
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:17231–17246
https://doi.org/10.1007/s11227-022-04537-w

1 3

PARCSIM: a parallel computing simulator for scalable
software optimization

Jesús Cámara1 · José‑Carlos Cano1 · Javier Cuenca1 · Mariano Saura‑Sánchez2

Accepted: 13 April 2022 / Published online: 16 May 2022
© The Author(s) 2022

Abstract
PARCSIM is a parallel software simulator that allows a user to capture, through a
graphical interface, matrix algorithm schemes that solve scientific problems. With
this tool, the user can analyse the execution times that would be obtained by using
different spatio-temporal mapping of computational tasks on available computa-
tional units, parallelism parameters and computational libraries. Furthermore, for
complex problem models, the self-optimization engine incorporated in this tool
analyses the huge tree of possible calculations grouping and mapping strategies in
search of the choice that makes the best use of the available hardware resources.
This tool also offers polyalgorithmic resolution by making automatically the best
decision between different software approaches to solve a given problem on the
hardware system available. This work shows the usefulness of this simulator to effi-
ciently solve hierarchical problems constructed from previously modelled subprob-
lems. This task is performed by reusing, in a scalable way, the optimization infor-
mation of these subproblems to establish the best execution configuration for the
composite problem.

Keywords Hierarchical parallel software · Polyalgorithm · Autotuning

Jesús Cámara, José-Carlos Cano, Javier Cuenca and Mariano Saura-Sánchez have contributed
equally to this work.

 * Javier Cuenca
 jcuenca@um.es

 Jesús Cámara
 jcamara@um.es

 José-Carlos Cano
 josecarlos.canol@um.es

 Mariano Saura-Sánchez
 msaura.sanchez@upct.es

1 Department of Engineering and Technology of Computers, University of Murcia, Murcia, Spain
2 Department of Mechanical Engineering, Technical University of Cartagena, Cartagena, Spain

http://orcid.org/0000-0002-8763-756X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04537-w&domain=pdf

17232 J. Cámara et al.

1 3

1 Introduction

A multitude of scientific problems can be found where it is possible to represent
in the form of a directed graph the division of a complex (mechanical, physical,
algebraic) system into an ordered set of determined (solvable) subsystems. In this
graph, the nodes correspond to blocks of instructions that solve each subsystem,
and the directed lines between the nodes indicate the order in which blocks have
to be calculated. A study of the dependencies reflected in the graph allows us to
identify the subsystems that can be solved simultaneously.

In general, in computational implementations of such problems, the algorithm
with the highest potential efficiency, in terms of execution speed, on parallel plat-
forms will be the one that identifies the largest number of blocks of computations
that can be executed in parallel. And the fastest implementation will be the one
that allocates computational resources in such a way that the parallel execution of
blocks is the fastest possible. The searching process for the best implementation
is a complex task that can be approached from a pseudo-theoretical point of view
(estimating theoretical execution times based on real times measured in execu-
tions of the basic operations) [1] or from an experimental point of view (where
the best allocation of resources is sought by analysing the behaviour observed
after several executions exploring different alternatives) [2]. In this way, PARC-
SIM, a complete simulator of numerical software executions on heterogeneous
parallel platforms, has been designed. This simulator aims to facilitate this search
task by providing a graphical interface to guide a non-parallelism expert in select-
ing the best implementation for the code, thereby achieving optimal utilization of
a given hardware platform.

A preliminary version of this tool was designed for the kinematic analysis
of multibody systems (MBS) in computational systems [3]. MBS are mechani-
cal systems composed of rigid and flexible bodies connected through mechanical
joints which determine the dependencies between the individual bodies and their
contribution to the movement of the whole system [4, 5]. The kinematic analysis
of a MBS consists of the study of the relation of its components’ movements.

This work presents a whole version of PARCSIM where its functionality has
been extended and generalized to any types of matrix software, which can run on
hybrid platforms composed of a multicore CPU together with a set of massively
parallel computational accelerators. In this way, parallelism can be exploited at
the implicit level (using multithread libraries which are available for the solution
of the constraint equations with both dense [6] and sparse matrices [7]) and at
explicit level (different subsystems are solved with shared-memory [8] or GPU
[9] parallelism). Therefore, this tool becomes a polyalgorithmic resolution plat-
form, as it offers the user the possibility of automatically comparing and making
the best decision between different software approaches to solve a given problem
on the hardware system available at any given time.

