host memory structure. Figure 2 shows the architecture 
resulting from the Fortran routine translation into the FPGA-accelerated kernels. The 
synthesized acceleration kernels—i.e., RTL blocks in the figure—contain the FSMs 
responsible for the operations performed on the data arrays. Through the FPGA Board 
Support Package (BSP), the kernels have access to the PCIe interface and the memory 
controller logic, which are needed to manage correctly the access to the global memory 
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and to communicate with the host. Optimization of the kernel structure led to the gen-
eration of several DMA engines to cope with the memory access patterns generated 
by a multiple kernel instantiation. On the host side, communication buffers are created 
in the memory pool. FPGA management code, which is directly linked to the Fortran 
code through the wrapper, manages the data exchange between host and FPGA global 
memory, and the execution of the acceleration kernels.

3 � Experimental setup

Experimental setup was based on Bittware boards based on two different FPGA 
devices (i.e., the Intel Arria10—mid-range device, and the Intel Stratix10—high-
end device), whose main features are reported in table 1. These boards were made 

Fig. 2   Resulting architecture for accelerating legacy Fortran code on the FPGA target device. A wrapper 
allows to directly call the FPGA management code used to drive the communication between the host 
and the FPGA, as well as to manage kernels execution

Table 1   FPGA boards used for evaluation

FPGA ALMs FFs M20Ks DSPs DRAM

Arria10 GX1150 Total 427 × 103 1.7 × 106 2.7 × 103 1518 2 × 8 GB
Avail. 392 × 103 1.5 × 106 2.4 × 103 1518 2 × 8 GB

Stratix10 GX2800 Total 933 × 103 3.7 × 106 11.7 × 103 5760 4 × 8 GB
Avail. 692 × 103 2.8 × 106 8.9 × 106 4468 4 × 8 GB
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available in the context of the European-funded projects that supported this work, 
through HPC heterogeneous infrastructures.2,3 These FPGA devices embed differ-
ent amounts of reconfigurable resources, as well as they embed dedicated hardened 
features providing specific functionalities to the application layer. Reconfigurable 
resources can be divided in: Adaptive Logic Modules (ALMs), Flip-Flops (FFs), 
Memory Blocks (M20Ks), and Digital Signal Processors (DSPs).

With each board, the vendor provides the specific Board Support Package (BSP), 
which is a predefined circuitry loaded on the FPGA fabric with the purpose of man-
aging the interconnection with other external components (e.g., access to the PCIe 
interface, access to networking interface, etc.) which are present on the board. BSP 
consumes a fraction of the reconfigurable resources, so that the actual number of 
ALMs, FFs, M20Ks and DSPs available to the application is less than what reported 
by the device data-sheets. For both the board models, the connection to the host 
device is done via PCIe configured in × 8 mode. Interestingly, the DSPs embedded 
in the Intel devices expose the hardware support for single precision floating point 
operations, which has been extensively exploited in our test case application. Fur-
thermore, the ALMs are flexible reconfigurable logic blocks, which in turn contains 
a lookup table block (LUT), two full adders, carry-chain, and register-logic. Thanks 
to such flexibility, the ALM resources can be used to implement both combina-
tional- and register-functions. On the more advanced FPGA device (Intel Stratix10), 
there is a second kind of on-chip memory blocks, referred to as MLABs. Similarly 
to M20K blocks, MLABs can be configured in different ways (single port, dual port, 
FIFO, ROM, shift register); however, the main difference with M20Ks remains in 
their arrangement which is, in the MLAB case, better suited for wide and shallow 
on-chip storage. It is also of worth mentioning that ALM blocks also support their 
fracturing. By this, each building block can be configured to work as two separated 
logic blocks although halving the number of available resources.

