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Abstract
The path to the efficient exploitation of molecular dynamics simulators is strongly 
driven by the increasingly intensive use of accelerators. However, they suffer perfor-
mance portability issues, making it necessary both to achieve technological combi-
nations that allow taking advantage of each programming model and device, and to 
define more effective load distribution strategies that consider the simulation con-
ditions. In this work, a new load balancing algorithm is presented, together with 
a set of optimizations to support hybrid co-execution in a runtime system for het-
erogeneous computing. The new extended design enables the exploitation of custom 
kernels and acceleration technologies altogether, being encapsulated for the rest of 
the runtime and its scheduling system. With this support, Mash algorithm allows to 
simultaneously leverage different workload distribution strategies, benefiting from 
the most advantageous one per device and technology. Experiments show that these 
proposals achieve an efficiency close to 0.90 and an energy efficiency improvement 
around 1.80 over the original optimized version.

Keywords Load balancing · Co-execution · Hybrid programming models · HPC · 
Molecular dynamics · OpenMP · OpenCL · C++ · CPU-GPU-MIC · Accelerators

1 Introduction

The heterogeneous architectures enables new ways of exploiting HPC problems, 
mainly due to their performance and energy efficiency properties. Molecular dynam-
ics simulators are among the most relevant scientific softwares, being optimized for 
years, aiming to squeeze the multi-core architectures.

However, porting the software to accelerators reveals some performance portabil-
ity issues. Technologies such as OpenCL cannot cope with highly optimized codes, 
being necessary to provide technology combination mechanisms to use the most 
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appropriate programming models for each case. Furthermore, an additional problem 
arises, since load balancing algorithms are not adequately adapted to the simulation 
conditions, wasting opportunities to exploit the heterogeneous system to solve the 
molecular dynamics computations.

There have been different works related to combining heterogeneous program-
ming models and technologies [1–6], but they usually provide explicit code inputs, 
isolation of technologies by tasks, focus only on CPU-GPU distribution or use non-
OpenCL-based languages. Some works focus on providing load distribution for 
HPC simulation environments [1, 7–13], but most focus on distributed technolo-
gies in combination with shared memory. And those that include accelerators are 
centered on host-device models or task-based parallelism. However, none of these 
works focuses on a combination of scheduling algorithms and the use of hybrid 
technologies to perform co-execution.

This work addresses the cooperative execution to solve molecular dynamics com-
putations, relying for this purpose on three different architectures and considering a 
real simulator, ls1-MarDyn [14, 15]. Experimental validation shows that the runtime 
optimizations and its new native execution core improve energy efficiency by up to 
2x with respect to the OpenCL version. When exploiting the whole system com-
posed of CPU-GPU-MIC and the new Mash scheduler is applied with the hybrid 
co-execution mode, average improvements of 1.29x are obtained with respect to the 
next best balancing algorithm.

To overcome the above issues, the major contributions of this work include: (1) 
Mash, an algorithmic proposal to distribute the workload, applicable to the simula-
tion conditions of ls1-MarDyn; (2) optimizations of the EngineCL runtime and its 
API to exploit co-execution using different acceleration technologies and program-
ming models, providing a new hybrid co-execution mode along with a native execu-
tion core.;

The rest of the paper is organized as follows. Section  2 describes the motiva-
tion of this work, while Section 3 details the algorithmic proposal along with the 
optimizations performed to EngineCL. Then, after describing the API usage in Sec-
tion 4, the methodology and experimental validation are exposed in Sections 5 and 
6. Finally, Section 7 highlights the main conclusions.

2  Motivation

Computationally intensive scientific applications, such as the ls1-MarDyn molecu-
lar dynamics simulator, have generally been run in homogeneous multi-core clusters 
[16]. With the advancement of heterogeneous nodes and the popularization of accel-
erators, more efficient solutions are becoming available. However, they give rise to 
different main challenges: programming complexity, device performance portabil-
ity issues as the programming model varies, and inefficiency in balancing between 
CPUs and accelerators.

Firstly, with the emergence of technologies such as OpenCL, the execution 
of kernels on these devices is possible, offering code portability but not always 
performance portability. This model represents a drastic change in the way of 
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programming these devices, placing them under a host-device paradigm. The 
main problem is that these are low-level languages a9756723nd APIs that make 
it difficult to be applied in complex software architectures, generally present in 
simulators. In addition, it is a multi-purpose objective, not only in the applica-
bility and maintenance, but also guaranteeing performance portability, offering 
advantages over the original solutions.