On the other hand, a hierarchical optimization approach [10] has been incor-
porated to PARCSIM. Traditionally, hierarchical approaches have been applied
in the design of general software [11], and, particularly, in the design of parallel

17233

1 3

PARCSIM: a parallel computing simulator for scalable software…

linear algebra routines [12] and also in the theoretical study of its execution time
[13]. In this way, when modelling a high-level routine, this tool allows and facili-
tates the reuse of models previously made for more basic routines, incorporating
them into the nodes of the temporary dependency graph of this high-level rou-
tine. Therefore, all the optimization information of the basic routines is automati-
cally incorporated into the model of this higher-level routine, so that, just like the
software itself, the global optimization process of this software becomes easily
scalable.

Finally, an interactive auto-tuning module has been added to the simulator. This
module allows users to test and redesign their software, step by step, on the basis of
the feed-back information they receive from this tool at any given moment regarding
the performance of their code.

The remainder of the paper is organized as follows. The general structure of
PARCSIM is shown in Sect. 2. Section 3 explains how this simulator offers a scal-
able optimization system for hierarchical organized software and how polyalgorith-
mic approach is also incorporated in this tool. Finally, Sect. 4 concludes the paper.

2 Description of the simulator

A schematic view of the concepts created and managed in PARCSIM and their inter-
dependencies are shown in Fig. 1.

The linear algebra operations and procedures built into the simulator that can
be used by a user are called functions. These functions can be used by a
user to build algorithms for solving certain numerical problems. They can include
basic algebraic operations and matrix transformations, such as an addition or a
transpose, or higher-level functions, usually imported from external libraries. A

Fig. 1 Schematic view of the concepts used in the simulator and their interdependencies

17234 J. Cámara et al.

1 3

routine represents a sequence of functions, created by a user to solve a
given problem or part of a problem. During the simulation, a routine executes
in sequence all the functions that compose it. A model is the acyclic graph
representation of the algorithm for solving a scientific problem. In this type of
graph, the nodes represent the blocks of instructions that execute certain sections
of the algorithm, and the directed lines between the nodes indicate the order in
which they must be solved. The groups in the simulator are the different sub-
systems or modules into which an algorithm is divided. The user defines the
calculations to be performed to solve each of these groups, which is done by
assigning a user routine. A set of variables are used to identify the arrays
that will be used as arguments or parameters to the functions used to simu-
late a given model. The term scenario refers to the nature of the problem
to be solved. A scenario, therefore, assigns a number of columns, dispersion
factor and type to the variables. A script represents the set of adjustable
algorithmic parameters (AP) that the software applies during the simulation of a
model (number of threads, number of GPUs, computational libraries used,...).

A route specifies a certain way of ordering and grouping the set the com-
putations that solve a model. The set of all valid routes is represented in a
tree, where each branch corresponds to a route. Those branches that give
rise to computational sequences whose execution is a permutation of another one
already generated are eliminated automatically. A graph of this type is shown in
Fig. 2, in which seven groups are calculated to solve a complete system. The
tree represented in Fig. 3 shows all the possibilities that exist to solve the prob-
lem of this example.

Given a particular scientific problem, one of the main objectives of this pro-
posal is to find the order of the calculations that allow the resolution of the
model that represents it in the shortest possible time, i.e., to select the best
route of the tree. In this way, when the routing tree associated with a given
model has been developed, a process of estimating the execution time associated
with each branch can be implemented in the simulator to find the one that can
theoretically offer the fastest resolution on a given hardware platform. As a start-
ing point for this estimation process, a theoretical–experimental modelling pro-
cess has been established with the aim of having an agile tool for its approach and
management in order to make decisions that are very close to the ideal optimum.
In any case, it is important to emphasize that both the simulator and the under-
lying methodology allow this specific cost estimation process to be modified,
extended or replaced as necessary, without affecting the approach as a whole.