Experiments were carried out on three different cluster nodes (host systems) 
based on the Intel Xeon CPU architecture. The nodes were equipped with a differ-
ent amount of main memory and different CPU versions. Worth to mention is the 
fact that, the CPUs on board of these nodes had a large amount of cache memory. 
This led us to suspect that the small performance advantage shown by the FPGA 
accelerated code was masked by the large cache memories (L3 cache size was in the 
order of few tens of MB) able to accommodate large chunks of the input data set. 
From a software perspective, for synthesizing FPGA kernels we relied on the Intel 
HLS tool-chain, which is based on the Intel FPGA SDK for OpenCL v19.1. On the 
host side, the application code was compiled using an open-source tool, specifically 
the GCC compiler. In all the cases, the operating system of the nodes was a recent 
Linux version.

The original Fortran code (smoothing routine) consisted in many do-loops count-
ing for an overall number of lines equals to nearly 200, and computing the implicit 
weighted average of the values carried by multi-dimensional input arrays. Even the 

2  https://​lexis-​proje​ct.​eu/​web/.
3  https://​www.​acros​sproj​ect.​eu.

https://lexis-project.eu/web/
https://www.acrossproject.eu
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structure of the loops is quite similar to each other. While the following considera-
tions apply to all the loops being part of the smoothing routine, for the sake of sim-
plicity, we provide in Listing 1 an illustrative example of one of these do-loops. Spe-
cifically, on each iteration, the multi-dimensional data arrays are accessed, and their 
value is updated by applying division operator (see line 2). A very direct translation 
of this simple loop is provided in Listing  2, whereas the multi-dimensional arrays 
access is split on multiple lines (lines 3, 4 and 5), and do-loop is replaced with a 
for-loop.

The code demonstrates the complexity of the indexing used to point the actual 
elements of the arrays. Another point to mention is that in the OpenCL version, the 
access to those data arrays is done through memory pointers.

3.1 � Synthesis results

Table 2 is derived from the standard report coming out of FPGA synthesis tool tar-
geting the Intel Arria10 device; it shows the resources (the main building blocks) 
that have been used to map the kernel functions to a properly working digital circuit: 
ALUTs are derived mostly from the ALM blocks and are used to generate Boolean 
functions, including basic Boolean gates (AND and OR) with multiple inputs. FFs 

Table 2   FPGA resource 
consumption (area estimation) 
targeting the Intel Arria10 
device

Kernel function ALUTs FFs M20Ks DSPs

Smoothcl core 115,578 281,998 2019 124
Global interconnect 21,305 43,500 61 0
Board interface 21,305 43,500 61 0
FPGA fabric resources consumption
% Of used resources 33% 36% 100% 14%
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are mapped to registers, while the DSPs are used to implement the most expensive 
mathematical operations such as summation and multiplications (i.e., adders and 
multipliers blocks). Finally, M20K memory blocks are used as an embedded on-chip 
RAM to quickly map data arrays on top.

It is worth noting here that the result on the resource usage done by the synthesis 
tool is generally an over-estimation of the actual resources required by the kernel 
after the placing and routing subsequent step. Nevertheless, this estimation provides 
an important insight of the FPGA resource occupation of the kernel(s) and generally 
is not too dissimilar from the actual value. Given that, on-chip RAM memory blocks 
seem to be the limiting resource at this point. Indeed, after some optimization steps 
and using OpenCL pre-processor pragmas to automatically replicate sections of the 
code only resulted in a design consuming all the M20K memory blocks (i.e., 100% 
of the RAM blocks was used) in the FPGA fabric. In this case, the kernel replica-
tion strategy for improving performance was not feasible on such mid-range device. 
Worth to say, the naïve kernel implementation (i.e., the one obtained by translating 
the original Fortran smoothing routine into an equivalent C-based function), as well 
as most of the applied optimizations, can be automatized. On the contrary, some 
of the following optimization strategies have been implemented manually, although 
this does not affect the general methodology we illustrated.

