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Abstract
The computation of the domination-type parameters is a challenging problem in 
Cartesian product graphs. We present an algorithmic method to compute the 2-dom-
ination number of the Cartesian product of a path with small order and any cycle, 
involving the (min,+) matrix product. We establish some theoretical results that pro-
vide the algorithms necessary to compute that parameter, and the main challenge to 
run such algorithms comes from the large size of the matrices used, which makes it 
necessary to improve the techniques to handle these objects. We analyze the perfor-
mance of the algorithms on modern multicore CPUs and on GPUs and we show the 
advantages over the sequential implementation. The use of these platforms allows us 
to compute the 2-domination number of cylinders such that their paths have at most 
12 vertices.
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1  Introduction

The (min,+) matrix algebra [1], also called tropical algebra, replaces addition and 
multiplication with minimization and addition, respectively. The use of this algebra 
is currently in expansion and it is involved in several disciplines of great interest, for 
instance finite automata [1], statistics [2], phylogenetics [3], optimization of graph 
parameters [4], integer programming [5], and other optimization problems [6]. How-
ever, the computational demands of such computations are unapproachable when the 
dimensions of the corresponding matrices are large. To overcome this drawback the 
modern multicore CPUs and GPUs can be exploited as High-Performance Comput-
ing (HPC) platforms to accelerate and widen the dimensions of such operations. In 
this work, the analysis of the domination-type parameters in graphs is chosen as an 
interesting example where sequences of large (min,+) matrix products are involved.

The use of graphs as a tool to model problems in networks has been widely stud-
ied. Among such problems, the efficient location of resources in a network can be 
approached by means of the domination-type parameters in graphs. A dominating 
set in a graph G is a vertex subset S such that each vertex not in S has at least one 
neighbor in it. The domination number of G, denoted by �(G) , is the cardinal of a 
minimum dominating set. We refer to [7] for general information about these topics 
and, in particular, about their applications to network problems. Among the varia-
tions of this concept that can be found in the literature, we focus on the 2-domination. 
A 2-dominating set is vertex subset S ⊆ V(G) such that each vertex not in S has at 
least two neighbors in it. The 2-domination number �2(G) is the minimum cardinal 
of a 2-dominating set of G [8]. Some interesting applications of the 2-domination in 
graphs such as the optimization of fault tolerant sensor networks, the facility location 
problem and the data collection problem can be found in [9]. Given a graph G and a 
positive integer k ≤ |V(G)| , the decision problem “Is there a dominating set of G with 
at most k vertices?” is NP-complete [10], even in bipartite and chordal graphs. How-
ever, it has been shown to be polynomial in trees and interval graphs [7]. In a similar 
way, the 2-domination decision problem is to decide whether G has a 2-dominating 
set of cardinal at most k ≤ |V(G)| . It is known that it is an NP-complete problem [11], 
again even in bipartite and chordal graphs [12]. Moreover, linear-time algorithms to 
compute this parameter in trees and series-parallel graphs can also be found in [11].

A family of interest for the domination-type parameters are the Cartesian product 
graphs since the Vizing’s conjecture was formulated [13]. This conjecture proposes 
a general inequality that relates the domination number of both a Cartesian product 
graph and its factors. This conjecture is still open and a survey about this subject 
can be found in  [14], while a recent new approach is in  [15]. Recall that the Car-
tesian product of two graphs G□H is the graph with vertex set V(G) × V(H) and 
such that two vertices (g1, h1), (g2, h2) are adjacent in G□H if either g1 = g2 and 
h1, h2 are adjacent in H, or g1, g2 are adjacent in G and h1 = h2 . We refer to [16] as a 
general reference about this topic. It is well known that domination-type parameters 
are difficult to handle in Cartesian product graphs and there is no general relation-
ship between the value of such parameters in the product graph and its factor graphs. 
Even in the simplest cases of the Cartesian product of two graphs, that is, two paths 
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(grid), a path and a cycle (cylinder) and two cycles (torus) specific procedures are 
needed to compute such parameters.

The domination-type parameters in Cartesian product graphs are among the 
variety of graph parameters that can be computed by using matrix operations. This 
approach appeared for the first time in [4] and has been used in different Cartesian 
products, such as grids and cylinders, and also in different parameters, such as domi-
nation, independent domination and Roman domination (see for instance [17–21]). 
Unlike other parameters, those of domination-type do not use the usual matrix prod-
uct but the (min,+) matrix product, which is also called the tropical product  [1]. 
The (min,+) matrix product is defined over the semi-ring of tropical numbers 
P = (ℝ ∪ {∞}, min,+,∞, 0) in the following way: (A⊠ B)ij = mink(aik + bkj) . 
Moreover, for matrix A and � ∈ ℝ ∪ {∞} , (𝛼 ⊠ A)ij = 𝛼 + aij.