Fig. 2 Graph of solving a
numerical problem by decompo-
sition into subproblems

17235

1 3

PARCSIM: a parallel computing simulator for scalable software…

Thus, this experimental–theoretical model of the execution time has been con-
structed based on a set of assumptions: as we saw above, the functions that are
part of a routine are executed sequentially, so the resolution time of a group
i containing k functions, can be modelled as the sum of the execution time of
all fik functions, hence T(Gri) =

∑k

j=1
T(fij) . On the other hand, since the n

groups contained in a node will be executed in parallel, the time needed to per-
form the computations of an node N will be equal to the greater of the times needed
to solve the groups it contains, i.e., T(N) = maxGri∈N

{
T(Gri)

}
.

With all this, the total time needed to solve the problem following a given route
R will be the sum of the times consumed in the nodes that form it can be initially
established as shown in (Eq. 1):

It can be seen, therefore, that the calculation of the execution time of any branch is
based on the known execution times of the functions used in that branch. How-
ever, in general, these times are different depending on the AP and the type of data

(1)T(R) =

nodes(R)�
i=1

T(Ni) =

nodes(R)�
i=1

max
Grj∈Ni

⎧
⎪⎨⎪⎩

functions(Grj)�
k=1

T(fjk)

⎫⎪⎬⎪⎭

Fig. 3 Tree showing the seven valid computational sequences (routes) for Fig. 2. Each branch is a path
representing a way of ordering the computations capable of solving the system as a whole. Tree nodes
containing more than one group imply the simultaneous resolution of these groups

17236 J. Cámara et al.

1 3

described in the scenario, SCN, on which these functions operate. In PARCSIM,
the AP is formed by the set {nc, ng, l} , where nc is the number of cores, ng the num-
ber of GPUs and l the type of library. A SCN scenario encompasses the size, topol-
ogy and sparsity factor of the arrays. Therefore, we can rewrite Eq. 1 to reflect the
variability of execution times as a function of AP and SCN when solving a problem
along a given route R, as shown in (Eq. 2):

where Ni represents the node at level i of the route R1.
After the user has entered in PARCSIM the model representing a given algo-

rithm and the data to be handled (Fig. 1: Model Design), the simulation pro-
cess can perform the actual execution of the calculations included in that algo-
rithm (Fig. 1: Model Execution). At installation time (Model Execution:
Training Mode), each function is executed for each training scenario.
The information about the execution times obtained is used to form a perfor-
mance database. After that, taking into account both the experimental–theoreti-
cal model of the execution time (Eq. 2) and the information stored in the perfor-
mance database, the best combination of AP for each node of the tree (Fig. 3)
is obtained for each training scenario. Then, this information is also stored in the
performance database. Finally, at execution time (Model Execution:
Autotuning Mode), the performance database is used to find the opti-
mal strategy for calculation ordering and resource allocation to solve a specific user
problem.

3 Hierarchical optimization plus polyalgorithm engine

In this section, it is shown how a hierarchical approach can be performed in order to
design the algorithm for solving a complex problem composed of a set of subprob-
lems previously modelled in the simulator. Likewise, it will be observed how the
optimization and self-optimization process of the complex problem is supported by

(2)

T(R,AP, SCN) =

levels(R)�
i=1

T(Ni,AP, SCN)

=

levels(R)�
i=1

max
Grj∈Ni

�
T(Grj,AP, SCN)

�

=

leves(R)�
i=1

max
Grj∈Ni

⎧
⎪⎨⎪⎩

functions(Grj)�
k=1

T(fjk,AP, SCN)

⎫
⎪⎬⎪⎭

1 In our previous works ([1, 2]), with dense linear algebra routines only, the execution time of each basic
atomic routine (basic function fjk), which depends on SCN and AP, (T(fjk , AP, SCN)), was called sys-
tem parameter. Moreover, SCN was made up only of the problem size.

17237

1 3

PARCSIM: a parallel computing simulator for scalable software…

the one previously performed for each subproblem, which enhances the process as a
whole, leading to a scalable optimization capacity.

In linear algebra, there are routines where the standard approach to solving may
not be optimal in terms of computational time. One example is matrix multiplica-
tion, which is of particular interest because of its use as basic kernel in solving sci-
entific and engineering problems. In addition to the traditional three-loop solving
algorithm, others have been developed, such as block multiplication or Strassen’s
algorithm. PARCSIM can assist in the optimal development of such higher hierar-
chical routines that use the basic routines. In addition, this simulator also provides
the ability to choose which routine/algorithm is the most appropriate in each case,
with a polyalgorithmic resolution approach.

