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Abstract
As unsupervised learning algorithm, clustering algorithm is widely used in data pro-
cessing field. Density-based spatial clustering of applications with noise algorithm 
(DBSCAN), as a common unsupervised learning algorithm, can achieve clusters via 
finding high-density areas separated by low-density areas based on cluster density. 
Different from other clustering methods, DBSCAN can work well for any shape 
clusters in the spatial database and can effectively cluster exceptional data. How-
ever, in the employment of DBSCAN, the parameters, EPS and MinPts, need to be 
preset for different clustering object, which greatly influences the performance of 
the DBSCAN. To achieve automatic optimization of parameters and improve the 
performance of DBSCAN, we proposed an improved DBSCAN optimized by arith-
metic optimization algorithm (AOA) with opposition-based learning (OBL) named 
OBLAOA-DBSCAN. In details, the reverse search capability of OBL is added to 
AOA for obtaining proper parameters for DBSCAN, to achieve adaptive parame-
ter optimization. In addition, our proposed OBLAOA optimizer is compared with 
standard AOA and several latest meta heuristic algorithms based on 8 benchmark 
functions from CEC2021, which validates the exploration improvement of OBL. To 
validate the clustering performance of the OBLAOA-DBSCAN, 5 classical clus-
tering methods with 10 real datasets are chosen as the compare models according 
to the computational cost and accuracy. Based on the experimental results, we can 
obtain two conclusions: (1) the proposed OBLAOA-DBSCAN can provide highly 
accurately clusters more efficiently; and (2) the OBLAOA can significantly improve 
the exploration ability, which can provide better optimal parameters.
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1  Introduction

Clustering, a common unsupervised learning algorithm [1–4], groups the samples 
in the unlabeled dataset according to the nature of features, so that the similarity 
of data objects in the same cluster is the highest while that of different clusters is 
the lowest [5–7]. Clustering is popularly used in biology [8], medicine [9], psy-
chology [10], statistics [11], mathematics [12] and computer science [13]. Since 
the early 1950s, many clustering algorithms have been proposed. In this paper, 
considering the novelty and effectiveness of density-based method, we will focus 
on density-based noise application spatial clustering algorithm (DBSCAN) and 
explore an adaptive method to tune the hyperparameter for DBSCAN instead of 
empirical setting.

1.1 � Literature review

In clustering algorithms, K-means [14], as the most basic partition clustering 
algorithm at present, has the advantages of simple principle, strong practicabil-
ity, fast convergence speed and strong model interpretation and so on. However, 
it is difficult to converge non-convex datasets and often stops at the local optimal 
solution.

Different from K-means, DBSCAN [15, 16] is another popular clustering algo-
rithm based on density. It achieves clusters via finding high-density areas sepa-
rated by low-density areas based on cluster density. Compared with other cluster-
ing algorithms based on the distance between objects, DBSCAN is suitable for 
finding clusters of any shape in spatial database and connecting adjacent regions 
with corresponding density. It can effectively deal with abnormal data, especially 
the clustering of spatial data [17]. Although DBSCAN has many advantages in 
clustering, it still has some disadvantages. For different datasets, DBSCAN needs 
to set the most appropriate parameters, MinPts and EPS, to achieve the best clus-
tering effect. To some extent, the process of setting parameters limits the applica-
tion of DBSCAN [18].

Over the years, to apply DBSCAN effectively, many researchers have improved 
DBSCAN [19] through meta-heuristic algorithm [20–23] to realize the automatic 
search and determination of EPS and MinPts parameters in DBSCAN. For exam-
ple, Lai et al. [24] proposed a multi-segment optimization algorithm. As a special 
variable updating method, it has good optimization performance, can obtain good 
DBSCAN accuracy, and can quickly obtain appropriate EPS parameter selection. 
Ji’an et al. [25] proposed an adaptive DBSCAN to solve the clustering problem, 
taking the target solution and its motion range as noise points, in which DBSCAN 
� The neighborhood is affected by some specific physical factors. Zhu et al. [26] 
applied the harmony search optimization algorithm to DBSCAN, and obtained 
better clustering parameters and better clustering results. Hu et al. [27] proposed 
a density-based clustering algorithm, KR-DBSCAN, which is based on reverse 
nearest neighbor and influence space. Li et  al. [28] combined the improved 
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DBSCAN algorithm based on bat optimization and DP algorithm for clustering, 
and obtained good results. However, these methods still have the characteristics 
of low convergence accuracy, poor universality, and slow convergence speed.

Meta heuristic algorithm is a popular algorithm in recent years, such as Gray 
Wolf Whale (GWO), Dragonfly algorithm (DA) and Ant Lion Optimizer (ALO). It 
has the characteristics of high convergence accuracy and strong robustness. It can be 
used to solve the selection of parameters in DBSCAN. However, the common meta 
heuristic algorithms are easy to fall into local optimization. Therefore, we choose 
Arithmetic optimization algorithm (AOA) as the optimization algorithm. AOA is 
a new population-based metaheuristic algorithm proposed by Abualah [29], which 
uses four basic arithmetic operators in mathematics. AOA can not only deal with 
low dimensional problems [30], but also has a strong ability to solve high-dimen-
sional problems [31]. The distribution mechanism enhances its global search abil-
ity, and the algorithm based on population [32] without optimization also helps to 
achieve faster convergence speed.

However, the ability of standard AOA to balance global optimization and local 
optimization is still insufficient, and the optimization accuracy is also insufficient. 
To better balance global optimization and local optimization and improve the opti-
mization accuracy, we proposed some search strategies of improving development 
(local search) and exploration (global search). In addition, Opposition-based learn-
ing (OBL) [33–35] is one of the most popular strategies to enhance exploration, 
which can improve the population diversity of the algorithm in the search space. 
In the optimization problem, the strategy of checking the candidate solution and its 
opposite solution at the same time is adopted to speed up the convergence speed to 
the global optimal solution.

In general, the current clustering effect of DBSCAN is limited by the optimiza-
tion results of its parameters. At present, the optimization algorithm used to solve 
DBSCAN parameter optimization has low convergence accuracy and is easy to fall 
into local optimal solution. Although the standard AOA improves the global disper-
sion compared with other optimization algorithms, it still has some shortcomings, 
such as insufficient convergence accuracy and global search ability.

1.2 � The gap

To sum up, the demand for the accuracy of DBSCAN clustering algorithm is still 
increasing. To improve the accuracy of DBSCAN clustering algorithm, more 
advanced machine learning methods are needed to automatically optimize the 
parameters of DBSCAN clustering algorithm to improve the accuracy of clustering.

1.3 � The contribution

To improve the accuracy and convergence speed of the automatic selection of 
DBSCAN parameters, this paper proposes a new meta-heuristic improvement 
strategy, OBLAOA-DBSCAN, which combines the advantages of AOA and OBL 
with DBSCAN to adjust dynamically the two parameters of DBSCAN. In addition, 
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according to the experimental results, DBSCAN improved with OBLAOA performs 
well in a variety of public datasets. Therefore, the contributions of this article are as 
follows: 

(1)	 An OBLAOA-DBSCAN clustering algorithm is proposed, which can realize 
automatic parameter search and improve the clustering accuracy and efficiency.

(2)	 By adding the OBL strategy, an OBLAOA optimizer is established, which can 
effectively improve the exploration performance of AOA.

(3)	 The proposed OBLAOA-DBSCAN algorithm can provide better clustering 
results than other clustering algorithms including K-means, Spectral, Optics, 
DPC and the combination method of DBSCAN and other meta-heuristic opti-
mization algorithms.

1.4 � The structure of the paper

The remaining contents are organized as following. Section 2 outlines some back-
grounds of DBSCAN and AOA. Section 3 introduces the OBLAOA and gives the 
use principle and concrete operation. Section 4 illustrates the proposed OBLAOA-
DBSCAN algorithm. Section 5 compares the proposed OBLAOA with the original 
AOA by using 12 benchmark functions. Section 6 demonstrates the superiority of 
the proposed algorithm with 10 datasets by comparing with some considered clus-
tering algorithms. Section 7 concludes the paper.