Secondly, although these programming models are multi-architecture, a com-
mon practice is to use accelerators intensively and leave the CPU in charge of 
device management, work distribution and synchronization. This practice facili-
tates programming but involves a misuse of the energy consumed and a potential 
loss of performance, since the CPU could use that time to compute a region of 
work.During the period that the CPU is not computing, it is time that could be 
used to compute a region of work and has to be assigned to the accelerators. In 
addition, the static energy of the system continues to occur since the CPU, even 
if it is idle, keeps consuming in order to be able to operate. Thus, it is convenient 
to co-execute the problem, that is, to compute a kernel simultaneously by all the 
devices and computing units available in the system.

These previous drawbacks are addressed by using EngineCL, a high-level co-
executor runtime for heterogeneous computation tested on multiple architectures. 
It offers a layered and optimized design that enables high usability without penal-
izing performance. However, two problems have been found to be solved, both 
related to performance portability. On the one hand, OpenCL technology is not 
always suitable for computing all types of problems. One of the key points of 
the performance of a device and the associated OpenCL programming model is 
determined by the quality of the driver and the optimizations performed by each 
vendor. This has been a serious problem encountered when working with the ls1-
MarDyn simulator. The Intel Xeon processor requires a degree of optimizations 
not achievable by its driver regarding these molecular dynamics kernels, causing 
a performance penalty. Thus, this drawback not only penalizes the exploitation 
of the CPU, but also of the possibility of working cooperatively with any other 
device.

On the other hand, the existing algorithms do not fully benefit from this situ-
ation. It is necessary to leverage the best programming models and optimizations 
to solve the previous problem, independently of the major technology used in the 
runtime. Furthermore, it should be improved how the workload is distributed among 
the devices, as part of the simulation process. There are situations in which an algo-
rithm performs better in one type of problem or device, and in other cases another 
one behaves much better. For example, an integrated GPU that supports compute-
communication overlap via multiple queues, when faced with a program behavior 
like NBody, can benefit from algorithms that divide the load into many small pack-
ets [5, 17], while a discrete accelerator faced with the execution of many short-lived 
kernels generally cannot amortize the management overhead, and is better suited to 
algorithms that exploit very large packets [18–20]. For this reason, it is necessary to 
provide an appropriate and more sophisticated load balancing algorithm that take 
into account the context of the simulation and the runtime system. Hence, includ-
ing these new strategies as an integral part of the process enable the heterogeneous 
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computing exploitation, benefiting from different types of architectures and leverag-
ing the system resources, all with high usability for the simulator programmers.

3  Mash scheduler with EngineCL

This section details the algorithmic proposal to improve the execution of kernels 
with hybrid technologies. For this purpose, firstly, it is briefly presented the runtime 
system along with the changes introduced, in order to allow the co-execution when 
using a combination of computing technologies. Secondly, the simulator execution 
context and the fundamentals of the new load balancing algorithm are explained.

3.1  EngineCL optimizations

The optimizations focus on enhancing EngineCL [17] with more functionality, with-
out compromising its usability and applicability. The runtime has experienced inno-
vations with the main goal of providing support for hybrid heterogeneous computing 
model, which means combining different computing technologies for co-execution.

The runtime system has been modified to support two types of execution cores, 
that is, the computing technologies that are managed and exploited by EngineCL 
internally. This has required an internal transformation, including the generation of 
new interfaces to encapsulate the distinct implementations of its behavior. The first 
one makes it possible to continue executing with OpenCL technology, preserving 
the already validated functionality. However, a new execution core enables binary 
kernels on the CPU, as part of a native execution. In addition, to enable multiple 
devices to be used simultaneously, the software architecture has been extended to 
support hybrid co-execution, mixing native and OpenCL execution cores. Hence, 
the same kernel is computed simultaneously by two independent technologies, being 
EngineCL in charge of synchronization, workload distribution and resource manage-
ment, regardless of the execution cores involved.