3.1 Experimental platforms

Experiments of this work have been carried out with two multicore CPU+ GPUs
configurations:

• SATURN is a node with 4 hexa-cores Intel Xeon E7530 with 32 GB of shared-
memory at 1.87GHz, and a GPU Tesla K20c (Kepler architecture) with 4800
MBytes in Global Memory and 2496 CUDA cores (13 Streaming Multiproces-
sors and 192 Streaming Processors per Multiprocessor).

• JUPITER is a node with 12 cores and 6 GPUs. The multicore has two hexa-
cores Intel Xeon E5-2620 with 32 GB of shared-memory at 2.00GHz. The GPU
cards are two Nvidia Fermi Tesla C2075 with 5375 MBytes in Global Memory
and 448 cores (14 Streaming Multiprocessors and 32 Streaming Processors per
Multiprocessor) and four Nvidia GeForce GTX 590 with 1536 MBytes in Global
Memory and 512 CUDA cores (16 Streaming Multiprocessors and 32 Streaming
Processors per Multiprocessor).

For both systems, the operating system is Linux (kernel 3.13.0-33-generic
#58-Ubuntu), the CUDA version is 7.5, and the compiler used is Intel FORTRAN
version 17.0.1, compilation 20161005.

The linear algebra libraries incorporated into the tool in order to select the most
appropriate routine for solving each element of the problem to be modelled are
MKL [14], PARDISO [15], HSL [16] and MAGMA [17].

3.2 Matrix multiplication: block algorithm

Initially, a basic model, MATMULT, for solving a whole matrix multiplication using
the basic routine, RMM, is create (Fig. 4a). The resolution time of this model with
various matrix sizes can serve as a basis for comparison with other possible imple-
mentations. In order to have another possible algorithm for solving the matrix mul-
tiplication, the matrix B which is part of the product AB = C is going to be divided
by columns in a certain number of blocks. This creates the model MATMULT_
COLS_50 shown in Fig. 4b. This model allows us to solve the two multiplications

17238 J. Cámara et al.

1 3

required after dividing the B matrix by columns into two blocks of equal size. Simi-
larly, we create two new models to solve the multiplication when the original matrix
B is column-split into three and five blocks, with sizes 33% and 20% of the original,
respectively (Fig. 4c, d).

These different models can be solved following as many strategies as their route
trees indicate. As an example, only those executions that solve simultaneously all
their groups (Figs. 5, 6 and 7) are considered in order to compare their performances
with the direct multiplication version (Figure 3.2).

The simulator is configured to manage the set of the combinations of models, sce-
narios and algorithmic parameters. After the execution of each model, log files are
generated for each scenario and stored in the database. Table 1 shows the best com-
binations of first and second level parallelism threads, OpenMP and MKL, respec-
tively, obtained from the simulations on the SATURN platform. It is observed that,
with small matrices, direct multiplication is the most efficient using MKL. However,
by increasing the size of the matrices, a notable advantage is obtained by splitting
the original matrix while introducing parallelism to simultaneously solve groups that
handle matrices of sizes smaller than the original matrix. For example, for matrices
of dimension 3000, the best strategy is the one applied in MATMULT_COLS_20,
which block-splits the matrix B into sizes representing 20% of the original size, thus
generating five matrices that can be multiplied at the same time by assigning five
threads to OpenMP parallelism and four to MKL parallelism. In general, the optimal
block size tends to be values that allow the best use of the highest system memory
levels. On the other hand, the best number of threads, taking into account both levels
of parallelism, tends to be close to the number of CPU cores.

Fig. 4 Simulator representations of the matrix multiplication model (MATMULT, MATMULT_COLS_50,
MATMULT_COLS_33 and MATMULT_COLS_20), AB = C , dividing by columns the matrix B (one,
two, three and five blocks)

17239

1 3

PARCSIM: a parallel computing simulator for scalable software…

If the hardware now includes the possibility to use multiple GPUs in the resolu-
tion of matrix multiplication, the simulator uses the MAGMA library to assign com-
putational tasks to the available GPUs (six GPUs in the case of the JUPITER). To
verify this use of multiple GPUs in the simulator, MATMULT_COLS_33 is used. For
this ordering of the calculations, the simulator will be guided by the route shown
in Fig. 6. Table 2 shows the execution times obtained, where the best performance
offered by the GPUs can be observed when the size of the matrices increases.

