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Abstract
E-commerce platforms usually train their recommender system models to achieve 
personalized recommendations based on user behavior data. User behavior can be 
categorized into implicit and explicit feedback. Explicit feedback data have been 
well studied. However, the implicit feedback data still have many issues, such as the 
multiple types of behavior data, lack of negative feedback, and lack of the ability to 
express the real user preference. Targeting these problems of implicit feedback, we 
propose a TDF-WNSP-WLFM (time decay factor-weight of negative sample pos-
sibility-weighted latent factor model) based on the latent factor model for product 
recommendation. Our method mainly focuses on reconstructing the implicit rating 
matrix to enable the algorithm to perform better. The TDF-WNSP-WLFM algorithm 
is tested on two public user behavior datasets from Taobao and REES46, two big 
e-commerce platforms. Our algorithm compares favorably with other known col-
laborative filtering methods.
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1 Introduction

Recommender systems have become indispensable in our life recently since the 
overload problem online occurred [1]. It is efficient to check the recommendation 
list when shopping on Amazon or Taobao. During the COVID-19 pandemic, many 
people tend to purchase products online so that they can stay at home to avoid the 
risk of exposure to the virus [2]. Unlike the searching engine requiring users to type 
keywords to retrieve needed content from the databases, the recommender system 
shows more convenience via automatically generating a recommendation list for 
each customer based on their user profile [3].

The collaborative filtering (CF) algorithm is widely applied in the recommenda-
tion area, which usually depends on users’ historical ratings or behavior (e.g., pur-
chase or view). The main advantage of CF is that it does not rely on the specific 
information of the item, compared to a content-based algorithm which is, on the 
other hand, totally found on the similarity of different items’ content. As a result, 
it would be a problem when the exact information of products is wrongly input by 
merchants.

User behavior big data usually plays a crucial role in product recommendation. 
Sufficient behavior data can be exploited to train the recommender system model. 
Different user behavior can be classified into two categories which are implicit and 
explicit feedback [4]. Explicit feedback is the ratings, and reviews that users should 
fill in intentionally, while implicit feedback is users’ unintentional behaviors, e.g., 
views and purchases. Implicit feedback is easily collected, and the amount is much 
more than explicit feedback.

Since Koren et al. proposed the latent factor model (LFM) [5] for implicit feed-
back, matrix factorization algorithms have become a popular collaborative filtering 
algorithm for dealing with this type of data and have been applied in real indus-
trial applications. In 2009, Rendle et  al. proposed Bayesian Personalized Ranking 
(BPR) [6] centering on implicit feedback. The key idea of BPR is to implement the 
maximum a posteriori probability (MAP) estimation rule to ensure that observed 
items should be ranked higher than unobserved items. BPR optimization is a general 
method that is not limited to matrix factorization models but all machine learning 
algorithms. The experiments in the paper demonstrate its superiority over traditional 
matrix factorization algorithms on a dataset of user behavior of music recommen-
dations. In 2014, Christopher et al. proposed a logistic matrix factorization (logis-
tic FM) [7] method to cope with performing recommendations based on implicit 
feedback datasets, which is a probabilistic model based on the matrix factorization 
method. Zhao J et al. proposed MFMAP (maximize MAP with matrix factorization), 
a matrix factorization method focusing on Maximizing MAP [8]. He et al. proposed 
the state-of-the-art structure of matrix factorization in the format of the neural net-
work [9]. Armielle Noulapeu Ngaffo and Zièd Choukair combined the matrix fac-
torization techniques and neural networks with a twofold regularization to achieve 
decent prediction accuracy and recommendation quality [10].

The latent factor model’s framework does not have a standard approach for pro-
cessing the time dimension. Several studies are focusing on this issue. In 2005, Li 
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et  al. proposed the use of an exponential time function for attenuation of explicit 
rating data [11], and in 2009 Koren proposed adding a bias term to the latent factor 
model [12]. This scholar argued that the user’s latent factor is time-aware. In 2010, 
Xiong et al. proposed a Bayesian probability tensor decomposition model [13]. The 
two-dimensional rating matrix is transformed into three dimensions (user vector, 
item vector, and time vector). Chen et al. designed a dynamic decay collaborative 
filtering (DDCF) algorithm for CF recommendation, which emphasizes variation of 
preference of users [14]. In 2021, Yu et al. added personal preference fluctuations to 
the collaborative filtering structure [15]. Human preference is modeled mathemati-
cally. Recently, the dynamic changing strategy has been applied to deep neural net-
works. Wang et al. proposed a time-aware attention-based CF framework. [16].

