
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:17826–17843
https://doi.org/10.1007/s11227-022-04574-5

1 3

HPC acceleration of large (min, +) matrix products
to compute domination‑type parameters in graphs

Ester M. Garzón1,3 · José Antonio Martínez1,3 · Juan José Moreno1,3 ·
María Luz Puertas2,3 

Accepted: 29 April 2022 / Published online: 25 May 2022
© The Author(s) 2022

Abstract
The computation of the domination-type parameters is a challenging problem in
Cartesian product graphs. We present an algorithmic method to compute the 2-dom-
ination number of the Cartesian product of a path with small order and any cycle,
involving the (min,+) matrix product. We establish some theoretical results that pro-
vide the algorithms necessary to compute that parameter, and the main challenge to
run such algorithms comes from the large size of the matrices used, which makes it
necessary to improve the techniques to handle these objects. We analyze the perfor-
mance of the algorithms on modern multicore CPUs and on GPUs and we show the
advantages over the sequential implementation. The use of these platforms allows us
to compute the 2-domination number of cylinders such that their paths have at most
12 vertices.

Keywords  (min, +) matrix powers · OpenMP · GPU · 2-domination

The four authors contributed equally to this work.

 *	 María Luz Puertas
	 mpuertas@ual.es

	 Ester M. Garzón
	 gmartin@ual.es

	 José Antonio Martínez
	 jmartine@ual.es

	 Juan José Moreno
	 juanjomoreno@ual.es

1	 Department of Computer Sciences, Universidad de Almería, Almería, Spain
2	 Department of Mathematics, Universidad de Almería, Almería, Spain
3	 Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, Almería, Spain

http://orcid.org/0000-0002-9093-5461
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04574-5&domain=pdf

17827

1 3

HPC acceleration of large (min, +) matrix products to compute…

1  Introduction

The (min,+) matrix algebra [1], also called tropical algebra, replaces addition and
multiplication with minimization and addition, respectively. The use of this algebra
is currently in expansion and it is involved in several disciplines of great interest, for
instance finite automata [1], statistics [2], phylogenetics [3], optimization of graph
parameters [4], integer programming [5], and other optimization problems [6]. How-
ever, the computational demands of such computations are unapproachable when the
dimensions of the corresponding matrices are large. To overcome this drawback the
modern multicore CPUs and GPUs can be exploited as High-Performance Comput-
ing (HPC) platforms to accelerate and widen the dimensions of such operations. In
this work, the analysis of the domination-type parameters in graphs is chosen as an
interesting example where sequences of large (min,+) matrix products are involved.

The use of graphs as a tool to model problems in networks has been widely stud-
ied. Among such problems, the efficient location of resources in a network can be
approached by means of the domination-type parameters in graphs. A dominating
set in a graph G is a vertex subset S such that each vertex not in S has at least one
neighbor in it. The domination number of G, denoted by �(G) , is the cardinal of a
minimum dominating set. We refer to [7] for general information about these topics
and, in particular, about their applications to network problems. Among the varia-
tions of this concept that can be found in the literature, we focus on the 2-domination.
A 2-dominating set is vertex subset S ⊆ V(G) such that each vertex not in S has at
least two neighbors in it. The 2-domination number �2(G) is the minimum cardinal
of a 2-dominating set of G [8]. Some interesting applications of the 2-domination in
graphs such as the optimization of fault tolerant sensor networks, the facility location
problem and the data collection problem can be found in [9]. Given a graph G and a
positive integer k ≤ |V(G)| , the decision problem “Is there a dominating set of G with
at most k vertices?” is NP-complete [10], even in bipartite and chordal graphs. How-
ever, it has been shown to be polynomial in trees and interval graphs [7]. In a similar
way, the 2-domination decision problem is to decide whether G has a 2-dominating
set of cardinal at most k ≤ |V(G)| . It is known that it is an NP-complete problem [11],
again even in bipartite and chordal graphs [12]. Moreover, linear-time algorithms to
compute this parameter in trees and series-parallel graphs can also be found in [11].

A family of interest for the domination-type parameters are the Cartesian product
graphs since the Vizing’s conjecture was formulated [13]. This conjecture proposes
a general inequality that relates the domination number of both a Cartesian product
graph and its factors. This conjecture is still open and a survey about this subject
can be found in [14], while a recent new approach is in [15]. Recall that the Car-
tesian product of two graphs G□H is the graph with vertex set V(G) × V(H) and
such that two vertices (g1, h1), (g2, h2) are adjacent in G□H if either g1 = g2 and
h1, h2 are adjacent in H, or g1, g2 are adjacent in G and h1 = h2 . We refer to [16] as a
general reference about this topic. It is well known that domination-type parameters
are difficult to handle in Cartesian product graphs and there is no general relation-
ship between the value of such parameters in the product graph and its factor graphs.
Even in the simplest cases of the Cartesian product of two graphs, that is, two paths

17828	 E. M. Garzón et al.

1 3

(grid), a path and a cycle (cylinder) and two cycles (torus) specific procedures are
needed to compute such parameters.

The domination-type parameters in Cartesian product graphs are among the
variety of graph parameters that can be computed by using matrix operations. This
approach appeared for the first time in [4] and has been used in different Cartesian
products, such as grids and cylinders, and also in different parameters, such as domi-
nation, independent domination and Roman domination (see for instance [17–21]).
Unlike other parameters, those of domination-type do not use the usual matrix prod-
uct but the (min,+) matrix product, which is also called the tropical product [1].
The (min,+) matrix product is defined over the semi-ring of tropical numbers
P = (ℝ ∪ {∞}, min,+,∞, 0) in the following way: (A⊠ B)ij = mink(aik + bkj) .
Moreover, for matrix A and � ∈ ℝ ∪ {∞} , (𝛼 ⊠ A)ij = 𝛼 + aij.

