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Abstract
The dual-cube, derivable from the hypercube, admits a number of good properties 
that render it as a good network topology, especially when the node size exceeds 
several million. This paper presents several other welcome characteristics of the 
graph. Prominent among them are: (1) vertex transitivity that facilitates the work-
ing of an algorithm meant for a “local” context in the global context as well, (2) an 
exact formula for the distance between two nodes, which leads to a precise result on 
the distance-wise node distribution of the graph and an exact formula for the aver-
age node distance, and (3) a hypercube-like hierarchical structure of the graph that is 
amenable to an inductive treatment.

Keywords  Dual-cube · Interconnection networks · Network topology · Vertex 
transitivity · Shortest distance and hierarchical structure

1  Introduction

The dual-cube is a special kind of a more general network topology, called the 
metacube (introduced by Li et al. [14]) that itself is derivable from the hypercube. 
The idea has been to mitigate the problem of the rapid increase in the degree of the 
hypercube when the node size exceeds several million.

With the same node degree n, the dual-cube contains 2n+1 as many nodes as the 
hypercube Qn , and with the same number of nodes, it has about 50% fewer edges 
[22]. Remarkably, it retains most good characteristics of the latter, notably, high 
connectivity, high fault tolerance, low diameter, and easy routing [14].
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1.1 � Objectives of the paper

The central objective of this paper is to present certain key results that signifi-
cantly enhance the importance of the dual-cube from both theoretical point of 
view and the engineering point of view. Here are the salient points. 

1.	 The first major objective is to prove that that the graph is vertex-transitive.
	   A vertex-transitive graph offers a huge advantage, viz. “local” algorithms on it 

would work globally as well, since all vertices hold equivalent roles in the global 
context. Furthermore, vertex-transitive graphs are more strongly connected than 
other regular graphs. Not surprisingly, most network topologies in use today 
(notably the hypercube, the torus, and the circulants) are vertex-transitive and, 
to a lesser extent, edge-transitive. (Definitions of the technical terms appear in 
Sect. 1.2.)

2.	 The second objective is to present an algorithm that traces a shortest path between 
two nodes in the dual-cube.

	   The distance metric plays an important role in the efficiency of routing algo-
rithms and leads to the average node distance that is an important quality measure 
of a network.

3.	 The third objective is to present a scheme that generates a sequence of graphs 
⟨G0,… ,G2m⟩ , where G0 is the two-node graph 0 − 1 and Gi+1 is obtainable by 
introducing a matching between two copies of Gi , and where G2m is isomorphic to 
DQm . (The situation is somewhat similar to the recursive structure of the hyper-
cube.)

1.2 � Definitions and preliminaries

A graph connotes a finite, simple, undirected and connected graph. Let G be a graph, 
and let dist(u, v) denote the (shortest) distance between vertices u and v in G [21]. 
Further, let dia(G) denote the diameter of G [21].

For n-bit strings x and y, let H(x, y) denote the Hamming distance between the 
two. The n-dimensional hypercube Qn (also called the n-cube) is the graph on the 
vertex set {0, 1}n , where nodes x and y are adjacent iff H(x, y) = 1.

Let x ⋅ y (or xy) denote the concatenation of the binary strings x and y, and let 
a ∶= 1 − a , where a ∈ {0, 1} . Next, let x ⊻ y denote the n-bit string obtainable by 
the bitwise XOR operation between two n-bit strings x and y. It is easy to see that ⊻ 
is both commutative and associative.

Definition 1.1  For an n-bit string x = bn−1 … b0 (so 0 ≤ x ≤ 2n − 1 in decimal), let 
x(i) be the n-bit string obtainable from x by replacing bi by bi , where 0 ≤ i ≤ n − 1.