2 � Related work

2.1 � The basic theory of DBSCAN

DBSCAN, an unsupervised learning method, is proposed by [36] handling the clus-
tering problem efficiently based on density. DBSCAN has the capacity to identify 
noise points efficiently and exactly. Furthermore, it can also distinguish clusters with 
arbitrary shapes.

In this clustering method, two parameters, the epsilon (EPS) and MinPts, are 
required to be pre-set to appraise the density distribution of points. DBSCAN starts 
from an unvisited point randomly. Then, it counts the points fallen within the adja-
cent area radius of the point less than EPS.

If the number of points is more than MinPts, the current point and its nearby 
points from a cluster, and the starting point is marked as visited. Then, all the points 
in the cluster are not marked as visited that are processed in the same way recur-
sively, to expand the cluster. Otherwise, the point is temporarily marked as a noise 
point. If the cluster is fully expanded, that is, all points in the cluster are marked as 
visited, and then the same algorithm is used to process the non-visited points. Until 
all objects are marked as a certain cluster or noise, the clustering process ends. The 
DBSCAN algorithm flow is presented in Algorithm 1.
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DBSCAN suffers from the determination of these two parameters. Previous stud-
ies have presented that these two parameters can be found by statistical and classi-
cal methods of combining different data mining ways, but these methods consume 
excessive time. Therefore, we introduce a meta-heuristic optimization to improve 
the accuracy and efficiency of finding these parameters considerably to achieve clus-
tering faster and more precisely.

2.2 � The arithmetic optimization algorithm

Arithmetic Optimization Algorithm (AOA) is a new meta-heuristic optimization 
algorithm [29] inspired by four major arithmetic operators (Multiplication (M), 
Division (D), Subtraction(S)), and Addition (A)). The mathematical models of 
exploration and exploitation phase are detailed as follows. Note that the explora-
tion stage and exploitation stage is conditioned by the math optimizer accelerated 
(MOA) function. It is calculated by

where MIter is the maximum number of iterations, and CIter represents the current 
iteration, which is between 1 and MIter . MOA(CIter) represents the value of MOA at 
the current iteration. � and � are set to 1 and 0.2 respectively. The math optimizer 
probability (MOP) at the current iteration is calculated by

(1)MOA
(

CIter

)

= � + CIter ∗

(

� − �

MIter

)

,
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where � is a sensitive parameter and represents the exploitation accuracy over the 
iterations, which is set to 0.5.

r1, r2, r3 are random numbers. When MOA < r1 , we carry out exploration sec-
tion by executing D or M. The position updating equation in the exploration 
stage is followed:

where xi,j(CIter + 1) denotes the jth dimension of the ith solution in the next iteration, 
and x⋆(CIter) is the best-obtained solution in the previous iteration. � is a small inte-
ger, ubj and lbj refer to the upper and lower bound value of jth position. � is a control 
parameter, which is set to 0.5.

When MOA ≥ r1 , we carry out exploitation section by executing S or A. In the 
case of r3 < 0.5 , S performs (first rule in Eq. 4). Otherwise, A performs the task 
in the position of S (second rule in Eq. 4). The position updating equation in the 
exploitation stage is followed:

2.3 � The opposition‑based learning

Opposition-based learning (OBL) is employed to consider candidate schemes 
and their inverses. Depending on which estimate, or inverse estimate is closer to 
the solution, the search interval can be recursively halved until the estimate or 
inverse estimate is close enough to the existing solution. It determines whether 
the original solution x is replaced by the opposite solution x̄ by comparing the 
fitness function values of them. Considering the solution x ∈ [lb, ub] , x̄ is calcu-
lated by the following equation:

This equation above can be popularized to n-dimension via:

According to the results of comparison, it ends up with storing the best of two 
solutions.

(2)MOP(CIter ) = 1 −
CIter

1

�

MIter

1

�

,

(3)

xi,j(CIter + 1) =

{

x⋆(CIter ) ÷ (MOP + 𝜖) × ((ubj − lbj) × 𝜇 + lbj), r2 < 0.5

x⋆(CIter ) × MOP × ((ubj − lbj) × 𝜇 + lbj), otherwise,

(4)xi,j(CIter + 1) =

{

x⋆(CIter ) − MOP × ((ubj − lbj) × 𝜇 + lbj), r3 < 0.5

x⋆(CIter ) + MOP × ((ubj − lbj) × 𝜇 + lbj), otherwise .

(5)x̄ = ub + lb − x.

(6)x̄j = ubj + lbj − xj, j = 1, 2,⋯ , n.



19572	 Y. Yang et al.

1 3

3 � The proposed OBLAOA

OBL is committed to taking both candidate solutions and their opposite solutions 
into consideration, which shows greater opportunity to reach the global optimal and 
faster convergence acceleration than only executing S or A. It is adopted to find a 
solution, which is opposite to the present solution, and subsequently it determines if 
the opposite solution is used by comparing the fitness function values of them. For 
example, if f (x⋆(CIter)) ≤ f (x̄⋆(CIter)) , then x⋆(CIter) is saved; otherwise, x̄⋆(CIter) is 
stored. The equation used in OBLAOA to get the opposite solution is as,

where x⋆(CIter) denotes the position of the best solution in the current iteration. 
x̄⋆(CIter ) denotes the opposite position of the best solution in the current iteration.

The flowchart of the proposed OBLAOA is given in Fig. 1 and the pseudocode is 
recorded in Algorithm 2.

(7)x̄⋆(CIter) = ub + lb − x⋆(CIter)
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4 � The improved DBSCAN with OBLAOA

In this section, we apply OBLAOA to DBSCAN to optimize two parameters of 
DBSCAN (EPS and MinPts). Here more advanced modification method, namely 
OBLAOA-DBSCAN, is proposed, which can further improve the performance of 
the clustering algorithm.

In details, the OBLAOA-DBSCAN can perform the optimization process of 
determining the parameters EPS and MinPts automatically in an extensive scope 
of search spaces via a meta-heuristic method. First, set the normalized range 
matrix of two parameters (EPS and MinPts) as the upper bounds ( ubj ) and lower 
bounds ( lbj ) of search space. Then, the OBLAOA is used to search for suitable 
parameters within the effective search space.

To get the best clustering results, the sum of the average Euclidean distance of 
each cluster, the fitness function in OBLAOA-DBSCAN is given as,

Fig. 1   The flowchart of OBLAOA
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where D(oi, ol) is an Euclidean distance function that produces different metrics 
between object i and object l, oij, olj(i, l = 1,… , n, j = 1,… ,m) represents the value 
of the j-th attribute of object i and object l, respectively.

With the value of fitness function updates continuously, the position of best-
obtained solution, which determines the value of two parameters, varies. At this 
time, the corresponding parameters MinPts and EPS will change. Until the fitness 
value no longer changes, apply the obtained parameters into DBSCAN algorithm for 
clustering.

When only using DBSCAN for clustering, problems, such as low accuracy 
of clustering results and low definition of noise points, always appear because of 
parameters setting manually. By introducing OBL to enhance the exploration ability 
of AOA, OBLAOA can provide effective parameter solutions for DBSCAN, thereby 
improving the clustering ability. The flowchart is shown in Fig.  2. After calcula-
tion, the time complexity of OBLAOA-DBSCAN is O(N(1 +M × nlog(n) +M × n))

.Where N represents the number of candidate solutions, M is the number of itera-
tions, and n is the dimension of solving the problem.

5 � Numerical simulation

5.1 � The benchmark functions

To evaluate the performance of the proposed OBLAOA optimizer, we conducted 
numerical simulation experiments with 8 test functions in CEC2021. The bench-
mark functions are presented in Table 1, and its constraint range is represented by 
Range in the table.

5.2 � The setting of experimental parameters

The results of OBLAOA are saved and compared with five traditional methods (i.e., 
AOA, IAOA, DAOA, EN-GWO and WSSA) for each test case. The parameters of 
each algorithm are set as follows. The maximum number of iterations and popula-
tion size of all algorithms are set as 500 and 20, respectively, and the number of 
function evaluations is 30 [37]. In addition, the initial random population set of all 
algorithms are the same. All CEC2021 test functions are simulated in 10 and 20 
dimensions, respectively.