3.3 Matrix multiplication: strassen algorithm

Strassen algorithm can be represented as a model composed of groups of opera-
tions that can be solved in parallel and assigned to the different computational units
available. It is stated that, given two square matrices A and B which we consider by
simplification of dimensions A,B ∈ 2n × 2n , the multiplication C = AB can be per-
formed by dividing them into blocks of equal size Aij,Bij ∈ 2n−1 × 2n−1:

Fig. 5 Selection of the route for applying group parallelism to solve a block matrix multiplication using
MATMULT_COLS_50

Fig. 6 Selection of the route for applying group parallelism to solve a block matrix multiplication using
MATMULT_COLS_33

17240 J. Cámara et al.

1 3

Fig. 7 Selection of the route for applying group parallelism to solve a block matrix multiplication using
MATMULT_COLS_20

Table 1 Comparison of the
execution times (in seconds)
obtained in SATURN when
simulating traditional matrix
multiplication model and with
block versions, for different
matrix sizes (nROWS)

For each problem size, the minimum execution time is highlighted
in bold

MATMUL MAT-
MULT_
COLS_50

MAT-
MULT_
COLS_33

MAT-
MULT_
COLS_20

nROWS 1×4 1×20 2×12 3×8 5×4

100 0.00043 0.00412 0.00065 0.00058 0.00072
500 0.01099 0.00643 0.01770 0.01010 0.00702
1000 0.12732 0.06158 0.03780 0.04037 0.03883
2000 0.60477 0.27485 0.27300 0.24414 0.28912
3000 1.96197 0.78933 0.74721 0.68834 0.57356

Table 2 Comparison of the execution times (in seconds) obtained when simulating block matrix mul-
tiplications MATMULT_COLS_33 with different matrix sizes (nROWS), in JUPITER, with 3 OpenMP
threads, varying number of MKL threads, or using MAGMA in 3 GPUs

For each problem size, the minimum execution time is highlighted in bold

MKL MAGMA

nROWS 3 × 1 3 × 2 3 × 3 3 × 4 3 GPUs

500 0.01019 0.00635 0.00350 0.00403 0.01055
1000 0.05926 0.02977 0.03592 0.02950 0.01796
2000 0.36205 0.16690 0.12079 0.13858 0.07952
3000 1.09032 0.86692 0.72478 0.58676 0.22992

17241

1 3

PARCSIM: a parallel computing simulator for scalable software…

This algorithm defines a new set of Mk matrices. These Mk matrices are then used to
obtain the final Ci,j:

The Mk matrices can be calculated independently and therefore in parallel. The graph
associated with this algorithm calculations depicted in Fig. 8a shows the matrices to
be calculated and their dependencies. This makes it possible to determine the order
in which each of them must be solved. Three routines are needed to represent this
graph in the simulator (Fig. 8b). To begin with, we will instruct the simulator to use
a single thread, simulating a single-core hardware system, which allow us to observe
the real efficiency of the algorithm without the influence of the improvements that
parallelism can bring. Table 3 shows the comparative results obtained on both plat-
forms (JUPITER and SATURN). The reduction in execution times obtained when
performing matrix multiplication using Strassen algorithm compared to the conven-
tional method is observed. For matrices of size 6000 × 6000 , the improvement is 8%
in SATURN and 6% in the case of JUPITER. For larger matrices, performance is
improved by 12% for SATURN and 10% for JUPITER, very close to the theoretical
12.5%.