Graph algorithms involving tropical algebra operations can be found in the lit-
erature [22]. The computational side of this approach leads to interesting challenges 
bearing in mind the large size of the matrices involved in such algorithms and both, 
special properties of the matrices and regular structures of the graphs, have been 
taken into account in order to reduce the complexity of the matrix computations [23, 
24]. Moreover, optimal implementations of the matrix operations in multicore and 
GPU platforms have proven to be suitable for these problems [25–27].

A contribution to the problem of the computation of the 2-domination number in 
cylinders can be found in [28], where this parameter was obtained in cylinders with 
a small cycle and any path, by using algorithms involving the (min,+) matrix-vector 
product. We now focus the complementary problem of computing this parameter in 
cylinders with a small path and any cycle, which is unknown. The technique we use 
here requires performing the (min,+) matrix-matrix product, which has higher com-
putational requirements.

The goal of this work is twofold. From the computational point of view, effi-
cient routines to compute (min,+) matrix products on multicore CPUs and GPUs 
are developed. Moreover, the matrices involved in the analysis of domination-type 
parameters in graphs are used to evaluate such implementations on modern HPC 
platforms. It is relevant to underline that, beyond this particular graph analysis, these 
efficient implementations are useful to accelerate the wide range of applications 
which are expressed in terms of (min,+) matrix products. To allow the scientific 
community to access to these efficient implementations of (min,+) matrix products, 
they are available at https://github.com/hpcjmart/2domination.

From the perspective of the graph analysis, our objective is to conjecture a formula 
for the 2-domination number in cylinders with path and cycle of unbounded order. 
Obtaining the value of the 2-domination number in cylinders with one small factor, 
either the path or the cycle, is the first step to addressing the general case. The reason 
is the regular behavior that is expected, except for the smallest cases. Making such 
regularity apparent provides the key information to look for the general formula.

In Sect.  2, we present the theoretical results that give support to the algorithms 
shown in Sect. 3 along with their computational analysis. Such algorithms will provide 
the desired values of the 2-domination number in cylinders with small path and any 
cycle, which we present in Sect. 4, as well as our conclusions from the computational 
point of view.
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2 � The 2‑domination number in cylindrical graphs with small paths

In this section, we describe our approach to compute the 2-domination number of 
cylinders Pm□Cn with small paths. Such approach, involving the (min,+) matrix-
matrix product has also been used to obtain similar results for the Roman domina-
tion number  [20]. We first describe the general ideas involved in this method and 
then, we particularize the case of �2.

2.1 � General construction

We focus on the following result from [29], that we quote from [4] in the version 
related to the (min,+) matrix product.

Let D be a digraph with vertex set V(D) = {v1, v2,… , vs} together with a labeling 
function � which assigns an element of the semi-ring P = (ℝ ∪ {∞}, min,+,∞, 0) 
to every arc of the digraph D . A path of length n in D is a sequence of n consecutive 
arcs Q = (vi0vi1 )(vi1vi2 )… (vik−1vin ) and Q is a closed path if vi0 = vin . The labeling � 
can be easily extended to paths: 𝓁(Q) = 𝓁(vi0vi1 ) + 𝓁(vi1vi2 ) +⋯ + 𝓁(vik−1vin ).

Theorem 1  [29] Let Sn
ij
 be the set of all paths of length n from vi to vj in D and let 

A(D) be the matrix defined by

If A(D)n is the n-th (min,+) power of A(D) , then (A(D)n)ij = min{�(Q) ∶ Q ∈ Sn
ij
}.

The application of these results to the computation of domination-type param-
eters in Cartesian product graphs follows a common approach which uses the fact 
that these kinds of parameters are defined as the minimum cardinal of a set having a 
certain property. We now describe this general procedure.