(8)D
(

oi, ol
)

=

(

m
∑

j=1

(

oij − olj
)r

)
1

r
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5.3 � Analysis of the results

The results of numerical simulation are recorded in Tables 2 and  3. To verify the 
effectiveness of OBLAOA, we compared the results of OBLAOA with the standards 
AOA, IAOA, DAOA, ENGWO and WSSA. We select the corresponding average 
value (AVG), standard deviation (STD) and best value (BEST) as performance indi-
cators and report them in all tables. We show better results in bold in Tables 2 and 3. 
In addition, Wilson’s rank test was used for all results, and all results of Wilson’s 
rank test (h) were 1. It can be seen from the table that OBLAOA has better perfor-
mance than standard AOA and other current popular optimization algorithms (i.e., 
IAOA, DAOA, ENGWO and WSSA). In the test of high-dimensional meta heuris-
tic algorithm, for all functions, the average value and optimal value of OBLAOA 
are better than standard AOA and current popular algorithms. In the test of low-
dimensional meta-heuristic algorithm, the average and optimal values of OBLAOA 
are better than AOA for F1, F2, F3, F5, F6, F7 and F8 functions. In some experiments, 
compared with AOA, the performance of OBLAOA is significantly improved. Tak-
ing the F3 function of 10 dim as an example, the best index of OBLAOA is 106.76, 

Fig. 2   The flowchart of the proposed OBLAOA-DBSCAN
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which is 46.62% lower than standard AOA, 77.17% lower than DAOA, 2.67% lower 
than ENGWO and 80.91% lower than WSSA. As far as F6 is concerned, the index 
of best is 1600, which is 44% lower than standard AOA, 21.95% lower than DAOA, 
24.88%lower than ENGWO and 31.91% lower than WSSA. From the F8 function, the 
index of best is 2.99e + 3, which is 59.15% lower than standard AOA, 59.14% lower 
than DAOA, 54.83% lower than IAOA, 63.49% lower than ENGWO and 65.67% 
lower than WSSA. To sum up, our proposed OBL is better than standard AOA and 
other current popular algorithms in dealing with complex functions.

In order to further prove the optimization effect of OBLAOA, we selected 
three practical engineering problems for verification, including welded beam 
design [38], compression spring design [39] and design problems of I-beam [40]. 
The results are recorded in Table 4 and shown in Fig. 3. To verify the adequacy 
of the experimental results, we also carried out Wilcoxon signed rank test. The 
results are expressed in h, which are all 1, and recorded in Table 4. From Fig. 3, 
we can see that our OBLAOA has better optimization effect compared with other 
algorithms. Our OBLAOA has the highest convergence accuracy among all prob-
lems. Specifically, in the CSD problem, our OBLAOA converges first, and the 
convergence effect is greatly improved compared with ENGWO and WSSA. In 
general, our OBLAOA has better convergence effect in solving practical engi-
neering problems. As can be seen from Table 4, our OBLAOA algorithm also has 
great advantages over standard AOA and the latest algorithm in solving practi-
cal engineering problems. Our OBLAOA has obtained the best value in all three 

Table 1   The CEC2021 benchmark functions

Function Description Range

F
1

f (x) = x2
1
+ 106 ∗

D
∑

i=2

x2
i

[− 100,100]

F
2

f (x) =
D
∑

i=1

(x2
i
− 10 ∗ cos(2�xi)

[− 100,100]

F
3

f (x) =
D
∑

i=1

(106)
i−1

D−1 ∗ x2
i

[− 100,100]

F
4

f (x) = �

�

D
∑

i=1

x2
i

�2

−

�

D
∑

i=1

xi

�2

�

1∕2 +

�

0.5 ∗
D
∑

i=1

x2
i
+

D
∑

i=1

xi

�

∕D + 0.5

[− 100,100]

F
5

f (x) =
D−1
∑

i=1

(100 ∗ (x2
i
− xi+1)

2
+ (xi − 1)2)

[− 100,100]

F
6

f (x) =
D
∑

i=1

x2
i

4000
−

D
∏

i=1

cos
�

xi
√

i

�

+ 1
[− 100,100]

F
7

f (x) = −20 ∗ exp(−0.2 ∗

�

1

D

D
∑

i=1

x2
i
) − exp

�

1

D

D
∑

i=1

cos(2�xi)

�

+ 20 + e

[− 100,100]

F
8

f (x) = �

D
∑

i=1

x2
i
− D�1∕4 +

�

0.5
D
∑

i=1

x2
i
+

D
∑

i=1

xi

�

∕D + 0.5
[− 100,100]
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engineering problems. Taking the WBD problem as an example, our best value 
is 4.25, which is 34% lower than the standard AOA algorithm, 40.3% lower than 
DAOA and 56.72% lower than IAOA. ENGWO and WSSA do not converge, 
which is quite different from OBLAOA. We can also see from Figs. 4 and 5 that 
OBLAOA converges earlier and faster, and the final fitness value is lower than 
that of other algorithms.

6 � Experiment and performance evaluation

This section is summarized as follows. In Sect. 6.1, we describe the datasets in 
the experiment. In Sect.  6.2, we introduce the evaluation indexes that used. In 
Sect. 6.3, we describe the parameter setting process in detail. In Sect. 6.4, we use 
ten datasets to test different optimization algorithms. In Sect. 6.5, we compare 
the optimized OBLAOA-DBSCAN with five classical clustering algorithms.

6.1 � The datasets

In this part, we use ten datasets to test the performance of our optimization algo-
rithm OBLAOA-DBSCAN. The instance of 10 datasets is 788, 399, 373, 150, 
251, 300, 198, 1980, 341 and 846. The dimensions of 10 datasets are 3, 3, 3, 5, 
3, 2, 34, 3, 3 and 19. The clusters of 10 datasets are 7, 6, 2, 3, 3, 5, 2, 5, 9 and 
4. Table 5 shows ten datasets as experimental data. We compared the real labels 
with the clustering label and use the comparison result as the evaluation index 
of the algorithm, therefore, we use the datasets with real labels.

6.2 � The error index

In order to measure the clustering results of the improved method, we use Accuracy, 
Davies- Bouldin index (DBI), Silhouette index (Sil), Rand index (RI) [41, 42], Nor-
malized Mutual Information (NMI), Homogeneity, Completeness, and V-measure [43]. 
Because of the datasets with the real label, we use the accuracy index to show the per-
formance of the proposed method.

Accuracy is the ratio of correctly clustered data to total data. The correctly clus-
tered data is obtained by comparing the cluster labels K with the actual labels C. DBI 
is used to measure the distance within the cluster and the distance between the clusters. 
The smaller DBI means the smaller distance within the cluster and the larger distance 
among clusters that is formulated as:

DBI =
1

N

N
∑

i=1

(

max
j=1,…,N,j≠i

(

dij

Si + Sj

))

,



19578	 Y. Yang et al.

1 3

where N is the number of clusters, dij is the average of the distance between clusters 
i and j. In addition, Si and Sj are the mean distances of cluster i and cluster j.

The Silhouette value describes the similarity between different clusters. The larger 
this value is, the higher similarity between the target and its cluster, and the lower simi-
larity with other clusters. The formula is as follows:

Table 2   Results of 10-dimensional CECE2021 test functions ( F
1
-F

8
)

F
1

F
2

Avg Best Std h Avg Best Std h

AOA 2.94e+9 1.08e-3 3.10e+18 1 1.94e+3 1.77e+3 2.11e+4 1
DAOA 1.04e+10 1.04e-10 3.97e+16 1 2.02e+3 2.17e+3 2.57e+3 1
IAOA 2.95e+7 2.20e-198 3.43e+17 1 203.06 0 1.3e+5 1
ENGWO 9.90e+9 9.85e-9 2.38e+16 1 2.31e+3 2.28e+3 1.5e+3 1
WSSA 1.30e+10 1.30e-10 5.26e-9 1 2.59e+3 2.58e+3 869.1 1
OBLAOA 2.62e+7 0 3.38e-17 0 179.94 0 2.11e+4 0

F
3

F
4

Avg Best Std h Avg Best Std h

AOA 218.02 200.89 2.59e+3 1 4.16e+4 9.31e+5 1.52e+11 1
DAOA 559.48 468.61 28.37 1 7.74e+4 5.01e+5 2.23e+11 1
IAOA 114.78 109.62 490.39 1 3.49e+5 3.29e+5 8.46e+10 1
ENGWO 453.99 450.90 35.45 1 1.64e+5 1.35e+5 8.83e+10 1
WSSA 559.48 559.48 0 1 5.95e+6 5.92e+6 1.50e+10 1
OBLAOA 106.76 106.76 1.10e+13 0 2.37e+5 1.99e+5 9.47e+10 0