A different optimization strategy consisted in dividing the main kernel core func-
tion in four kernel functions (actually mapped as four independent kernels with data 
pipes in between to speed up data transfers). This strategy allowed us also to bet-
ter understand the performance bottlenecks and explore the possibility of replicat-
ing only critical sections of the routine. In order to simplify the control logic, we 
decided to reduce the number of nested loops; instead, we run the kernels several 
times, passing the loop index as argument. This approach did not have significant 
overload and helped us achieve better overall clock frequencies. Unlike for the mid-
range device, on larger FPGA fabrics (i.e., Intel Stratix10 device in our case), a very 
straightforward strategy to improve the performance of the accelerated code was that 
of replicating multiple times the main kernels and give them the capability of pro-
cessing non-overlapped portions of the input data arrays in parallel. As such, the 

Table 3   FPGA resource 
consumption (area estimation) 
targeting the Intel Stratix10 
device

(*) the Intel reporting tool does not provide the percentage of used 
MLABs

Kernel function ALUTs FFs M20Ks DSPs MLABs

smoothcl_kernel1 11,627 19,962 108 11. 105
smoothcl_kernel2 87,955 198,135 921 76.5 1613
smoothcl_kernel3 49,804 122,626 619 32. 815
smoothcl_kernel4 72,097 163,350 809 42.5 1102
Global interconnect 40,372 62,912 104 0. 0
Board interface 474,980 949,960 2768 1047 0
System description 115,578 281,998 2019 124 0
FPGA fabric resources consumption
% Of used resources 39% 24% 45% 21% (*)
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larger amount of resources allowed to replicate up to 4 times the overall kernels 
pipelines, allowing to achieve performance that are in line with that of the CPU ver-
sion (see Sect. 3.2 for an in-depth analysis of the performance results). This strategy 
required to slightly adapt the corresponding control code. Synthesis results reported 
in Table  3 show that kernel parallelization can be exploited, at least in terms of 
amount of available resources on the Intel Stratix10 fabric.

Despite these various optimizations, performance evaluation suggested us that 
the main performance limiting factor was to ascribe to the memory access patterns. 
Indeed, the selected target routine generates memory accesses causing a large num-
ber of stalls incurring in the synthesized pipeline. As such, the overall performance 
drop down. For instance, Table  4 shows the synthesis results (targeting the Intel 
Arria10, while similar conclusion can be drawn for the Intel Stratix10 from the syn-
thesis results) for the illustrative example of Listing 2, by detailing on the resource 
used by each synthesized circuit structure. From these results, it can be seen how raw 
global memory accesses mostly affect on-chip resources: For each access to global 
memory using a memory pointer, the synthesis tool instantiates a dedicated DMA 
engine and the arbitration logic to access the SDRAM controller. We identified all 
this logic as the main consumer of device resources as well as the main source of 
lowering the synthesized circuit clock frequency. Indeed, the large number of DMA 
engines concurrently trying to access the SDRAM controllers creates a very high 
number of contentions bringing to stalling the pipeline until data become available. 
To alleviate this, we introduced an input caching mechanism, which reduced the 
overall number of stalls, albeit their complete removal was not achieved. To this end, 
several M20K blocks are grouped and paired to the DMA engines.

Worth to note is that although resources on the FPGA fabric (Intel Stratix10) 
were enough to further replicate the kernels, experiments suggested that 4 instances 
were able to saturate the bandwidth toward the global memory due to these multiple 
concurrent accesses.

Table 4   Synthesis results for the simple for-loop-based kernel targeting the Intel Arria10 device

The consumption of resources is broken down into resource consumption of single-generated logic oper-
ations

Kernel function ALUTs FFs M20Ks DSPs
smoothcl_v2.cl:177 2668 (0%) 7331 (0%) 46 (2%) 3.5 (0%)

32-bit Integer Add 11 0 0 0
64-bit Integer Add ( × 3) 195 0 0 0
And ( × 2) 22 0 0 0
Floating-point divide 1014 948 3 3.5
Integer compare ( × 3) 22 2 0 0
Iteration initiation 1 1 0 0
Load ( × 2) 1004 4100 26 0
Or ( × 21) 1 1 0 0
State 0 64 0 0
Store 399 2216 17 0
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To further circumvent this limitation, we opted for the strategy of splitting the 
loops body into separated operational steps, each wrapped by a separated loop. 
Globally, the operations performed by this new version of the translated kernel are 
equivalent to those done by the single loop version, while they contributed to reduce 
the number of concurrent access to the global memory. For instance, the code shown 
in Listing 3 is obtained after the splitting of the code reported in Listing 2. 