Let G be a graph and let a(G) be a parameter defined as the minimum cardi-
nal of a vertex subset of G having a certain property A. First of all, we have to 
define a direct graph D such that there exists a bijective correspondence between 
the vertex subsets U ⊆ V(G) having the property A and the closed paths Q of 
D with fixed length n, that we denote by U ↔ Q . As a second step, we have to 
define a labeling � of the arcs of D such that if U ↔ Q then, |U| = �(Q) . With 
such digraph and its associated labeling we can now use Theorem  1 to obtain 
(A()n)ii = min{�(Q):Q ∈ Snii} = min{|U|

:U ⊆ V(G) has property A,U ↔ Q,Q ∈ Snii}. That is, the i − th entry (A(D)n)ii of the 
main diagonal of the matrix A(D)n provides the minimum cardinal among all vertex 
subsets of G having property A and being identified with closed paths of D starting 
and ending in vi . Finally, the minimum entry of the main diagonal of A(D)n gives the 
desired value of parameter a(G):

A(D)ij =

{
�(vi, vj) if (vi, vj) is an arc of G,

∞ otherwise.
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A restriction that occurs when using this approach to compute a parameter a(G) is that 
graph G needs some structure that allows us to identify the vertex subsets U ⊆ V(G) 
having the property A and the closed paths Q of D with fixed length n. The Carte-
sian products of paths and cycles have such structure, as we now briefly sketch. The 
cylinder Pm□Cn has vertex set V(Pm□Cn) = {uij ∶ 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} . 
The j − th column is the subgraph generated by {uij ∶ 0 ≤ i ≤ m − 1} , which is iso-
morphic to Pm.

Let U ⊆ V(Pm□Cn) be a vertex subset having the property A and let us con-
sider Uj the j − th column of Pm□Cn , taking into account whether or not its ver-
tices belong to U (by using a labeling of the vertices). The vertices of the digraph 
D are all possible Uj obtained in such way, for every vertex subset having property 
A. Moreover, there is an arc from Ur to Ur+1 , that is, there is an arc from a ver-
tex of D to another one if they are consecutive columns in Pm□Cn for the same 
vertex subset U having property A. Then, U can be identified with the closed path 
Q = (U1,U2), (U2,U3)… (Un,U1) that has fixed length n.

The key point of the construction above is the column structure of the cylinder 
Pm□Cn and additional requirements are needed in such construction depending on 
the studied parameter a(G). In this paper we focus on 2-domination number �2 of the 
cylinder Pm□Cn and a suitable digraph D will be defined. The (min,+) powers of 
the matrix A(D) have to be computed and this matrix is expected to be quite large, 
to such an extent as digraph D is much larger than the cylinder Pm□Cn . Indeed, the 
matrix size exponentially grows with the order of the cylinder and for this reason, 
this approach is useful just in cylinders Pm□Cn with small enough values of both 
m and n. An additional procedure involving well-known properties of the (min,+) 
matrix product allows the removal of one of such size restrictions.

2.2 � Specific construction for the 2‑domination number

Let Pm□Cn be a cylinder and let S ⊆ V(Pm□Cn) a 2-dominating set. We label the 
vertices in the cylinder according to the following rules:

•	 v = 0 if v ∈ S,
•	 v = 1 if v ∉ S and v has at least 2 neighbors in S in its column or the previous 

one,
•	 v = 2 if v ∉ S and v has just 1 neighbor in S in its column or the previous one.

We now identify each column with a word p = (p1, p2,… , pm) with length m in the 
alphabet {0, 1, 2} and containing neither the sequences 020, 111, 211, 112, 212 in 
any position, nor the sequences 11, 12 at the beginning (that is, for the letters p1p2 ) 
nor the sequences 11, 21 at the end (that is, for the letters pm−1pm ). These restric-
tions come from the fact that S is a 2-dominating set and from the definition of the 
labeling. We call correct m-words to words of length m in the alphabet {0, 1, 2} 

min
i
(A(D)n)ii = min

i
(min{|U| ∶U ⊆ V(G) has property A,U ↔ Q,Q ∈ Sn

ii
})

= min{|U| ∶ U ⊆ V(G) has property A} = a(G)
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fulfilling all the conditions above. We define the vertex set of the digraph Dm as the 
set of all correct m-words.

We now focus on the definition of the arcs in the digraph Dm . Given two correct 
m-words p = (p1, p2,… , pm) and q = (q1, q2,… , qm) , we say that p can follow a q if 
they can be consecutive columns (in the order qp) in some 2-dominating set, that is, 
they follow the rules of the labeling:

•	 if qi = 2 then pi = 0,
•	 if pi = 2 then exactly one among pi−1, pi+1, qi is equal to 0 (if i = 1 then exactly 

one among pi+1, qi is equal to 0 and if i = m then exactly one among pi−1, qi is 
equal to 0),

•	 if pi = 1 then at least two among pi−1, pi+1, qi is equal to 0 (the same comment as 
above for cases i = 1 and i = m).