Graph algorithms involving tropical algebra operations can be found in the lit-
erature [22]. The computational side of this approach leads to interesting challenges
bearing in mind the large size of the matrices involved in such algorithms and both,
special properties of the matrices and regular structures of the graphs, have been
taken into account in order to reduce the complexity of the matrix computations [23,
24]. Moreover, optimal implementations of the matrix operations in multicore and
GPU platforms have proven to be suitable for these problems [25–27].

A contribution to the problem of the computation of the 2-domination number in
cylinders can be found in [28], where this parameter was obtained in cylinders with
a small cycle and any path, by using algorithms involving the (min,+) matrix-vector
product. We now focus the complementary problem of computing this parameter in
cylinders with a small path and any cycle, which is unknown. The technique we use
here requires performing the (min,+) matrix-matrix product, which has higher com-
putational requirements.

The goal of this work is twofold. From the computational point of view, effi-
cient routines to compute (min,+) matrix products on multicore CPUs and GPUs
are developed. Moreover, the matrices involved in the analysis of domination-type
parameters in graphs are used to evaluate such implementations on modern HPC
platforms. It is relevant to underline that, beyond this particular graph analysis, these
efficient implementations are useful to accelerate the wide range of applications
which are expressed in terms of (min,+) matrix products. To allow the scientific
community to access to these efficient implementations of (min,+) matrix products,
they are available at https://github.com/hpcjmart/2domination.

From the perspective of the graph analysis, our objective is to conjecture a formula
for the 2-domination number in cylinders with path and cycle of unbounded order.
Obtaining the value of the 2-domination number in cylinders with one small factor,
either the path or the cycle, is the first step to addressing the general case. The reason
is the regular behavior that is expected, except for the smallest cases. Making such
regularity apparent provides the key information to look for the general formula.

In Sect. 2, we present the theoretical results that give support to the algorithms
shown in Sect. 3 along with their computational analysis. Such algorithms will provide
the desired values of the 2-domination number in cylinders with small path and any
cycle, which we present in Sect. 4, as well as our conclusions from the computational
point of view.

17829

1 3

HPC acceleration of large (min, +) matrix products to compute…

2 � The 2‑domination number in cylindrical graphs with small paths

In this section, we describe our approach to compute the 2-domination number of
cylinders Pm□Cn with small paths. Such approach, involving the (min,+) matrix-
matrix product has also been used to obtain similar results for the Roman domina-
tion number [20]. We first describe the general ideas involved in this method and
then, we particularize the case of �2.

2.1 � General construction

We focus on the following result from [29], that we quote from [4] in the version
related to the (min,+) matrix product.

Let D be a digraph with vertex set V(D) = {v1, v2,… , vs} together with a labeling
function � which assigns an element of the semi-ring P = (ℝ ∪ {∞}, min,+,∞, 0)
to every arc of the digraph D . A path of length n in D is a sequence of n consecutive
arcs Q = (vi0vi1)(vi1vi2)… (vik−1vin) and Q is a closed path if vi0 = vin . The labeling �
can be easily extended to paths: 𝓁(Q) = 𝓁(vi0vi1) + 𝓁(vi1vi2) +⋯ + 𝓁(vik−1vin).

Theorem 1  [29] Let Sn
ij
 be the set of all paths of length n from vi to vj in D and let

A(D) be the matrix defined by

If A(D)n is the n-th (min,+) power of A(D) , then (A(D)n)ij = min{�(Q) ∶ Q ∈ Sn
ij
}.

The application of these results to the computation of domination-type param-
eters in Cartesian product graphs follows a common approach which uses the fact
that these kinds of parameters are defined as the minimum cardinal of a set having a
certain property. We now describe this general procedure.

Let G be a graph and let a(G) be a parameter defined as the minimum cardi-
nal of a vertex subset of G having a certain property A. First of all, we have to
define a direct graph D such that there exists a bijective correspondence between
the vertex subsets U ⊆ V(G) having the property A and the closed paths Q of
D with fixed length n, that we denote by U ↔ Q . As a second step, we have to
define a labeling � of the arcs of D such that if U ↔ Q then, |U| = �(Q) . With
such digraph and its associated labeling we can now use Theorem 1 to obtain
(A()n)ii = min{�(Q):Q ∈ Snii} = min{|U|

:U ⊆ V(G) has property A,U ↔ Q,Q ∈ Snii}. That is, the i − th entry (A(D)n)ii of the
main diagonal of the matrix A(D)n provides the minimum cardinal among all vertex
subsets of G having property A and being identified with closed paths of D starting
and ending in vi . Finally, the minimum entry of the main diagonal of A(D)n gives the
desired value of parameter a(G):

A(D)ij =

{
�(vi, vj) if (vi, vj) is an arc of G,

∞ otherwise.

17830	 E. M. Garzón et al.

1 3

A restriction that occurs when using this approach to compute a parameter a(G) is that
graph G needs some structure that allows us to identify the vertex subsets U ⊆ V(G)
having the property A and the closed paths Q of D with fixed length n. The Carte-
sian products of paths and cycles have such structure, as we now briefly sketch. The
cylinder Pm□Cn has vertex set V(Pm□Cn) = {uij ∶ 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} .
The j − th column is the subgraph generated by {uij ∶ 0 ≤ i ≤ m − 1} , which is iso-
morphic to Pm.