Through this splitting strategy, the following execution pattern is achieved. First 
step (corresponding to the first for-loop) manages the gathering of the data scat-
tered around the global memory (remember that we are dealing with multi-dimen-
sional arrays); the second step builds a cache using local memory blocks (M20Ks), 
while the third step performs the math operations on locally stored data. Finally, 
we write back results all together on the global memory. Through this implemen-
tation, we got a significant FPGA clock speed update, so that synthesized circuit 
moved over 200  MHz on the largest device. While the pattern of accesses to the 
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memory ameliorated, the number of resources in use remained unaffected by these 
modifications.

Our general observation that, in the selected test vehicle routine, the memory 
access patterns are the largest limitation factor for the performance, is confirmed 
by the Intel profiler. (It is used to profile the kernel execution over time.) Indeed, 
the profiler showed that poor bandwidth occupation toward the global memory 
(SDRAM), suggesting that memory access scheme provided by the naïve code 
translation is not the best choice.

3.2 � Performance results and analysis

To further characterize our methodology, we analyze here the performance of the 
synthesized circuit on both the FPGA devices we had access to. The performance 
results are expressed as relative speedup with respect to the execution of the original 
code on a single CPU.

The final design of the accelerator can be summarized as a pipelined sequence of 
smaller kernels performing the operations related to weight-averaging multi-dimen-
sional array values. This kernel-based pipeline contains also input caches to reduce 
the pressure on the global memory. On the smaller device (Intel Arria10), this con-
figuration consumed nearly all the on-chip memory resources, allowing to achieve 
a clock frequency of 210 MHz. On the larger device (Intel Stratix10), the above-
mentioned configuration has been replicated 4 times and the final clock frequency of 
the synthesized 223 MHz.

Figure 3 shows the execution speedup (relative to the CPU-only original version) 
obtained comparing the naïve implementation, the optimized design and the execu-
tion with multiple kernels replicated. As the reader can see, although the methodol-
ogy is able to drive the user toward a synthesizable design, performance is very poor 

Fig. 3   Performance comparison between Intel Arria10 and Stratix10 kernel implementation: relative 
speedup over the original CPU-only execution
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when compared to the CPU version, when the naïve implementation is considered. 
Similarly, performance raised up when the various optimization steps are applied, 
but also in this case, there is no effective speedup for both the considered devices, 
which is nearly half (i.e., × 0.59 and × 0.63, respectively, for the Intel Arria10 and 
Intel Stratix10) the performance of the CPU version. The strategy of replicating the 
kernels on the larger device led the performance to greatly improve, ending in a 
speedup in favor of the larger FPGA device ( × 2.56).

Also, when comparing the execution of the accelerated code with that of the orig-
inal code running entirely on the host CPU, the CPU version remained in most of 
the cases faster than the FPGA-versions (only replicating multiple times the ker-
nel gave us an effective advantage). However, it is important to remark that in our 
experiments, we had access to a small input dataset used for test purposes (several 
tens of MB in total), which was effectively cached by the CPU cache subsystem. In 
fact, all the CPU we had access to provided few tens of MB of L3 cache, leading us 
to suspect that large chunks of the input data could easily fit on the large L3 cache. 
Also, the synthesized designs never exceeded the decent clock barrier of 250 MHz, 
while all the used host CPUs run above the GHz. Therefore, we think that a real 
advantage of the FPGA acceleration would emerge using real input datasets which 
are larger. This indeed is a planned activity through which we want also to fine-tun-
ing our methodology. Nevertheless, power consumption remains in favor of FPGAs 
when compared to other acceleration platforms (e.g., GPUs). In particular, regarding 
the measurement of the power consumption of the two devices, this operation would 
have required to instantiate specific hardware modules to capture data. As such, this 
operation would have drawn out further FPGA fabric resources. To overcome this 
limitation, we can roughly estimate the power consumption as a fraction of the max-
imum power (data are taken from the datasheet of the boards), which is proportional 
to the average resources used. Specifically, from the experimental values reported in 
Sect. 3.1, for both the devices, the average resources consumption is not higher than 
three fourth, thus setting the average power consumption to ∼206 W and ∼56 W, 
respectively, for the Intel Stratix10 and Arria10.