These enhancements decouple the OpenCL technology from the runtime. Fig-
ure 1 shows the compilation and execution model of EngineCL once the modifica-
tions have been made. At the top is the API for programmers, where they simply 
have to set the source and binary codes to the engine and the program to be executed, 
both from EngineCL Tier-1. Internally, these codes are processed by different mod-
ules, in order to prepare the provided kernels. By means of compilers and linkers, it 
is possible to encapsulate the kernels, containing more efficient and hand-optimized 
programming models, including pre-compiled binaries, as long as they preserve the 
signatures imposed by EngineCL. After all kernels are built as binary objects and 
normalized with a common internal specification, the runtime is able to orchestrate 
their execution, providing them to the execution cores, OpenCL and Native. Thanks 
to these abstractions and the usage of interfaces in the internal software architecture, 
it is possible to enable a new hybrid co-execution mode that allows reusing existing 
schedulers with both types of execution kernels.
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3.2  Mash algorithm

As a result of the feasibility analysis when porting and co-executing ls1-MarDyn 
kernels with EngineCL, it has been shown that there is not a load balancing algo-
rithm that is the best for all cases. After a detailed analysis of performance and 
co-execution, one of the main drawbacks of accelerators in this type of applications 
have been determined. In addition to the complexity of use that degrades perfor-
mance portability, the time to offload kernels, data transfers and synchronization of 
packages are highlighted, being penalized in the face of adaptive strategies. For this 
reason, there are situations where a static algorithm may be desirable, and minimal 
management and overhead may be decisive for such situations. On the other hand, 
in more computationally intensive or molecule-intensive problems, where offload-
ing compensates, adaptive algorithms and accelerators become more relevant.

For these reasons, a load balancing algorithm, called Mash, was devised. Its philoso-
phy is based on the combination of load distribution strategies, but specifically designed 
to facilitate its use and solve the problems encountered in this type of simulations. In 
order to do this, it is first necessary to briefly present how the simulator is executed.

The simulation process is composed of epochs, and each of these, in phases, 
both being configurable in number, size and properties involved. However, at the 
beginning and at certain points of the simulation there are periods of setup and ini-
tialization, as well as secondary operations and maintenance simulation tasks. In 
addition to initialization and shutdown, it is in these other phases where the simu-
lation slows down momentarily to save states, perform checkpoints, inter-node data 
migrations or plugin executions, among others. For this reason, the algorithm has 
small periods of time where it can benefit from runtime operations, performing cer-
tain tasks to obtain relevant information that can be used later.

To assist in the explanation of the algorithm behavior, Figure  2 is provided, 
where the simulator execution process is shown. It represents the behavior later 

Fig. 1  EngineCL compilation-execution model showing the optimizations to enable different kernel ori-
gins via its new Core Executors functionality
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analyzed in Section 6, thereby involving three devices, the CPU and two accelera-
tors, MIC and GPU. Above, horizontally, the molecular processing stages are 
shown, starting at Stage 1. The algorithm has three consecutive phases: profiling, 
setup and co-execution. The profiling analyzes the behavior of the devices. The 
setup establishes the appropriate parameters and load distribution mechanisms for 
the subsequent phase. And finally, the co-execution use all the devices in the system 
to compute the molecular sets, benefiting from configuration and profiling phases.

The profiling phase represented in the figure with a downward projection, 
which begins in the CPU of Stage 1, determine the behavior of the devices 
with respect to the number of work packages launched. There are as many profil-
ing stages as devices are being used in the co-execution. However, each stage of 
the profiling phase is performed by a single device at a time.

Considering profiling Stage 1, performed by the CPU, it can be seen that it 
has 3 steps, identified as A, B and C to help in the explanation. In the first one, 
Step A, a work package is received with a given problem size W, which repre-
sents the iteration space, since the computation to be performed is of data-parallel 
style. In this step, the problem size is duplicated or divided, depending on the 
selected behavior by the simulator programmers.

By default or when the programmers indicate that the problem may present 
irregular behavior, the work package is duplicated, obtaining two packages that 
are identical. Irregular behavior represents those problems that for the same work 
size require different times, even when computed on the same device. However, if 
they choose a regular pattern, this profiling phase is slightly optimized, since the 
package is divided into two equal halves. In any case, at the end of Step A, two 
packages are available.

