
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:6674–6704
https://doi.org/10.1007/s11227-022-04924-3

1 3

Automated cloud resources provisioning with the use
of the proximal policy optimization

Włodzimierz Funika1 · Paweł Koperek1 · Jacek Kitowski1,2

Accepted: 31 October 2022 / Published online: 10 November 2022
© The Author(s) 2022

Abstract
Many modern applications, both scientific and commercial, are deployed to cloud
environments and often employ multiple types of resources. That allows them to
efficiently allocate only the resources which are actually needed to achieve their
goals. However, in many workloads the actual usage of the infrastructure varies over
time, which results in over-provisioning and unnecessarily high costs. In such cases,
automatic resource scaling can provide significant cost savings by provisioning
only the amount of resources which are necessary to support the current workload.
Unfortunately, due to the complex nature of distributed systems, automatic scaling
remains a challenge. Reinforcement learning domain has been recently a very active
field of research. Thanks to combining it with Deep Learning, many newly designed
algorithms improve the state of the art in many complex domains. In this paper we
present the results of our attempt to use the recent advancements in Reinforcement
Learning to optimize the cost of running a compute-intensive evolutionary process
by automating the scaling of heterogeneous resources in a compute cloud environ-
ment. We describe the architecture of our system and present evaluation results. The
experiments include autonomous management of a sample workload and a com-
parison of its performance to the traditional automatic threshold-based management
approach. We also provide the details of training of the management policy using
the proximal policy optimization algorithm. Finally, we discuss the feasibility to
extend the presented approach to further scenarios.

Keywords Reinforcement learning · Policy gradient optimization · Heterogeneous
cloud resources · Automatic management

 * Paweł Koperek
 pkoperek@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3613-2390
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04924-3&domain=pdf

6675

1 3

Automated cloud resources provisioning with the use of the…

1 Introduction

Many software systems designed nowadays exploit the cloud computing infra-
structures which offer high availability, security and the flexibility to allocate the
resources on-demand. The last factor often drives the decision to implement a
specific system using cloud resources as it allows to greatly reduce the costs of
running a distributed application. Such elasticity unfortunately requires paying
the price of designing the application to handle scaling events, e.g., changing the
number of virtual machines (horizontal scaling) or adding or removing RAM,
CPU or storage (vertical scaling). Deploying the application requires also creat-
ing a policy which will define the conditions under which the system should be
scaled and which resources should be utilized in such a case. It might be possible
to create a configuration which will work correctly over a long period of time
if the environment shows stable seasonal usage patterns. Unfortunately, in many
cases such patterns do not exist, what calls for using an automatic scaling policy.
We can define it as a dynamic process, often operating on a Physical Machine
(PM), that adapts software configurations (e.g., threads, connections and cache,
etc) and hardware resources provisioning (e.g., CPU, memory, etc) on-demand,
according to the time-varying environmental conditions [1].

The area of the Reinforcement Learning (RL) techniques has been explored
for a long time [2, 3]. Initially the techniques and algorithms from this category
could be only used in relatively simple problems. It was assumed that the envi-
ronment can be observed with use of only a few metrics and there are not that
many actions to execute. Handling more complex domains became possible with
recent advancements in, e.g., computer games [4], robot control [5] or the game
of Go [6]. One of the main drivers of progress has been the application of Deep
Learning in various forms, e.g., Deep Q Learning [7], or Policy Gradient Optimi-
zation (PGO) methods like proximal policy optimization (PPO) [8], Phasic Policy
Gradient [9]. One of the main advantages of the mentioned methods is the ability
to learn through observing and interacting with an environment which is similar
to or is the same as the one the agent is going to operate in.

One of the most popular methods in DRL is the Deep Q Learning [7]. It is
an extension of a classic Q Learning algorithm in which the policy is a given
state (s) always chooses an action (a) of highest quality. The quality is defined
through a Q function (Q(s, a)), which given a combination of state and action can
provide a numeric value which can be easily used to compare between different
actions. It is quite common that function is hard to define analytically, hence it is
approximated through an iterative algorithm. Unfortunately such an approach is
not well suited for problems in which there are many actions and possible states.
The Deep Q Learning attempts to solve that issue by using a neural network to
approximate the Q-function. This approach rendered interesting results, however
has some shortcomings. It cannot be easily applied to environments where not
all information is known and included in the state, in which probabilistic policies
are preferable. Q-Learning focuses on satisfying the Bellman equation, hence it
indirectly optimizes the policy’s behavior. Those shortcomings can be addressed

6676 W. Funika et al.

1 3

by using a PGO method, which optimize the policy’s parameters directly and gen-
erate probabilistic policies. Such an approach allowed to surpass the performance
of humans in a computer game [10], control 3D bodies in a simulated arena [11,
12] or solve Rubik’s cube using a robotic arm [13]. There are many variants of
the PGO methods: Advantage Actor-Critic (A2C) [14], Asynchronous Actor-
Critic Agents (A3C) [14], Deterministic Policy Gradient (DPG) [15], Soft Actor
Critic [16] or proximal policy optimization (PPO) [8].

Many successful experiments suggest that Deep Reinforcement Learning (DRL)
is a generic approach what encourages further research and application to other
domains. One area which could benefit from that, is the automatic scaling of distrib-
uted applications deployed to a cloud infrastructure. The cloud resources become
the environment where an automatic agent operates, their state becomes the state
which is subject to change. Cloud vendor API calls become the actions the agent
can potentially execute. Measurements and metrics which can be used to determine
the mentioned state are driven by the technologies used to implement the applica-
tion and thanks to that they are well defined. The goals of the system are also clear
(e.g., reduce RAM consumption, CPU load, request latency, cost of resources) what
helps to translate them into a reward function. Such a reward function becomes the
feedback mechanism for the agent and allows to evaluate the impact of the executed
actions. Thanks to that the agent does not need to rely on any prior knowledge and
can use a process of trial-and-error experiments to discover the optimal management
policy.

Unfortunately, with this approach the cost of creating the DRL policy becomes
the main disadvantage. The training algorithm needs to go through multiple itera-
tions of interacting with the managed system and observing its responses. Especially
at the beginning the actions chosen for execution might be quite random, what can
easily destabilize the observed application, even make it completely unusable for the
end users. Since such a situation is unacceptable in a production system, the training
requires a separate, duplicate environment. This increases unfortunately the overall
cost of running the system. Another approach, which does not incur such high costs,
is to use an artificial, simulated environment. In such a scenario, the observed work-
loads can be replayed multiple times in a reliable fashion. Additionally, the flow of
time in such an environment can be controlled what allows to speed up the simula-
tion and reduce the training time. Usually, the DRL training processes can also ben-
efit from increasing the number of iterations, what can help obtain a more efficient
policy.

Both Deep Q Learning and PGO methods have been applied to automatic control
of cloud resources [17–21] Both approaches have their strengths and weaknesses. It is
important to evaluate which of them can render superior results in a given environment.
Unfortunately, in many cases PGO methods are not taken into account. They are very
rarely used in the context of real-world test-beds. One example is [22]. In that paper,
the Deep Deterministic Policy Gradient (DDPG) algorithm is used to create a control
policy which sets thresholds of the traffic flow control system. While that use case
allowed to optimize the work of a cluster of machines, it addressed only the network-
ing aspect of data processing. Unfortunately in that example the controlled cluster is
homogeneous. All the available resources have the same configuration. In many cases,

6677

1 3

Automated cloud resources provisioning with the use of the…

though, especially in the context of automatic scaling of applications deployed to very
popular cloud infrastructures, there could be potentially employed resources of more
than just one type. Depending on the context of a situation, using a more or less power-
ful resource might be the most beneficial. In our previous work we evaluated various
algorithms from the PGO family [23] and the DQN approach and observed that the
PPO provides the best results in our environment. We have also demonstrated how to
leverage the described ideas to create a system capable of automatic scaling of a homo-
geneous cloud infrastructure hosting a CPU-intensive workload. In the current paper,
we extend this approach to heterogeneous cloud resources: the system can adjust not
only the amount of resources (i.e., the number of virtual machines) but can also decide
on the type of the resources (i.e., the type of the virtual machines) to adjust. The train-
ing does not require providing any additional information about the managed applica-
tion or specifying resources capabilities. All decisions are derived from the experience
gained from simulations. The automatic management system under discussion has been
implemented as an extension to Semantic-based Automatic Monitoring and Manage-
ment (SAMM) monitoring software [24] and includes a decision-making component
utilizing a PGO training method.

The contributions of this paper are as follows:

• We provide an extension to an existing automatic management system [25] with
capabilities to manage heterogeneous resources.

• We provide the design and implementation of a control policy capable of con-
trolling heterogeneous resources and a policy training procedure based on the
Deep Reinforcement Learning approach.

• We demonstrate the correctness of the presented approach. We train a policy
based on an long-short term memory (LSTM) [26] Deep Neural Network and
deploy it to a real world cloud-based application. While DRL and LSTM have
been combined previously together, they were used in simulated environments.
In this paper we demonstrate how a system leveraging an LSTM policy trained
with the use of a PGO method can be used in a real cloud environment.