Let U ⊆ V(Pm□Cn) be a vertex subset having the property A and let us con-
sider Uj the j − th column of Pm□Cn , taking into account whether or not its ver-
tices belong to U (by using a labeling of the vertices). The vertices of the digraph
D are all possible Uj obtained in such way, for every vertex subset having property
A. Moreover, there is an arc from Ur to Ur+1 , that is, there is an arc from a ver-
tex of D to another one if they are consecutive columns in Pm□Cn for the same
vertex subset U having property A. Then, U can be identified with the closed path
Q = (U1,U2), (U2,U3)… (Un,U1) that has fixed length n.

The key point of the construction above is the column structure of the cylinder
Pm□Cn and additional requirements are needed in such construction depending on
the studied parameter a(G). In this paper we focus on 2-domination number �2 of the
cylinder Pm□Cn and a suitable digraph D will be defined. The (min,+) powers of
the matrix A(D) have to be computed and this matrix is expected to be quite large,
to such an extent as digraph D is much larger than the cylinder Pm□Cn . Indeed, the
matrix size exponentially grows with the order of the cylinder and for this reason,
this approach is useful just in cylinders Pm□Cn with small enough values of both
m and n. An additional procedure involving well-known properties of the (min,+)
matrix product allows the removal of one of such size restrictions.

2.2 � Specific construction for the 2‑domination number

Let Pm□Cn be a cylinder and let S ⊆ V(Pm□Cn) a 2-dominating set. We label the
vertices in the cylinder according to the following rules:

•	 v = 0 if v ∈ S,
•	 v = 1 if v ∉ S and v has at least 2 neighbors in S in its column or the previous

one,
•	 v = 2 if v ∉ S and v has just 1 neighbor in S in its column or the previous one.

We now identify each column with a word p = (p1, p2,… , pm) with length m in the
alphabet {0, 1, 2} and containing neither the sequences 020, 111, 211, 112, 212 in
any position, nor the sequences 11, 12 at the beginning (that is, for the letters p1p2 )
nor the sequences 11, 21 at the end (that is, for the letters pm−1pm ). These restric-
tions come from the fact that S is a 2-dominating set and from the definition of the
labeling. We call correct m-words to words of length m in the alphabet {0, 1, 2}

min
i
(A(D)n)ii = min

i
(min{|U| ∶U ⊆ V(G) has property A,U ↔ Q,Q ∈ Sn

ii
})

= min{|U| ∶ U ⊆ V(G) has property A} = a(G)

17831

1 3

HPC acceleration of large (min, +) matrix products to compute…

fulfilling all the conditions above. We define the vertex set of the digraph Dm as the
set of all correct m-words.

We now focus on the definition of the arcs in the digraph Dm . Given two correct
m-words p = (p1, p2,… , pm) and q = (q1, q2,… , qm) , we say that p can follow a q if
they can be consecutive columns (in the order qp) in some 2-dominating set, that is,
they follow the rules of the labeling:

•	 if qi = 2 then pi = 0,
•	 if pi = 2 then exactly one among pi−1, pi+1, qi is equal to 0 (if i = 1 then exactly

one among pi+1, qi is equal to 0 and if i = m then exactly one among pi−1, qi is
equal to 0),

•	 if pi = 1 then at least two among pi−1, pi+1, qi is equal to 0 (the same comment as
above for cases i = 1 and i = m).

Finally, there is an arc from a word q to a word p if and only if p can follow q. This
concludes the construction of the digraph Dm , and it is clear that every 2-dominat-
ing set S of Pm□Cn is univocally identified with a closed path Q of length n, that is,
S ↔ Q.

We now need to define a labeling of the arcs of Dm fulfilling that if S ↔ Q then,
|S| = �(Q) . To this end, for an arc (q, p) we define its label as �(q, p) =number of
zeros of p, which obviously gives the desired property. We illustrate the definitions
above with an example.

Example 1  In Fig. 1 a 2-dominating set of P4□C5 is shown (black vertices). Moreo-
ver, the list of correct words representing the columns of such 2-dominating sets are
in Fig. 1.

Clearly pi+1 can follow pi for i ∈ {1, 2, 3, 4} and p1 can follow p5 so
Q = (p1, p2), (p2, p3), (p3, p4), (p4, p5), (p5, p1) is a closed path in the digraph
D4 . The label of each arc of Q is the number of zeros in the second word, that is,
�(p1, p2) = 2,�(p2, p3) = 2,�(p3, p4) = 2,�(p4, p5) = 1,�(p5, p1) = 3 . Hence
�(Q) = 2 + 2 + 2 + 1 + 3 = 10 , that reflects that the 2-dominating set has 10
vertices.

(a) The black vertices
2-dominate P4�C5

0

1

0

0

1

0

1

0

0

1

0

1

0

2

1

0

1

0

2

2
p1 p2 p3 p4 p5

(b) The vertex labeling
provides a word list

Fig. 1   A 2-dominating set of P
4
□C

5
 and its associated word list

17832	 E. M. Garzón et al.

1 3

Theorem 2  Let Pm□Cn be a cylinder and let Dm be the digraph constructed above,
with the arc labeling � . Let Sn

qp
 be the set of all paths of length n from q to p in Dm

and let A(Dm) be the matrix defined by

If A(Dm)
n is the (min,+) power of A(Dm) then, mini(A(Dm)

n)ii = �2(Pm□Cn).

Proof  The proof comes from Theorem 1 and the specific constructions of the
digraph Dm and the labeling � . 	� ◻

Roughly speaking, Theorem 1 says that the entry (i, j) of the matrix A(Dm)
n gives

the minimum label among all paths in Dm with length n, beginning in pi and end-
ing in pj . Therefore, the entry (i, i) on the main diagonal shows the minimum label
among all closed n-paths that begin and end in pi . Each closed path represents a
2-dominating set of Pm□Cn and its label is the cardinal of such set (see Fig. 1).
Hence, Theorem 2 says that the minimum entry of the main diagonal gives the mini-
mum cardinal among all 2-dominating sets, that is, the 2-dominating number.