F
5

F
6

Avg Best h Std Avg Best Std h

AOA 2.71e+7 2.17e+3 3.40e+14 1 2.14e+3 2.86e+3 2.29e+3 1
DAOA 6.04e+7 5.01e+3 3.77e+14 1 2.18e+3 2.05e+3 4.16e+3 1
IAOA 1.53e+5 1700 1.10e+14 1 1.62e+3 1600 3.52e+3 1
ENGWO 2.11e+7 2.09e+7 5.89e+12 1 2.14e+3 2.13e+3 330.07 1
WSSA 2.85e+7 2.75e+7 2.85e+13 1 2.35e+3 2.35e+3 0.02 1
OBLAOA 106.76 1700 1.10e+13 0 1.62e+3 1600 2.35e+3 0

F
7

F
8

Avg Best Std h Avg Best Std h

AOA 1.24e+07 1.42e+6 3.72e+13 1 0.29 3.19e+3 3.03e+3 1
DAOA 1.67e+7 6.06e+6 4.70e+12 1 3.98e+3 3.68e+3 2.40e+4 1
IAOA 06.89e+5 5.8e+5 6.84e11 1 3.33e+3 3.33+e3 1.10e+4 1
ENGWO 7.42e+6 7.05e+06 7.08e+11 1 4.18e+3 4.13e+3 716.21 1
WSSA 1.74e+6 1.74e+7 3.08e-36 1 4.4e+3 4.4e+3 0.32 1
OBLAOA 3.23e+5 1.40e+5 8.19e+11 0 3.04 2.99e+3 9.45 0
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SIL =
1

N

N
∑

i=1

(

b(i) − a(i)

max {a(i), b(i)}

)

,

Table 3   Results of 20-dimensional CECE2021 test functions ( F
1
-F

8
)

F
1

F
2

Avg Best Std h Avg Best Std h

AOA 3.36e+10 3.2e-10 4.7e+17 1 5.7e+3 3.3e+3 4.9e+4 1
DAOA 3.7e+10 3.6e-10 7.6e+15 1 5.7e+3 5.4e+3 3.5e+4 1
IAOA 9.9e+7 2.2e-160 3e+18 1 109 0 3.2e+5 1
ENGWO 3.2e+10 3.2e-10 1.04e+17 1 5.8e+3 5.7e+3 1.26e+3 1
WSSA 3.7e+10 3.7e-10 1.3e-8 1 6.2e+3 6.2e+3 5.6e+22 1
OBLAOA 7.7e+7 2.6e-177 2.8e+18 0 108 0 1.25e+5 0

F
3

F
4

Avg Best Std h Avg Best Std h

AOA 1.2e+3 12e+3 3.6e+3 1 1.24e+6 1.06e+6 9.2e+11 1
DAOA 1.7e+3 1.62e+3 11 1 5.6e+6 3.6e+6 1.03e+13 1
IAOA 341 333 4e+9 1 4.5e+5 4.17e+5 4.2e+11 1
ENGWO 1.56e+3 01.56e+3 34 1 4.05e+6 4.01e+6 2.23e+11 1
WSSA 1.69e+3 1.69e+3 0 1 1.45e+7 1.45e+7 1.6e+14 1
OBLAOA 305 300 4e+3 0 4.5e+5 3.5e+5 4.5e+11 0

F
5

F
6

Avg Best Std h Avg Best Std h

AOA 8.1e+7 2.8e+4 4.5e+15 1 3.55e+3 3.35e+3 2.98e+3 1
DAOA 2.2e+8 3.17e+6 1.13e+13 1 3.83e+3 3.56e+3 1.14e+3 1
IAOA 4.9e+5 1700 1.13e+14 1 1.66e+3 1600 2.4e+4 1
ENGWO 1.26e+8 1.25e+8 2.78e+13 1 3.71e+3 3.7e+3 405 1
WSSA 1.84e+8 1.814e+8 1.08e+14 1 1.84e+8 1.81e+8 1.08e+14 1
OBLAOA 4.7e+5 1700 1.13e+14 0 1.64e+3 1600 1.45e+4 0

F
7

F
8

Avg Best Std h Avg Best Std h

AOA 6.9e+7 1.06e+7 3.49e+15 1 7.6e+3 7.32e+3 4.78e+4 1
DAOA 1.8e+8 6.12e+7 2.53e+15 1 7.65e+3 7.32e+3 4.99e+4 1
IAOA 1.53e+7 1.45e+7 8.6e+13 1 6.74e+3 6.62e+3 7.3774e+4 1
ENGWO 5.55e+7 5.46e+7 5.37e+13 1 8.19e+3 8.19e+3 1.06e+4 1
WSSA 2.12e+8 2.12e+8 1.11e+11 1 8.72e+3 8.71e+3 1.24e+03 1
OBLAOA 2.86e+6 7.6e+5 1.89e+14 0 6.6e+3 2.99e+3 5.05e+4 0
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where a(i) is the average distance between a cluster Ci and all other data points in 
the same cluster, and b(i) is the average difference between a cluster Ci and other 
clusters.

The Rand index is a way to compare the similarity of results between two differ-
ent clustering methods. The larger the value is, the clustering result that compared 
with the real situation is more consistent. The formula is as follows:

where x represents the number of the same labels in both C and K, and y represents 
the number of different labels in both C and K. C2

n
 represents the number of combi-

nations of C and K that can be made in the dataset.

RI =
x + y

C2
n

,

Table 4   Results of three engineering problems

Engineering problem A: Welded Beam Design, WBD

Avg Best Std h

AOA 101.40 2.47 2.46e+6 1
DAOA 158.78 2.3768 34.54e+6 1
IAOA 1217 2.85 1.32e+7 1
ENGWO 1922 4.38 32.85e+7 1
WSSA 335 235.41 352.12e+6 1
OBLAOA 158.78 2.37 4.54e+6 0

Engineering problem B: compression spring design, CSD

Avg Best Std h

AOA 12.33 6.44 16.22 1
DAOA 11.75 7.12 137.92 1
IAOA 9.15 9.82 129.11 1
ENGWO 28.98 16.86 120.95 1
WSSA 33.31 26.25 380.73 1
OBLAOA 12.09 4.25 129.1167 0

Engineering problem C: design problems of I-beam, IBP

Avg Best Std h

AOA 189.42 187.63 3.68 1
DAOA 190.63 187.28 10.41 1
IAOA 192.97 187 24.34 1
ENGWO 188.05 187.73 1.48 1
WSSA 188.73 186.73 5.46 1
OBLAOA 189.47 186.42 5.43 0
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NMI is used to measure the coincidence degree of two datasets and refers to the 
correlation between two sets of results. The greater the NMI, the greater the degree 
of correlation between categories. The formula is as follows:

and

where Ml represents the cluster distribution of the randomly selected object from the 
clustering result K, Mr represents the cluster distribution of the randomly selected 
object from the actual labels C.

Hl = −
N
∑

i=1

(Ml
N

∗ log2
Ml
N

)

, Hr = −
N
∑

i=1

(Mr
N

∗ log2
Mr
N

)

, Hlr

= −
N
∑

i=1

(Ml*Mr
N

∗ log2
Ml*Mr

N

)

,

NMI =

√

(

Hl + Hr −
Hlr

Hl

)

∗
(

Hl + Hr −
Hlr

Hr

)

,

Fig. 3   Comparison of different algorithms for three engineering application problems
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Fig. 4   10-dimensional F1-F8 convergence curve of CEC2021 test function
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Fig. 5   20-dimensional F1-F8 convergence curve of CEC2021 test function
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Homogeneity refers to each cluster only containing one member of the same clus-
ter. Completeness refers to all members of a cluster are in the same cluster. V-meas-
ure is average of Homogeneity and Completeness. The formula is as follows:

and

The DBI index is usually less than 1, and the lower the index, the better the perfor-
mance. SIL and RI index values are usually within 1, the closer they are to 1, the 
better the clustering performance of this method will be. The bigger Accuracy, NMI, 
homogeneity, completeness, and V-measure are the more real the clustering results 
are. Through the analysis of evaluation index, we can clearly compare the clustering 
performance of the new algorithm.