The implicit feedback data are inherently lacking negative feedback data. Pan 
et al. proposed to treat all unobserved data as negative feedback data [17] to address 
this issue. This solution has the disadvantage of being computationally intensive and 
may mislead the optimization of the model [18]. Another, more common approach 
is to ignore unobserved data. This approach is also one of the most common 
approaches. Scholars such as Pan proposed a negative weighting approach based on 
sampling and weighting to neutralize the extremity [4]. In 2021, Lee et al. adopted 
two distinct encoder networks to avoid the negative samples problem [19]. To tackle 
the negative samples generation problem, Chen et. proposed UIWMF (user-activity 
and item-popularity weighted matrix factorization) to construct negative feedback 
based on the item popularity and user activity [20]. Researchers usually focus on one 
type of implicit feedback. However, there are multiple types of interactions between 
users and items. Taking different types of behavior (e.g., view, add-to-cart, favor) 
into consideration will enable e-commerce platforms or merchants to emphasize the 
growth rate of users’ specific behavior. For example, when double eleven comes, 
Chinese e-commerce platforms will regularly desire that the rate of their users’ add-
to-cart behavior goes up so that they could guarantee the total sale amount on dou-
ble eleven to some extent.

We present a collaborative filtering algorithm, TDF-WNSP-WLFM (time decay 
factor-weight of negative sample possibility-weighted latent factor model), which is 
time-aware and takes unobserved behavior and different types of implicit feedback 
into account. Here are the main contributions of this work. First, we make full use 
of various types of implicit feedback and set the weight of each kind of implicit 
feedback behavior for different business personalization. Second, time variables are 
taken into account dynamically. We propose a time decay factor for implicit feed-
back ratings and apply it to the framework of the latent factor model. Third, we 
introduce a negative sample construction for unobserved data to solve the lack of 
negative feedback in the traditional latent factor model for implicit feedback. Fourth, 
this algorithm is not based on deep neural networks but on the basic matrix fac-
torization method, which means that the computing complexity of this method is 
relatively low, and our algorithm is easily implemented. Last but not least, this algo-
rithm is tested on two real datasets from the industry in China and abroad. Conclu-
sions are drawn from the two different datasets, which is more rigorous than training 
only one dataset.
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2  Proposed method: TDF‑WNSP‑WLFM

Our algorithm mainly focuses on the rating construction in the implicit feedback 
matrix to refine the recommendation model’s plausibility and performance. Due to 
the awareness of time in this algorithm, the algorithm is dynamic and changeable. 
Only positive samples in the implicit feedback recommendations are solved by gen-
erating negative samples from unobserved data.

2.1  Notations

Table 1 includes important notations used in our study.

2.2  Latent factor model for implicit feedback

Koren et al. proposed a latent factor model for implicit feedback [5]. To differenti-
ate from explicit feedback, the preference of user u for item i is defined as pui . It is a 
binary variable, i.e., it takes only two values, zero or one. This value is determined 
by the implicit feedback rating rui . The pui can be denoted by binarizing the rui val-
ues [5],

(1)pui =

{

1 rui > 0

0 rui = 0

Table 1  Important notations

Notation Meaning

u User
i Item
rui Rating of item i by user u
pui Preference of item i by user u
U The set of all users
I The set of all items
BTui The set of all behavior types from user u to item i
Bui The set of all behaviors of user u on item i
bfuik Number of the k-th behavior of user u on item i
wrui User u’s weighted implicit rating on item i
wi Weight of the i-th type of implicit feedback
bui The behavior of user u on item i
tbui The time when user u’s behavior on item i occurs
tn The time to make recommendations
tdf-wrui Positive ratings in the rating matrix of the final algorithm
wnsp-wrui Negative ratings in the rating matrix of the final algorithm
popi Popularity of item i
popu Popularity of user u
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In other words, if a user u has implicit feedback behavior on item i, i.e., if rui > 0 , 
then we define that the user has a preference for the item. On the other hand, if there 
is no implicit behavior of user u toward item i, there is no preference. However, it 
is problematic to make such a simple judgment on whether the item has implicit 
feedback or not. A user might not have a preference for the item when the user has 
interactions with it. The user may just purchase the item as a gift for someone else. 
It is also possible that the user is not aware of the item’s existence [5].

Therefore, the latent factor model introduces a new concept, “confidence.” Define 
the confidence that user u likes item i as cui . This variable is applied to measure the 
degree of confidence in determining the preference between user u and item i. cui is 
calculated by Eq. (2) [5],

This gives minimum confidence for each user-item pair. The confidence in pui = 1 
increases when there are more implicit feedback. The increasing rate is controlled by 
� . The goal of the latent factor model is to find a vector xu for user u and a vector yi 
for item i. In other words, the predicted preference is defined as the inner product of 
two vectors: p̂ui = xT

u
yi . These two vectors are called user factors and item factors. 

It is important to note that the optimization procedure needs to account for all user-
item pairs and not just the user-item pairs with rating data as in the explicit feedback 
latent factor model. The objective function is significant for the training process. In 
the latent factor model for implicit feedback, the objective function is given in Eq. 
(3) [5],

�(
∑

u
�

�

xu
�

�

2
+ �

�

yi
�

�

2
) in Eq. (3) is a regularization parameter to prevent overfit-

ting of the training set. The exact value of � is data-dependent and determined by 
cross-validation.