• We analyze the efficiency of the new policy: compare the cost of resources used
by the policy in a sample scenario with the cost of resources used by a threshold-
based policy, typically available in a cloud environment.

The paper is organized as follows: in Sect. 2 we review the related work. Section 3
describes the design and architecture of the environment under discussion whereas
Sect. 4 explains the policy training procedure. Section 5 discusses the design of the
experiment and the environment it was executed in. Section 6 provides the experi-
ment results and their discussion. Section 7 summarizes our research and outlines
further work.

2 Related work

In this section we present the research which provides a broader context for our
work.

6678 W. Funika et al.

1 3

2.1 Automatic resources management

Minimizing the monetary cost of cloud resources while maintaining the business
requirements (sometimes defined through Quality-of-Service metrics) is a very com-
plex task and has been an active research area for years. There are many different
approaches available. The decision on which of them should be chosen, depends
on the features of the environment which should be managed (e.g., granularity of
managed resources, available actions, etc.). The mentioned approaches can be cat-
egorized in multiple ways. In [1] authors described a taxonomy which uses the fol-
lowing features to classify automatic management systems:

• self-awareness—the capability to obtain and maintain information about the
state of the system. There are many kinds of awareness: interaction awareness,
time awareness, stimulus awareness, goal awareness, meta awareness.

• self-adaptivity—the capability to adjust own decision policy to new circum-
stances. Depending on the area which those decisions affect, we can distinguish
between variants of self-configuring, self-healing, self-protecting and self-opti-
mizing.

• architectural patterns—the way the process of auto-scaling is structured (what
are the components and how do they interact with each other). The three best
known approaches are: Feedback loop [27], Observe-Decide-Act (ODA) [28],
Monitor-Analysis-Plan-Execute (MAPE-K) [29]

• QoS modeling—the controls which allow to adjust the managed system and a
model which connects those controls with QoS metrics. The models can be cat-
egorized into three groups: static (connection between metrics and how they
affect the way resources are allocated is defined prior to starting the system,
e.g., [30]), semi-dynamic (based on machine learning models [31] or simulation
[32]), dynamic (resource allocation policies based on statistical analysis of his-
torical workload logs, e.g., [33]).

• granularity of control—what are the basic objects which are under the control of
the agent and are used to perform scaling: virtual machine [34], container [35],
application [36].

• decision-making—the specification of process which leads to taking a decision
about changing the resource allocation. It should include a definition of objec-
tives and their representations, an algorithm of how to reason and search for a
decision, a definition of controls which need to be adjusted.

 There have been multiple attempts to tackle this issue, with the most distinc-
tive being: rule-based control [37, 38] (an action execution occurs when a con-
dition defined a priori is met), control theory-based [39] (control theory mech-
anisms are used to make a decision), search-based optimization [31, 40–43]
(decisions form a large, finite search space and choosing among them is treated
as a search problem; Machine Learning-based attempts are also included in this
category).

The approach presented in this paper can be classified as self-optimizing goal,
stimulus aware, with a dynamic QoS modeling capability. The control agent we

6679

1 3

Automated cloud resources provisioning with the use of the…

have developed adjusts the capacity of the system by adding and removing Virtual
Machines. The policy is created by using a Deep Reinforcement Learning-type algo-
rithm which allows to classify it among search-based optimization.

2.2 Reinforcement learning

One of the more active areas of research in machine learning is the Reinforcement
Learning [2, 44]. Its primary focus is to discover a policy for agents which autono-
mously take actions within a specific environment. The policy maximizes a reward
whose value is returned to the agent. The process of training an agent relies on exe-
cuting a series of actions. After each of them the agent observes their consequences
and builds up its own knowledge. There is no supervising entity providing feedback
on how taking a certain action is better than taking others. This distinguishes this
approach from supervised learning. RL is also different than unsupervised learning
which focuses on discovering the internal structure of a collection of unlabeled data.

Over the years many different approaches to RL were proposed. We can broadly
categorize them as:

• Policy-based and value-based which focus on training different components of
the decision-making mechanism. The former explicitly builds a representation of
the policy (a function which maps a state to an action which should be taken in
that state). The latter creates a value function, which can be used e.g., to compare
the values of different actions, and that in turn can be used to make a decision.

• Monte-Carlo and Temporal Difference in which the training update is imple-
mented either after the control episode finishes (Monte-Carlo), or after one or
more steps are executed in an episode (Temporal Difference).

• Online and offline which differ in when the agent’s policy is changed. In case of
the online approach, an update happens after every step, in the offline case—after
the full episode (i.e., when the training scenario is finished, the environment
needs to restart and the reward is presented to the agent).

• Model-based and model-free which differ in how the environment is modeled
by the agent. In the former approach an explicit model is created (e.g., through
reward estimations or specification of state transitions), in the latter one-creating
such a model is not necessary (the decision-making process assumes that it is
sufficient to have a sample of information about state transitions).

Combining Deep Learning techniques with the model-free approach became popu-
lar recently and resulted in creating so called Deep Reinforcement Learning. In this
approach, neural networks can be used to create an approximation of a function
which is a part of an algorithm (e.g., the Q-function in [7]). Alternatively, in the
case of policy gradient methods, neural networks can be used directly as the policy
functions. The training process adjusts their weights (Θ) based on the gradient of
an estimated scalar performance objective function J(Θ) in respect to those policy
parameters:

6680 W. Funika et al.

1 3

where Θk denotes policy’s parameters in the k-th iteration of the training process.
The performance is usually understood as a reward returned from the environment.
There are multiple versions of policy gradient optimization. In our research we focus
on the proximal policy optimization (PPO) [8].

It can be outlined as the algorithm presented in Algorithm 1. It is the basic vari-
ant of the algorithm presented in [8]. The aim of the algorithm is to calculate the
policy parameter update in such a way that it ensures that the new parameters are
not changed by more than a predefined threshold value. That helps to avoid a situa-
tion where a single parameter update changes the policy in such a negative way, that
it would require many training iterations to recover. This goal is achieved through
modification of the objective function which is defined as follows:

where:

• �t denotes calculating the average over a batch of samples at timestamp t,
• At is an estimator of the advantage function which helps to evaluate which action

is the most beneficial in a given environment state,
• rt marks the probability ratio rt(Θ) =

�Θ(at|st)
�Θold

(at|st)
 in which �Θ(at|st) denotes the

probability of taking an action a in state s by a stochastic policy and Θold are the
policy parameters before the update,

(1)Θk+1 = Θk + �∇ΘJ(Θk)

(2)J(Θ) = LCLIP(Θ) = �t

[
min(rt(Θ)At, clip(rt(Θ), 1 − �, 1 + �)At)

]

6681

1 3

Automated cloud resources provisioning with the use of the…

• clip(rt(Θ), 1 − �, 1 + �) function keeps the value of rt(Θ) within some specified
limits (clips it at the end of the range), as shown in Fig. 1,

• � is a hyperparameter with a typical value between 0.1 and 0.3.

The improvements to the training progress offered by the PPO algorithm come
from the introducing of the clip function. The clipped results (after applying the
clip function) are compared to the un-clipped rt and the smaller value is chosen.
This means that part of the change is ignored only if it would have a too big posi-
tive influence on the result of LCLIP (the negative influence is unchanged). That
influence is depicted in Fig. 2.

Another important component of PPO is the advantage function (At) which
helps to value how good an action compared with other available actions for a
specific state is. To estimate the advantage function values the generalized advan-
tage estimation (GAE) method [12] is being employed. The advantage function is
valued in the units corresponding to the ones used in the reward function.

Fig. 1 Visualization of the clip
function

Fig. 2 Visualization of the influence of using the clip function on the LCLIP . rt as a ratio of probabilities is
always greater than 0 hence we analyze two cases: when A > 0 (left) and A < 0 (right)

6682 W. Funika et al.

1 3

The policy (�Θold
) is typically implemented as a neural network, which parameters

are shared with another network whose is employed by the GAE.

2.3 Applying deep reinforcement learning to automatic resources management

In practice, the complexity of cloud systems constantly increases, which makes
it increasingly harder to model accurately. This translates to issues with applying
classic approaches to automatic control (e.g., threshold-based rules, which also
become more and more complex). That encourages using Machine Learning tech-
niques, where a policy can be trained directly by using the collected measurements.
This includes using the most recent advancements in the form of the DRL. Apply-
ing DRL in this context has a number of advantages. DRL is capable of creating
complex decision-making policies due to the use of DNN. Using a training process
which exploits the gradient descent algorithm allows to adjust the policy parameters
to various optimization objectives. The past experiences can be memorized thanks
to the use of experience replay buffers.

The DRL approach has been already used to automate many different tasks in
resource management. In [17, 46–49] the authors train a policy which allows to
allocate tasks (or jobs) to specific servers. [18, 50] demonstrate how to create an
agent which can allocate VMs to sustain the workload under management. In [51]
authors explain how a DRL agent can be used to control resources of Mobile Edge
Computing (both compute and networking) resources. [52] presents an agent which
is capable of horizontally and vertically scaling resources used to process a given
workload.