6.3 � Experiment settings

DBSCAN [44] requires two parameters to be selected during clustering. By chang-
ing the values of EPS and MinPts parameters, we can get different clustering results. 
We first set up a large range of two parameters to run. We set EPS to 0-20 and MinPts 
to 0-40 to find an appropriate clustering results and adjust the range of parameters 
manually. These ranges of parameters are shown in Table  6. By comparing the 
results, we get a more accurate range for each dataset, which is used for the fol-
lowing experiments. We take EPS to one decimal and round down MinPts. We use 
the OBLAOA-DBSCAN algorithm to optimize these two parameters in the experi-
ment. Firstly, we compare the optimization algorithms. The results of OBLAOA 

homogeneity = Hl + Hr −
Hlr

Hl
, completeness = Hl + Hr −

Hlr

Hr
,

V − measure =
2 ∗ homogeneity ∗ completeness

completeness + homogeneity
.

Table 5   Datasets used in 
experiments

Dataset Instance Dimension Cluster

Aggregation 788 3 7
Compound 399 3 6
Jain 373 3 2
Iris 150 5 3
Spiral 251 3 3
Pathbased 300 2 5
Wpbc 198 34 2
Synthesis 1980 3 5
R15 341 3 9
Vehicel 846 19 4
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are compared with the following algorithms: Arithmetic Optimization Algorithm 
(AOA), Whale Optimization Algorithm (WOA) [45], Salp Swarm Algorithm (SSA) 
[46], Weighted Salp Swarm Algorithms (WSSA) [47], Exponential Neighborhood 
Grey Wolf Optimization (ENGWO) [48], developed Arithmetic Optimization Algo-
rithm (dAOA) [49] and improved arithmetic optimization algorithm (IAOA) [50]. 
Secondly, we compare our OBLAOA-DBSCAN algorithm with five classical clus-
tering algorithms, namely K-means [51], Spectral [52], OPTICS [53], clustering by 
fast search and find of density peaks (DPC) [54] and the original DBSCAN.

To compare the gap conveniently and clearly among the algorithms, we set the 
parameters in the test as follows. The maximum number of iterations and population 
size of all algorithms are set to 100 and 20. In addition, we run each algorithm 20 
times, and take the average result to eliminate the error in the experiment. The 
experimental algorithm run by MATLAB 2017b.

6.4 � Experimental results of the optimization algorithm

In this part, we compared our improved optimization algorithm OBL-AOA with 
other seven meta-heuristic optimization algorithms. We take Euclidean distance as 
the fitness function and get the convergence curve of fitness function. In Tables 7, 8, 
9 and 10, we show the error indexes of different algorithms and make better indexes 
in bold. In Fig. 6, we show the convergence curves of six datasets, and the conver-
gence curves of other datasets are in Fig. 9 in Appendix.

The experiment shows that our OBLAOA algorithm is better than the original 
AOA algorithm, and it is the best among the eight optimization algorithms when 
we apply it into DBSCAN algorithm. We use the convergence curve and the error 
index to introduce them. Our optimization algorithm has better fitness function and 
the convergence rate, it can be seen through the convergence curve in Fig.  6. In 
all the datasets, the fitness function of our OBLAOA algorithm are better than the 
original AOA algorithm and other optimization algorithms. Fig.  6 shows that the 

Table 6   The range of 
parameters for the investigated 
datasets

Dataset EPS MinPts

Aggregation [1.0,3.0] [2,25]
Compound [1.2,2.8] [2,15]
Jain [2.4,3.3] [4,16]
Iris [0.5,1.8] [0,30]
Spiral [1.1,4.0] [0,10]
Pathbased [1.6,2.1] [2,6]
Wpbc [0.5,1.2] [2,12]
Synthesis [0.5,6.6] [2,10]
R15 [0.5,1.2] [0,20]
Vehicel [0.3,1.1] [3,12]
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convergence accuracy and rate of the OBLAOA are better than those of the AOA. In 
the datasets Aggregation, Jain, and Synthesis, as the function gradually converges, 
all algorithms converge more slowly and sometimes AOA falls into local optimal 
solution. However, because the OBL algorithm has strong local search capability, 
OBLAOA can still update the optimal solution.

Our OBLAOA algorithm performs better than the other optimization algo-
rithms according to the results of error index in Tables  7, 8, 9 and 10. In the 
datasets Compound, Jain, Iris, Wpbc, Synthesis and Vehicle, we can clearly see 
that our OBLAOA-DBSCAN algorithm is better in accuracy. Its DBI index is 
smaller than the others, and its SIL, RI, NMI, homogeneity, completeness, and 
V-measure index are larger than the others. Their accuracy is the best of the eight 
algorithms, the accuracy of Compound is 0.8538, the accuracy of Jain is 0.7151, 
the accuracy of Iris is 1, the accuracy of Wpbc is 0.9346, the accuracy of Synthe-
sis is 0.9998, the accuracy of Vehicle is 0.9656. Although some of the indexes 
are the same, our OBLAOA algorithm is better in general. In the four datasets 
Aggregation, Spiral, Pathbased and R15, the accuracy and the evaluation index of 
the different algorithms are similar. However, it can be concluded that, in general, 
the OBLAOA algorithm has a better effect on the analysis of clustering problems 
than the original AOA algorithm and other six meta-heuristic algorithms. There-
fore, the OBLAOA-DBSCAN algorithm has a good influence on the clustering of 
datasets.

6.5 � Experimental results of clustering algorithm

Specific clustering results of these datasets are recorded in Figs. 7 and 8, where we 
show the results by using K-means algorithm, Spectral algorithm, Optics algorithm, 
DPC algorithm, DBSCAN algorithm and the best clustering optimization algorithm 
(OBLAOA-DBSCAN). Each colour in the figure represents a cluster of data. By 
comparing the graphs of each cluster, we can make a basic judgment about the effect 
of clustering as follows. We can find that OBLAOA-DBSCAN algorithm has a bet-
ter clustering result in Figs. 7 and 8. It can cluster the data into a better shape and 
find the actual number of clusters. The graphs of datasets without illustrations are in 
the in Fig. 10 in Appendix. In Tables 11 and 12, we show the error indexes of dif-
ferent Clustering algorithms and make better indexes in bold. The data with * in the 
table represents the data in articles [55] and [56].

In Fig. 7, compared with K-means, the effect of dataset Aggregation shows that 
our algorithm has more reliable clusters. Each cluster in the figure is clearly dis-
tinguished, while some clusters in K-means are not clearly distinguished. In Fig. 8, 
compared with Spectral, the effect of dataset Synthesis shows that our algorithm 
clusters more accurately on the left side of the graph. The cluster effect for a whole 
block of data is better than Spectral algorithm. From the graphs of Jain, Spiral and 
Pathbased in Figs.  7 and 8, the OBLAOA-DBSCAN algorithm is more accurate 
than K-means and Spectral for the for circular datasets.
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Fig. 6   Convergence curves with DBSCAN optimized by different meta-heuristic algorithms I
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Table 7   The evaluation indexes of datasets in DBSCAN optimized by different meta-heuristic algorithms 
I

Dataset Algorithm Evaluation index

Accuracy DBI RI SIL

Aggregation WOA-DBSCAN 0.9949 0.3651 1 0.6813
SSA-DBSCAN 0.9949 0.3651 1 0.6813
WSSA-DBSCAN 0.9949 0.3651 1 0.6813
ENGWO-DBSCAN 0.9949 0.3651 1 0.6813
AOA-DBSCAN 0.9949 0.3651 1 0.6813
dAOA-DBSCAN 0.9949 0.3651 1 0.6813
IAOA-DBSCAN 0.9949 0.3651 1 0.6813
OBLAOA-DBSCAN 0.9949 0.3651 1 0.6813