Finally, there is an arc from a word q to a word p if and only if p can follow q. This 
concludes the construction of the digraph Dm , and it is clear that every 2-dominat-
ing set S of Pm□Cn is univocally identified with a closed path Q of length n, that is, 
S ↔ Q.

We now need to define a labeling of the arcs of Dm fulfilling that if S ↔ Q then, 
|S| = �(Q) . To this end, for an arc (q, p) we define its label as �(q, p) =number of 
zeros of p, which obviously gives the desired property. We illustrate the definitions 
above with an example.

Example 1  In Fig. 1 a 2-dominating set of P4□C5 is shown (black vertices). Moreo-
ver, the list of correct words representing the columns of such 2-dominating sets are 
in Fig. 1.

Clearly pi+1 can follow pi for i ∈ {1, 2, 3, 4} and p1 can follow p5 so 
Q = (p1, p2), (p2, p3), (p3, p4), (p4, p5), (p5, p1) is a closed path in the digraph 
D4 . The label of each arc of Q is the number of zeros in the second word, that is, 
�(p1, p2) = 2,�(p2, p3) = 2,�(p3, p4) = 2,�(p4, p5) = 1,�(p5, p1) = 3 . Hence 
�(Q) = 2 + 2 + 2 + 1 + 3 = 10 , that reflects that the 2-dominating set has 10 
vertices.

(a) The black vertices
2-dominate P4�C5

0

1

0

0

1

0

1

0

0

1

0

1

0

2

1

0

1

0

2

2
p1 p2 p3 p4 p5

(b) The vertex labeling
provides a word list

Fig. 1   A 2-dominating set of P
4
□C

5
 and its associated word list
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Theorem 2  Let Pm□Cn be a cylinder and let Dm be the digraph constructed above, 
with the arc labeling � . Let Sn

qp
 be the set of all paths of length n from q to p in Dm 

and let A(Dm) be the matrix defined by

If A(Dm)
n is the (min,+) power of A(Dm) then, mini(A(Dm)

n)ii = �2(Pm□Cn).

Proof  The proof comes from Theorem  1 and the specific constructions of the 
digraph Dm and the labeling � . 	�  ◻

Roughly speaking, Theorem 1 says that the entry (i, j) of the matrix A(Dm)
n gives 

the minimum label among all paths in Dm with length n, beginning in pi and end-
ing in pj . Therefore, the entry (i, i) on the main diagonal shows the minimum label 
among all closed n-paths that begin and end in pi . Each closed path represents a 
2-dominating set of Pm□Cn and its label is the cardinal of such set (see Fig.  1). 
Hence, Theorem 2 says that the minimum entry of the main diagonal gives the mini-
mum cardinal among all 2-dominating sets, that is, the 2-dominating number.

Using Theorem 2 to compute the 2-domination number of Pm□Cn is subject to 
certain restrictions for both m and n. On the one hand, the path order m determines 
the number of correct m-words and therefore, the size of the matrix A(Dm) that is 
expected to be of the order of 3m . On the other hand, the cycle order n is the number 
of (min,+) matrix powers that have to be computed to obtain the value of the 2-dom-
ination number. The first limitation is intrinsic to this approach. However, there are 
some properties of the (min,+) matrix product that can avoid the second one.

Lemma 1  Let M be a square matrix. Suppose that there exist natural numbers 
n0, a, b such that Mn0+a = b⊠Mn0 . Then, Mn+a = b⊠Mn , for every n ≥ n0.

Proof  By hypothesis, Mn0+a = b⊠Mn0 . Let n ≥ n0 be such that Mn+a = b⊠Mn 
then, M(n+1)+a = M ⊠Mn+a = M ⊠ (b⊠Mn) = b⊠ (M ⊠Mn) = b⊠Mn+1 . 	�  ◻

Theorem 3  Let m ≥ 2 be an integer and suppose that there exist natural numbers 
n0, a, b such that A(Dm)

n0+a = b⊠ A(Dm)
n0 . Then, the 2-domination number satis-

fies the finite difference equation �2(Pm□Cn+a) − �2(Pm□Cn) = b, n ≥ n0.