Definition 1.2  For m ≥ 1 , the dual-cube DQm is a spanning subgraph of the hyper-
cube Q2m+1 . Its edge set is given by E0 ∪ E1 ∪ E2 , where 
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1.	 E0 = {{uv0, uv(0)0},… , {uv0, uv(m−1)0} | |u| = |v| = m}

2.	 E1 = {{uv1, u(0)v1},… , {uv1, u(m−1)v1} | |u| = |v| = m} , and
3.	 E2 = {{x0, x1} | |x| = 2m}.

Definition 1.3  The nodes of DQm are distinguishable into two types, as follows:

•	 Type 0: those that are of the form x0 (binary) or 2i (decimal), and
•	 Type 1: those that are of the form x1 (binary) or 2i + 1 (decimal).

Let e ∈ E(DQm) . Call e an edge of Type i if e ∈ Ei , 0 ≤ i ≤ 1 , and call e a cross 
edge if e ∈ E2 . See Fig. 1 for a depiction of the three edge types. Meanwhile, a node 
of the hypercube/dual-cube is viewable both as a binary string, say, x and as the cor-
responding nonnegative integer N(x), a formula for which appears in Equation (1).

It is easy to see that DQm is a regular graph of degree m + 1 . Figure 2 presents 
four different drawings of DQ2 . Among other things, they show that the graph 
admits (1) an embedding on the torus without any edge crossing, (2) an edge decom-
position into a Hamiltonian cycle and a perfect matching, (3) a vertex partition into 
four copies of DQ1 , i.e., C8 , and a vertex partition into eight copies of the four-cycle.

(1)N(x) =

⎧
⎪⎨⎪⎩

0 if x = 0

1 if x = 1

2�v�N(u) + N(v) if x = uv, where �u�, �v� ≥ 1.

Fig. 1   The three edge types of DQ
m
 , vide Definition 1.2



17761

1 3

Vertex transitivity, distance metric, and hierarchical…

Definition 1.4 

1.	 A graph is said to be vertex-transitive if for every pair of vertices u and v, it admits 
an automorphism that sends u to v.

2.	 A graph is said to be edge-transitive if for every pair of edges {u, v} and {x, y} , it 
admits an automorphism f such that f ({u, v}) = {x, y}.

The concepts of vertex transitivity and edge transitivity are distinct. In particu-
lar, a vertex-transitive graph is necessarily regular, whereas an edge-transitive graph 
need not be regular. If a graph is both vertex-transitive and edge-transitive (called 
a symmetric graph), then its vertex connectivity as well as its edge connectivity is 
optimally equal to its degree.

For a set S of integers and an integer j, let S + j denote the set {i + j | i ∈ S} , and 

let C(n, i) denote the binomial coefficient 
(
n

i

)
 , where n ≥ i ≥ 0 . For any undefined 

term, see West [21].

Fig. 2   Four drawings of DQ2
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1.3 � Hypercubes and related networks

The hypercube possesses an extremely rich structure [6, 20]. For example, it is 
symmetric, distance-regular, and Hamiltonian decomposable. Further, its diam-
eter is logarithmic relative to its order, and it is amenable to emulating a wide 
variety of other frequently used networks. Not surprisingly, it has been one of 
the most popular interconnection networks. For example, the architectures of 
Intel iPSC, the nCUBE, the Connection Machine CM-2, and SGI Origin 2000 are 
based on the hypercube [14].

Despite its attractive features, the hypercube suffers from certain practical prob-
lems. In particular, its scalability is an issue. (A scalable network is one whose size 
may be increased in such a way that changes to the existing configuration are minor, 
and performance degradation, if at all, is negligible.) In response, size-scalable net-
work topologies such as mesh/torus, ring, and the tree have been used in practice, 
despite their inherently limited topological characteristics such as low connectivity, 
large diameters, large average node distances, and lack of fault tolerance.

At the other end of the spectrum, when the number of nodes in a network exceeds 
several million (which is a reality in the ever-expanding digital world today), 
increase in the degree of the hypercube becomes an issue. To mitigate this problem, 
Loh et al. [16] presented the exchanged hypercube. See [3, 5, 7, 9, 10, 25] for cer-
tain related studies. Working along this line of research, Li et al. [14] introduced a 
regular network (also derivable from the hypercube), called the metacube, of which 
the dual-cube is a special case. Interestingly, the dual-cube is a special kind of the 
exchanged hypercube as well.