2.3  Weighted implicit ratings

Nowadays, many studies on implicit feedback only focus on one type of implicit 
feedback data, such as purchase and browsing. However, in reality, implicit feedback 
behavior is diverse, and concentrating on only one kind of behavior will waste data. 
Merchants and e-commerce platforms may have different expectations for users. 
First, most merchants aim to recommend products to users who are more likely to 
buy, thus increasing their revenue directly. Second, some start-up e-commerce plat-
forms might desire users to increase the length of time they spend on the platform. 
Therefore, the users are expected to view the products recommended to them more 
often instead of solely focusing on their revenue. Third, to increase their transac-
tion volume on a particular day (Double 11 or 618 shopping carnival), large plat-
forms like Tmall or Amazon may hope users increase the probability that the recom-
mended products will be added to their shopping carts during the period that is close 
to the festival.

(2)cui = 1 + �rui

(3)min
x∗,y∗

∑

cui(pui − xT
u
yi)

2 + �(
∑

u

‖

‖

xu
‖

‖

2
+ ‖

‖

yi
‖

‖

2
)
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Overall, algorithms that could only deal with one type of user implicit feedback 
behavior cannot achieve customized recommendations for merchants and e-com-
merce platforms. We suggest that multiple types of implicit feedback should pro-
vide different weights to product recommendations according to particular business 
needs.

The set of all users is denoted as U, and the set of all items is denoted as I. We 
define that the set of all types of implicit feedback from user u to item i is BTui . The 
weight of the k-th type of implicit feedback is wk , which needs to adjust according to 
different business requirements. This algorithm mainly relies on the frequency that 
the user performs implicit feedback behavior for an item. bfuik denotes the number of 
times the user u performs the k-th type of implicit feedback behavior for item i. The 
weighted implicit rating wrui of user u for item i is calculated as,

The advantage of constructing the rating matrix by this method is that the recom-
mendation list would be generated to make users tend to perform the particular 
implicit behavior carrying a high value of weight. Our model has a scalable struc-
ture to incorporate multiple types of implicit feedback. For more types of implicit 
feedback, we could set different weights for them. A larger number of types will 
cause the weight constructing time complexity to increase linearly. However, if the 
number of types increases excessively, the performance will drop. For the dataset 
with many behavior types, the platform could only focus on the major types and 
ignore the minor types. The platform should pursue a balance between the number 
of behavior types and the model performance and efficiency.

The practical weight setting should be set manually according to the business 
requirement. The platform requires the frequency of a specific type of behavior to 
increase in the future. They can set a large value for this type of behavior. The plat-
form should maintain the balance of the actual meaning behind each type of behav-
ior and actual recommendation metrics and adjust the actual weight setting accord-
ing to the actual performance.

2.4  Time decay factor

The ratings generated by weighting the individual frequencies as described above 
only solve multiple implicit feedback behaviors. However, it does not address the 
traditional algorithm’s lack of time sensitivity.

The latent factor model for implicit feedback suffers from time insensitivity. For 
example, two identical viewing behaviors in a dataset occurred in the last two days, 
and the other occurred a year ago. In the traditional LFM, both will be assigned the 
same weight. This may be unreasonable, as human interests are changing dynami-
cally. Past preferences are not necessarily representative of their ongoing prefer-
ences. A recommender system based on users’ real-time preferences mostly achieves 

(4)∀u ∈ U, i ∈ I ∶ wrui =
∑

k∈BT

wkbf uik
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more accurate personalized recommendations, and e-commerce platforms tend to 
implement such recommender systems to gain more views and sales.

In summary, time sensitivity is vital for recommender systems. In this regard, 
Li et  al. proposed that users’ preferences decay exponentially [11]. This idea 
coincides with Ebbinghaus’ forgetting curve, i.e., people forget things faster and 
then slower. Thus, we could assume that users’ preferences conform to a similar 
rule and are presented in the form of an exponential function that is firstly very 
fast and then slow. Accordingly, here proposes a time decay factor.

The set of all implicit feedback behaviors of all users u for item i is denoted 
as Bui , and each implicit behavior in Bui is denoted as bui . As mentioned above, 
the weight of this algorithm, i.e., the weight of the k-th implicit feedback, can be 
set by the one employing this algorithm. Therefore, we denote by wbui

 the weight 
represented the behavior of user u for item i, and the weight is determined by the 
type of implicit feedback behavior of bui . Since this algorithm is time-sensitive, 
the time point at which the recommendation is made is denoted as tn , and the time 
point at which bui occurs is marked as tbui . Therefore, the implicit feedback rating 
tdf-wrui (time decay factor-weighted rating) is calculated as follows:

� is a decimal number between zero and one. In the exponential function y = ax , 
when a is less than one and greater than zero, the decay rate goes fast at the begin-
ning and then slow. Figure 1 is an image of a function for the case that a is 0.5. For 
the value of tn and tbui , different time units can be applied according to the datasets. 
Generally speaking, the user’s various implicit feedback behaviors are recorded by 
the system’s backend logs and are mostly presented in the form of timestamps, i.e., 
Unix timestamps [21], which are the number of seconds accumulated from January 

(5)� ∈ (0, 1),∀u ∈ U, i ∈ I ∶ tdf - wrui =
∑

bui∈Bui

�
tn−tbui wbui

Fig. 1  Graph of y = a
x where a = 0.5
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1, 1970. Timestamps can be interpreted into the corresponding year, month, day, 
hour, minute, and second. In our method, the time unit, i.e., the unit of tn − tbui , is 
defined as one day.