Proof  By Lemma 1, we know that A(Dm)
n+a = b⊠ A(Dm)

n for every n ≥ n0 . Now, 

by Theorem  2 we obtain �2(Pm□Cn+a) = min
i
(A(m)n+a)ii = min

i
(b⊠ A(m)n)ii

= b +min
i
(A(m)n)ii = b + �2(Pm□Cn) , for n ≥ n0 . 	�  ◻

Assuming that m is small enough to apply Theorem 2 and that n0, a, b have been 
obtained for m then, the boundary values of the finite difference equation above, 
that is, �2(Pm□Cn) for n0 ≤ n ≤ n0 + a − 1 can be computed by using Theorem  2 
and the finite difference equation can be easily solved to obtain the formula for 

A(Dm)qp =

{
�(q, p) if (q, p) is an arc of G,

∞ otherwise.
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the 2-domination number �2(Pm□Cn) , for n ≥ n0 . Moreover, the remaining val-
ues �2(Pm□Cn) for n < n0 , if any, can also be computed by Theorem 2. Thus, if m 
is small enough to apply Theorem  2 and the conditions of Theorem  3 hold, then 
�2(Pm□Cn) can be obtained for any n ≥ 3.

3 � Algorithms and computational analysis

In this section, we present the algorithms we have used to compute the 2-domination 
number of Pm□Cn , with 2 ≤ m ≤ 12 and n ≥ 3 . We also study the performance of 
such algorithms in sequential and parallel implementations on a CPU AMD EPYC 
Rome 7642 with 48 cores and, in addition, on a GPU NVIDIA Tesla V100-PCIE 
with 32 GB of memory, 80 multiprocessors with 128 cores in each multiprocessor 
(10240 cores CUDA).

Algorithms from 1 to 4 come from Theorem  3 and they allow us to pose the 
finite difference equation involving the 2-domination number of Pm□Cn , with m 
small enough. Moreover, Theorem 2 provides Algorithm 5 to compute the bound-
ary values of the finite difference equations. Our first target is to obtain the suit-
able values am, bm, nm0  to pose such equation for each m ∈ {2,… , 12} and first of all, 
we compute the matrix A(Dm) in Algorithm 1. In order to obtain the set Cm of all 
correct m-words, we first obtain all the m-element variations of 3-elements 0, 1, 2, 
with repetition allowed. Then, we select those of them not containing the forbidden 
sequences of the correct m-words.

Algorithm 1 is only useful for small values of m. As we said before, the size of 
the matrix A(Dm) is expected to exponentially grow with m, as do the necessary 
computational resources to get and manage such matrix. 

In Table  1 we show the matrix sizes and the memory requirements in cases 
2 ≤ m ≤ 13 , by using 16 bits arithmetic types of integers. The memory size of the 
matrix in the case m = 13 makes it unfeasible to allocate it into the GPU memory, 
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which is the processor we have used to accelerate our algorithms. This is the reason 
we have analyzed, in this paper, the cases 2 ≤ m ≤ 12 . We have run Algorithm 1 
in the CPU and it takes 2 minutes in the larger case m = 12 . This running time is 
small compared with the following algorithms and moreover, the algorithm does not 
use any matrix operations whose analysis is our objective. Therefore, we have not 
parallelized this process and the matrix A(Dm) is an input data for the remaining 
algorithms.

We now need enough (min,+) powers of the matrix A(Dm) in order to look for 
the recurrence relationship. We obtain the desired powers with Algorithm 2. 

Table 2   Running times of Algorithm 2 to compute A(D
m
)k, k ≤ 50

m Sequential Multicore 48 threads GPU

Time Time Sequ./multicore 
speedup

Time Multicore/
GPU 
speedup

7 13.4s 0.4s 33.5 0.2s 2
8 3 m 18.9 s 5.3 s 37.5 0.5s 10.6
9 56 m 42.3 s 1 m 31.8 s 37.1 2.9s 31.7
10 17 h 9 m 21.6 s 25 m 23.4 s 40.5 30.2 s 50.4
11 – 6 h 29 m 28.5 s 6 m 21.6 s 61.2
12 – – 1 h 30 m 15.6 s

Table 3   Results obtained by 
Algorithm 3

m r
m

0
a
m

b
m

m r
m

0
a
m

b
m

2 48 2 2 8 47 3 10
3 44 6 8 9 47 3 11
4 42 8 14 10 47 3 12
5 43 7 15 11 47 3 13
6 39 11 28 12 47 3 14
7 32 18 53
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There exist sufficient but not necessary conditions ensuring that the hypotheses 
in Theorem 3 are true (see [30]). However, such conditions provide a non-minimum 
value for n0 in the order of the square of the matrix size that is not practical. We have 
run Algorithm 2 with K = 50 , which has proven to be enough in cases 2 ≤ m ≤ 12.