Using Theorem 2 to compute the 2-domination number of Pm□Cn is subject to
certain restrictions for both m and n. On the one hand, the path order m determines
the number of correct m-words and therefore, the size of the matrix A(Dm) that is
expected to be of the order of 3m . On the other hand, the cycle order n is the number
of (min,+) matrix powers that have to be computed to obtain the value of the 2-dom-
ination number. The first limitation is intrinsic to this approach. However, there are
some properties of the (min,+) matrix product that can avoid the second one.

Lemma 1  Let M be a square matrix. Suppose that there exist natural numbers
n0, a, b such that Mn0+a = b⊠Mn0 . Then, Mn+a = b⊠Mn , for every n ≥ n0.

Proof  By hypothesis, Mn0+a = b⊠Mn0 . Let n ≥ n0 be such that Mn+a = b⊠Mn
then, M(n+1)+a = M ⊠Mn+a = M ⊠ (b⊠Mn) = b⊠ (M ⊠Mn) = b⊠Mn+1 . 	� ◻

Theorem 3  Let m ≥ 2 be an integer and suppose that there exist natural numbers
n0, a, b such that A(Dm)

n0+a = b⊠ A(Dm)
n0 . Then, the 2-domination number satis-

fies the finite difference equation �2(Pm□Cn+a) − �2(Pm□Cn) = b, n ≥ n0.

Proof  By Lemma 1, we know that A(Dm)
n+a = b⊠ A(Dm)

n for every n ≥ n0 . Now,

by Theorem 2 we obtain �2(Pm□Cn+a) = min
i
(A(m)n+a)ii = min

i
(b⊠ A(m)n)ii

= b +min
i
(A(m)n)ii = b + �2(Pm□Cn) , for n ≥ n0 . 	� ◻

Assuming that m is small enough to apply Theorem 2 and that n0, a, b have been
obtained for m then, the boundary values of the finite difference equation above,
that is, �2(Pm□Cn) for n0 ≤ n ≤ n0 + a − 1 can be computed by using Theorem 2
and the finite difference equation can be easily solved to obtain the formula for

A(Dm)qp =

{
�(q, p) if (q, p) is an arc of G,

∞ otherwise.

17833

1 3

HPC acceleration of large (min, +) matrix products to compute…

the 2-domination number �2(Pm□Cn) , for n ≥ n0 . Moreover, the remaining val-
ues �2(Pm□Cn) for n < n0 , if any, can also be computed by Theorem 2. Thus, if m
is small enough to apply Theorem 2 and the conditions of Theorem 3 hold, then
�2(Pm□Cn) can be obtained for any n ≥ 3.

3 � Algorithms and computational analysis

In this section, we present the algorithms we have used to compute the 2-domination
number of Pm□Cn , with 2 ≤ m ≤ 12 and n ≥ 3 . We also study the performance of
such algorithms in sequential and parallel implementations on a CPU AMD EPYC
Rome 7642 with 48 cores and, in addition, on a GPU NVIDIA Tesla V100-PCIE
with 32 GB of memory, 80 multiprocessors with 128 cores in each multiprocessor
(10240 cores CUDA).

Algorithms from 1 to 4 come from Theorem 3 and they allow us to pose the
finite difference equation involving the 2-domination number of Pm□Cn , with m
small enough. Moreover, Theorem 2 provides Algorithm 5 to compute the bound-
ary values of the finite difference equations. Our first target is to obtain the suit-
able values am, bm, nm0 to pose such equation for each m ∈ {2,… , 12} and first of all,
we compute the matrix A(Dm) in Algorithm 1. In order to obtain the set Cm of all
correct m-words, we first obtain all the m-element variations of 3-elements 0, 1, 2,
with repetition allowed. Then, we select those of them not containing the forbidden
sequences of the correct m-words.

Algorithm 1 is only useful for small values of m. As we said before, the size of
the matrix A(Dm) is expected to exponentially grow with m, as do the necessary
computational resources to get and manage such matrix.

In Table 1 we show the matrix sizes and the memory requirements in cases
2 ≤ m ≤ 13 , by using 16 bits arithmetic types of integers. The memory size of the
matrix in the case m = 13 makes it unfeasible to allocate it into the GPU memory,

17834	 E. M. Garzón et al.

1 3

Ta
bl

e 
1  

S
iz

e
of

 th
e

m
at

rix
 A
(D

m
) i

n
A

lg
or

ith
m

 1

m
Ro

w
s

M
em

or
y

si
ze

m
Ro

w
s

M
em

or
y

si
ze

2
6

0.
07

 K
B

8
13

86
3.

67
 M

B
3

15
0.

45
 K

B
9

34
47

22
.6

7
M

B
4

36
2.

53
 K

B
10

85
68

14
0.

02
 M

B
5

90
15

.8
2

K
B

11
21

29
4

0.
85

 G
B

6
22

5
98

.8
8

K
B

12
52

92
9

5.
22

 G
B

7
55

8
0.

69
 M

B
13

13
15

62
32

.2
4

G
B

17835

1 3

HPC acceleration of large (min, +) matrix products to compute…

which is the processor we have used to accelerate our algorithms. This is the reason
we have analyzed, in this paper, the cases 2 ≤ m ≤ 12 . We have run Algorithm 1
in the CPU and it takes 2 minutes in the larger case m = 12 . This running time is
small compared with the following algorithms and moreover, the algorithm does not
use any matrix operations whose analysis is our objective. Therefore, we have not
parallelized this process and the matrix A(Dm) is an input data for the remaining
algorithms.