2.5  Negative sample generating

The tdf-wrui solves two problems that exist in traditional algorithms, namely, the 
waste of multiple types of implicit feedback and the time insensitivity problem. 
Thus, the introduction of this algorithm for positive rating has been completed. In 
this section, we introduce the construction of negative implicit feedback from the 
unobserved data to boost the performance further.

Lacking implicit feedback does not necessarily mean that the user is not inter-
ested in the item. It also could be that the user is not aware of the item’s existence. 
For users, items with higher popularity, in reality, are often more likely to discover 
by users and thus interact. Therefore, here proposes the hypothesis that the possibil-
ity of a user learning about an item is related to the popularity of the item.

As mentioned above, we establish weights for each type of implicit feedback and 
tdf based on the time when the behavior happens. Here also assumes that the pop-
ularity of items is associated with the time decay factor of user behavior and the 
weights of each type of behavior.

Bi denotes the set of all behaviors for item i. Any behavior of item i in the set is 
denoted as bi , and the time point of the behavior is denoted as tbi . wbi

 stands for the 
weight of the behavior. The current time point is tn . Thus, the popularity of item i, 
popi , is calculated as,

Since that, a direct negative sample addition based solely on the above calculation 
may result in a significant scale difference of values between the negative and posi-
tive samples. Therefore, the popularity requires normalization to form a complete 
implicit feedback rating matrix. The negative sample weights generated after nor-
malization are named weight of negative sample possibility (WNSP) in this paper 
and are calculated as,

� is a normalization function that maps the popularity to an interval from zero to 
one and � is a constant factor that is supposed to be adjusted for different samples 
scales. Common normalization functions include Z-score standardization and linear 
function normalization (min–max scaling) [22]. The former usually requires the data 
to roughly present a Gaussian distribution, meaning the requirements are more strin-
gent. Therefore, we take the latter as shown in Eq. (8),

(6)� ∈ (0, 1),∀i ∈ I ∶ popi =
∑

bi∈Bi

�
tn−tbi wbi

(7)wnspi = −�
(

popi
)

∗ �

(8)�(X) =
X − Xmin

Xmax − Xmin
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Xmax and Xmin are the maximum and minimum values of the original data. Each 
item’s weight of negative sample possibility can be calculated based on Eq. (33). 
The set of negative sample ratings to be inserted is denoted as NS (Negative Sample 
Set). The set of users not having implicit feedback with the item i is represented as 
�i . NS is a set of triplets (user, item, and negative ratings). The mathematical expres-
sion of NS is shown in 9,

In general, there will be too many items and users in the sample, causing NS to be 
immense. We only extract a part of the items with larger wnspi for NS instead of 
adding negative samples of all items. The elements in NS are tuples with three val-
ues, which can be directly added to the rating matrix according to the corresponding 
user-item relationship, thus forming a complete rating matrix. The negative ratings 
put into the rating matrix are denoted as wnsp-wrui . In this work, we combine the 
positive ratings, tdf-wrui , and the negative ratings, wnsp-wrui to form a final rating 
matrix. The rating in the final rating matrix is defined as tdf-wnsp-wrui.

2.6  TDF‑WNSP‑WLFM

Based on the three steps mentioned above, we transform the rating matrix into one 
that can be implemented according to business requirements, is time-sensitive, and 
has negative rating data. Combining this rating matrix with the latent factor model 
for implicit feedback leads to the recommendation algorithm in this study, i.e., time 
decay factor-weight of negative sample possibility-weighted latent factor model 
(TDF-WNSP-WLFM). However, the rating matrix here has negative sampling, 
which is different from the latent factor model, which only contains nonnegative rat-
ings. Thus, the mathematical definition of the latent factor model should be modi-
fied. In this algorithm, the preference pui is defined in Eq. (10),

The meaning of the above formula is that when the rating data are zero or negative, 
user u has no preference for item i. When the rating is positive, user u likes the item 
i. The function determining the confidence level cui is computed as,

The confidence of whether a user u likes item i is only related to the absolute value 
of the rating. The negative ratings among the rating matrix in this algorithm repre-
sent the confidence for the absence of preference of user u for item i, which is only 
related to the absolute value of this negative number. � serves as a constant factor, 
adjusted according to the sample. Since user preference and confidence have been 
redefined above, the objective function f(x) does not need to change, as shown in Eq. 
(3).