DRL policies can be trained to optimize a variety of objectives, including:
resources cost [18, 19], resource utilization [52], service latency [49], energy con-
sumption [17, 48], task turnaround time [46]. It is also possible to optimize a com-
bination of such objectives, e.g., service latency and energy consumption together
[51]. Most often, the trained policies are evaluated by observing their behavior in
the context of a sample workload running in a simulated environment [17, 19, 46,
48, 49, 51, 52]. The performance in many cases is very promising, however it is
relatively rare for the control policies to be tested in real-world systems [18, 47, 50].

The Deep-Q-Learning [7] approach seems to be most widely exploited in the
resources management domain [17–19, 52]. Methods which derive from that
approach, e.g., Double Deep Q-Learning [50, 51], Stack Autoencoder Q-Network
[47], continuous-time Q-learning for SMDP [48], Dueling Deep Q-Learning [49]
are also relatively popular.

There are also examples of using Deep-Q-Learning with other techniques, e.g.,
in [53] authors described a novel, multilevel hybrid architecture in which agents
are trained with the use of that algorithm. The described system has been used
to manage allocation of workloads to cloud resources and focused specifically
on the VM placement problem. It allocated a VM to a specific host when it had
arrived at the cloud system, then monitored the cloud resources and their SLAs
and if necessary relocated the VM to optimize profit or energy goals or to meet an
SLA. The proposed architecture consists of three levels of control components:

6683

1 3

Automated cloud resources provisioning with the use of the…

Node Controllers (which dynamically adjust configuration to satisfy demand on
each node), Lead Nodes (which are higher level controllers for groups of Node
Controllers), Data Center Controllers (which manage the Lead Node controllers).
Authors demonstrated that Deep-Q-Learning can be used to train agents work-
ing on all of those levels. To validate the presented approach an experiment in a
simulator has been conducted. Its results demonstrated a significant improvement
in reducing SLA violations compared to an established heuristic (Modified Best
Fit Decreasing).

In [54] a modified version of the Deep-Q-Learning algorithm is presented. The
modification includes Successive Over-Relaxation(SOR). Authors analyze the per-
formance of the new algorithm by training policies to play games available in the
Atari collection. Additionally they attempt to create a policy to horizontally scale
resources (virtual machines) used by cloud applications. The experiments are per-
formed in a simulated environment which uses HTTP logs from ClarkNet and
NASA servers as workload. The experiments showed an improvement over the basic
version of DQN approach.

There are also first examples of the use of policy gradient methods. In [22] a
system for automatic traffic optimization (AuTO) is presented. Authors implement
it with the use of the Deep Deterministic Policy Gradient (DDPG) training algo-
rithm, which utilizes two neural networks: the actor (responsible for making deci-
sions) and the critic (used to evaluate the actor’s decisions). The former one consists
of two fully connected hidden layers with 600 neurons each. The latter one reuses
the two mentioned layers and adds an additional fully connected layer on top. Such
a model is used to demonstrate the performance and adaptability of the discussed
approach to the control of dynamic traffic flow consisting of web search and data
mining requests.

In [20] authors use a combination of Convolutional Neural Networks (CNN) and
fully connected layers to create a policy which is used to schedule processing jobs
in a data center. They use the Advantage Actor-Critic (A2C) algorithm to train it.
The resulting policy is evaluated using the average job waiting time and average job
slowdown metrics. The experiments are carried out in a simulated data center cluster
containing a number of nodes with two resources: CPU and memory. Authors con-
cluded that the proposed method performed better than the widely used Shortest Job
First (SJF) and Tetris [55] approaches.

In [21] a system for automatic allocation of Spark framework executors to virtual
machines is developed. Authors use two algorithms for the policy training: Deep
Q-Learning and a policy gradient method called REINFORCE. In order to evaluate
how policies generated by the mentioned algorithms perform, a simulated environ-
ment has been created. It represents a cloud-deployed Spark cluster which executes
jobs from the BigDataBench benchmark suite. The pricing model was similar to the
AWS EC2 instance pricing in Australia. The experiments showed that the training
using the PGO method was more stable than DQN and allowed to achieve supe-
rior results in terms of cost-efficiency and lower average job duration. In some cases
though, the classic algorithms e.g., Integer Linear Programming (ILP) and Adaptive
Executor Placement (AEP) were able to outperform the DRL policies. The results
were very promising, yet limited to a single type of a workload (Spark framework).

6684 W. Funika et al.

1 3

In [25] we demonstrated how a similar algorithm from the policy gradient opti-
mization family, the proximal policy optimization (PPO) [8], can be used to hori-
zontally scale cloud resources. Initially, we have also experimented with the very
popular DQN approach, however in our environment we found it hard to generate a
policy which would reasonably scale the resources. On the other hand, PPO allowed
to quite quickly reach a stable result. Figure 3 presents a sample training progress
for both algorithms. The control policies were trained using a 100,000 steps in the
simulated environment. The episode length depends on actions taken by the policy.
In the case of DQN the episodes varied in length with some episodes taking many
simulation steps to complete. That resulted in a reduced number of completed epi-
sodes, compared to the PPO algorithm.

In our previous work the implementation was limited to control resources of a
single type. In the present paper we extend that approach to include resources of
other types and employ a recurrent network to represent the policy. We explain how
a policy can be trained using a synthetically created, simulated workload, and then
present how the results of training in a simulated environment can be transferred to
a real-world environment. We provide an evaluation of the behavior of the control
policy deployed to manage AWS cloud resources used by a scientific application.
Unfortunately, automatic scaling with the use of experimental management systems
is typically tested in simulated environments and rarely deployed to real cloud infra-
structures. Such results also differ with regard to many details, e.g., the type of man-
aged workflow, for this reason direct comparison is very hard. To provide a refer-
ence point on the quality of decisions made by the presented system, we compare it
with a threshold-based management policy which is available in the employed cloud
infrastructure.

3 Architecture

In this section, we present the architecture of the automatic management system
under discussion. The system manages cloud infrastructure resources which are used
to host a distributed application and uses RL techniques to create a decision policy.

Fig. 3 Training progress of DQN and PPO: the reward obtained in subsequent episodes of the resource
management simulation

6685

1 3

Automated cloud resources provisioning with the use of the…

One of the main challenges in the design of an autonomous management sys-
tem is how to organize the training process. Using an environment with real cloud
resources—nearly exactly the same as in which the policy is going to operate, would
be the best solution. Unfortunately, such a scenario would usually introduce signifi-
cant additional costs which may outweigh the benefits of automatic resource allo-
cation. Using the actual, production environment is not an option either. Using an
untrained policy would most likely lead to a significant degradation of performance
due to its poor decisions and consequently to business losses. To avoid such a situ-
ation, we decided to use a simulation as a training environment, which is a com-
mon solution to this problem [56]. This allows to train the policy in an isolated, safe
environment. Regardless of the decisions made, their consequences do not influence
a real infrastructure, what allows experimenting even with the actions that lead to
catastrophic events.

Using a simulator had a big influence on the discussed system’s architecture.
It required introducing an interface between the policy and the environment it
was operating in. Such an interface had to create an abstraction which would hide
whether the policy was accessing a simulation or real cloud resources. The capabili-
ties delivered by the simulator and the API built on top of the cloud vendor libraries
had to be aligned to each other.

From a high-level perspective, a system in which an autonomous control policy
is deployed, needs to use some form of a feedback loop. Such a feedback loop com-
prises, on the one hand, a stream of actions triggered by the policy and, on the other
hand, an information about the state of the observed environment, which allows to
understand the consequences of those actions. The presented system also follows
this pattern. First, the information about the state of cloud resources is obtained by
monitoring the components of the managed application. That data is then aggre-
gated into a form that can be used by the neural network acting as the control pol-
icy. Finally, the output from the network is interpreted as the identifier of the action
to execute. This action is then implemented in the managed cloud infrastructure
through an available cloud API. The components of the system and the implemented
feedback loop are presented in Fig. 4.

The loop starts with collecting the measurements about the resources which take
part in executing the workload (marked with number 1 on the diagram). Each of
the resources is configured to start reporting relevant measurements as soon as the
resource becomes online. The measurements often differ in their nature, which influ-
ences how often their values are delivered, e.g., the amount of free RAM and CPU
usage is reported every 10 s while the virtual machine (VM) count—once per min-
ute. To simplify the implementation of collecting of those raw measurements, we
introduced the Graphite monitoring tool [57] (marked with number 2 on the dia-
gram). Graphite aggregates all the collected values into a single interval to create a
consistent snapshot of the environment. In our case this interval is set to one minute.