Due to the high requirements to sequentially compute the powers, we have modi-
fied this routine in two ways to accelerate it on modern multicore CPU and GPUs. 
On the one hand, we have used the directives of OpenMP  [31] to parallelize the 
(min,+) matrix multiplication on multicore CPUs. Specifically, we use the OpenMP 
directives to accelerate the computation of each product, so the outer loop that iter-
ates through the rows of the first matrix of the product is parallelized. This technique 
is straightforward, and it allows to efficiently develop the (min,+) matrix product to 
leverage the resources of the CPU multicore processors. Moreover, the performance 
achieved is enough for the purpose of our work when the dimensions of the matrices 
are moderated.

On the other hand, the powers have also been carried out by a modification of 
the routine MatrixMul, available in the NVIDIA CUDA TOOLKIT 11  [32] and 
described in the CUDA C Programming Guide (see [33], Chapter 3), to adapt it to 
the (min,+) multiplication. In this case, we use a different parallelization strategy 
than the one used in OpenMP. It is based on a tiled matrix multiplication to optimize 
the GPU hierarchy memory management. So, this method takes advantage of the 
lower latency, the higher bandwidth shared memory within GPU thread blocks and 
the number of slow accesses to memory device, which are minimized. For details of 
the memory access pattern of MatrixMul see Chapter 3 of [33].

We show in Table 2 the running times of Algorithm 2 in cases 7 ≤ m ≤ 12 while 
in the remaining cases the algorithm needs less than 1 second, even with the sequen-
tial implementation.

Table 2 shows that the running time of computing 50 (min,+) powers of matrix 
A(Dm) exponentially grows as the matrix size increases. In order to address large 
cases in reasonable time we have run an OpenMP parallel implementation with 48 
cores/threads. Such implementation provides small running times in cases m = 8 and 
m = 9 but it grows fast for m ≥ 10 . In order to increase the efficiency of this algo-
rithm, we have run a version of the (min,+) matrix product in CUDA for NVIDIA 
GPU and we have obtained a significant improvement in terms of running times 
compared to the sequential and the parallel OpenMP versions.

The following step to apply Theorem 3 is to find the appropriate recurrence rela-
tionship between two powers of matrix A(Dm) . Even though such matrix is sparse, 
we have noted that its powers become dense, that is, with no infinite entries, from the 
third one. Therefore, the hypothesis in Theorem 3, that is, A(Dm)

n0+a = b⊠ A(Dm)
n0 

is equivalent to A(Dm)
n0+a − A(Dm)

n0 being a constant matrix with entries equal to 
bm . We use this fact in Algorithm 3. The results are shown in Table 3 ( K = 50).
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It is expected that the values of rm

0
 are not minimum because we have found a 

recurrence relationship with rm
0
+ am = 50 , for every m. But in any case, we have 

confirmed that matrix A(Dm) meets the hypothesis of Theorem 3 and the finite dif-
ference equation can be posed for n ≥ rm

0
.

We now show how to obtain the minimum value nm
0
 such that 

A(Dm)
n+am = bm ⊠ A(Dm)

n for every n ≥ nm
0
 , in Algorithm 4 . Finding this optimal 

value could be interesting in order to try to reduce the number of (min,+) powers 
required to ensure the hypothesis of Theorem 3. 

Table 4   Values to apply 
Theorem 3 obtained with 
Algorithm 4

m n
m

0
a
m

b
m

m n
m

0
a
m

b
m

2 4 2 2 8 25 3 10
3 7 6 8 9 22 3 11
4 9 8 14 10 21 3 12
5 31 7 15 11 24 3 13
6 19 11 28 12 26 3 14
7 23 18 53
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We show the values of nm
0
 obtained with Algorithm 4 in Table 4, together with 

the values of am, bm shown before. Such values provide the finite difference equation 
�2(Pm□Cn+am

) − �2(Pm□Cn) = bm, n ≥ nm
0
 and m ∈ {2,… , 12}.