At the start of Step B, these two packages are assigned to two offloading 
modes, the single Ws and the multiple Wm . In this step, a consecutive execution 
is performed under these modes. Programmers have established two types of 

Fig. 2  Load balancing steps during the simulation: profiling, setup and co-execution phases
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behaviors when using Mash, one when using single-chunk offloading, and another 
one involving multiple chunks. For example, out of the algorithms provided by 
EngineCL, the Single and Static schedulers fit in the former category, as 
well as Dynamic and HGuided as in the latter one. In any case, Mash only 
specifies that the behaviors have to fulfil these two offloading modes. It does not 
specify further restrictions or specific implementations. The figure shows how the 
complete package is first executed by performing the offload with a single chunk 
on the CPU, obtaining the time Tsingle . Once this has finished, the other package 
provided by the Step A is chunked. For example, the figure depicts a behavior 
with progressively smaller chunks. At the end, the time Tmultiple is obtained.

Then, the last step of the profiling phase, Step C, is performed. At this point, 
the acceleration between both offloading modes is computed, determining the 
best strategy to be used with the device being profiled:

Thus, values higher than 1.0 indicate that the device has a beneficial behavior when 
facing workload splitting strategies, allowing an increase in throughputs by taking 
advantage of multiple command queues, overlap between computation and commu-
nication as well as appropriate interleaving between management and computation, 
as demonstrated in previous studies   [17, 19, 21–24]. And therefore, values lower 
than 1.0 indicate that it suffers penalization for device management and chunk syn-
chronization, sharing of CPU usage with the simulator itself or other tasks and even 
an indication of very short execution times, where the generation of multiple chunks 
is usually counterproductive.

Mash allows setting a threshold to apply a default offloading mode, configur-
able by programmers. This prevents the application of an unfavorable offloading 
mode with respect to the other one, knowing that this could lead to severe load 
balancing problems. Thus, when the threshold is not exceeded, if irregular pat-
terns have been indicated, the default mode is multiple. Otherwise, with regular 
ones, it is single. The default mode is considered if the calculated speedup is in 
the threshold range:

Once Step C is completed, the execution of Stage 1 is finished. The process is 
then repeated for each of the remaining devices, but using the next stages of the 
simulation. In the figure, Stage 2 and Stage 3 are performing the MIC and 
GPU profiling phases, respectively.

The co-execution configuration phase is performed when the profiling is fin-
ished. This phase is really fast and does not require any simulation execution, 
since only the configuration of the behaviors assigned to Mash by the pro-
grammers is performed. That is, the same behaviors that were set for the pro-
filing phase, Static and HGuided, for example, are now configured for the 
co-execution. This offloading mode assignment is done by device grouping, as 

Soffloading_mode =
Tsingle

Tmultiple

(1.0 − threshold) < Soffloading_mode < (1.0 + threshold)
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long as the behavior supports it, since, at a minimum, it has to support a single 
device. Figure 3 shows an example of assignation, using HGuided and Static 
as schedulers. From the best times obtained by each device in the profiling phase 
Tmodedev , the throughputs thdev are computed and the relative computational powers 
are obtained, by means of the following equation:

Where n is the number of total devices, regardless of the offloading mode. Subse-
quently, the computational powers relative to each offloading mode op are config-
ured, where the above equation is used again but with n being the number of devices 
involved in that offloading mode. In the example used, the GPU is the only one that 
requires single mode, so it is assigned the 100% of the 30.7% of the total problem 
(w). In contrast, the CPU and MIC use multiple mode, as it is the most effective, so 
the assignation of the computational powers are 66.6% and 33.3% , respectively. This 
is important, since Mash does not impose the scheduler that implements each behav-
ior the size that should be assigned to each device, but the computational power, and 
it will be the scheduler that determines how it distributes the work. In the case of 
Static, by using only the GPU with 1.0 of computational power, it will generate 
a single chunk for it. On the other hand, with HGuided, the values 0.66 and 0.33 
are used to divide the chunks progressively, but being a very efficient adaptive algo-
rithm, they may end up delivering different work sizes. This is another advantage 
of Mash, since it does not impose to its internal algorithms how they should act, 
but performs the partitioning taking into account all the devices involved, based on 
throughputs and relative computational powers.