Next, the measurements are passed to the SAMM monitoring and management
system [24] (marked with number 3 on the diagram). SAMM enables experimenting
with new approaches to management automation. It allows to easily add support for
new types of resources, relevant metrics, integrate new algorithms and technologies
and observe their impact on the observed system. In our use case, SAMM is used

6686 W. Funika et al.

1 3

to pass information between the other elements of the system. It periodically polls
measurements which portray the current state of the system and aggregates meas-
urements into metrics used by the decision policy. Next, it delivers the current state
of the system in a form of metric values, to the Policy Evaluation Service (marked
with number 4 on the diagram). Finally, it retrieves decisions (marked with number
5 on the diagram) and executes them through the cloud vendor API (e.g., Amazon
Web Services API) taking into account the environment constraints (e.g., the warm-
up and cool-down periods; marked with number 6 on the diagram). SAMM calcu-
lates values of the following metrics: ratio of allocated cores, average CPU utiliza-
tion, 90th percentile of CPU utilization, average RAM utilization, 90th percentile of
RAM utilization, ratio of jobs waiting for processing to the number of jobs submit-
ted, ratio of jobs waiting for processing to the number of jobs submitted in the last
monitoring interval.

The Policy Evaluation Service provides decisions on how to change the alloca-
tion of resources based on the results of evaluation of the observed system state. The
decisions are made according to the policy trained with the use of the PPO algo-
rithm. The results of the evaluation may include:

• starting a new VM of a specific type—deficient resources are used to handle the
workload under the current system state,

• removing resources—shutting down VM of a specific type—in the current state
of the system, the resources are underutilized,

• doing nothing—a proper amount of resources is allocated.

One should remember that implementing the change to the resources allocation is
always subject to the environment constraints. Not always it is possible to immedi-
ately execute an action. We might need to wait for a while because: the system is in
a warm-up or cool-down (a period of inactivity to allow to stabilize the metrics after
the previous action has been executed), the previous request might still be being ful-
filled, the request failed and needs to be retried in some time. In order to be able to
train a policy which can cope with such limitations, the factors need to be involved
in the simulation used for training.

Fig. 4 Components of the discussed system. Arrows denote interactions between them

6687

1 3

Automated cloud resources provisioning with the use of the…

The described system makes a few assumptions about the workload it helps to
manage. First of all, the workload needs to be organized into many independent
tasks, otherwise it would not be possible to distribute the work among a number of
resources. It is also necessary to provide a possibility to monitor the number of tasks
which are yet to be executed. This implies creating an explicit queue of jobs which
are submitted for processing. If such a component does not exist in the controlled
system, it needs to be created. Most importantly, the tasks need to be idempotent
(i.e., executing them multiple times does not change the end result) and the schedul-
ing subsystem needs to be able to track their progress. Since the resources can be
added and removed at any point in time, an interruption of a task before it terminates
successfully (e.g., in case the processing VMs are shutdown) needs to be treated as
a normal, common situation. In case of any failure, the scheduler should automati-
cally reschedule the relevant tasks. For safety reasons, the resources that are admin-
istering the workload (e.g., accepting the input requests) should be isolated, and not
included into the automatic management. This should prevent the workload from
getting accidentally terminated.

Fulfilling the monitoring requirements may require introducing extensions to the
software which generates the workloads and instrumenting the resources which are
used to create tasks.

4 Using simulation in policy training

The system presented in Sect. 3 requires a policy to operate. Such a policy could be
potentially trained as the first stage of managing a system. Using an environment
with real cloud resources would be the best solution for the purpose of training. In
such a case, the agent would be able to learn about all of the details of the controlled
environment. Unfortunately, as mentioned before, with this approach the cost of cre-
ating a DRL policy would become a major challenge. The training algorithm needs
to go through multiple iterations of interacting with the managed system and observ-
ing responses what significantly increases the resource consumption and, conse-
quently, the costs of training.

In our system a simulation environment has been chosen as a foundation of the
training process. This approach has huge advantages of cost efficiency and isolat-
ing the training from production environments. From the training perspective it has
also a range of interesting properties. Since the simulation is isolated, the training
process can be replicated and parallelized to allow for evaluation of multiple agents
at the same time. This increases the number of interactions which can be tested by
the policy within a given amount of time. The flow of time in a simulation can be
changed (e.g., sped up) which allows to further reduce the time required to conduct
training. The behavior of the environment and that of the workload are fully deter-
ministic and can be easily repeated if needed. This makes the training predictable
and repeatable and helps to tune the training algorithm parameters.

The policy training process has been implemented using an environment which
was different from the real-world one. This environment is depicted in Fig. 5.

6688 W. Funika et al.

1 3

The simulator can replay any workload written in the Standard Workload For-
mat, including the workload collection available as the Parallel Workloads Archive
[58]. Jobs are submitted for processing according to the order and timing defined in
the workload traces. Their actual execution is simulated. This allows the system to
behave differently, depending on the actions taken by the trained agent. The men-
tioned pre-recorded workloads may span over many months or years and can include
huge numbers of jobs to process. In order to make the training process faster, the
flow of time can be speeded up. In such a case, the events occurring in the simula-
tion are not processed immediately when they happen. Instead, events which happen
within the same, configured time interval, are grouped together and processed as a
batch. This may result in inaccuracy of the simulation (e.g., if time flow is speeded
up 1000 times, new events can be scheduled for processing only in the next group,
i.e., in the group which includes events from the following 1000 time units). The
simulator also allows to adjust other parameters, e.g., the cost of resources by type,
SLA penalties (queue wait penalty), maximum counts of VMs per type, etc.

The simulation includes a single datacenter with a configurable number of host
machines. Hosts have uniform configuration, each of them can support multiple
Virtual Machines (VMs). The resources used by the virtual machines are directly
mapped to the resources of the hosts. In other words the simulation does not allow
to over-provision simulated hosts. The number of virtual machines available at the
beginning of the simulation is configurable as well.

The simulator has been implemented following the results of our prior research
[23]. Its main process utilizes the CloudSim Plus simulation framework [59]. To
decouple the simulator from other components and allow for easy reuse, it is addi-
tionally wrapped with the interface provided by the Open AI Gym framework [60].
This helps to easily launch experiments with various RL algorithms independently
of the system we have developed.

5 Experimental design

In order to evaluate our approach, we designed an experiment in which we wanted to
compare our policy with a different approach (threshold-based control policy). The
overall objective was to perform sample computations while limiting the cost of the

Fig. 5 Components of the training system; arrows denote interactions between them

6689

1 3

Automated cloud resources provisioning with the use of the…

used cloud resources. The diagram which explains the experiment is presented in
Fig. 6.

First, we have identified a sample workload which we believe could benefit from
automated resource provisioning. Then we prepared a simulated training environ-
ment, which resembled the target environment in which the real application would
be managed. We prepared a simulation workload and conducted a training of the
control policy (phase 1 on the diagram). Next we have deployed the sample appli-
cation into a publicly available cloud infrastructure and configured our system to
manage that application using the trained policy (phase 2 on the diagram). Finally,
to provide a reference point on the performance of our solution, we have attempted

Fig. 6 Phases of the discussed experiment

6690 W. Funika et al.

1 3

to manage the sample application with the use of a publicly available tool: the
threshold-based scaling policies provided in Auto-Scaling Groups (phase 3 on the
diagram).

5.1 Workload

As a sample workload, we have used the pytorch-dnn-evolution tool [61]. This is
a tool which attempts to discover an optimal structure of a Deep Neural Network
(DNN) to solve a given problem (e.g., to categorize images in a given set) using a
co-evolutionary algorithm. Such an approach can be used for domains where super-
vised learning techniques can be used, i.e., there are well-defined training and test
datasets. Unfortunately, due to the size of those datasets, in many such problems,
evolution-based methods are costly and time consuming. The evaluation of indi-
viduals (complete DNNs), which is required for the evolution process to progress,
includes training them over the mentioned large datasets. To mitigate this issue, the
co-evolutionary algorithm interleaves two evolutionary processes. Such an approach
is possible due to the fact that an absolute objective function is not always neces-
sary to identify which individuals should be promoted to the next iteration of evolu-
tion. This can be achieved by comparing the fitness of individuals with the use of
an approximation of such a function. Using a subset of the original training set (the
so called fitness predictor) is one of such solutions. The first evolutionary process
evolves the DNNs to find the best neural network architecture for a particular task.
Since in many cases training over the complete dataset would be too costly to repeat
in the context of the whole population, training is being conducted over a small por-
tion of the dataset (the fitness predictor). The elements of that dataset need to be
carefully chosen. In a way, we can describe them as samples which are the hardest
from the point of view of the evaluation. This is the purpose of the second evolu-
tionary process: it aims at discovering such subset of the initial training dataset. It
uses the best DNN from the first process to evaluate potential subsets. The subset
which receives the lowest evaluation score becomes the subset which is used by the
first process to evaluate DNNs. In this approach the amount of data used to conduct
the evaluation. This in turn results in greatly speeding up the comparison between
individuals and thus makes the evolutionary approach a viable option for problems
which can be translated into supervised learning processes. The described evolution-
ary process is depicted by Fig. 7.