We now need enough (min,+) powers of the matrix A(Dm) in order to look for
the recurrence relationship. We obtain the desired powers with Algorithm 2.

Table 2   Running times of Algorithm 2 to compute A(D
m
)k, k ≤ 50

m Sequential Multicore 48 threads GPU

Time Time Sequ./multicore
speedup

Time Multicore/
GPU
speedup

7 13.4s 0.4s 33.5 0.2s 2
8 3 m 18.9 s 5.3 s 37.5 0.5s 10.6
9 56 m 42.3 s 1 m 31.8 s 37.1 2.9s 31.7
10 17 h 9 m 21.6 s 25 m 23.4 s 40.5 30.2 s 50.4
11 – 6 h 29 m 28.5 s 6 m 21.6 s 61.2
12 – – 1 h 30 m 15.6 s

Table 3   Results obtained by
Algorithm 3

m r
m

0
a
m

b
m

m r
m

0
a
m

b
m

2 48 2 2 8 47 3 10
3 44 6 8 9 47 3 11
4 42 8 14 10 47 3 12
5 43 7 15 11 47 3 13
6 39 11 28 12 47 3 14
7 32 18 53

17836	 E. M. Garzón et al.

1 3

There exist sufficient but not necessary conditions ensuring that the hypotheses
in Theorem 3 are true (see [30]). However, such conditions provide a non-minimum
value for n0 in the order of the square of the matrix size that is not practical. We have
run Algorithm 2 with K = 50 , which has proven to be enough in cases 2 ≤ m ≤ 12.

Due to the high requirements to sequentially compute the powers, we have modi-
fied this routine in two ways to accelerate it on modern multicore CPU and GPUs.
On the one hand, we have used the directives of OpenMP [31] to parallelize the
(min,+) matrix multiplication on multicore CPUs. Specifically, we use the OpenMP
directives to accelerate the computation of each product, so the outer loop that iter-
ates through the rows of the first matrix of the product is parallelized. This technique
is straightforward, and it allows to efficiently develop the (min,+) matrix product to
leverage the resources of the CPU multicore processors. Moreover, the performance
achieved is enough for the purpose of our work when the dimensions of the matrices
are moderated.

On the other hand, the powers have also been carried out by a modification of
the routine MatrixMul, available in the NVIDIA CUDA TOOLKIT 11 [32] and
described in the CUDA C Programming Guide (see [33], Chapter 3), to adapt it to
the (min,+) multiplication. In this case, we use a different parallelization strategy
than the one used in OpenMP. It is based on a tiled matrix multiplication to optimize
the GPU hierarchy memory management. So, this method takes advantage of the
lower latency, the higher bandwidth shared memory within GPU thread blocks and
the number of slow accesses to memory device, which are minimized. For details of
the memory access pattern of MatrixMul see Chapter 3 of [33].

We show in Table 2 the running times of Algorithm 2 in cases 7 ≤ m ≤ 12 while
in the remaining cases the algorithm needs less than 1 second, even with the sequen-
tial implementation.

Table 2 shows that the running time of computing 50 (min,+) powers of matrix
A(Dm) exponentially grows as the matrix size increases. In order to address large
cases in reasonable time we have run an OpenMP parallel implementation with 48
cores/threads. Such implementation provides small running times in cases m = 8 and
m = 9 but it grows fast for m ≥ 10 . In order to increase the efficiency of this algo-
rithm, we have run a version of the (min,+) matrix product in CUDA for NVIDIA
GPU and we have obtained a significant improvement in terms of running times
compared to the sequential and the parallel OpenMP versions.

The following step to apply Theorem 3 is to find the appropriate recurrence rela-
tionship between two powers of matrix A(Dm) . Even though such matrix is sparse,
we have noted that its powers become dense, that is, with no infinite entries, from the
third one. Therefore, the hypothesis in Theorem 3, that is, A(Dm)

n0+a = b⊠ A(Dm)
n0

is equivalent to A(Dm)
n0+a − A(Dm)

n0 being a constant matrix with entries equal to
bm . We use this fact in Algorithm 3. The results are shown in Table 3 ( K = 50).

17837

1 3

HPC acceleration of large (min, +) matrix products to compute…

It is expected that the values of rm

0
 are not minimum because we have found a

recurrence relationship with rm
0
+ am = 50 , for every m. But in any case, we have

confirmed that matrix A(Dm) meets the hypothesis of Theorem 3 and the finite dif-
ference equation can be posed for n ≥ rm

0
.

We now show how to obtain the minimum value nm
0
 such that

A(Dm)
n+am = bm ⊠ A(Dm)

n for every n ≥ nm
0
 , in Algorithm 4 . Finding this optimal

value could be interesting in order to try to reduce the number of (min,+) powers
required to ensure the hypothesis of Theorem 3.

Table 4   Values to apply
Theorem 3 obtained with
Algorithm 4

m n
m

0
a
m

b
m

m n
m

0
a
m

b
m

2 4 2 2 8 25 3 10
3 7 6 8 9 22 3 11
4 9 8 14 10 21 3 12
5 31 7 15 11 24 3 13
6 19 11 28 12 26 3 14
7 23 18 53

17838	 E. M. Garzón et al.

1 3

We show the values of nm
0
 obtained with Algorithm 4 in Table 4, together with

the values of am, bm shown before. Such values provide the finite difference equation
�2(Pm□Cn+am

) − �2(Pm□Cn) = bm, n ≥ nm
0
 and m ∈ {2,… , 12}.