Finally, once the internal schedulers have been configured and the setup phase is 
finished, the co-execution phase itself begins. From this moment on, the following 
stages of the simulation will be computed according to the established configura-
tions. It should be noted that the first two phases are usually executed in those times 
of secondary operations indicated above, in order to avoid penalizing the simula-
tion. Even so, the work to be done is duplicated, as long as an irregular pattern has 
been indicated, during as many phases as there are devices, so that it is a negligible 
proportion with respect to the complete simulation. The advantage of these periods 
of maintenance and configuration of the simulator itself is that they can be used to 
perform profiling again without the minimum cost for the simulation. In this way, 
periodic profiling can be performed, both every certain number of computed stages, 

pi =

�

thi
∑n

j=1
thj

�

Fig. 3  Mash co-execution configuration phase using HGuided (multiple) and Static (single) as mashing 
schedulers
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and every time Mash is notified to recompute the profiling and configuration phase, 
so that in addition to the adaptive algorithms used internally, a higher level adaptive 
adjustment phase is performed.

4  Programmability and API usage

Listing 1 shows an example of the EngineCL API to compute LennardJones poten-
tials for sets of molecules. The novelty is that it exploits the new load balancing algo-
rithm, Mash, presented in Section 3.2, while using different kernel sources. It shows 
one of the computations performed in the experiments of Section 6. It uses the CPU 
with the new native execution core described in Section 3, and two accelerators, MIC 
and GPU, via OpenCL technology. To enable cooperation between these devices, the 
new hybrid co-execution mode is employed, transparently for the programmers.

The listing is divided into three sections, from top to bottom. The parent scope, 
where the two main Tier-1 API classes, engine and program, is declared in lines 
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3-4 (L3-4). Subsequently, two functions to be called during the simulation process 
are defined, hook_setup_simulation (hss) and stage_simulation_
iterator (ssi). Both functions provide access to the simulator context, where the 
rest of the simulation parameters and other modules of its software architecture can 
be accessed, such as the plugin system, the safeguard checkpoints, profiling infor-
mation or the execution epochs.

The hss function is called during the initialization stages of the simulator, taking 
advantage of the hook ports to configure the runtime and to initialize structures and 
technologies. After reading the source and binary codes (L7-8), the engine is cued 
to use the native execution core by means of a special binary kernel load helper (L9-
12). In addition, two other devices are used, the GPU with the generic kernel and the 
Xeon Phi with a specialized binary kernel (L13,14). Subsequently, the Mash sched-
uler is assigned to the runtime (L15-19). To do this, two parameters are set. First, 
the type of profiler to be used, indicating that it is a kernel with irregular pattern 
(L16). Second, the behaviors to be associated to the mashing, both when choosing 
the multiple and the single offloads, commented in line 17 to show the assignation 
order. In this case, the programmer has selected to associate them to the schedul-
ers provided by EngineCL, HGuided and Static (L18). Finally, the program is 
configured with the generic kernel, indicating the input function to compute (L20). 
It is worth mentioning that programmers have the periodic profiler at their disposal, 
and they would only have to change line 16 to, for example, MashOpt::Periodi
cProfiler(MashOpt::Irregular, 20), to adjust the performances of each 
device every 20 stages of the simulation.

On the other hand, the ssi function is launched for each stage of the simulation, 
providing the execution ranges, variables and primitives needed to compute. To sim-
plify the example, only two variables are listed, being of packed floating point types, 
defined by the simulator. After setting the kernel parameters and properly configur-
ing what is needed to compute the set of molecules (L22-26), the execution range is 
provided to the runtime (L27), as well as the input (L28), output (L30) and applica-
tion domain parameters (L31). This is, in EngineCL terminology, the application to 
be computed, isolated from the execution engine. Finally, the program is assigned 
to the engine, and the co-execution of the work supplied by the stage is performed 
(L32,33). In this way, this function will continue to execute as the simulation pro-
gresses, and the runtime itself will be in charge of internally managing the profiling, 
assignment and co-execution phases.

The proposal presented in this work has only modified the external API in two 
regions, the utilization of the native execution core for the CPU (L9-12), as well 
as the incorporation of a more sophisticated type of scheduler (L15-19), which is a 
composite type. The rest of the regions and forms of use are maintained, preserving 
the advantages of the originally validated API design.
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5  Methodology

The experiments are carried out on a computer composed of an Intel Xeon E5-2620 
with 24 threads, an AMD Rx5700XT GPU with 40 compute units and an Intel Xeon 
Phi 7120P Knights Corner Many-Integrated Core (MIC) with 240 compute units. 
The first technology involved is the current ls1-MarDyn implementation, labeled 
CPU-icc. It is parallelized with OpenMP, vectorized and compiled with the Intel 
compiler. MIC, GPU and CPU-oclwhen OpenCL drivers are used for the Xeon Phi 
MIC, Rx5700XT GPU and Xeon CPU devices. Finally,the new hybrid mode and its 
native execution core for the CPU, labeled CPU-hy.