The evolutionary algorithm produces a high number of relatively small tasks that
are independent of each other and can be easily processed in parallel on a cluster of
machines. The workload scheduling is resilient to task failures and reschedules tasks
in case processing them have not succeeded. The capacity of the job queue is in
practice infinite thanks to the small size of a single job description. This means we
can safely assume that none of the tasks is going to be dropped due to technical limi-
tations of the queue system. Each task is going to successfully complete, regardless
of how many times it needs to be restarted. Those features help to implement sup-
port for scaling events: each virtual machine used to conduct training can be safely
shut down at any time. New machines can be added and start the processing of the

6691

1 3

Automated cloud resources provisioning with the use of the…

evaluation tasks ad hoc, without additional configuration. The number of tasks var-
ies over time and is hard to predict upfront. This renders an opportunity to reduce
the cost of running the evolutionary process by reducing the amount of the used
resources (VMs) when the demand for them drops.

In our case, the evolutionary process tried to find an optimal architecture for a
neural network which recognizes handwritten digits. We have ran 20 iterations of
evolution over a population of 32 individuals and 16 fitness predictors (subsets of
2000 images from the large training set). The evaluation of a single neural network
comprised the training over 10 iterations of a given fitness predictor. We used the
MNIST dataset [62] as the training set from which subsets are selected.

5.2 Target environment

As a compute infrastructure we have used the Amazon Web Services Elastic Com-
pute Cloud (AWS EC2) [63]. The managed environment consisted of three Auto
Scaling Groups of m5a.large, m5a.xlarge and m5a.2xlarge virtual machines which
could have up to 10 instances each. All VMs were running in the US North Virginia
region and in the same availability zone to avoid the problems with network latency
added by multi-zone setups. The workload driver, together with SAMM and Graph-
ite, has been running on a separate VM.

As mentioned above, for the purpose of the training process, we have simulated a
single datacenter capable of hosting VMs of three types: small, medium and large.
Their specification followed the configuration of Amazon’s large (2 core CPU and 8
GB of RAM), xlarge (4 core CPU and 16 GB of RAM) and 2xlarge (8 core CPU and
32 GB of RAM) EC2 instances. Each simulation started with one virtual machine of
each type active and ran until all the scheduled tasks were completed (no artificial
deadline was imposed). In order to reduce the training time, the simulation time was
speeded up sixty times.

Fig. 7 Evolutionary process used as a sample workload. In the experiment described in Sect. 5, pytorch-
dnnevo is deployed and managed in a publicly available cloud environment (AWS)

6692 W. Funika et al.

1 3

5.3 Policy training

We attempted to use a few real-world workloads from the Parallel Workloads
Archive [58]. However, the best results in the training were achieved by using a
set of 1551 jobs generated specifically for the purpose of our experiment. The jobs
scheduling pattern resembles a single run of evolution in pytorch-dnn-evolution. We
organized the jobs into 21 batches (10 batches of 100 and 11 batches of 50 jobs)
submitted every 8 min. Every job requested 360 s on a single CPU core. The final
job has been added 30 min after the final batch which ensured that there is always a
cool-down period of time at the end. Such a dataset, on the one hand, was similar to
the real-world workload (the jobs were submitted in multiple batches which gener-
ated spikes of activity). On the other hand, it differed from the real workload with
the actual numbers of batches and their size. Since the number of jobs was low, the
simulation time was shorter compared with other recorded workloads. We believe
such a training dataset allowed to focus on the general features of the environment
which is under control (e.g., the latency of the VM control mechanism, job submis-
sion spikes), while it reduced the simulation time. This in turn allowed to increase
the number of simulations which enabled to obtain an improved control policy.

The training objective was defined as maximizing the following reward function:

where:

• F(V) is the negative cost of resources used for processing,
• V denotes a set of possible VM sizes. In our experiments it includes S, M or L

which represent small, medium or large VMs, accordingly,
• Tx denote the number of hours of running VMs of size x,
• Cx is the hourly cost of running a machine of size x. In our case CS = $0.2 ,

CM = $0.4 and CL = $0.8,
• TQ—the hours spent by tasks waiting for execution,
• CQ—the hourly penalty for missing SLA targets when a task is waiting for execu-

tion. The cost of 0.036 US dollars is accrued for every second of a delay between
submitting task for execution and actual execution. There were no limitations on
the waiting time or the waiting queue size.

The training algorithm used to create the control policy follows the proximal policy
optimization procedure as described in Sect. 2.2.

5.4 Policy neural network model

We have experimented with different architectures of the neural network used as a
decision policy. The best results have been obtained with the use of the LSTM archi-
tecture [26]. LSTM is a type of a recurrent neural network, which means it passes

(3)F(V) = −
∑

x∈V

(Tx ⋅ Cx) − TQ ⋅ CQ

6693

1 3

Automated cloud resources provisioning with the use of the…

the output of a layer back to its input. This makes it well-suited to process data in
form of sequences, as it has access to the previously made decisions. One large
drawback of recurrent networks is that they are likely to suffer from the problem of
exploding [64] or vanishing gradients [65]. While the network error is back-propa-
gated, its value can become high, which over a number of iterations accumulates as
the weight value. At some point it becomes so huge that is not possible to represent
it as a number in computer memory anymore. On the other hand, the network error
can become so small, that it will not be able to affect the value of the weights in a
meaningful way. LSTM networks try to mitigate those issues by enhancing the inter-
nal structure of a single neuron. The additional components allow to control the flow
of the information within the network, e.g., it can be multiplied by a small number
(forgotten) while passing.

In our experiment, the policy neural network included LSTM cells and feed for-
ward layers which allow to interpret the output of LSTM cells in different contexts
(as the policy or the value function). The LSTM layer included 128 cells. The com-
plete network architecture is presented in Fig. 8. The network contains two outputs:
value and policy. The former is used in the GAE algorithm to estimate the advantage
function, while the latter is used to determine the action taken by the policy.

The progress of training that model (the reward obtained in the subsequent simu-
lations) is depicted in Figs. 9 and 10. The first chart shows how the reward evolved
over the course of training and demonstrates a clearly visible tendency for growth.
The second chart focuses on the length of simulation and has been smoothed by
averaging the metric values over 10 subsequent simulations.

Both figures show that initially, for approximately 500 iterations, the policy was
not making good decisions. This resulted in a high cost of resources within the early

Fig. 8 Neural network trained
in the experiment. xn denote
the network inputs, ln cells of
the LSTM layer, s the output
of a cell which is passed back
to input, vn and pn the neurons
of the value and policy outputs
respectively

6694 W. Funika et al.

1 3

simulations and a high number of simulation steps. Both factors gradually improved
over time. The cost plaited on single-digit values and simulation length at 230 itera-
tions. Such a number of iterations is driven by the workload. It is not possible to fin-
ish the calculations earlier, because the last, very short job is scheduled at iteration
229. Since this job is short it successfully finishes in the next iteration. This means
that iteration 230 is the earliest possible iteration at which the simulation can be
finished.

The policy training algorithm parameter values are given in Table 1.
The implementation of the training process based on the source code of the Open

AI Baselines project [66] allowed us to speed up the development time and ensure
the correctness of the algorithms.

5.5 Using threshold‑based policy

We have found that it is challenging to find performance reports of similar automated
management systems in real (not simulated) environments. In order to provide a refer-
ence point for the results obtained with the use of the presented control policy, we also
attempted to manage the pytorch-dnnevo workload with the use of a rule-based policy
configured within the ASG. This feature provided by the cloud vendor allows to start
and stop virtual machines based on the CPU usage of currently running machines. The

Fig. 9 Policy training progress—reward obtained during training

Fig. 10 Policy training progress—simulation episode length during training

6695

1 3

Automated cloud resources provisioning with the use of the…

user can define a threshold which is compared periodically with the average CPU usage
of all virtual machines running within the ASG. If the CPU usage is above the specified
threshold a new virtual machine is started. Conversely, if the CPU usage drops below
the threshold, one of the running machines is terminated.

The workload generated by the pytorch-dnnevo framework has its own unique char-
acteristic. The driver machine performs only cheap, simple operations of genotype
recombination, mutation or fitness comparison. The time-costly operation of individual
evaluation is performed solely by the workers. Unfortunately the evaluation requests
are not evenly distributed over time. They are submitted by the driver in groups when-
ever evaluation of the whole population is required. This means that workers’ resources
are fully allocated only at the beginning and are fully released after all individual evalu-
ations are done. This means that the CPU load of a worker machine oscillates between
very low (5–15%) and very high values (85–100%). Choosing a policy threshold value
around the low end would force the policy to scale the number of workers up at the
beginning and keep such a configuration till the end of the workload. On the other hand,
choosing a threshold value from the high end would make the policy eager to remove
resources, what might result in a very slow progress. A value between 20 and 80% ena-
bles the threshold policy to add (or remove) resources when they are needed (or obso-
lete). The exact value influences the sensitivity of the policy to the load changes. We
found empirically that a threshold value of 75% average CPU usage allows to achieve
the lowest resource costs when managing the sample pytorch-dnnevo workload.