The matrix operation used in Algorithms 3 and 4 is the matrix difference, which
consumes fewer computational resources than the (min,+) matrix multiplication.
Indeed, both algorithms are faster with the OpenMP directives than on the GPU due
to the cost of communications to allocate the matrices on the GPU memory to per-
form quite a simple operation. For instance, the running times (in seconds) of Algo-
rithm 3 for largest case we have computed m = 12 are 16.8 on the CPU (sequential),
13.6 on the GPU and 7.2 with OpenMP (48 cores). For Algorithm 4, they are 149.8,
170.0 and 98.5, respectively.

Finally, we compute the boundary values needed to solve the finite difference
equations and to obtain the formulæ of the 2-domination number in the studied
cases, with Algorithm 5, by using Theorem 2.

Algorithm 5 uses the minimization operation over the main diagonal of the
matrix A(Dm)

i , which can be seen as a vector with a length of the number of rows of
the matrix. This matrix operation is less computationally demanding given that the
number of the operations needed here is on the order of the number of rows of the
matrix while in Algorithms 3 and 4 the order is the square of that number. Indeed,
the CPU needs less than 1 second if m ≤ 11 and 11.8 seconds in the largest case
m = 12 . Our program to compute the 2-domination number of cylindrical graphs
with small paths consists of consecutive run Algorithms from 2 to 5 and we have
implemented it in four ways. The first one runs every algorithm on the CPU and we

17839

1 3

HPC acceleration of large (min, +) matrix products to compute…

have here completed the computation of cases m ≤ 10 , due to high running times of
Algorithm 2.

In the second version, we have used the OpenMP directives to parallelize the
execution of the (min,+) matrix product routines in Algorithm 2 and the matrix dif-
ference in Algorithm 3 and 4 because they are the most computationally demanding
matrix operations. We have computed until case m = 11 with 48 cores and although
the speedup for Algorithm 2 is over 40 in the last case, the running time is still huge.
The third program runs Algorithms 2, 3 and 4 on the GPU and cases m ≤ 12 have
been obtained. Algorithm 2 presents here a very noticeable improvement in terms
of running time, but the huge matrix size does not allow us to approach large cases
given that from m = 13 the matrix cannot be allocated on the GPU memory.

In order to test the goodness of the implementation of Algorithms 3 and 4 on
the CPU compared to the GPU, we have done the fourth version that uses the GPU
just in Algorithm 2 and the OpenMP parallelization for Algorithms 3 and 4. This is
slightly faster than version 3 because of the communication costs to allocate matri-
ces on the GPU memory to perform matrix operations with little computational cost.
The total running times of the four versions are shown in Table 5.

Table 5   Total running times m Version 1 Version 2 Version 3 Version 4

7 13.5 s 0.4 s 0.2 s 0.3 s
8 3 m 19 s 5.4 s 0.6 s 0.6 s
9 56 m 43 s 1 m 32 s 3.9 s 3.5 s
10 17 h 9 m 27 s 25 m 26 s 35 s 32.5 s
11 6 h 29 m 45 s 6 m 44 s 6m 32 s
12 1 h 33 m 34 s 1 h 29 m 58 s

Table 6   Values of �m

k

∗ There is one exception

m a
m

k with �m

k
= 1 k with �m

k
= 0

2 2 None All
3 6 None All
4 8 4, 5 Otherwise
5 7 None All
6 11 5, 9 Otherwise
7 18 k ∈ {1, 2, 4, 5} ,

19 ≤ n ≡ k (mod 18)

Otherwise

8∗ 3 None All
9 3 None All
10∗ 3 1, 2 Otherwise
11 3 2 Otherwise
12∗ 3 1, 2 Otherwise

17840	 E. M. Garzón et al.

1 3

4 � Conclusions

According to Theorem 3, values in Table 4 allow us to pose the finite difference
equation �2(Pm□Cn+am

) − �2(Pm□Cn) = bm, n ≥ nm
0
 , for each 2 ≤ m ≤ 12 . The

boundary values �2(Pm□Cn) , nm0 ≤ n ≤ nm
0
+ am − 1 , have been obtained with Algo-

rithm 5. Therefore, the solution is �
2
(P

m
□C

n
) =

⌈
bm⋅n

an

⌉
+ �m

k
 , where n ≡ k (mod am)

and �m
k

 depends on the boundary values for each m. Moreover, the remaining values
of �2(Pm□Cn) , for 3 ≤ n < nm

0
 , have also been computed with Algorithm 5 and most

of them follow the general formula.
In the same way as in other domination parameters in grids and cylinders

(see [17, 18]), these results show a non-regular behavior for the smallest values of
m, but it becomes regular for m ≥ 8 . Note that if 8 ≤ m ≤ 12 then, am = 3 and
bm = m + 2 . In such cases �2(Pm□Cn) = ⌈ (m+2)n

3
⌉ + �m

k
 , where n ≡ k (mod 3) and

�m
k

 again depends on the boundary values �2(Pm□Cnm
0
+k) . In order to complete the

formulæ, in Table 6 we show the values of �m
k

 , for each m ∈ {2,… , 12} and
k ∈ {0,… , am − 1}.

The only exceptions are n = 5 , for m ∈ {8, 10, 12} , where �m
k
= 2 . This

value is coherent with the results obtained in [28]: �2(C5□Pm) = 2m + 2 if
2 < m ≡ 0 (mod 2) and �2(C5□Pm) = 2m + 1 if m = 2 or m ≡ 1 (mod 2).