4 � Related works

Computer architecture specialization has been established as the main driving factor 
for achieving better performance and energy efficiency in the current and upcom-
ing high-performance machines. The viability of spatial architectures (and more 
specifically FPGAs) as mainstream hardware accelerators for computationally high-
demanding applications has been already demonstrated by far, with some notable 
examples in the literature [14]. For instance, [15] analyzed algorithms largely used 
in the HPC context and found that 5 out of the 13 analyzed were suitable for being 
accelerated on FPGA devices, although the required knowledge for their porting 
clearly shows the need for a higher abstraction level. Weller et al. [16] demonstrated 
the suitability of FPGA devices to accelerate partial differential equations (PDEs); 
authors also showed the performance limitations due to porting the kernels across 
devices of different vendors.
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Maxeler provides a high-level Java-based framework to ease the definition of 
computing kernels and to connect them through data streams [17]; the capabil-
ity of the framework has been demonstrated with scientific applications belonging 
to diverse domains (e.g., financial, seismology). Intel and Xilinx have their own 
high-level synthesis (HLS) programming frameworks (AOCL—[18]—and SDAc-
cel4, respectively) to eliminate the burden of dealing with lower level architectural 
aspects (e.g., connecting with the PCIe interface, instantiating control memory 
logic, etc.). Despite these frameworks leverage on high-level programming lan-
guages such as C/C++, the knowledge required to optimize the generated HDL code 
still remains high, thus preventing their large adoption. Other attempts to create an 
abstraction layer on top of the HLS compiler tool-chains have been reported in the 
literature. SparkCL [19] is the attempt to bring spatial architectures to the Spark 
environment, while in [20] and [21], domain-specific languages (DSL) are used to 
define finite state machines (FSMs) and to support networking applications. Chisel 
[22] is a DSL language based on Scala to ease the design and implementation of 
application-specific architectures. Chisel compiler provides the developers with an 
easy-to-use environment where they can specify the architecture in a similar way to 
RTL level. Chisel can target FPGA devices by generating synthesizable HDL code. 
fBLAS (see [4]) is a portable implementation of the BLAS library targeting FPGA 
devices; although authors provided implementation only for Intel devices. While 
there is a growing interest in supporting application code development for FPGA at 
different levels, big limitations still persist. Among the others, frameworks targeting 
portability [23] are generally restricted to C/C++ code, since vendors’ tool-chains 
also support C/C++. On the other hand, domain-specific languages are able to catch 
the needs of only a specific class of applications. As a matter of that, a large body 
of applications written using high-level programming languages other than C/C++ 
remains unsupported.

Some notable attempts to fill the gap with these unsupported languages are pro-
vided by [12] and in [13]. In the former case, authors rely on a functional program-
ming paradigm to support the generation of RTL code targeting FPGAs. Also, 
pipelining and vectorization [24] are explored to increase performance of the gen-
erated RTL code. The latter automatizes the pipelining and vectorization of the 
application code, still generating RTL code for FPGA targets. This is one of the few 
works done, where the input application code is written in Fortran, while experi-
ments targeted (AMD) Xilinx devices. Elements of the proposed tool-chain such as 
the front-end compiler (which allows for an automatically refactoring of the Fortran 
code) provided an interesting cue for the development of our methodology. Auto-
matic code refactoring targeting specifically Fortran (along the different language 
standards) can be found also in the ROSE framework [25] from LNLL supporting 
the 77-standard), while the CamFort [26] supporting 60-, 77- and 90-standards, and 
Photran [27] covering Fortran 77- to 2008-standards.