6 Experimental results

In Fig. 11 we present the course of the experiment. We show how many virtual
machines of different types were active at a given point in time compared to what
was the actual number of jobs waiting for processing. The shape of the charts (the

Table 1 Parameters of the
policy training process

The Initial value column shows the initial parameter values. As
a starting point we have used the values provided in [8]. The Final
value column contains the final parameters obtained through an
empirical iterative trial-and-error process

Parameter name Initial value Final value

Value function coefficient 1 0.0005
Lambda 0.95 0.97
Gamma 0.99 0.99
Training timesteps 106 107

Clipping factor 0.2 0.2
Learning rate 0.0003 0.0003
Batch size (number of steps in

sequence at the input of the neural
network)

2048 250

Optimization epochs 3 4
Simulator speedup 60 60

6696 W. Funika et al.

1 3

steps) is caused by an artificial delay introduced after executing an action (the
cool-down period).

The overall results of the experiment are as follows: the experiment runtime
was 173 min with the cost of resources equal to $8.67 for the PPO-trained policy,
and respectively 149 min and $9.95 for the threshold-based approach. The PPO-
trained policy had a slower execution (by 16.1%—24 min) but a lower resources
cost (by 12.9%—$1.28). The cost of the infrastructure required to manage the
workload and the management components is the same in both cases (an addi-
tional VM to host other elements of the system). The main objective of the policy
was to conduct the computations while minimizing the costs. In this context, the
PPO-trained policy allowed to obtain a lower cost. It traded off the additional pro-
cessing time for lowering the overall cost of resources.

The PPO-trained policy maintained a similar number of VMs of all types run-
ning most of the time. Occasionally it would attempt to reduce the amount of
small VMs what seemed to be a result of the pauses between submitting the jobs
of subsequent evolution iterations. However, those drops would get quickly com-
pensated. The number of medium and large machines was relatively stable.

The threshold-based policy was more eager to perform scaling operations
and able to launch machines of different types at the same time. As soon as the
processing load was decreasing, the policy started to reduce the amount of used
resources. Most of the time all resource types were treated similarly (the number
of small, medium and large VMs were increased and decreased at the same time).
This is caused by the fact that all VM types were scaled based on the same met-
ric—CPU utilization.

Fig. 11 Number of started VMs in context of jobs waiting in the queue

6697

1 3

Automated cloud resources provisioning with the use of the…

The way that the PPO-trained policy was deciding to perform actions, allowed it
to achieve higher resource utilization throughout the experiment. The overall num-
ber of allocated cores remained stable after the initial increase (Fig. 12) and was
lower by 25.76% on average (49.93% for the PPO-trained, and 66.24% for threshold-
based policy). This helped to prevent over-provisioning visible in the case of thresh-
old-based policy. The average CPU utilization in the former case has been equal to
0.69, while in the latter one it was equal to 0.61. This can be understood as a 13.11%
improvement. Respectively, the average percentage of memory used was equal to
2.33 and 1.99, which is a 17.08% improvement. The average CPU load during the
experiment (for both policies) is depicted in Fig. 13, while the average memory
usage is presented in Fig. 14. Interestingly, both policies seemed to reach similar
utilization values after 90 min of processing (about half of the workload executed),
what suggests that they were both able to discover the infrastructure configuration
which captured the near-optimal trade-off between cost and speed of processing.

We acknowledge that this might not be a fully fair comparison, e.g., it might be
possible to fine tune the threshold to avoid the described initial slow-down. Alter-
natively, implementing a policy which could use multiple thresholds might achieve
even better results. This experiment shows, however, that the use of a PPO-trained
policy renders results which are on-par with a well-established approach. Using an
RL-based policy has an advantage of being able to take into account multiple factors
without having to specify special parameters for each of them, e.g., the thresholds.

The training process proved to be flexible and can be easily reused. To create pol-
icies for other, similar workloads, one needs to adjust few elements. First, a dataset
with jobs which could be simulated in the training process, has to be created. This
can be achieved in various ways: one could record sample jobs which are executed
in a real environment or simply artificially create them in line with expectations
about the real workload. Depending on the chosen platform and SLAs, the reward
function might also need to be adjusted (e.g., by including more VM types in the V
set). Finally, the monitoring of the system to be automatically controlled, might need
to be extended to include metrics which are used to describe the state of that system.

Fig. 12 Cores allocated by a control policy out of the cores available to the system throughout the experi-
ment

6698 W. Funika et al.

1 3

7 Conclusions and further research

In this paper we have presented a novel approach to automating the heterogeneous
resource allocation. We proposed an architecture of a monitoring and management
system which exploits recent advancements in the Deep Reinforcement Learning
field. Through an experiment in the AWS Elastic Compute Cloud, we explained how
to train a policy with the use of the PPO algorithm and deploy it to a real-world
cloud infrastructure. We demonstrated that the use of such a policy can render bet-
ter results compared with a traditional threshold-based one. One needs to remember
that the observed cost reduction depends on many factors, e.g., on the amount of the
managed resources (if that number is low, the benefits of automated scaling may not
be significant). Due to the additional cost of the additional VM, the cost improve-
ment expressed as a percentage of the initial resources spend might not be as high
as reported in case of smaller infrastructures. Applying the presented approach
in a scenario where more resources are being used would render better absolute
results, in other words would provide bigger resource cost savings. The DRL-based

Fig. 13 Average CPU load for the cores allocated by a control policy

Fig. 14 Percentage of all cores available to the system allocated by the control policy

6699

1 3

Automated cloud resources provisioning with the use of the…

approach also had other advantages. We did not have to manually set thresholds of
the policy, which may depend largely on the workload which is being managed. We
can easily include other metrics at the input of the trained policy. Since the policy
does not contain any hard-coded parameters, it can be reused in the context of other,
similar applications.

The approach we have used to train the policy delivered a good outcome. The
resulting policy could manage a sample AWS-based infrastructure, while the train-
ing time was not prohibitively long. The use of the simulator allows to run many
more interactions with the resources than it would be possible in a real environment.
At the same time the cost of training has been greatly reduced compared to running
a copy of a production version of the managed application. It is possible to further
reduce the training time by running multiple simulations in parallel. Simulations are
independent of each other and rely only on CPU-based calculations, which makes it
easy and relatively cheap to run multiple of them at the same time.

We have identified some issues which require further work. Our resource alloca-
tion policy was unable to react to changes in the environment fast enough. It was
limited by having to wait through the resource allocation grace period after execut-
ing an action and was capable of starting or stopping only a single VM of a given
type at a time. This issue could be mitigated by including actions which affect multi-
ple instances of resources of the same type. Such a solution could also help to reach
even better results in the cost optimization.

Although the training process delivered good results, it was still limited in a num-
ber of ways. The parameters of the training procedure (e.g., learning rate, � , � and
the clipping factor in the PPO algorithm) had to be fine-tuned to our specific case.
Otherwise, the process might end up with an exploding or vanishing gradient or a
policy converging to a local minimum (e.g., using only a single action all the time).
There is no indication how the input is being used by the training algorithm or the
policy, what may lead to creating a huge and very expensive to train neural net-
work model. It is possible that e.g., one of the metrics could be completely removed
from the input because its values are mostly ignored. This might result in creating a
smaller, easier to train model.

In line with our expectations, the policy was able to make good decisions only
in situations, to which it was exposed in the prior training (e.g., was rather slow
to shutdown the unused resources after the workload had stopped completely).
Unfortunately, since the training process has been done offline (outside of the cloud
environment) it may be very hard to update the policy after deployment. One might
argue that a simple solution to this problem is to allow the network to be continu-
ously trained while it is operating in the cloud environment. However, such an
approach has one significant disadvantage: due to the nature of the training process,
the updated policy might not make decisions as good as the current one. This means
that we would be risking to introduce potentially disastrous changes into the envi-
ronment, where such changes should be avoided at all cost. To mitigate this issue,
the performance of the new version of the policy needs to be verified prior to the
deployment to the managed environment. One way to do this is to compare it with
the previous, currently deployed one, e.g., to simulate the behavior of both policies
in the same environment with the same entry conditions and compare the rewards

6700 W. Funika et al.

1 3

after finishing the simulation. Another advantage of such an approach is that the
decision policy becomes closer aligned to the environment it controls. New informa-
tion is constantly being added to the representation of the policy (e.g., in the case of
DNN—to the neural network weights).

Acknowledgements The research presented in this paper was supported by the funds assigned to AGH
University of Science and Technology by the Polish Ministry of Education and Science. The experiments
have been carried out on the PL-Grid infrastructure resources of ACC Cyfronet AGH and on the Amazon
Web Services Elastic Compute Cloud.