In spite of obtaining that �m
k
≤ 2 for m ≤ 12 , we think that such numbers will

increase for some values of n as m grows because they would depend on m in some
way. Our results cover the cases 2 ≤ m ≤ 12 , 3 ≤ n ≤ 15 already studied in [28],
and all the results match. In addition, for 8 ≤ m ≤ 12 and n ≡ 0 (mod 3) we have
shown that �2(Pm□Cn) =

(m+2)n

3
 . The same formula for n = 3, 6, 9, 12, 15 and m ≥ 8

is obtained in [28] and we have now extended this result to every n ≡ 0 (mod 3) ,
for 8 ≤ m ≤ 12 . Also note that our formulæ for m ≤ 7 and n ≡ 0 (mod 3) show that
such small cases do not follow the same formula, in general. Our results together
with those in [28] give us support to conjecture that �2(Pm□Cn) =

(m+2)n

3
 , if m ≥ 8

and n ≡ 0 (mod 3).
Regarding the computational point of view, our main target was to develop effi-

cient routines to compute (min,+) matrix products on multicore CPUs and GPUs.
Such routines have application to the computation of the 2-domination number of
cylindrical graphs with small paths of order m. Our approach has as a limitation the
size of the involved matrices that exponentially grows as m does. This condition has
led us to focus on cases 2 ≤ m ≤ 12 that meet the requirements of our computational
resources on both the CPU and the GPU.

Once we have obtained the matrices for cases 2 ≤ m ≤ 12 , we have divided the
routines in Algorithms from 2 to 5 and three of them, Algorithms 3, 4 and 5, can be
run on the CPU in a reasonable time. Moreover, the OpenMP parallelization with
48 cores slightly improves such running times, which are negligible compared to
the total ones. However, the CPU has shown to be non-sufficient to run Algorithm 2
in the most interesting cases, which are the largest ones, to find the desired regu-
lar behavior of the 2-domination number. The matrix operation used by this algo-
rithm is the (min,+) matrix product and we explore two improvement options to
reduce its running time: a parallelization of the algorithm with OpenMP with 48

17841

1 3

HPC acceleration of large (min, +) matrix products to compute…

cores and an implementation of this matrix product in CUDA for NVIDIA GPU.
The OpenMP parallel version with 48 cores of Algorithm 2 has shown a speedup
over 40 regarding the sequential version in case m = 10 . However, the running times
are so high that the parallelization is not enough for m ≥ 11 , where more than 6
hours are needed. In contrast, the GPU version computes 50 powers of the matrix
A(Dm) in considerably less time, with a speedup over 60 compared to the OpenMP
version for m = 12.

We think it would be possible to improve the efficiency of Algorithm 2 by reduc-
ing the number of computed powers while the finite difference equation can still
be solved. In addition, some parallelization of the (min,+) product allowing to dis-
tribute the product of two matrices in small sets of rows and columns would give
the opportunity of computing some cases larger than m = 12 . Such improvements
would perhaps allow us to conjecture a general formula of the 2-domination number
of the cylinder Pm□Cn with n ≡ 1, 2 (mod 3).

To sum up, we have solved the graph problem of computing the 2-domination
number of some cylinders with a small path in a reasonable time by exploiting the
benefits of the GPU’s to run algorithms involving the (min,+) matrix product while
the rest of matrix operations involved, such as the matrix difference or the minimiza-
tion of the main diagonal of a matrix, demand fewer computational resources and
they can be addressed on the multicore CPU in a short time. Finally, we have con-
jectured that �2(Pm□Cn) if n ≡ 0 (mod 3).

Acknowledgements  These results are part of the projects RTI2018-095993-B-I00 and
PID2019-104129GB-I00 both funded by MCIN/AEI/10.13039/501100011033/ FEDER “A way to make
Europe.”

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data Availability Statement  The source code, in programming language C, of the algorithms developed
in this paper can be found online in the repository https://github.com/hpcjmart/2domination.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Pin J-E (1998) Tropical semirings, Idempotency. In: Gunawardena J (ed) Publications of the Newton
Institute. Cambridge University Press, Cambridge, UK, pp 50–69. https://​doi.​org/​10.​1017/​CBO97​
80511​662508.​004

	 2.	 Omanovic A, Kazan H, Oblak P, Curk T (2021) Sparse data embedding and prediction by tropical
matrix factorization. BMC Bioinform 22(1):89

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9780511662508.004
https://doi.org/10.1017/CBO9780511662508.004

17842	 E. M. Garzón et al.

1 3

	 3.	 Speyer D, Sturmfels B (2009) Tropical mathematics. Math Mag 82(3):163–173. https://​doi.​org/​10.​
1080/​00255​70X.​2009.​11953​615

	 4.	 Klavžar S, Žerovnik J (1996) Algebraic approach to fasciagraphs and rotagraphs. Discret Appl Math
68(1):93–100. https://​doi.​org/​10.​1016/​0166-​218X(95)​00058-Y

	 5.	 Butkovič P (2019) A note on tropical linear and integer programs. J Optim Theory Appl
180(3):1011–1026. https://​doi.​org/​10.​1007/​s10957-​018-​1429-8

	 6.	 Krivulin N (2015) Algebraic solutions of tropical optimization problems. Lobachevskii J Math
36(4):363–374. https://​doi.​org/​10.​1134/​S1995​08021​50400​6X

	 7.	 Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Chapman and
hall CRC pure and applied mathematics series, Marcel Dekker Inc, New York, USA

	 8.	 Fink JF, Jacobson MS (1985) N-domination in graphs. Graph theory with applications to algorithms
and computer science. Wiley, USA, pp 283–300

	 9.	 Bujtás C, Jaskó S (2018) Bounds on the 2-domination number. Discrete Appl Math 242:4–15.
https://​doi.​org/​10.​1016/j.​dam.​2017.​05.​014