(9)NS =
⋃

i∈I

�i ×
(

i,wnspi
)

(10)pui =

{

1 tdf-wnsp-wrui > 0

0 tdf-wnsp-wrui ≤ 0

(11)cui = 1 + � ∣ tdf -wnsp-wrui ∣
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The training and inference time complexity is the same as the traditional ALS 
model. The only difference we made in our paper is the construction of the rating 
matrix. The user set is denoted by U. I is the item set, and IM is the implicit behav-
ior we have. The first step is to construct the weights and time decay factor based 
on timestamps. Since this step can be done by linear scan, the time complexity is 
O(∣ IM ∣) . After this step, the dataset is aggregated, and the dataset for this step is 
defined as R. To construct the negative samples, the aggregated dataset has to be 
linearly scanned to get the popularity of each user and item. Then, we have the time 
complexity of O(∣ R ∣) . To make the negative samples, we have to define the ratio 
of users and items we would like to add to the final ratings. The ratios of users and 
items are defined as ru and ri , respectively. The ratios of the user and item dataset 
are selected to conduct the Cartesian product. Overall we have the time complexity 
of O(ru× ∣ U ∣ ×ri× ∣ I ∣) . Since the ∣ R ∣ is smaller than ∣ IM ∣ , the overall time com-
plexity of the construction is equal to O(∣ IM ∣ +ru× ∣ U ∣ ×ri× ∣ I ∣).

3  Experiments and evaluation

The following section describes the evaluation of the algorithm on industrial 
data, and the flowchart is shown in Fig. 2. The whole experiment contains seven 
main procedures. First, we combine implicit feedback and their time point as the 
input data. After that, data preprocessing ensues to prepare the construction of 
rating matrices, which includes data cleaning, data selecting, and data scaling. 

Fig. 2  Flowchart of the whole experiment procedure
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Thereafter, positive ratings are generated from the weighted implicit feedback 
after time decaying. Established on the combination of item popularity, user 
activity, and weight setting, we could acquire the negative ratings from the unob-
served data in the datasets. The later procedure is to associate these ratings to a 
complete rating matrix for our algorithm and separate it into training and testing 
sets. The final steps aim to train and test the Top-N recommendation model found 
on the LFM algorithm.

The Pandas [23] and Numpy [24] libraries among Python are applied for the 
data analysis and processing part, and the Matplotlib library [25] is used for the 
data visualization. The primary recommender system modeling in this paper 
adopts the "Implicit" library featuring implicit feedback recommendations devel-
oped by Benred et  al. on GitHub in 2016 [26]. Nowadays, more recommender 
system researchers and developers keep maintaining and optimizing this library. 
It implements mainstream ML recommendation algorithms such as LFM and 
BPR.

3.1  Datasets description

This paper utilizes two sets of large public datasets in China and abroad. More 
tests make the performance of the algorithm better present. We adopt the real 
online shopping behavior data of about one million users from Taobao on the 
Tianchi big data platform [27]. The format of these data is shown in Table 2.

For the four behavior types, they represent the following meanings, pv , the 
abbreviation of a page view, which means that the user clicked on the item detail 
page, buy , a purchase, which means the user bought the item. cart , a user added 
the item to their shopping cart, fav , the user favorited the item.

Another set of data comes from the user behavior from the REES46 e-com-
merce website on the Kaggle big data platform [28]. This e-commerce website 
is a large overseas e-commerce platform. The users of this dataset are from a 
country in the Middle East region. The format of the Kaggle dataset is roughly 
the same as that of the aforementioned Tianchi Big Data platform but with some 
additional fields related to item content. The specific information is illustrated in 
Table 3.

The meaning of the three behavior types from REES46 is as follows, view , the 
user viewed the item’s detail page, cart , the user added the item to their shopping 

Table 2  Description of Taobao 
datasets

Categories Explanation

User ID Serialized user ID
Item ID Serialized item ID
Category ID Serialized category ID
Behavior Type pv, buy, cart, fav

Timestamp Timestamp for each user behavior
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cart, purchase , the user purchased the item. The above two datasets have differ-
ent field names but similar data contents. The user ID, item ID, and behavior type 
are required in both datasets. The time decay factor is involved, meaning that this 
algorithm also demands the time point of the behavior.

3.2  Data scaling and cleaning

Data preprocessing is a crucial step in data modeling, as there is a high probability 
of missing data and errors in real datasets. The primary purpose of data preproc-
essing is to detect these problems. As mentioned in the data description, since this 
paper applies a collaborative filtering recommendation algorithm, we only require 
four fields in the large dataset: user ID, item ID, type of behavior, and time point. 
There are no null values in the two datasets. Therefore, we do not need to fill the 
dataset with values. In terms of the handling of outliers, this paper focuses on 
whether there is a problem in the time point. There are some deviations between the 
description of the dataset given by the authors and the data itself. In our experiment, 
we take the data as the focus and the description as a supplement to understanding.