The matrix operation used in Algorithms 3 and 4 is the matrix difference, which 
consumes fewer computational resources than the (min,+) matrix multiplication. 
Indeed, both algorithms are faster with the OpenMP directives than on the GPU due 
to the cost of communications to allocate the matrices on the GPU memory to per-
form quite a simple operation. For instance, the running times (in seconds) of Algo-
rithm 3 for largest case we have computed m = 12 are 16.8 on the CPU (sequential), 
13.6 on the GPU and 7.2 with OpenMP (48 cores). For Algorithm 4, they are 149.8, 
170.0 and 98.5, respectively.

Finally, we compute the boundary values needed to solve the finite difference 
equations and to obtain the formulæ of the 2-domination number in the studied 
cases, with Algorithm 5, by using Theorem 2. 

Algorithm  5 uses the minimization operation over the main diagonal of the 
matrix A(Dm)

i , which can be seen as a vector with a length of the number of rows of 
the matrix. This matrix operation is less computationally demanding given that the 
number of the operations needed here is on the order of the number of rows of the 
matrix while in Algorithms 3 and 4 the order is the square of that number. Indeed, 
the CPU needs less than 1 second if m ≤ 11 and 11.8 seconds in the largest case 
m = 12 . Our program to compute the 2-domination number of cylindrical graphs 
with small paths consists of consecutive run Algorithms from 2 to 5 and we have 
implemented it in four ways. The first one runs every algorithm on the CPU and we 
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have here completed the computation of cases m ≤ 10 , due to high running times of 
Algorithm 2.

In the second version, we have used the OpenMP directives to parallelize the 
execution of the (min,+) matrix product routines in Algorithm 2 and the matrix dif-
ference in Algorithm 3 and 4 because they are the most computationally demanding 
matrix operations. We have computed until case m = 11 with 48 cores and although 
the speedup for Algorithm 2 is over 40 in the last case, the running time is still huge. 
The third program runs Algorithms 2, 3 and 4 on the GPU and cases m ≤ 12 have 
been obtained. Algorithm 2 presents here a very noticeable improvement in terms 
of running time, but the huge matrix size does not allow us to approach large cases 
given that from m = 13 the matrix cannot be allocated on the GPU memory.

In order to test the goodness of the implementation of Algorithms 3 and 4 on 
the CPU compared to the GPU, we have done the fourth version that uses the GPU 
just in Algorithm 2 and the OpenMP parallelization for Algorithms 3 and 4. This is 
slightly faster than version 3 because of the communication costs to allocate matri-
ces on the GPU memory to perform matrix operations with little computational cost. 
The total running times of the four versions are shown in Table 5.

Table 5   Total running times m Version 1 Version 2 Version 3 Version 4

7 13.5 s 0.4 s 0.2 s 0.3 s
8 3 m 19 s 5.4 s 0.6 s 0.6 s
9 56 m 43 s 1 m 32 s 3.9 s 3.5 s
10 17 h 9 m 27 s 25 m 26 s 35 s 32.5 s
11 6 h 29 m 45 s 6 m 44 s 6m 32 s
12 1 h 33 m 34 s 1 h 29 m 58 s

Table 6   Values of �m

k

∗ There is one exception

m a
m

k with �m

k
= 1 k with �m

k
= 0

2 2 None All
3 6 None All
4 8 4, 5 Otherwise
5 7 None All
6 11 5, 9 Otherwise
7 18 k ∈ {1, 2, 4, 5} , 

19 ≤ n ≡ k (mod 18)

Otherwise

8∗ 3 None All
9 3 None All
10∗ 3 1, 2 Otherwise
11 3 2 Otherwise
12∗ 3 1, 2 Otherwise
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4 � Conclusions

According to Theorem  3, values in Table  4 allow us to pose the finite difference 
equation �2(Pm□Cn+am

) − �2(Pm□Cn) = bm, n ≥ nm
0
 , for each 2 ≤ m ≤ 12 . The 

boundary values �2(Pm□Cn) , nm0 ≤ n ≤ nm
0
+ am − 1 , have been obtained with Algo-

rithm 5. Therefore, the solution is �
2
(P

m
□C

n
) =

⌈
bm⋅n

an

⌉
+ �m

k
 , where n ≡ k (mod am) 

and �m
k

 depends on the boundary values for each m. Moreover, the remaining values 
of �2(Pm□Cn) , for 3 ≤ n < nm

0
 , have also been computed with Algorithm 5 and most 

of them follow the general formula.
In the same way as in other domination parameters in grids and cylinders 

(see [17, 18]), these results show a non-regular behavior for the smallest values of 
m, but it becomes regular for m ≥ 8 . Note that if 8 ≤ m ≤ 12 then, am = 3 and 
bm = m + 2 . In such cases �2(Pm□Cn) = ⌈ (m+2)n

3
⌉ + �m

k
 , where n ≡ k (mod 3) and 

�m
k

 again depends on the boundary values �2(Pm□Cnm
0
+k) . In order to complete the 

formulæ, in Table  6 we show the values of �m
k

 , for each m ∈ {2,… , 12} and 
k ∈ {0,… , am − 1}.