	10.	 Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-complete-
ness. W. H. Freeman, New York, USA

	11.	 Jacobson MS, Peters K (1989) Complexity questions for n-domination and related parameters.
Congr Numer 68:7–22

	12.	 Bean TJ, Henning M, Swart HC (1994) On the integrity of distance domination in graphs. Australas
J Comb 10:29–44

	13.	 Vizing VG (1968) Some unsolved problems in graph theory. Uspekhi Mat Nauk 23(6):117–134
	14.	 Brešar B, Dorbec P, Goddard W, Hartnell BL, Henning MA, Klavžar S, Rall DF (2012) Vizing’s

conjecture: a survey and recent results. J Graph Theory 69(1):46–76. https://​doi.​org/​10.​1002/​jgt.​
20565

	15.	 Brešar B, Hartnell BL, Henning MA, Kuenzel K, Rall DF (2021) A new framework to approach
Vizing’s conjecture. Discuss Math Graph Theory 41(3):749–762. https://​doi.​org/​10.​7151/​dmgt.​2293

	16.	 Imrich W, Klavžar S (2000) Product Graphs, Structure and Recognition. In: Wiley-Interscience
series in discrete mathematics and optimization, Wiley, New York. p 358

	17.	 Crevals S (2014) Domination of cylinder graphs. Congr Numer 219:53–63
	18.	 Gonçalves D, Pinlou A, Rao M, Thomassé S (2011) The domination number of grids. SIAM J Dis-

cret Math 25(3):1443–1453. https://​doi.​org/​10.​1137/​11082​574
	19.	 Guichard DR (2004) A lower bound for the domination number of complete grid graphs. J Combin

Math Combin Comput 49:215–220
	20.	 Martínez JA, Garzón EM, Puertas ML (2021) Powers of large matrices on GPU platforms to com-

pute the roman domination number of cylindrical graphs. IEEE Access 9:29346–29355. https://​doi.​
org/​10.​1109/​ACCESS.​2021.​30587​38

	21.	 Pavlič P, Žerovnik J (2012) Roman domination number of the cartesian products of paths and
cycles. Electron J Comb 19(3):19

	22.	 Kepner J, Gilbert JR (eds.): Graph Algorithms in the Language of Linear Algebra. Software, envi-
ronments, tools, vol. 22. SIAM, Philadelphia, USA (2011). https://​doi.​org/​10.​1137/1.​97808​98719​
918

	23.	 Dobosiewicz W (1990) A more efficient algorithm for the min-plus multiplication. Int J Comput
Math 32(1–2):49–60. https://​doi.​org/​10.​1080/​00207​16900​88038​14

	24.	 Felzenszwalb PF, McAuley JJ (2011) Fast inference with min-sum matrix product. IEEE Trans Pat-
tern Anal Mach Intell 33(12):2549–2554. https://​doi.​org/​10.​1109/​TPAMI.​2011.​121

	25.	 Buluç A, Gilbert J (2011) The combinatorialBLAS: design, implementation, and applications. Int J
High Perform Comput Appl 25:496–509. https://​doi.​org/​10.​1177/​10943​42011​403516

	26.	 Humayun A, Asif M, Hanif MK (2017) BTAS: A library for tropical algebra. CoRR abs/1701.04733
	27.	 Yang C, Buluç A, Owens JD (2019) Graphblast: a high-performance linear algebra-based graph

framework on the GPU. CoRR abs/1908.01407
	28.	 Garzón EM, Martínez JA, Moreno JJ, Puertas ML (2022) On the 2-domination number of cylinders

with small cycles. Fund. Inform. accepted
	29.	 Carré B (1979) Graphs and Networks. Clarendon Press, Oxford, UK
	30.	 Spalding A (1998) Min-plus algebra and graph domination. PhD thesis, Dept. of Appl. Math., Univ.

of Colorado, Denver, CL, USA
	31.	 TheOpenMP API specification for parallel programming. https://​www.​openmp.​org. Accessed:

2021-03-31

https://doi.org/10.1080/0025570X.2009.11953615
https://doi.org/10.1080/0025570X.2009.11953615
https://doi.org/10.1016/0166-218X(95)00058-Y
https://doi.org/10.1007/s10957-018-1429-8
https://doi.org/10.1134/S199508021504006X
https://doi.org/10.1016/j.dam.2017.05.014
https://doi.org/10.1002/jgt.20565
https://doi.org/10.1002/jgt.20565
https://doi.org/10.7151/dmgt.2293
https://doi.org/10.1137/11082574
https://doi.org/10.1109/ACCESS.2021.3058738
https://doi.org/10.1109/ACCESS.2021.3058738
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1080/00207169008803814
https://doi.org/10.1109/TPAMI.2011.121
https://doi.org/10.1177/1094342011403516
https://www.openmp.org

17843

1 3

HPC acceleration of large (min, +) matrix products to compute…

	32.	 NVIDIA CUDA toolkit. https://​devel​oper.​nvidia.​com/​cuda-​math-​libra​ry. Accessed: 2021-03-31
	33.	 NVIDIA CUDA documentation. https://​docs.​nvidia.​com/​cuda/​pdf/​CUDA_C_​Progr​amming_​Guide.​

pdf. Accessed: 2021-03-31

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://developer.nvidia.com/cuda-math-library
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

	HPC acceleration of large (min, +) matrix products to compute domination-type parameters in graphs
	Abstract
	1 Introduction
	2 The 2-domination number in cylindrical graphs with small paths
	2.1 General construction
	2.2 Specific construction for the 2-domination number

	3 Algorithms and computational analysis
	4 Conclusions
	Acknowledgements
	References