Compound WOA-DBSCAN 0.7443 0.4221 0.8916 0.6488
SSA-DBSCAN 0.7757 0.4334 0.9083 0.5890
WSSA-DBSCAN 0.7453 0.4218 0.8922 0.6411
ENGWO-DBSCAN 0.8321 1.0888 0.9324 0.1298
AOA-DBSCAN 0.7966 1.0815 0.9171 0.1041
dAOA-DBSCAN 0.8375 1.0888 0.9347 0.1341
IAOA-DBSCAN 0.7966 1.0815 0.9171 0.1041
OBLAOA-DBSCAN 0.8538 1.0941 0.9415 0.1488

Jain WOA-DBSCAN 0.6728 0.4920 0.8517 0.4272
SSA-DBSCAN 0.6518 0.4828 0.8427 0.4047
WSSA-DBSCAN 0.6518 0.4828 0.8427 0.4047
ENGWO-DBSCAN 0.6728 0.4920 0.8517 0.4272
AOA-DBSCAN 0.6834 0.4999 0.8562 0.4355
dAOA-DBSCAN 0.6834 0.4999 0.8562 0.4355
IAOA-DBSCAN 0.7151 0.5037 0.8700 0.4064
OBLAOA-DBSCAN 0.7151 0.5037 0.8700 0.4064

Iris WOA-DBSCAN 0.9800 0.3773 0.9911 0.6642
SSA-DBSCAN 0.9400 0.3760 0.9740 0.7148
WSSA-DBSCAN 0.9600 0.3765 0.9825 0.7272
ENGWO-DBSCAN 1 0.3654 1 0.7478
AOA-DBSCAN 0.9400 0.3760 0.9740 0.7148
dAOA-DBSCAN 0.9400 0.3760 0.9740 0.7148
IAOA-DBSCAN 0.9600 0.3765 0.9825 0.7272
OBLAOA-DBSCAN 1 0.3654 1 0.7478

Spiral WOA-DBSCAN 1 2.2296 1 –0.1081
SSA-DBSCAN 1 2.2296 1 –0.1081
WSSA-DBSCAN 1 2.2296 1 –0.1081
ENGWO-DBSCAN 1 2.2296 1 –0.1081
AOA-DBSCAN 1 2.2296 1 –0.1081
dAOA-DBSCAN 1 2.2296 1 –0.1081
IAOA-DBSCAN 1 2.2296 1 –0.1081
OBLAOA-DBSCAN 1 2.2296 1 –0.1081
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Table 8   The evaluation indexes of datasets in DBSCAN optimized by different meta-heuristic algorithms 
II

Dataset Algorithm Evaluation index

Accuracy DBI RI SIL

WOA-DBSCAN 0.8100 0.9482 0.8129 0.4349
SSA-DBSCAN 0.8100 0.9482 0.8129 0.4349
WSSA-DBSCAN 0.8100 0.9482 0.8129 0.4349

Pathbased ENGWO-DBSCAN 0.8100 0.9482 0.8129 0.4349
AOA-DBSCAN 0.8233 0.9482 0.8158 0.4515
dAOA-DBSCAN 0.8233 0.9482 0.8158 0.4515
IAOA-DBSCAN 0.8233 0.9482 0.8158 0.4515
OBLAOA-DBSCAN 0.8233 0.9482 0.8158 0.4515
WOA-DBSCAN 0.1314 0.3792 0.6699 0.0751
SSA-DBSCAN 0.2595 0.4859 0.7075 0.1425
WSSA-DBSCAN 0.2595 0.4859 0.7075 0.1425

Wpbc ENGWO-DBSCAN 0.8913 0.7829 0.9505 0.3282
AOA-DBSCAN 0.8270 0.7552 0.9221 0.2937
dAOA-DBSCAN 0.8270 0.7552 0.9221 0.2937
IAOA-DBSCAN 0.8913 0.7829 0.9505 0.3282
OBLAOA-DBSCAN 0.9346 0.8023 0.9700 0.3447
WOA-DBSCAN 0.9884 0.1926 0.9956 0.8542
SSA-DBSCAN 0.9860 0.2152 0.9930 0.8606
WSSA-DBSCAN 0.9884 0.1926 0.9956 0.8542

Synthesis ENGWO-DBSCAN 0.9970 0.1791 0.9985 0.8534
AOA-DBSCAN 0.9970 0.1791 0.9985 0.8534
dAOA-DBSCAN 0.9970 0.1791 0.9985 0.8534
IAOA-DBSCAN 0.9860 0.2152 0.9930 0.8606
OBLAOA-DBSCAN 0.9998 0.1787 0.9999 0.8517
WOA-DBSCAN 1 0.3044 1 0.8966
SSA-DBSCAN 0.9971 0.3047 0.9986 0.8946
WSSA-DBSCAN 1 0.3044 1 0.8966

R15 ENGWO-DBSCAN 1 0.3044 1 0.8966
AOA-DBSCAN 1 0.3044 1 0.8966
dAOA-DBSCAN 1 0.3044 1 0.8966
IAOA-DBSCAN 1 0.3044 1 0.8966
OBLAOA-DBSCAN 1 0.3044 1 0.8966
WOA-DBSCAN 0.4823 1.5198 0.9605 0.1637
SSA-DBSCAN 0.9561 1.5527 0.9835 0.1772
WSSA-DBSCAN 0.9561 1.5527 0.9835 0.1772

Vehicle ENGWO-DBSCAN 0.9624 1.5534 0.9859 0.1790
AOA-DBSCAN 0.9561 1.5527 0.9835 0.1772
dAOA-DBSCAN 0.9248 1.5301 0.9718 0.1701
IAOA-DBSCAN 0.9624 1.5534 0.9859 0.1790
OBLAOA-DBSCAN 0.9656 1.5541 0.9871 0.1808
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In Fig.  8, we can see from the graphs of datasets Pathbased and R15 that our 
algorithm clusters more accurately than Optics when dealing with dense data. When 
dealing with discrete data points, the Optics algorithm marks them as noise points. 
Our algorithm is more accurate when dealing with these points. We can draw this 
conclusion from the picture of dataset Synthesis. Through the datasets Aggregation 
and Jain in Fig. 7, it can be obtained that DPC algorithm marks the boundary points 
as noise points when dealing with data. Therefore, we can find that OBLAOA-
DBSCAN algorithm has a better clustering effect than Optics and DPC on circular 
datasets by comparing cluster graphs. In addition, OBLAOA-DBSCAN correctly 
identifies sets of data points in areas of lower local density, and edge data points. In 
contrast, the original DBSCAN failed to accurately cluster these points.

We can find the Accuracy, RI, Sil, NMI, homogeneity, completeness, and 
V-measure index of OBLAOA-DBSCAN algorithm are significantly higher than 
those of K-means, Spectral, Optics, DPC and DBSCAN algorithm, the DBI index 
of the OBLAOA-DBSCAN algorithm is lower than that of K-means and Spectral 
algorithm from Tables 11 and 12. Therefore, the accuracy of improved OBLAOA-
DBSCAN algorithm is better than the original DBSCAN in the dataset clustering.

Compared with the indexes of other articles in Table 11, our algorithm has better 
NMI indexes than K-means and original DBSCAN algorithms. On dataset Compound, 
OBLAOA-DBSCAN’s NMI index is 48.74% higher than K-means’s and 1.04% higher 
than DBSCAN’s. On dataset Iris, OBLAOA-DBSCAN’s NMI index is 13.25% higher 
than K-means’ and 56.25% higher than DBSCAN’s. Compared with the indexes of 
other articles in Table  12, our algorithm has better NMI indexes than K-means and 
DPC algorithms. On dataset Aggregation, OBLAOA-DBSCAN’s NMI index is 17.52% 
higher than K-means’s and 2.08% higher than DPC’s. On dataset Jain, OBLAOA-
DBSCAN’s NMI index is 72.16% higher than K-means’s and 2.74% higher than 
DPC’s. On dataset Pathbased, OBLAOA-DBSCAN’s NMI index is 28.99% higher than 
K-means’s and 16.22% higher than DPC’s. On dataset R15, OBLAOA-DBSCAN’s 
NMI index is 0.58% higher than K-means’s and 0.67% higher than DPC’s.