Recent works have been carried out to extend the support to heterogeneous sys-
tem (including FPGAs) and targeting applications written in Fortran. Recently, Intel 

4  https://​www.​xilinx.​com/​html_​docs/​xilin​x2019_1/​sdacc​el_​doc/​cuu15​26001​449959.​html.

https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/cuu1526001449959.html
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has strongly promoted its heterogeneous programming environment [6]—oneAPI—
which has been designed to ease code portability across diverse hardware architec-
tures (i.e., CPUs, GPUs, FPGAs, etc.). oneAPI is organized into a layered solution 
that finds the parallel programming language DC++ at its core. As such, oneAPI 
offers various tools to map high-level code to diverse low-level back-ends (i.e., 
OpenCL, and Level Zero interface), including also a CUDA experimental one. This 
said, oneAPI is able to concurrently support multiple heterogeneous accelerators, by 
exposing an enriched SYCL programming framework. Despite the high flexibility 
and large set of suitable target acceleration devices, oneAPI remains a tool mainly 
devoted to support C/C++ programming, leaving Fortran code less supported. 
Indeed, Fortran compilation is supported only targeting CPUs and GPUs. In  [28], 
the authors proposed the implementation of an OpenMP-to-FPGA compiler; the 
main objective of the authors was to provide an easy installation process of the tool 
chain, support different FPGA boards and vendors, and make a modular and extensi-
ble compilation framework. This said, the authors implemented a compilation tool-
chain that is able to outline portions of the code that can be directly accelerated 
by the target FPGA. As such, the source code is annotated with OpenMP: Only a 
subset of the OpenMP pragmas are converted into an equivalent high-level synthesis 
(HLS) code. Vendors’ tools are used to synthesize the hardware to run on the FPGA. 
Despite its encouraging results, the proposed tool is limited to C/C++ source codes, 
since there is not well-known way to generate the low-level intermediate represen-
tation (IR) of the function to accelerate as it was in C/C++. While the porting of 
(large) Fortran code on FPGA appears to be less prominent in the literature, sev-
eral works attempted to apply methodologies to accelerate Fortran code on GPUs. 
This said, a proprietary compiler (originally developed by PGI) was developed: The 
book  [29] covers the majority of the technical aspects required to get advantages 
from the GPU porting. Recently, Nvidia added Fortran to its CUDA offer [30]. Con-
versely, for our best knowledge, any direct support for AMD GPUs has been made 
available.

Authors in  [11] proposed a complete tool-chain for transforming Fortran code 
into an OpenCL synthesizable code targeting FPGA. The work is based on a combi-
nation of different tools used to: (1) normalizing the source code (i.e., avoiding the 
deduction of the variable type from the name by explicitly declaring the type, avoid-
ing as much as possible the use of global variable to fit in the separation of memory 
spaces between the host CPU and the accelerator); (2) converting the target (normal-
ized) Fortran code into an equivalent C-based code; and (3) generate the OpenCL 
code needed to drive the communication with the accelerator. Thus, the proposed 
compiler is an end-to-end solution for generating synthesizable FPGA OpenCL 
code starting from Fortran. Although this is a solution close to our proposed meth-
odology, the paper does not provide more details on how the Fortran code is con-
verted in the proper C-based OpenCL code. In this context, our methodology is in 
line, by applying simple code transformations to convert target Fortran code into 
C-based code. Similarly, [31] is a repository providing an open implementation of 
an OpenCL wrapper for diverse programming languages that do not provide direct 
support for the code parallelization using the OpenCL facility. As such, the reposi-
tory provides a wrapper for Perl and Fortran to easily target acceleration devices 
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(i.e., enables the user to properly define I/O buffers, initialize the devices, etc.), 
while writing and parallelizing the specific routines are out of the wrapper scope. 
Authors in [32] largely exploited the features exposed by the Intel oneAPI program-
ming environment to effectively accelerate an HPC code (astrophysics application) 
on a fully heterogeneous computer system (i.e., a parallel system where each com-
pute node is equipped with GPU and FPGA accelerators). Despite the paper shows a 
very interesting pathway to effectively mix different accelerators in one single appli-
cations, the targeted source code is C/C++. Again, this demonstrates the weakness 
of the compute accelerator ecosystem in supporting Fortran-based applications.

The work  [33] focused on providing a tool for directly translate Python code 
(actually a Python function is translated) into an equivalent form that can be com-
piled to a proper FPGA bitstream. To this purpose, the authors use the Numba com-
piler coupled with Intel OpenCL compiler. While this approach is remarkably use-
ful in all the context where Python code needs to be accelerated, it remains though 
to apply to Fortran code. Indeed, there is no easy way to generate an intermediate 
representation (IR, e.g., as used by LLVM) from the Fortran code using available 
compilers.