A number of other hypercube-related networks are discussed by Li et al. [14] and 
Pai and Chang [18].

1.4 � Studies specific to the dual‑cube

Here are some of the prominent results that appeared on various aspects of the 
dual-cube during the past two decades. 

1.	 Jha [8] presented a 1-perfect code in DQm , where m = 2k − 2.
2.	 Lai and Tsai [11] showed that every node of DQm lies on a cycle of every possible 

even length and that the graph maintains this property even if it has up to m − 1 
edge faults. (The result is optimal with respect to the number of edge faults.)

3.	 Li et al. [12] established that collective communications may be carried out in 
the dual-cube almost as efficiently as in the hypercube.

4.	 Shih et al. [19] proved that DQm admits m + 1 mutually independent Hamiltonian 
cycles. (The result is optimal since each vertex of this graph has exactly m + 1 
neighbors.)

5.	 Wu and Wu [22] showed that DQm admits ⌊(m − 1)∕2⌋ edge-disjoint Hamiltonian 
cycles.
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6.	 Chen and Tsai [2], Li et al. [13], and Zhang et al. [24] presented certain results 
on fault tolerance and fault diagnosability of the dual-cube.

Interestingly, the dual-cube itself admits certain variants. See Angjeli et al. [1] and 
Chen and Kao [4].

1.5 � Comparison of interconnection networks

Comparing interconnection networks is tricky, since there is no single network that 
is the best for all applications and all operating environments, still some compari-
sons are in order. Here are pointers to certain relevant studies on this topic. 

1.	 Loh et al. compare the following networks on the basis of their diameter, cost-
effectiveness, and the ability to emulate other networks: n-cube, Gaussian cube, 
reduced hypercube, and exchanged hypercube.

2.	 Li et al. [14] present a comparison table that details the degree, diameter, average 
distance, and bisection width of the following: hypercube, dual-cube, quad-cube, 
and the more general metacube.

3.	 Li et al. [15] present a comparison table that details the number of nodes, degree, 
diameter, and cost ratio of the following: p-ary three-cube, n-cube, cube-con-
nected cycle, dual-cube, WK-recursive network, and recursive dual-net.

1.6 � A brief commentary on certain claims by other authors

1.	 Some authors [10, 14] stated without a proof that the dual-cube is vertex-transi-
tive. This paper fills up the gap.

2.	 Loh et al. (resp. Klavžar and Ma [10]) discuss the shortest distance between two 
nodes in the exchanged hypercube (resp. average node distance of the exchanged 
hypercube), from which the corresponding measures in the dual-cube follow. 
However, the proofs in this paper are more constructive and intuitive.

3.	 Contrary to another claim [14], the dual-cube is not edge-transitive. See Fact 2.1.

1.7 � What follows

Section 2 establishes vertex transitivity of the dual-cube, while Sect. 3 derives a for-
mula for the (shortest) distance between Node 0 and a given node z of the graph. 
(Vertex transitivity ensures an easy generalization of the formula.) Section 3.2 pre-
sents a description of the distance-wise node distribution of the graph that leads to 
an exact formula for the average node distance. Later, Sect. 4 shows that DQm admits 
an elegant hierarchical structure. The paper ends with certain concluding remarks in 
Sect. 5.
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2 � Vertex transitivity

Lemma 2.1  DQm admits an automorphism that carries a given node of Type 0 to 
Node 0.

Proof  Let z = uv0 (binary), where |u| = |v| = m , and consider the mapping 
�z ∶ V(DQm) → V(DQm) given by pqa ↦ (p ⊻ u)(q ⊻ v)a , where |p| = |q| = m and 
a ∈ {0, 1} . It is easy to see that �z is well defined and �z(z) = 0 (decimal). Further, 
�z(x) = y iff �z(y) = x , so the mapping is total and invertible, hence a bijection.