Data availability The datasets used, generated and analyzed during the current study are available in pub-
licly accessible repository [58] or can be provided from the corresponding author on a reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Chen T, Bahsoon R, Yao X (2018) A survey and taxonomy of self-aware and self-adaptive cloud
autoscaling systems. ACM Comput Surv 51(3):61–16140

 2. Sutton RS (1984) Temporal credit assignment in reinforcement learning. PhD thesis, University of
Massachusetts Amherst

 3. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. CoRR arXiv: cs.
AI/ 96051 03

 4. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D,
Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533

 5. Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3389–3396. IEEE International Conference on Robotics and Automation
(ICRA), Washington, DC, USA. https:// doi. org/ 10. 1109/ ICRA. 2017. 79893 85

 6. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M,
Bolton A, Chen Y, Lillicrap TP, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017)
Mastering the game of go without human knowledge. Nature 550(7676):354–359. https:// doi. org/
10. 1038/ natur e24270

 7. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Play-
ing atari with deep reinforcement learning. NIPS Deep Learning Workshop 2013. arXiv: 1312. 5602

 8. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algo-
rithms. CoRR arXiv: abs/ 1707. 06347

 9. Cobbe K, Hilton J, Klimov O, Schulman J (2020) Phasic policy gradient. CoRR arXiv: abs/ 2009.
04416

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/cs.AI/9605103
http://arxiv.org/abs/cs.AI/9605103
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1312.5602
http://arxiv.org/1707.06347
http://arxiv.org/2009.04416
http://arxiv.org/2009.04416

6701

1 3

Automated cloud resources provisioning with the use of the…

 10. OpenAI, Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D, Fischer Q,
Hashme S, Hesse C, Józefowicz R, Gray S, Olsson C, Pachocki J, Petrov M, Pinto HPdO, Raiman
J, Salimans T, Schlatter J, Schneider J, Sidor S, Sutskever I, Tang J, Wolski F, Zhang S (2019) Dota
2 with Large Scale Deep Reinforcement Learning. arXiv: 1912. 06680. https:// doi. org/ 10. 48550/
ARXIV. 1912. 06680

 11. Heess N, TB D, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami SMA,
Riedmiller M, Silver D (2017) Emergence of Locomotion Behaviours in Rich Environments. arXiv:
1707. 02286. https:// doi. org/ 10. 48550/ ARXIV. 1707. 02286

 12. Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimensional continuous control
using generalized advantage estimation. arXiv: 1506. 02438. https:// doi. org/ 10. 48550/ ARXIV. 1506.
02438

 13. OpenAI Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plap-
pert M, Powell G, Ribas R, Schneider J, Tezak N, Tworek J, Welinder P, Weng L, Yuan Q, Zaremba
W, Zhang L (2019) Solving Rubik’s Cube with a Robot Hand. https:// doi. org/ 10. 48550/ ARXIV.
1910. 07113. arXiv: 1910. 07113

 14. Mnih V, Badia AP, Mirza M, Graves A, Harley T, Lillicrap TP, Silver D, Kavukcuoglu K (2016)
Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48. ICML’16, pp. 1928–
1937. JMLR.org, New York, NY, USA

 15. Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gra-
dient algorithms. In: Xing EP, Jebara T (eds) Proceedings of the 31st International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp 387–395. PMLR,
Bejing, China. http:// proce edings. mlr. press/ v32/ silve r14. html

 16. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In: Dy J, Krause A (eds.) Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.
80, pp. 1861–1870. https:// proce edings. mlr. press/ v80/ haarn oja18b. html

 17. Cheng M, Li J, Nazarian S (2018) Drl-cloud: Deep reinforcement learning-based resource pro-
visioning and task scheduling for cloud service providers. In: 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 129–134. https:// doi. org/ 10. 1109/ ASPDAC. 2018.
82972 94

 18. Wang Z, Gwon C, Oates T, Iezzi A (2017) Automated cloud provisioning on AWS using deep rein-
forcement learning. CoRR arXiv: abs/ 1709. 04305

 19. Pereira dos Santos, José Pedro and Wauters, Tim and Volckaert, Bruno and De Turck (2021) Filip:
Resource provisioning in fog computing through deep reinforcement learning. In: 2021 IFIP/IEEE
International Symposium on Integrated Network and Service Management, Proceedings. 2021 IFIP/
IEEE International Symposium on Integrated Network and Service Management, Proceedings, p. 7.
https:// im2021. ieee- im. org/

 20. Liang S, Yang Z, Jin F, Chen Y (2020) Data centers job scheduling with deep reinforcement learn-
ing. In: Lauw HW, Wong RC-W, Ntoulas A, Lim E-P, Ng S-K, Pan SJ (eds) Advances in Knowledge
Discovery and Data Mining. Springer, Cham, pp 906–917

 21. Islam MT, Karunasekera S, Buyya R (2022) Performance and cost-efficient spark job scheduling
based on deep reinforcement learning in cloud computing environments. IEEE Trans Parallel Dis-
trib Syst 33(7):1695–1710. https:// doi. org/ 10. 1109/ TPDS. 2021. 31246 70

 22. Chen L, Lingys J, Chen K, Liu F (2018) Auto: Scaling deep reinforcement learning for datacenter-
scale automatic traffic optimization. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pp 191–205. Association for Computing Machinery, New
York, NY, USA. https:// doi. org/ 10. 1145/ 32305 43. 32305 51

 23. Funika W, Koperek P (2020) Evaluating the use of policy gradient optimization approach for auto-
matic cloud resource provisioning. In: Wyrzykowski R, Deelman E, Dongarra J, Karczewski K (eds)
Parallel Processing and Applied Mathematics. LNCS 12043, pp 467–478. Springer, Cham

 24. Funika W, Kupisz M, Koperek P (2010) Towards autonomic semantic-based management of distrib-
uted applications. Comput Sci 11:51–64

 25. Funika W, Koperek P, Kitowski J (2020) Automatic management of cloud applications with use of
proximal policy optimization. In: Computational Science - ICCS 2020: 20th International Confer-
ence, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part I, pp. 73–87. Springer, Ber-
lin. https:// doi. org/ 10. 1007/ 978-3- 030- 50371-0_6

http://arxiv.org/abs/1912.06680
https://doi.org/10.48550/ARXIV.1912.06680
https://doi.org/10.48550/ARXIV.1912.06680
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://doi.org/10.48550/ARXIV.1707.02286
http://arxiv.org/abs/1506.02438
https://doi.org/10.48550/ARXIV.1506.02438
https://doi.org/10.48550/ARXIV.1506.02438
https://doi.org/10.48550/ARXIV.1910.07113
https://doi.org/10.48550/ARXIV.1910.07113
http://arxiv.org/abs/1910.07113
http://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1109/ASPDAC.2018.8297294
https://doi.org/10.1109/ASPDAC.2018.8297294
http://arxiv.org/1709.04305
https://im2021.ieee-im.org/
https://doi.org/10.1109/TPDS.2021.3124670
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1007/978-3-030-50371-0_6

6702 W. Funika et al.

1 3

 26. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
 27. Brun Y, Di Marzo Serugendo G, Gacek C, Giese H, Kienle H, Litoiu M, Müller H, Pezzè M, Shaw

M (2009) Engineering self-adaptive systems through feedback loops. In: Cheng BHC, de Lemos R,
Giese H, Inverardi P, Magee J (eds) Software Engineering for Self-Adaptive Systems, pp. 48–70.
Springer, Berlin. https:// doi. org/ 10. 1007/ 978-3- 642- 02161-9_3

 28. Hoffman H (2013) Seec: A framework for self-aware management of goals and constraints in com-
puting systems (power-aware computing, accuracy-aware computing, adaptive computing, auto-
nomic computing). PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA

 29. IBM (2005) An Architectural Blueprint for Autonomic Computing. Technical report
 30. Huber N, Brosig F, Kounev S (2011) Model-based self-adaptive resource allocation in virtualized

environments. In: Proceedings of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’11, pp 90–99. ACM, New York

 31. Minarolli D, Freisleben B (2014) Distributed resource allocation to virtual machines via artificial
neural networks. In: Proceedings of the 2014 22Nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. PDP ’14, pp 490–499. IEEE Computer Society, Wash-
ington, DC, USA

 32. Wickremasinghe B, Calheiros RN, Buyya R (2010) Cloudanalyst: A cloudsim-based visual mod-
eller for analysing cloud computing environments and applications. In: 2010 24th IEEE Interna-
tional Conference on Advanced Information Networking and Applications, pp 446–452. 24th IEEE
International Conference on Advanced Information Networking and Applications, Washington, DC,
USA

 33. Kim S, Kim J-S, Hwang S, Kim Y (2013) An allocation and provisioning model of science cloud for
high throughput computing applications. In: Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference. CAC ’13. ACM, New York, pp 27–1278

 34. Qu C, Calheiros RN, Buyya R (2015) A reliable and cost-efficient auto-scaling system for web
applications using heterogeneous spot instances. CoRR arXiv: abs/ 1509. 05197

 35. Rodriguez MA, Buyya R (2018) Containers orchestration with cost-efficient autoscaling in cloud
computing environments. CoRR arXiv: abs/ 1812. 00300