In this work  [34], a well-known simulation code (Alya) in the computational 
mechanics domain is effectively accelerated using high-performance FPGAs. The 
targeted code (performing multi-physics simulations) is written in Fortran, where 
different physical domains are simulated by using specifically designed modules. 
While the experimental results show how the FPGA implementation provides per-
formance in line with that of a high-end GPU with a lower power consumption, 
there is only a vague explanation of the methodology applied to translate the orig-
inal Fortran code into the equivalent C/C++ and OpenCL version. This said, the 
paper provides interesting guidelines for tuning the FPGA kernel code in such a way 
maximum performance can be extracted. Compared to our proposed methodology, 
this work provides interesting hints to optimize the kernel code, while our methodol-
ogy aims at providing guidelines for translating the original Fortran code into the 
C-based/OpenCL kernel(s).

5 � Conclusion

Recently, FPGA devices entered in the ecosystem of hardware accelerators available 
within HPC clusters. Some factors driving their growing adoption can be found in 
the fact that FPGAs are generally less power hungry and provide lower latency in 
processing data streams, still preserving high flexibility. Unlike well-known GPUs, 
FPGAs come with more constrains in the way an application developer can exploit 
these resources. Indeed, the entire flow of coding, testing and debugging is largely 
time consuming, since kernels must be synthesized into an equivalent digital circuit 
and then mapped onto the target FPGA device. The situation is even more complex 
when the developer has to deal with legacy code. In that case, Fortran code is still 
widely adopted by scientific and engineering communities, while the availability of 
tools for easing the development of the kernel and their synthesis (high-level synthe-
sis—HLS—tools) is limited to C/C++ programming languages.
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Aimed as part of an experience report, the main purpose of this paper is that of 
guiding the reader to transform (legacy) Fortran code into a synthesizable (and port-
able) code through a well-defined methodology. To this purpose, several steps have 
been described, as well as different optimization strategies. With this in mind, most 
of the operations and transformations described in this work can be automatized, 
although for some optimization strategies manual intervention has been required. 
To demonstrate the feasibility of the proposed methodology, we used a test vehicle 
application which is largely used in the aeronautic domain (CAE), where we iso-
lated a specific routine. We showed that through the proposed approach, we were 
able to synthesize acceleration kernels targeting both mid-range and high-end FPGA 
devices (Intel Arria10 and Intel Stratix10) which were made available in the con-
text of two EU projects (H2020 LEXIS project and EuroHPC-JU ACROSS project). 
Although most of the performance results did not show any advantage with respect 
to the original code running on the CPU, some interesting and promising results have 
been achieved. Specifically, only by replicating multiple times the main computing 
kernels’ pipeline we achieved an effective speedup of × 2.56 when running on the 
largest device (performance was in part masked by the higher clock frequency of the 
used CPUs, as well as by the large L3 caches that could accommodate large chunks 
of the input dataset). Indeed, our test code proved to be limited by memory access 
bandwidth, due to the non-optimal SDRAM access patterns needed by smoothing 
data on multi-dimensional arrays. Large performance gains can be obtained by tar-
geting the specific use case and defining a compute architecture using conventional 
HDL languages (Verilog, VHDL or SystemC), but at the cost of strongly defeating 
the automation process of translating Fortran code. Power consumption seems to be 
still in favor of the FPGA accelerators when compared to GPUs, but further optimi-
zation is strongly required in order to fully gain advantage. Beside pure performance 
analysis, these results encourage us to further investigate on the direction already 
drawn in this work. Large room for further automatizing the process of code refac-
toring is present and will be part of our future activities.

Future work activities will be also oriented to test the proposed approach by port-
ing larger and complex Fortran code to the FPGA devices (including AMD/Xilinx 
ones), as well as to test the synthesized kernels with larger (real) datasets that may 
provide more chances of making emerge the advantages of the hardware accelera-
tion [14, 23, 24].
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