To prove that the adjacency (resp. non-adjacency) is preserved under the map-
ping, first consider a node of Type 0, say pq0, where |p| = |q| = m . Whereas one 
of its neighbors is pq1, the others are p q(0) 0, p q(1) 0, … , p q(m−1) 0 . Note that 
�z(pq0) = (p ⊻ u)(q ⊻ v)0 , and further observe that 

(a)	 �z(pq1) = (p ⊻ u)(q ⊻ v)1 that is adjacent to �z(pq0) via a cross edge, and
(b)	 �z

(
p q(j) 0

)
= (p ⊻ u)(q(j) ⊻ v)0 that is adjacent to �z(pq0) via an edge of Type 0, 

whre 0 ≤ j ≤ m − 1.

By a similar argument, an analogous conclusion is reachable with respect to a 
node of Type 1.

Finally, let x and y be nonadjacent. If �z(x) and �z(y) were adjacent, then so must 
be �z(�z(x)) and �z(�z(y)) . However, �z(�z(x)) = x and �z(�z(y)) = y , a contradic-
tion. 	�  ◻

Figure 3 illustrates the proof of Lemma 2.1, where m = 2 and z = 4 . (The i-th 
node in a particular row to the left maps to the respective node on the same row to 
the right.

Fig. 3   An automorphism on DQ2 , ( 4 ↔ 0 ), vide Lemma 2.1
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Lemma 2.2  DQm admits an automorphism that carries a given node of Type 1 to 
Node 1.

Proof  Similar to that of Lemma 2.1. 	�  ◻

Lemma 2.3  DQm admits an automorphism that carries Node 1 to Node 0.

Proof  Let � ∶ V(DQm) → V(DQm) be given by uva ↦ vua , where |u| = |v| = m and 
a ∈ {0, 1} . It is clear that the mapping is well-defined. Further, �(y) = z iff �(z) = y , 
which means that it is a bijection. Notice that �(1) = 0 (decimal).

Let z1, z2 ∈ V(DQm) , and let z1 = u1v1a1 and z2 = u2v2a2 , where 
|u1| = |v1| = |u2| = |v2| = m , and |a1| = |a2| = 1 , so �(z1) = v1u1a1 and 
�(z2) = v2u2a2 . 

1.	 First suppose that z1 and z2 are adjacent. 

(a)	 Let z1 and z2 be adjacent via a cross edge, so u1 = u2 , v1 = v2 and a2 = a1 . 
In this case, �(z1) = v1u1a1 and �(z2) = v1u1a1 that are clearly adjacent via 
a cross edge.

(b)	 Let z1 and z2 be both of Type 0 and adjacent, so z1 = u1v10 and z2 = u1 v
(j)

1
0 , 

where 0 ≤ j ≤ m − 1 . In this case, �(z1) = v1u11 and �(z2) = v
(j)

1
u1 1 . It is 

clear that �(z1) and �(z2) are adjacent. Similarly, if z1 and z2 be both of Type 
1 and adjacent, then �(z1) and �(z2) are adjacent.

2.	 Next suppose that z1 and z2 are non-adjacent. If �(z1) and �(z2) were adjacent, 
then so must be �(�(z1)) and �(�(z2)) . However, �(�(z1)) = z1 and �(�(z2)) = z2 , 
a contradiction. 	�  ◻

Remark   It is easy to compute the inverses of the foregoing automorphisms.

Theorem 2.4  DQm is a vertex-transitive graph.

Proof  Let y, z ∈ V(DQm) , where y ≠ z . An automorphism that takes y to z is obtain-
able by using the constructions in Lemmas 2.1, 2.2, and 2.3, as follows. 

1.	 If y and z are the same type, say t, then compose the automorphism that takes y 
to t with the one that takes t to z.