The time format of the data from both the Tianchi and Kaggle platforms is trans-
formed into a human-readable year-month-day format. We found that the Tianchi 
platform’s data period is from 1902 to 2037. The authors mentioned in the dataset 
description that the period is from November 25, 2017, to December 3, 2017. We 
remove the data outside that range. The original data volume is 100150806, and the 
data without abnormal timestamps are 98914533. For the data of the REES46 plat-
form on the Kaggle platform for October and November 2019, since the time format 
given is UTC, i.e., the corresponding year, month, and the day is given, there is no 
time misalignment problem after checking.

The time decay factor in Sect.  2.4 is expressed mathematically, and the time 
decay unit applied in this paper is one day. For the Taobao dataset, the recommenda-
tion time points tn are defined as November 25, 2017, and November 31, 2019, for 
the dataset REES46. These time points are the maximum values among the whole 
dataset. For each record of the datasets, the time interval between the time when the 
behavior happens and tn is defined as a gap, which could be computed by tn − tbui.

The collaborative filtering algorithm has specific requirements for the amount of 
data. We will only perform the recommendation for high-quality users and items 

Table 3  Description of REES46 
datasets

Categories Explanation

Event_time The time when the event happens
Event_type purchase , cart , view
Product_id Serialized Product ID
User_id Serialized User ID
Category_id Category ID of the product
Brand Brand of the product
Price Price of the product
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in this experiment. Among various implicit feedback behaviors, the most reflec-
tive of quality customers and items is the purchase because this behavior involves 
a certain degree of monetary payment. We define the top ten percent of users and 
items as quality users and items. The interaction between quality users and quality 
items is modeled and evaluated in the following section. After filtering, there are 
6249200 records in the Kaggle dataset and 3302114 records in the Tianchi dataset. 

Fig. 3  The distribution of behavior types in two data platforms

Fig. 4  Numbers of users and items on Taobao and REES46 platforms
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The distribution of different types in all records is as seen in Fig. 3, which shows 
that the proportion of behaviors is similar in these datasets.

The number of users and items also significantly impacts the recommendation 
results. The low number of items in the rating matrix leads to fewer candidates, 
resulting in more accurate recommendations. Figure  4 describes the number of 
users and items in the two datasets. The number of users is similar in both data-
sets. However, the number of items in the REES46 platform is significantly lower, 
about one-tenth of the number of users.

3.3  Modeling

The core of our algorithm lies in the processing and modification of the implicit 
feedback rating matrix, and therefore the transformation of the rating matrix is of 
paramount importance. The rating matrix in the TDF-WNSP-WLFM algorithm 
is composed of tdf-wnsp-wrui . The construction of positive ratings in the matrix 
requires the determination of two factors, i.e., the weight setting for each implicit 
feedback behavior in the customized recommender system and the time decay 
factor of each behavior.

Our recommender system model is designed for merchants, meaning that the 
main focus is on users’ purchase behavior. Since the rating allocation is based on 
the actual scenario, the exact number depends on both mission and performance 
[29]. Therefore, we assign the purchase behavior with the most significant value. 
Based on the performance and the mission of providing recommendations to the 
merchants, we initial the purchase and buy behavior in both datasets to ten and 
view and pv to one. The cart and fav behavior from the Taobao platform and cart 
behavior from REES46 are assigned to two.

For the time decay factor, according to the decaying method mentioned in 
Sect. 2.4, the gap defined in Sect. 3.2, the tdf-wrui should be calculated as,

After debugging, the model performs better when setting � to about 0.8 for the Tian-
chi platform and 0.5 for the Kaggle platform. We have to consider the data scale for 
the construction of negative samples. If all unobserved user-item pairs are exploited 
to build negative samples, which will lead to a large amount of the occupation of 
storage and computation resources.

For most products, because the product’s popularity is presented too unevenly, 
negative feedback is mostly with lower popularity. Figure 5 shows the distribu-
tion of item popularity on the Tianchi platform. Most items are at the bottom, 
as shown in the picture. Since the final negative weight has to be normalized, 
the role of putting in this trivial data is not much different from filling in zero 
directly. Therefore, we should filter most of them.

Most of the users are inactive, which is similar to the popularity distribution of 
the products. Due to our limited computation resources and storage, sampling is 

(12)� ∈ (0, 1),∀u ∈ U, i ∈ I ∶ tdf - wrui =
∑

bui∈Bui

�gapwbui
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performed for users. The users’ activity is defined similarly to the items’ popular-
ity. Define the set of all behavior of user u as Bu , and each behavior in this set is 
denoted as bu . We define the weight of the behavior as wbu

 , and the occurrence 
time point of the behavior is tbu . The popularity popu of each user u is calculated 
as,

The ratings of the top one percent of items and users with high popularity are 
selected, and wnspi is calculated according to Eq. (7). The last step for data preproc-
essing is adding negative ratings to the rating matrix.