The only exceptions are n = 5 , for m ∈ {8, 10, 12} , where �m
k
= 2 . This 

value is coherent with the results obtained in  [28]: �2(C5□Pm) = 2m + 2 if 
2 < m ≡ 0 (mod 2) and �2(C5□Pm) = 2m + 1 if m = 2 or m ≡ 1 (mod 2).

In spite of obtaining that �m
k
≤ 2 for m ≤ 12 , we think that such numbers will 

increase for some values of n as m grows because they would depend on m in some 
way. Our results cover the cases 2 ≤ m ≤ 12 , 3 ≤ n ≤ 15 already studied in  [28], 
and all the results match. In addition, for 8 ≤ m ≤ 12 and n ≡ 0 (mod 3) we have 
shown that �2(Pm□Cn) =

(m+2)n

3
 . The same formula for n = 3, 6, 9, 12, 15 and m ≥ 8 

is obtained in  [28] and we have now extended this result to every n ≡ 0 (mod 3) , 
for 8 ≤ m ≤ 12 . Also note that our formulæ for m ≤ 7 and n ≡ 0 (mod 3) show that 
such small cases do not follow the same formula, in general. Our results together 
with those in [28] give us support to conjecture that �2(Pm□Cn) =

(m+2)n

3
 , if m ≥ 8 

and n ≡ 0 (mod 3).
Regarding the computational point of view, our main target was to develop effi-

cient routines to compute (min,+) matrix products on multicore CPUs and GPUs. 
Such routines have application to the computation of the 2-domination number of 
cylindrical graphs with small paths of order m. Our approach has as a limitation the 
size of the involved matrices that exponentially grows as m does. This condition has 
led us to focus on cases 2 ≤ m ≤ 12 that meet the requirements of our computational 
resources on both the CPU and the GPU.

Once we have obtained the matrices for cases 2 ≤ m ≤ 12 , we have divided the 
routines in Algorithms from 2 to 5 and three of them, Algorithms 3, 4 and 5, can be 
run on the CPU in a reasonable time. Moreover, the OpenMP parallelization with 
48 cores slightly improves such running times, which are negligible compared to 
the total ones. However, the CPU has shown to be non-sufficient to run Algorithm 2 
in the most interesting cases, which are the largest ones, to find the desired regu-
lar behavior of the 2-domination number. The matrix operation used by this algo-
rithm is the (min,+) matrix product and we explore two improvement options to 
reduce its running time: a parallelization of the algorithm with OpenMP with 48 
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cores and an implementation of this matrix product in CUDA for NVIDIA GPU. 
The OpenMP parallel version with 48 cores of Algorithm 2 has shown a speedup 
over 40 regarding the sequential version in case m = 10 . However, the running times 
are so high that the parallelization is not enough for m ≥ 11 , where more than 6 
hours are needed. In contrast, the GPU version computes 50 powers of the matrix 
A(Dm) in considerably less time, with a speedup over 60 compared to the OpenMP 
version for m = 12.

We think it would be possible to improve the efficiency of Algorithm 2 by reduc-
ing the number of computed powers while the finite difference equation can still 
be solved. In addition, some parallelization of the (min,+) product allowing to dis-
tribute the product of two matrices in small sets of rows and columns would give 
the opportunity of computing some cases larger than m = 12 . Such improvements 
would perhaps allow us to conjecture a general formula of the 2-domination number 
of the cylinder Pm□Cn with n ≡ 1, 2 (mod 3).

To sum up, we have solved the graph problem of computing the 2-domination 
number of some cylinders with a small path in a reasonable time by exploiting the 
benefits of the GPU’s to run algorithms involving the (min,+) matrix product while 
the rest of matrix operations involved, such as the matrix difference or the minimiza-
tion of the main diagonal of a matrix, demand fewer computational resources and 
they can be addressed on the multicore CPU in a short time. Finally, we have con-
jectured that �2(Pm□Cn) if n ≡ 0 (mod 3).
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