Fig. 4   Automorphisms that take a node of one type to one of another
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2.	 If y and z are of different types, then build an automorphism that takes y to z as 
per the schematic that appears in Fig. 4. 	� ◻

Fact 2.1  DQm is not edge-transitive. For example, observe from Fig.  3i that the 
edge {0, 2} of DQ2 lies on a four-cycle, whereas the edge {0, 1} does not lie on any 
four-cycle.

3 � Distance metric

Theorem  3.1  Table  1 presents the distance between Node 0 and a givn node z in 
DQm.

Proof  See Algorithm 1 that traces a shortest path between two nodes in DQm . Check 
to see that, in each case, any other path is at least as long. 	�  ◻

Corollary 3.2  dia(DQm) = 2m + 2.

Proof  By Table 1, there is exactly one node, viz., 1m1m0 arising out of Case 1(b) 
that is at the distance of 2m + 2 from Node 0. Indeed, 2m + 2 is the largest such 
integer. This fact and the vertex transitivity of the graph together ensure that 
dia(DQm) = 2m + 2 . 	�  ◻

Note that DQm is a spanning subgraph of Q2m+1 , having about 50% fewer edges, 
yet its diameter is practically equal to that of the latter.

Table 1   Distance between Node 
0 and a given node z in DQ

m

|u| = |v| = m

|u|1 stands for the number of 1’s in the binary string u

Case Node z Type of z Predicate dist(0,z)

1(a) 0mv0 0 – |v|1
1(b) uv0 0 |u|1 > 0 |u|1 + v|1 + 2

2 uv1 1 –– |u|1 + |v|1 + 1
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3.1 � Distance‑wise node distribution

For 1 ≤ d ≤ 2m + 2 , let nd denote the number of nodes at a distance of d from Node 
0 in DQm , and let qd denote the number of nodes at a distance of d − 1 from Node 0 
in Q2m+1 . It is well known that qd = C(2m + 1, d − 1).

Theorem 3.3  If m ≥ 1 , then nd = C(2m + 1, d − 1) + C(m, d) − C(m, d − 2).

Proof  Refer to Table  1. Whereas Case 1(a) contributes C(m,  d) nodes, Case 1(b) 
contributes C(2m, d − 2) − C(m, d − 2) nodes, where C(m, d − 2) denotes the num-
ber of nodes of the form 0mv0 , already covered in Case 1(a). Finally, Case 2 contrib-
utes C(2m, d − 1) nodes. The claim is immediate. 	�  ◻

Table  2 exemplifies Theorem  3.3 for m = 10 , whereas Fig.  5 depicts it. 
Not surprisingly, nd achieves its maximum at d = m + 2 . Meanwhile, let diff 
= nd − qd = C(m, d) − C(m, d − 2).
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3.2 � Average node distance of DQm

Table  3 computes the average node distance of DQm , i.e., 1

22m+1

∑2m+2

d= 0
d ⋅ nd 

=
1

22m+1

∑2m+2

d= 0

�
d ⋅ C(2m + 1, d − 1) + d ⋅ C(m, d) − d ⋅ C(m, d − 2)

�
.

Notice that the average node distance of DQm is practically equal to that of Q2m+1 , 
viz., m +

1

2
.

3.3 � DQm versus Q2m+1

It turns out that the distance-wise node distribution of DQm closely parallels that of 
Q2m+1 . To that end, recall that diff = nd − qd = C(m, d) − C(m, d − 2).

Table 2   DQ
m
 vs. Q2m+1 , m = 10

Number of nodes in DQ10 ∶ 221 = 2, 097, 152

Number of nodes in Q21 ∶ 221 = 2, 097, 152

d nd qd diff = nd − qd

2m + 2 = 22 1 1 0
21 21 21 0
20 210 210 0
19 1330 1330 0
18 5985 5985 0
17 20,349 20,349 0
16 54,264 54,264 0
15 116,280 116,280 0
14 203,490 203,490 0
m + 3 = 13 293,930 293,930 0
m + 2 = 12 352,715 352,716 -1
11 352,706 352,716 − 10
10 293,886 293,930 − 44
9 203,380 203,490 − 110
8 11,615 116,280 − 165
7 54,132 54,264 − 132
6 20,349 20,349 0
5 6117 5985 132
4 1495 1330 165
3 320 210 110
2 65 21 44
1 11 1 10
0 1 0 1
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The following points are relevant. 