In this experiment, two sets of data are trained and tested separately. First, 80% of 
the data in the rating matrix is randomly selected as the training set, and the remain-
ing 20% is used as the test set, which is emptied from the rating matrix. The number 
of training epochs is set to 100, and the number of latent factors is 100. The sto-
chastic gradient descent learning rate is 0.2, and the regularization parameter � is 
0.01. This paper determines the � by multiple trials of threefold cross-validation. 
In our experiments, we tested the � of different values and selected � according to 
the recommendation performance. Among all trials, we choose the one with better 
performance.

3.4  Evaluation of models

Several algorithms are applied as the baseline: the BPR algorithm based on matrix 
factorization, logistic matrix factorization algorithm [7], the K-nearest neighbor 

(13)popu =
∑

bi∈Bu

� tn−tbu wbu

Fig. 5  Distribution of item popularity on the Tianchi platform
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algorithm with cosine similarity [30], TF-IDF [31], and BM25 [32]. For the ablation 
study, the LFM after only weighting, LFM with weighting and time decay factors, 
and the LFM only after the adding of the WNSP are implemented along with the 
main algorithm of this paper to train models on two datasets. The models are evalu-
ated using three metrics, i.e., AUC, Precision, and NDCG [33]. The following meth-
ods are all assessed according to the Top-20 recommendation.

Define the positive results in the recommendation list as positiveClass. ranki is 
the correct rank for item i from the recommendation result. M denotes the number 
of positive results. N is the number of negative results. The AUC (area under curve) 
calculation method in this paper is defined as,

Precision is a simple evaluation metric. Define tpu as the correct results in the rec-
ommendation list. fpu is the incorrect results in the recommendation list, the calcu-
lation of precision is below,

NDCG (normalized discounted cumulative gain) can evaluate the ranking perfor-
mance more precisely compared to the AUC. NDCG is the normalized format of 
DCG (discounted cumulative gain). The NDCG is calculated as,

Define the number of items in the recommendation list as N. reli represents that rel-
evant score of the item at the i-th position from the recommendation list. In our 
experiment, if the result is positive, then reli = 1 ; otherwise, reli = 0 . IDCG (ideal 
discounted cumulative gain) is the maximum value we can get for the DCG.

(14)AUC =

∑

i∈positiveClass ranki −
M(1+M)

2

M × N

(15)Precision =
tpu

tpu + fpu

(16)NDCGN =
DCGN

IDCGN

,DCGN =

N
∑

i=1

2reli − 1

log2(i + 1)

Table 4  Performance on Taobao 
user dataset

AUC Precision NDCG

TDF-WNSP-WLFM 0.5319 0.0603 0.0530
TDF-WLFM 0.5314 0.0600 0.0509
WNSP-WLFM 0.5316 0.0602 0.0506
WLFM 0.5316 0.0602 0.0508
KNN(cosine) 0.5095 0.0145 0.0150
KNN(TF-IDF) 0.5186 0.0296 0.0296
KNN(BM25) 0.5309 0.0686 0.0520
LMF 0.5028 0.0460 0.0045
BPR 0.5212 0.0376 0.0312
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The latent factor model after weighting is denoted as WLFM. The rating matrix 
in this algorithm is obtained by summing the weights. The algorithm that ignores 
negative samples and combines a time decay factor with WLFM is denoted as 
TDF-WLFM. The WLFM that only contains negative samples is defined as WNSP-
WLFM. Each algorithm tested on the Taobao and REES46 datasets is in Table 4 and 
Table 5, respectively. The performance of the latent factor model implemented in 
our study is better than the common methods: K-nearest neighbor algorithm using 
cosine similarity and the BPR algorithm. The TDF-WNSP-WLFM proposed in this 
paper has the best overall performance among all the algorithms on the two datasets. 
Although the AUC in the Kaggle dataset is close to K-nearest neighbor (cosine) and 
BPR algorithms, it is over 400% higher in precision and NDCG.

The item-based K-nearest neighbor cosine similarity algorithm and the BPR 
algorithm perform differently in the two datasets. However, neither can outperform 
the basic weighted latent factor model. The KNN (BM25) shows remarkable per-
formance on the Taobao user dataset, which has an even higher score in precision 
compared to the TDF-WNSP-WLFM algorithm. However, the performance on the 
Kaggle dataset is not very decent compared to the KNN (TF-IDF) method, which 
shows lower performance in the Tianchi dataset.

A comparison between the two datasets shows that each algorithm has better per-
formance on the Kaggle data than the Tianchi data. The sparsity of the data and the 
significant difference in the number of items may dramatically impact the quality of 
recommendations.

We extend our experiment on the Kaggle dataset by giving twice tolerance to the 
data selecting procedure. Since the total size of the dataset is doubled, the perfor-
mance drops due to the average quality of users and items becoming low. Although 
the overall performance for all algorithms decreases, our TDF-WNSP- WLFM still 
have the best performance among all algorithm. The results are shown in Table 6.