 36. Fernandez H, Pierre G, Kielmann T (2014) Autoscaling web applications in heterogeneous cloud
infrastructures. In: Proceedings of the 2014 IEEE International Conference on Cloud Engineering.
IC2E ’14. IEEE Computer Society, Washington, DC, USA, pp 195–204

 37. Koperek P, Funika W (2012) Dynamic business metrics-driven resource provisioning in cloud envi-
ronments. In: Wyrzykowski R, Dongarra J, Karczewski K, Waśniewski J (eds) Parallel Processing
and Applied Mathematics. LNCS 7204. Springer, Berlin, pp 171–180

 38. Ferretti S, Ghini V, Panzieri F, Pellegrini M, Turrini E (2010) Qos-aware clouds. In: 2010 IEEE 3rd
International Conference on Cloud Computing, pp 321–328

 39. Ashraf A, Byholm B, Porres I (2012) Cramp: cost-efficient resource allocation for multiple web
applications with proactive scaling. In: 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, pp 581–586

 40. Xu C-Z, Rao J, Bu X (2012) URL: a unified reinforcement learning approach for autonomic cloud
management. J Parallel Distrib Comput 72(2):95–105. https:// doi. org/ 10. 1016/j. jpdc. 2011. 10. 003

 41. Xiong P, Chi Y, Zhu S, Moon H, Pu C, Hacigumus H (2014) Smartsla: cost-sensitive manage-
ment of virtualized resources for cpu-bound database services. IEEE Trans Parallel Distrib Syst
26:1441–1451

 42. Venticinque S, Nacchia S, Maisto SA (2020) Reinforcement learning for resource allocation in
cloud datacenter. In: Barolli L, Hellinckx P, Natwichai J (eds) Advances on P2P, parallel, grid, cloud
and internet computing. Springer, Cham, pp 648–657

 43. Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based dynamic task scheduling
for energy-efficient cloud computing. Future Gener Comput Syst 108:361–371. https:// doi. org/ 10.
1016/j. future. 2020. 02. 018

 44. Kitowski J, Mościński J (1979) Computer simulation of heuristic reinforcement learning system for
nuclear plant load changes control. Comput Phys Commun 18:339–352

 45. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization
 46. Guo W, Tian W, Ye Y, Xu L, Wu K (2021) Cloud resource scheduling with deep reinforcement

learning and imitation learning. IEEE Internet Things J 8(5):3576–3586. https:// doi. org/ 10. 1109/
JIOT. 2020. 30250 15

https://doi.org/10.1007/978-3-642-02161-9_3
http://arxiv.org/1509.05197
http://arxiv.org/1812.00300
https://doi.org/10.1016/j.jpdc.2011.10.003
https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1109/JIOT.2020.3025015
https://doi.org/10.1109/JIOT.2020.3025015

6703

1 3

Automated cloud resources provisioning with the use of the…

 47. Zhang Y, Yao J, Guan H (2017) Intelligent cloud resource management with deep reinforcement
learning. IEEE Cloud Comput 4(6):60–69. https:// doi. org/ 10. 1109/ MCC. 2018. 10810 63

 48. Liu N, Li Z, Xu Z, Xu J, Lin S, Qiu Q, Tang J, Wang Y (2017) A hierarchical framework of cloud
resource allocation and power management using deep reinforcement learning. CoRR arXiv: abs/
1703. 04221

 49. Li M, Yu FR, Si P, Wu W, Zhang Y (2020) Resource optimization for delay-tolerant data in block-
chain-enabled iot with edge computing: a deep reinforcement learning approach. IEEE Internet
Things J 7(10):9399–9412. https:// doi. org/ 10. 1109/ JIOT. 2020. 30078 69

 50. Bitsakos C, Konstantinou I, Koziris N (2018) Derp: a deep reinforcement learning cloud system for
elastic resource provisioning. In: 2018 IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp 21–29. https:// doi. org/ 10. 1109/ Cloud Com20 18. 2018. 00020

 51. Shan N, Cui X, Gao Z (2020) “drl + fl”: An intelligent resource allocation model based on deep
reinforcement learning for mobile edge computing. Comput Commun 160:14–24. https:// doi. org/ 10.
1016/j. comcom. 2020. 05. 037

 52. Kardani-Moghaddam S, Buyya R, Ramamohanarao K (2021) Adrl: a hybrid anomaly-aware
deep reinforcement learning-based resource scaling in clouds. IEEE Trans Parallel Distrib Syst
32(3):514–526. https:// doi. org/ 10. 1109/ TPDS. 2020. 30259 14

 53. Hummaida A, Paton N, Sakellariou R (2022) Scalable virtual machine migration using reinforce-
ment learning. J Grid Comput 20. https:// doi. org/ 10. 1007/ s10723- 022- 09603-4

 54. John I, Bhatnagar S (2020) Deep reinforcement learning with successive over-relaxation and its
application in autoscaling cloud resources. In: 2020 International Joint Conference on Neural Net-
works (IJCNN), pp 1–6. https:// doi. org/ 10. 1109/ IJCNN 48605. 2020. 92065 98

 55. Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella A (2014) Multi-resource packing for
cluster schedulers. In: Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14.
Association for Computing Machinery, New York, pp 455–466. https:// doi. org/ 10. 1145/ 26192 39.
26263 34

 56. Rząsa W (2017) Predicting performance in a paas environment: a case study for a web application.
Comput Sci 18(1):21

 57. Graphite Project (2011) https:// graph iteapp. org/. Accessed 15 Feb 2022
 58. Feitelson D (2005) Parallel Workloads Archive. https:// www. cs. huji. ac. il/ labs/ paral lel/ workl oad/.

Accessed 29 Oct 2021
 59. Filho MCS, Oliveira RL, Monteiro CC, Inácio PRM, Freire MM (2017) Cloudsim plus: A cloud

computing simulation framework pursuing software engineering principles for improved modular-
ity, extensibility and correctness. In: 2017 IFIP/IEEE Symposium on Integrated Network and Ser-
vice Management. IFIP/IEEE Symposium on Integrated Network and Service Management, Wash-
ington, DC, USA, pp 400–406

 60. Brockman G, et al (2016) OpenAI Gym. arxiv: 1606. 01540
 61. PyTorch DNN Evolution (2018) https:// gitlab. com/ pkope rek/ pytor ch- dnn- evolu tion. Accessed 02

March 2022
 62. LeCun Y, Cortes C (2010) MNIST handwritten digit database. http:// yann. lecun. com/ exdb/ mnist/
 63. Amazon Web Services Elastic Compute Cloud (2020) https:// aws. amazon. com/ ec2/. Accessed 02

March 2022
 64. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is

difficult. IEEE Trans Neural Netw 5(2):157–166. https:// doi. org/ 10. 1109/ 72. 279181
 65. Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and prob-

lem solutions. Int J Uncertain Fuzziness Knowl-Based Syst 6:107–116. https:// doi. org/ 10. 1142/
S0218 48859 80000 94

 66. Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S, Wu Y,
Zhokhov P (2017) OpenAI Baselines. GitHub

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/MCC.2018.1081063
http://arxiv.org/1703.04221
http://arxiv.org/1703.04221
https://doi.org/10.1109/JIOT.2020.3007869
https://doi.org/10.1109/CloudCom2018.2018.00020
https://doi.org/10.1016/j.comcom.2020.05.037
https://doi.org/10.1016/j.comcom.2020.05.037
https://doi.org/10.1109/TPDS.2020.3025914
https://doi.org/10.1007/s10723-022-09603-4
https://doi.org/10.1109/IJCNN48605.2020.9206598
https://doi.org/10.1145/2619239.2626334
https://doi.org/10.1145/2619239.2626334
https://graphiteapp.org/
https://www.cs.huji.ac.il/labs/parallel/workload/
http://arxiv.org/abs/1606.01540
https://gitlab.com/pkoperek/pytorch-dnn-evolution
http://yann.lecun.com/exdb/mnist/
https://aws.amazon.com/ec2/
https://doi.org/10.1109/72.279181
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094

6704 W. Funika et al.

1 3

Authors and Affiliations

Włodzimierz Funika1 · Paweł Koperek1 · Jacek Kitowski1,2

 Włodzimierz Funika
 funika@agh.edu.pl

 Jacek Kitowski
 kito@agh.edu.pl

1 Institute of Computer Science, Faculty of Computer Science, Electronics
and Telecommunication, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland

2 ACC CYFRONET AGH, AGH, ul. Nawojki 11, 30-950 Kraków, Poland

http://orcid.org/0000-0003-3613-2390

	Automated cloud resources provisioning with the use of the proximal policy optimization
	Abstract
	1 Introduction
	2 Related work
	2.1 Automatic resources management
	2.2 Reinforcement learning
	2.3 Applying deep reinforcement learning to automatic resources management

	3 Architecture
	4 Using simulation in policy training
	5 Experimental design
	5.1 Workload
	5.2 Target environment
	5.3 Policy training
	5.4 Policy neural network model
	5.5 Using threshold-based policy

	6 Experimental results
	7 Conclusions and further research
	Acknowledgements
	References