1.	 If 2m + 2 ≥ d ≥ m + 3 , then diff = 0..
2.	 If m + 2 ≥ d ≥

1

2
(m + 2) , then diff is negative.

3.	 If 1
2
(m + 2) ≥ d ≥ 1 , then diff is positive.

4.	 For m + 2 ≥ d ≥ 1 , diff is symmetric about the point d =
1

2
(m + 2) , and its abso-

lute value is a very small percentage of C(2m + 1, d − 1).

Figure 6 presents the trace of diff vs. d for m = 10.

Fig. 5   Distance-wise node distribution of DQ10
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4 � Hierarchical structure of DQ
m

It turns out that DQm admits an interesting hierarchical structure. In particular, 
there exists a sequence of graphs ⟨G0,… ,G2m⟩ such that (1) G0 = K2 , (2) Gi+1 is 
obtainable from Gi by introducing (not a perfect) matching between two copies of 
Gi , 0 ≤ i ≤ 2m − 1 , and (3) G2m is isomorphic to DQm . See Algorithm 2.

Table 3   Computing the average 
node distance

2m+2∑
d=1

�
d ⋅ C(2m + 1, d − 1)

� = 2m+1∑
i=0

�
(i + 1) ⋅ C(2m + 1, i)

�

= (2m + 1)22m + 22m+1

m∑
d=0

�
d ⋅ C(m, d)

� = m2m−1

−
m+2∑
d=2

�
d ⋅ C(m, d − 2)

� =
−

m∑
i=0

�
(i + 2) ⋅ C(m, i)

�

= −(m2m−1 + 2m+1)

Algebraic sum = (m + 1) 22m+1 + 22m − 2m+1

Average node distance = (m+1) 22m+1+22m−2m+1

22m+1

= m +
3

2
− 2−m

Identities used: 

n∑
i=0

C(n, i) = 2n

 and 

n∑
i=0

i C(n, i) = n2n−1

Fig. 6   diff vs. d for m = 10 , 0 ≤ d ≤ 2m + 2 = 22 , vide Table 2
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It is easy to see that each statement of the algorithm is well-defined. See Fig. 7 
for an illustration, where m = 2.

Lemma 4.1  For m ≥ 1 , let G1,… ,G2m be the sequence of graphs returned by Algo-
rithm 2, and let 1 ≤ i ≤ 2m . Then 

1.	 Gi is a bipartite graph, where each partite set is of the same cardinality
2.	 Each partite set of Gi has as many nodes of Tyoe 0 as those of Type 1
3.	 V(Gi) = {0,… , 2i+1 − 1}

4.	 Each edge of Gi is valid relative to DQm

5.	 |E(Gi)| = (i + 2)2i−1.

Proof  Use induction on i. To that end, first check to see that the claim holds with 
respect to G1 that is the graph 1 − 0 − 2 − 3 . The induction step follows. 

1.	 Let V0 and V1 be the two partite sets of Gi , so V0 + 2i+1 and V1 + 2i+1 are the two 
partite sets of of the second copy of Gi immediately after the execution of Step 4 
(resp. Step 13) of the algorithm.
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	   Every edge introduced during execution of each of the two “inner for” loops 
runs between V0 and V0 + 2i+1 , or between V1 and V1 + 2i+1 . In that light, Gi+1 
is a bipartite graph with V0 ∪ (V1 + 2i+1) and V1 ∪ (V0 + 2i+1) as the two par-
tite sets. Further, the hypothesis that nodes of the two types are equinumer-
ous in each of V0 and V1 ensures that this is the case with respect to each of 

Fig. 7   Hierarchical structure of DQ2
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V0 ∪ (V1 + 2i+1) and V1 ∪ (V0 + 2i+1) as well. Simultaneously, |V0| = |V1| ensures 
that |V0 ∪ (V1 + 2i+1)| = |V1 ∪ (V0 + 2i+1)| = 2i+1.