One significant feature in these tables is that TDF-WNSP-WLFM and TDF-
WLFM are similar to the WLFM algorithm in the Tianchi platform dataset. The 
performance of TDF-WLFM is even lower than WLFM in evaluation in AUC and 
precision, while the performance of both algorithms exceeds the WLFM in Kaggle 
dataset. The time decay factor plays a vital role in the Kaggle dataset. This dataset 

Table 5  Performance on 
REES46 user dataset

AUC Precision NDCG

TDF-WNSP-WLFM 0.6631 0.2642 0.2252
TDF-WLFM 0.6591 0.2613 0.2251
WNSP-WLFM 0.6571 0.2577 0.2215
WLFM 0.6570 0.2574 0.2216
KNN(cosine) 0.6106 0.1694 0.1523
KNN(TF-IDF) 0.6525 0.2500 0.2205
KNN(BM25) 0.6365 0.2100 0.1912
LMF 0.5222 0.0460 0.1048
BPR 0.5821 0.1286 0.1048
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has a more extended period, which may be why it could successfully boost the per-
formance with the factor. The WNSP-WLFM shows comparative performance with 
WLFM on both datasets. This tells us that simply adding the negative samples to the 
dataset might not affect the overall result. However, if we combine the WNSP with 
the TDF, the overall performance could be strengthened. Another conclusion can 
be drawn that the K-nearest neighbor method using a different metric to calculate 
the similarity on different datasets may vary. When researchers would like to test 
the overall performance of the KNN method, the ideal way is to test all metrics and 
find the one with the best performance to use. In our experiments, the most com-
mon KNN with cosine similarity has the worst performance among all KNN-based 
methods.

In order to check the effectiveness of the time decay factor, we conducted an 
experiment on the Kaggle dataset since it has a relatively long-time span, and the 
TDF-WNSP-WLFM shows more significant improvement compared to the WLFM 
method. We change the time unit to an hour. The performance of the model does 
not have a significant difference. On the other hand, if we increase the time unit to 
one week, the performance drops to the performance similar to WNSP-WLFM and 
WLFM. This means that the time decay factor is effective only if the time unit is 
short enough for the model to examine the preference decay. On the other hand, set-
ting one day as the time unit is proper for the Kaggle dataset.

The evaluation is based on offline tests in academia, which may not represent its 
actual performance in the industrial field. It requires to be further tested in real-time 
on e-commerce websites.

4  Conclusion

This paper improves the latent factor model framework by applying multiple types 
of implicit feedback. We propose a method to adjust the weight of each type of 
behavior according to business scenarios to customize the algorithm for merchants 
or e-commerce platforms.

Table 6  Performance on 
REES46 extended user dataset

AUC Precision NDCG

TDF-WNSP-WLFM 0.6516 0.2349 0.2094
TDF-WLFM 0.6502 0.2348 0.2089
WNSP-WLFM 0.6491 0.2348 0.2079
WLFM 0.6482 0.2345 0.2080
KNN(cosine) 0.6027 0.1508 0.1370
KNN(TF-IDF) 0.6434 0.2297 0.2011
KNN(BM25) 0.6296 0.1876 0.1761
LMF 0.5215 0.0421 0.0302
BPR 0.5756 0.1092 0.0930
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At the same time, we propose a time decay factor (TDF), which enables the 
implicit feedback rating data to dynamically decay according to the time point when 
the recommendation happens. Due to the similarity of users’ preferences and rat-
ings after time decaying, this algorithm improves overall performance. For products 
with implicit feedback that happened a long time ago, users are more likely to for-
get about them, or the products only matched users’ preferences at that particular 
period.

Negative samples are introduced in this study to increase the diversity and plausi-
bility of the rating matrix. The implicit feedback itself is inherently positive. In this 
algorithm, the negative samples are generated based on the user’s possibility of not 
favorite the product.

To evaluate this algorithm, we compare the performance with several commonly 
used recommendation algorithms in modeling recommender systems on two data-
sets of real e-commerce platforms. We find that the latent factor model has better 
performance in resolving multiple implicit feedback problems. In the algorithm 
evaluation, it can be inferred that the presence of a time decay factor is more neces-
sary for data with a more extended period. In contrast, the LFM algorithm could be 
applied directly after weighting the data for a short period to obtain a similar recom-
mendation performance as the TDF-WNSP-WLFM. The WNSP should be added 
along with the TDF, simply adding the WNSP may not improve the overall recom-
mendation performance.

Overall, the TDF-WNSP-WLFM achieves performance improvement without a 
complex structure. The rating construction time complexity is relatively low. The 
general performance can be improved compared with the original method since our 
method has the same training structure as the LFM algorithm. It can be applied in 
the paralleled computing platform as the LFM does. It can be applied for a product 
recommendation or any other platform that collects multiple types of user behav-
ior. Future work could improve the ways of weighting and exact weights for a cus-
tomized recommendation. A more sophisticated and effective approach might be 
applied.
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