In Table 11, we can find the index DBI and RI of dataset Spiral and Pathbased are 
not best, but their accuracy is better than those compared with real labels. According 
to figure, we can draw a conclusion that for circular datasets like Figs. 7 and 8, our 
DBSCAN algorithm can determine the shape of clustering more accurately and get 
better results. In Table 11, we can see that the SIL index has a negative set of values 
on circular dataset Spiral, but the clustering shapes are more consistent with the real 
labels. Through the above comparative analysis, we can find that OBLAOA-DBSCAN 
algorithm not only optimizes better than other optimization algorithms, but also per-
forms better in clustering analysis compared with some classical clustering algorithms. 
In general, we can conclude that OBLAOA-DBSCAN algorithm has a very good effect 
on the clustering of datasets.
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Table 9   The evaluation indexes of datasets in DBSCAN optimized by different meta-heuristic algorithms 
III

Dataset Algorithm Evaluation index

NMI Homogeneity Completeness Vmeasure

Aggregation WOA-DBSCAN 1 1 1 1
SSA-DBSCAN 1 1 1 1
WSSA-DBSCAN 1 1 1 1
ENGWO-DBSCAN 1 1 1 1
AOA-DBSCAN 1 1 1 1
dAOA-DBSCAN 1 1 1 1
IAOA-DBSCAN 1 1 1 1
OBLAOA-DBSCAN 1 1 1 1

Compound WOA-DBSCAN 0.8073 0.9531 0.6838 0.7963
SSA-DBSCAN 0.8021 0.8928 0.7207 0.7976
WSSA-DBSCAN 0.8061 0.9478 0.6856 0.7956
ENGWO-DBSCAN 0.8736 0.9434 0.8089 0.8710
AOA-DBSCAN 0.8364 0.9118 0.7672 0.8333
dAOA-DBSCAN 0.8796 0.9488 0.8154 0.8770
IAOA-DBSCAN 0.8364 0.9118 0.7672 0.8333
OBLAOA-DBSCAN 0.9049 0.9729 0.8417 0.9026

Jain WOA-DBSCAN 0.5987 0.6584 0.5409 0.5939
SSA-DBSCAN 0.5781 0.6435 0.5194 0.5748
WSSA-DBSCAN 0.5781 0.6435 0.5194 0.5748
ENGWO-DBSCAN 0.5987 0.6584 0.5409 0.5939
AOA-DBSCAN 0.6062 0.6660 0.5518 0.6035
dAOA-DBSCAN 0.6062 0.6660 0.5518 0.6035
IAOA-DBSCAN 0.6353 0.6894 0.5855 0.6332
OBLAOA-DBSCAN 0.6353 0.6894 0.5855 0.6332

Iris WOA-DBSCAN 0.9702 0.9703 0.9701 0.9702
SSA-DBSCAN 0.9306 0.9311 0.9300 0.9306
WSSA-DBSCAN 0.9488 0.9490 0.9486 0.9488
ENGWO-DBSCAN 1 1 1 1
AOA-DBSCAN 0.9306 0.9311 0.9300 0.9306
dAOA-DBSCAN 0.9306 0.9311 0.9300 0.9306
IAOA-DBSCAN 0.9488 0.9490 0.9486 0.9488
OBLAOA-DBSCAN 1 1 1 1

Spiral WOA-DBSCAN 1 1 1 1
SSA-DBSCAN 1 1 1 1
WSSA-DBSCAN 1 1 1 1
ENGWO-DBSCAN 1 1 1 1
AOA-DBSCAN 1 1 1 1
dAOA-DBSCAN 1 1 1 1
IAOA-DBSCAN 1 1 1 1
OBLAOA-DBSCAN 1 1 1 1
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Table 10   The evaluation indexes of datasets in DBSCAN optimized by different meta-heuristic algo-
rithms IV

Dataset Algorithm Evaluation index

NMI Homogeneity Completeness SIL

Pathbased WOA-DBSCAN 0.6907 0.7114 0.6706 0.6904
SSA-DBSCAN 0.6907 0.7114 0.6706 0.6904
WSSA-DBSCAN 0.6907 0.7114 0.6706 0.6904
ENGWO-DBSCAN 0.6907 0.7114 0.6706 0.6904
AOA-DBSCAN 0.7012 0.7226 0.6804 0.7009
dAOA-DBSCAN 0.7012 0.7226 0.6804 0.7009
IAOA-DBSCAN 0.7012 0.7226 0.6804 0.7009
OBLAOA-DBSCAN 0.7012 0.7226 0.6804 0.7009

Wpbc WOA-DBSCAN 0.1655 0.3324 0.0824 0.1320
SSA-DBSCAN 0.2649 0.4102 0.1711 0.2415
WSSA-DBSCAN 0.2649 0.4102 0.1711 0.2415
ENGWO-DBSCAN 0.8199 0.8443 0.7961 0.8195
AOA-DBSCAN 0.7438 0.7817 0.7078 0.7429
dAOA-DBSCAN 0.7438 0.7817 0.7078 0.7429
IAOA-DBSCAN 0.8199 0.8443 0.7961 0.8195
OBLAOA-DBSCAN 0.8786 0.8936 0.8637 0.8784

Synthesis WOA-DBSCAN 0.9674 0.9820 0.9530 0.9673
SSA-DBSCAN 0.9505 0.9809 0.9386 0.9593
WSSA-DBSCAN 0.9674 0.9820 0.9530 0.9673
ENGWO-DBSCAN 0.9836 0.9914 0.9758 0.9835
AOA-DBSCAN 0.9836 0.9914 0.9758 0.9835
dAOA-DBSCAN 0.9836 0.9914 0.9758 0.9835
IAOA-DBSCAN 0.9505 0.9809 0.9386 0.9593
OBLAOA-DBSCAN 0.9934 0.9980 0.9888 0.9934

R15 WOA-DBSCAN 1 1 1 1
SSA-DBSCAN 0.9937 0.9937 0.9937 0.9937
WSSA-DBSCAN 1 1 1 1
ENGWO-DBSCAN 1 1 1 1
AOA-DBSCAN 1 1 1 1
dAOA-DBSCAN 1 1 1 1
IAOA-DBSCAN 1 1 1 1
OBLAOA-DBSCAN 1 1 1 1

Vehicle WOA-DBSCAN 0.8938 0.8953 0.8924 0.8938
SSA-DBSCAN 0.9436 0.9439 0.9432 0.9436
WSSA-DBSCAN 0.9436 0.9439 0.9432 0.9436
ENGWO-DBSCAN 0.9500 0.9503 0.9497 0.9500
AOA-DBSCAN 0.9436 9439 0.9432 0.9436
dAOA-DBSCAN 0.9161 0.9169 0.9154 0.9161
IAOA-DBSCAN 0.9500 0.9503 0.9497 0.9500
OBLAOA-DBSCAN 0.9535 0.9538 0.9533 0.9585
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Table 11   The evaluation indexes of datasets in different clustering algorithms I

Dataset Algorithm Evaluation index

Accuracy DBI RI SIL

Aggregation K-means 0.9226 0.8668 0.5323 0.6729
Spectral 0.9727 0.9870 0.3853 0.6808
Optics 0.5533 0.8301 0.9274 0.4362
DPC 0.6586 0.3738 0.9055 0.3023
DBSCAN 0.9898 0.3657 0.9993 0.5877
OBLAOA-DBSCAN 0.9949 0.3651 1 0.6813

Compound K-means 0.5740* 0.6115 0.8234 0.5329
Spectral 0.5789 0.5692 0.8462 0.606
Optics 0.4286 0.9662 0.9302 0.0496
DPC 0.2130 0.4052 0.8444 0.3998
DBSCAN 0.8450* 1.0888 0.9347 0.1341
OBLAOA-DBSCAN 0.8538 1.0941 0.9415 0.1488

Jain K-means 0.7748 0.3923 0.6501 0.6722
Spectral 0.7105 0.3879 0.5875 0.6466
Optics 0.1930 0.5667 0.6876 0.3049
DPC 0.6793 2.1268 0.5624 0.0688
DBSCAN 0.6834 0.4999 0.8562 0.4355
OBLAOA-DBSCAN 0.7151 0.5037 0.8700 0.4064

Iris K-means 0.8830* 0.3960 0.8997 0.7242
Spectral 0.9933 0.3824 0.9910 0.7540
Optics 0.6600 0.6453 0.7719 0.6943
DPC 0.9067 0.3902 0.8923 0.7023
DBSCAN 0.6400* 0.3654 1 0.7478
OBLAOA-DBSCAN 1 0.3654 1 0.7478