	   The foregoing argument also shows that V(Gi+1) = {0,… , 2i+2 − 1}.

2.	 (a)	 Let {x, y} ∈ E(Gi) . By induction hypothesis, |x| = |y| = i + 1 , where 
x and y are in binary. (In decimal, 0 ≤ x, y ≤ 2i+1 − 1 .) Also by induction 
hypothesis, {x, y} is a valid edge relative to DQm . In that light, the edge 
{1x, 1y} , which appears in the second copy of Gi , is valid relative to DQm . 
Indeed, if {x, y} is a cross edge (resp. an edge of Type 0, or an edge of Type 
1), then so is {1x, 1y} . (In decimal, 1x = 2i+1 + x and 1y = 2i+1 + y.)

(b)	 If 1 ≤ i ≤ m − 1 , then each edge introduced during execution of the “first 
inner for” loop runs between two nodes of the form 0mx0 and 0my0 (binary) 
that are of Type 0, where |x| = |y| = m and H (x, y) = 1 . Analogously, if 
m ≤ i ≤ 2m − 1 , then each edge introduced during execution of the “second 
inner for” loop runs between nodes of the form ux1 and vx1 that are of Type 
1, where |u| = |v| = |x| = m and H (u, v) = 1 . In either case, all such edges 
are valid relative to DQm.

	    It follows that the edges that appear in Gi+1 are valid relative to DQm.
3.	 Note that |E(G1)| = 3 , and |E(Gi+1)| = 2|E(Gi)| + 2i , where i ≥ 1 . (Each par-

tite set of Gi+1 has 2i nodes of each type.) Here is a solution to the recurrence: 
|E(Gi+1)| = (i + 3)2i.

This concludes the induction. 	�  ◻

Note: It is easy to see that the running time of Algorithm 2 is proportional to the sum 
of the sizes of the graphs G0,… ,G2m.
Theorem 4.2  The graph G2m returned by Algorithm 2 is isomorphic to DQm.

Proof  By Lemma 4.1, (1) V(G2m) = {0,… , 22m+1 − 1} that coincides with V(DQm) , 
(2) each edge of G2m is valid relative to DQm , and (3) |E(G2m)| = (m + 1)22m that coin-
cides with |E(DQm)| . Hence the result. 	�  ◻

Remark   The result of this section is likely to be useful in the future in deriving 
other results with respect to the dual-cube and probably the exchanged hypercubes. 
This is because the sequence of graphs returned by Algorithm 2 is amenable to an 
inductive treatment.

Interestingly, it is easy to construct an algorithm that takes G2m as the input and 
performs a sequence of “inverse” operations, as follows: At the i-th step, parti-
tion G2m−i into two subgraphs, each isomorphic to G2m−i−1 , 0 ≤ i ≤ 2m − 1 , where 
G0,… ,G2m are as in Algorithm 2.
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5 � Concluding remarks

The dual-cube DQm is a regular, connected spanning subgraph of the hypercube Q2m+1 
[14]. It admits a number of welcome properties that make it amenable to an application 
as a network topology, especially for systems with large node sizes [8, 11, 12, 19, 22]. 
Results in this paper significantly enhance the importance of the network. Further, the 
techniques employed are likely to pave the way for similar studies on the quad-cube and 
the oct-cube that belong to the greater family of such graphs, called the metacube [14].

It is conceivable that there exists a closer relationship between the exchanged hyper-
cubes and the dual-cube. Algorithm 2 is likely to be extended for that purpose. Another 
relevant question is to determine the smallest n such that DQm is a vertex-induced sub-
graph of Qn.
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