Five kernels related to the computation of particles and their interactions have 
been selected as part of the computational core of ls1-MarDyn [15]. Two of them, 
md_dist and md_distn2 are related to the computation of distances between mole-
cules. The former offers a flow-based interaction with low computational load, while 
the latter performs calculations based on indirections over all cells. The program 
md_diststar handles the minimum image convention while computing the distance 
between molecules. Finally, md_bin computes the associated indices for a set of 
cells in streaming mode, while md_lj obtains the potential and evaluates the force 
for the Lennard Jones 12-6 potential.

The validation of the proposal is performed taking into account two simulation 
scopes. On the one hand, contrasting the behavior of the new execution core with 
respect to the current mode used for CPU (CPU-icc), performing a complete offload 
of the work for each device. On the other hand, taking into account the whole heter-
ogeneous system, so that all devices cooperate to solve the problem simultaneously, 
demonstrating the impact of the new load balancing algorithm as well as the hybrid 
co-execution mode, using both execution cores CPU-ocl and CPU-hy. In addition 
to the Mash algorithm (Mh), two scheduling algorithms included in EngineCL are 
evaluated, since these stood out for the kernels studied, being HGuided (Hg) and 
Static (St).

In both scopes the total response time is measured. Then, two metrics are used to 
evaluate the coexecution, heterogeneous efficiency (efficiency, henceforth) and 
energy efficiency. The efficiency is obtained from the speedups and the maximum 
speedup. The speedup is calculated as S =

TCPU-icc

Tco-exec
 , being TCPU-icc and Tco-exec the exe-

cution times for the current CPU implementation and the coexecution, respectively. 
Due to the heterogeneity of the system and the different behavior of the kernels, the 
maximum achievable speedups depend on each program These values are compute-
das follows: Then, the efficiency, in Equation 3, is computed as the ratio between the 
empirically obtained speedup and the maximum achievable speedup, for each pro-
gram [19].

Finally, energies are measured using the sauna tool along with RAPL counters 
and sysfs system drivers, giving the total consumption in Joules. The Energy-Delay 
Product (EDP) combines performance (time) and energy (power consumption), 
being used to evaluate the energy efficiency, measured in Js.
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6  Validation

Two types of experiments are carried out. The first evaluates the scalability of each 
device and the benefits offered by the new native execution core and its optimiza-
tions. The second shows the impact of the Mash algorithm when leveraging all 
devices, using only OpenCL and the hybrid co-execution mode.

The execution times when using a single device to compute the whole prob-
lem are depicted in Fig. 4, showing how each device scales as the problem size is 
increased. Hence, the granularity of execution is increased, producing simulation 
tasks that are more computationally intensive. In this way, each technology and 
device is evaluated to compute a set of molecules, thereby comprising one of the 
stages of the simulation.

For all the kernels, the CPU-ocl obtains the worst results, making it pointless to 
use OpenCL on the CPU. These results are so poor that it limits the co-execution, 
penalizing the runtime management itself and preventing it from being competitive 
with respect to the CPU-icc version.

However, the new execution core offers very similar performance to the CPU-
optimized ls1-MarDyn version, as shown by CPU-hy and CPU-icc. On the other 
hand, the GPU obtains computation times close to these last two CPU modes, 
although being slightly slower except in the case of the md_distn2 kernel. It com-
putes 2.64 times faster than the best version of the CPU, when calculating the 
distances between one million molecules. On the other hand, the MIC has worse 
performance than the GPU, only outperforming the CPU versions when using md_
distn2 with large problem sizes. It is a device that benefits from the use of multiple 
queues as well as dynamic scheduling algorithms, so it is limited when using the 
host-device offloading model to compute a single large work package. These ker-
nels are highly optimized for the CPU, taking advantage of the memory hierarchy 
and vectorizations. Thus, the GPU, despite being several generations newer than the 
CPU and offering many more cores, is not the fastest device, as has been the case 
in many other classical kernels. The MIC, moreover, is using OpenCL, so it could 
suffer from the same drawbacks as the CPU-ocl when it comes to efficiently vector-
izing these molecular dynamics kernels.