Spiral K-means 0.3720 0.6149 0.5156 0.5492
Spectral 0.2815 0.5707 0.5339 0.5415
Optics 0.9760 2.1960 0.9888 –0.0206
DPC 1 2.2296 1 –0.1081
DBSCAN 1 2.2296 1 –0.1081
OBLAOA-DBSCAN 1 2.2296 1 –0.1081

Pathbased K-means 0.7500 0.4437 0.7319 0.7482
Spectral 0.7500 0.4437 0.7319 0.7482
Optics 0.6167 1.3392 0.7499 0.2123
DPC 0.6467 0.8539 0.6769 0.4039
DBSCAN 0.8100 0.9482 0.8129 0.4349
OBLAOA-DBSCAN 0.8233 0.9482 0.8158 0.4515
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Table 11   (continued)

Dataset Algorithm Evaluation index

Accuracy DBI RI SIL

Wpbc K-means 0.6010 1 0.5180 0.2872

Spectral 0.6041 1.4287 0.5201 0.0796

Optics 0.7020 1.6713 0.5795 0.3222

DPC 0.6670 0.2529 0.6308 0.5213

DBSCAN 0.8270 0.7552 0.9221 0.2937

OBLAOA-DBSCAN 0.9346 0.8023 0.9700 0.3447
Synthesis K-means 0.6074 0.5452 0.7573 0.6496

Spectral 0.8025 0.2735 0.9018 0.7964
Optics 0.9788 0.3227 0.9989 0.8517
DPC 0.9829 0.3680 0.9965 0.7789
DBSCAN 0.9884 0.1926 0.9956 0.8542
OBLAOA-DBSCAN 0.9998 0.1787 0.9999 0.8517

R15 K-means 0.8106 0.4353 0.9598 0.6844
Spectral 0.8409 0.3953 0.9659 0.7473
Optics 0.1202 1.0480 0.2310 0.5570
DPC 0.9941 0.3500 0.9973 0.8398
DBSCAN 1 0.3044 1 0.8966
OBLAOA-DBSCAN 1 0.3044 1 0.8966

Vehicle K-means 0.2920 1.4350 0.6530 0.3075
Spectral 0.3014 0.7864 0.6903 0.3264
Optics 0.2577 0.9972 0.2625 0.2327
DPC 0.3262 0.8936 0.5118 0.0943
DBSCAN 0.9309 1.5369 0.9741 0.1717
OBLAOA-DBSCAN 0.9656 1.7856 0.9871 0.1808
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Table 12   The evaluation indexes of datasets in different clustering algorithms II

Dataset Algorithms Evaluation Index

NMI Homogeneity Completeness Vmeasure

Aggregation K-means 0.8509* 0.7911 0.8722 0.8297
Spectral 0.9927 0.9912 0.9942 0.9927
Optics 0.8833 0.9766 0.7990 0.8789
DPC 0.9769* 0.8221 0.7950 0.8083
DBSCAN 0.9960 0.9954 0.9966 0.9960
OBLAOA-DBSCAN 1 1 1 1

Compound K-means 0.6604 0.6351 0.6867 0.6599
Spectral 0.7236 0.6890 0.7600 0.7228
Optics 0.8317 0.9104 0.7598 0.8283
DPC 0.7597 0.7639 0.7559 0.7597
DBSCAN 0.8796 0.9488 0.8154 0.8770
OBLAOA-DBSCAN 0.9049 0.9729 0.8417 0.9026

Jain K-means 0.3690* 0.3375 0.4070 0.3690
Spectral 0.3072 0.2804 0.3367 0.3060
Optics 0.2216 0.3209 0.1530 0.2072
DPC 0.6183* 0.1048 0.1264 0.1146
DBSCAN 0.6062 0.6660 0.5518 0.6035
OBLAOA-DBSCAN 0.6353 0.6894 0.5855 0.6332

Iris K-means 7.7766* 0.7650 0.7515 0.7582
Spectral 0.9702 0.9703 0.9701 0.9702
Optics 0.7220 0.9063 0.5752 0.7037
DPC 0.8350* 0.7960 0.8156 0.8057
DBSCAN 1 1.0000 1 1
OBLAOA-DBSCAN 1 1.0000 1 1

Spiral K-means 0.0636 0.0619 0.0654 0.0636
Spectral 0.0586 0.0579 0.0594 0.0586
Optics 0.9582 0.9597 0.9567 0.9582
DPC 1 1 1 1
DBSCAN 1 1 1 1
OBLAOA-DBSCAN 1 1 1 1

Pathbased K-means 0.5463* 0.5846 0.5140 0.5470
Spectral 0.5482 0.5846 0.5140 0.5470
Optics 0.6398 0.7799 0.5248 0.6274
DPC 0.5390* 0.4845 0.3597 0.4129
DBSCAN 0.6907 0.7114 0.6706 0.6904
OBLAOA-DBSCAN 0.7012 0.7226 0.6804 0.7009
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Table 12   (continued)

Dataset Algorithms Evaluation Index

NMI Homogeneity Completeness Vmeasure

Wpbc K-means 0.0270 0.0241 0.0302 0.0268

Spectral 0.4389 0.5421 0.3553 0.4293

Optics 0.0089 0.0124 0.0064 0.0084

DPC 0.0104 0.0432 0.0025 0.0047

DBSCAN 0.7438 0.7817 0.7078 0.7429

OBLAOA-DBSCAN 0.8786 0.8936 0.8637 0.8784
Synthesis K-means 0.6313 0.8546 0.4734 0.6309

Spectral 0.8209 0.7201 0.9346 0.8140
Optics 0.9826 0.9801 0.9852 0.9826
DPC 0.9726 0.9619 0.9835 0.9726
DBSCAN 0.9674 0.9820 0.9530 0.9673
OBLAOA-DBSCAN 0.9934 0.9980 0.9888 0.9934

R15 K-means 0.9942* 0.8839 0.9182 0.9007
Spectral 0.9441 0.9225 0.9630 0.9439
Optics 0.2991 0.1244 0.7190 0.2122
DPC 0.9933* 0.9874 0.9874 0.9874
DBSCAN 1 1 1 1
OBLAOA-DBSCAN 1 1 1 1

Vehicle K-means 0.0999 0.0997 1 0.0999
Spectral 0.3927 0.3489 0.4420 0.3900
Optics 0.0351 0.0078 0.1585 0.0148
DPC 0.1106 0.0770 0.1587 0.1037
DBSCAN 0.9208 0.9215 0.9202 0.9208
OBLAOA-DBSCAN 0.9535 0.9538 0.9533 0.9585

7 � Conclusion

In this paper, we have proposed a new clustering algorithm named OBLAOA-
DBSCAN. In this algorithm, we introduce OBL into AOA algorithm and develop 
an OBLAOA optimizer to improve the global search ability and convergence 
accuracy of standard AOA algorithm. Then, we use the improved OBLAOA algo-
rithm to adjust the EPS and MinPts parameters of DBSCAN in order to improve 
the clustering effect of DBSCAN and propose a hybrid clustering algorithm 
(OBLAOA-DBSCAN). In our numerical simulation, we have demonstrated that 
the improved OBLAOA is more effective than the original AOA and other current 
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popular algorithms. In addition, we also have validated the effectiveness of our 
proposed OBLAOA-DBSCAN algorithm by many clustering projects and found 
that the proposed clustering algorithm can achieve an accurate and reliable clus-
tering results with less computational costs.

Fig. 7   The results with different clustering algorithms I
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Although OBLAOA-DBSCAN can achieve significant improvement, there are 
still some insufficient, such as the selection of the best parameters of the opti-
mization algorithm, the global search ability and clustering effect of the opti-
mization algorithm need to be further improved. In the future, we will apply 

Fig. 8   The results with different clustering algorithms II
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Fig. 9   Convergence curves with DBSCAN optimized by different meta-heuristic algorithms II

OBLAOA-DBSCAN to clustering problems on more datasets. In addition, 
OBLAOA can also be applied to other application problems like clustering 
model, such as image classification and recognition, speech signal classification, 
electrical information classification and so on, which needs further research by 
other researchers.

Appendix A The additional results for our experiments

See Figs. 9 and 10. 
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Fig. 10   The results with different clustering algorithms III
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