(1)S =

T
CPU-icc

T
co-exec

(2)S
max

= T
CPU

icc

n
∑

i=1

1

T
i

(3)HE =

S

S
max
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For now on, the results obtained for the complete heterogeneous system (CPU, 
GPU and MIC) are analyzed. Figure  5 shows the heterogeneous efficiency values 
obtained, for all benchmarks and the three load balancing algorithms evaluated, 
Static, HGuided and Mash, together with the geometric mean for each of them. A 
clear conclusion is that the hybrid model greatly outperforms the OpenCL model on 
CPU, with an average gain of around 20%.

Taking into account the geomean values, it can be stated that Mash is the one 
that best exploits the computational capacity of the system, with an average effi-
ciency close to 0.9, which translates into a speedup of 1.9, followed by Static and 
finally HGuided, although both of these with very close values.

Analyzing the performance of each benchmark in more detail, it can be seen 
that in all cases the Mash algorithm is the best, except for the md_distn2 kernel, 
which is slightly outperformed by HGuided. However, HGuided offers very poor 
efficiency values in some kernels, such as md_bin. This is because these kernels 
execute Stages of small molecular sets, making the execution shorter, so that it is 
not able to adapt correctly in such interval, being penalized by its management 
and distribution overhead. Finally, the Static algorithm offers more stable values, 
but is by no means the best. These efficiency values allow the performance of the 
heterogeneous system to be superior to the best version of the CPU, whenever 
the hybrid model and the Mash algorithm are used. The average speedup value 
is 1.90, reaching a value of up to 5.03 in md_distn2, which is the one that needs 
more execution time.

It is important to note that in md_distn2, Mash has not managed to impose 
itself as the best since in the profiling phase the MIC was set with a single off-
loading mode, resulting in a high CPU occupation. This is due to the OpenCL 
driver of the MIC, as it requires high management, penalizing the computation 
of the CPU device when there is no possibility to make trade-offs in CPU usage. 
In the rest of the cases, the MIC and the CPU work using the multiple offloading 
mode, speeding up the execution notably.

Finally, a very important metric is the Energy Efficiency, presented in Fig. 6. 
It is studied through the EDP improvement over the baseline, with respect to the 
heterogeneous system. Values above 1.0 indicate better energy efficiency. From 

Fig. 4  Scalability when launching the whole kernel computation in a single device
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these results, it is important to highlight that, for all the benchmarks analyzed, 
it is necessary to use the two new proposals of this article, the hybrid model and 
the Mash algorithm, in order to achieve high energy-efficient co-execution in the 
heterogeneous system.

Otherwise, it can be seen that there is a full correlation between the perfor-
mance results, shown in Fig.  5, and the energy efficiency results, presented in 
Fig.  6. For this reason, with respect to energy efficiency, the same conclusions 
already mentioned for the case of performance can be confirmed.

In summary, the results presented show two clear conclusions. Firstly, that the 
Hybrid model is clearly superior to the model using OpenCL in both performance and 
energy efficiency. Secondly, that the Mash algorithm is the one that best exploits in 
most cases both the computational capacity, obtaining the best performance, but also 
the energy efficiency of the heterogeneous system.

7  Conclusions

This paper proposes a novel load balancing algorithm, Mash, to exploit heterogene-
ous execution in molecular dynamics simulators, such as ls1-MarDyn. This algorithm 
allows taking advantage of known behaviors of existing algorithms and include them 

Fig. 5  Heterogeneous Efficiency of the heterogeneous system vs. CPU execution

Fig. 6  Energy Efficiency of the heterogeneous system vs. the CPU execution
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as part of its internal mash, but favoring a higher level adaptive phase and with high 
usability. For this purpose, it has been implemented in EngineCL, a runtime system for 
heterogeneous computing.

The optimizations made allow the use of different parallel programming technolo-
gies and hand-optimized kernels, all of them in cooperation with the different sched-
ulers provided, enabling support for hybrid co-execution. This, together with the new 
scheduling algorithm evaluated in the simulation, allows reaching average speedups 
of 1.90, efficiencies up to 0.95 and energy efficiency improvements close to 1.80 with 
respect to the original optimized version.
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