A =

[
A1,1 A1,2

A2,1 A2,2

]
,B =

[
B1,1 B1,2

B2,1 B2,2

]
,C =

[
C1,1 C1,2

C2,1 C2,2

]

M1 = (A1,1 + A2,2)(B1,1 + B2,2)

M2 = (A2,1 + A2,2)B1,1

M3 = A1,1(B1,2 − B2,2) ⟶ C1,1 = M1 +M4 −M5 +M7

M4 = A2,2(B2,1 + B1,1) ⟶ C1,2 = M3 +M5

M5 = (A1,1 + A1,2)B2,2 ⟶ C2,1 = M2 +M4

M6 = (A2,1 − A1,1)(B1,1 + B1,2) ⟶ C2,2 = M1 −M2 +M3 +M6

M7 = (A1,2 + A1,1)(B1,1 + B1,2)

(a) (b)

Fig. 8 Graph of the calculations in Strassen algorithm (a) and graphical representation in the simulator
of the STRASSEN model, without recursion, using Strassen algorithm (b). In addition to the name of the
routines, the functions that compose them are shown

17242 J. Cámara et al.

1 3

Next, the use of the MAGMA library can be introduced to take advantage of
the GPUs installed. The results of the experiments are also listed in Table 3. In
view of these results, despite its greater computational capacity with respect to a
multicore CPU, the cost of transferring the information from the CPU memory
to the GPU memory makes the use of Strassen uncompetitive in terms of execu-
tion times when performing sequential executions of the groups that make up its
model. This is particularly noticeable in SATURN, despite its faster GPU.

Now the simulator is used to see how the performance is affected by reapply-
ing Strassen algorithm to each of the seven multiplications it performs. We will
use the functionality of the simulator that allows us to create groups that solve
a complete imported model instead of executing the functions of a routine. As
seen in Fig. 9, the seven groups {���… ���} of the STRASSEN model that con-
tained the RMM routine now include the STRASSEN model itself, representing a
first level of recursion. We will call the newly generated model STRASSEN_R1.

Since the embedded model can be solved in turn following several paths, we must
tell the simulator which one to run. In the present experiment, with a single-core sys-
tem, group parallelism cannot be used. For this reason, Fig. 9 shows that the groups
{���… ���} will execute in sequence all groups inherited from the imported Stras-
sen model. In addition, the model STRASSEN_R1 will also be executed according
to a sequential path, as we are considering a single-core system at all times (Fig. 10).
Table 4 shows that adding a level of recursion to Strassen algorithm does not
improve performance for the matrix sizes used in the experiments. This is because
the advantage obtained in the multiplications using matrices whose sizes are half the
original size does not manage to compensate for the overhead of adding the addi-
tional addition and subtraction operations that complete the Strassen algorithm that

Table 3 Execution times (in seconds) obtained with the simulator in a multiplication without blocks
(MATMUL) and using Strassen algorithm (STRASSEN)

Square matrices with 30% dispersion, in JUPITER and SATURN, using a single core (with MKL) and
using GPU (with MAGMA)
For each problem size, the minimum execution time is highlighted in bold

CPU (with MKL)

JUPITER SATURN

nROWS×nCOLS MATMUL STRASSEN MATMUL STRASSEN

6000 × 6000 22.56067 21.20005 54.36038 50.13080
8000 × 8000 53.34177 47.80797 130.18680 114.81141
12000 × 12000 179.10999 160.26036 428.79211 379.44492

GPU (with MAGMA)

JUPITER SATURN

nROWS×nCOLS MATMUL STRASSEN MATMUL STRASSEN

6000 × 6000 1.82795 3.36921 1.48523 4.14287
8000 × 8000 4.10491 5.56739 3.35258 6.47299
12000 × 12000 12.82721 16.04158 6.74356 16.88393

17243

1 3

PARCSIM: a parallel computing simulator for scalable software…

solves each group. However, with matrices of size 12000 × 12000 , JUPITER starts
to see an improvement in execution times. In this case, and due to the recursion, the
matrices are 3000 × 3000 , which is a size with which we have observed in the exper-
iments a performance improvement between 6% and 8%, depending on the platform.

On the other hand, because MKL is a multi-threading library, it is possible to
exploit its implicit parallelism and obtain better execution times, as we have seen
above. Table 5 shows the results of the experiments with the new algorithmic

Fig. 9 Representation of STRASSEN_R1 for matrix multiplication using the Strassen algorithm with one
level of recursion

Fig. 10 Representation of the execution path of STRASSEN_R1, applicable to single-core systems

17244 J. Cámara et al.

1 3

parameters applied to the execution of the MATMUL and STRASSEN models. We
observed that the reductions in execution times obtained with the Strassen algo-
rithm compared to conventional multiplication in single-core systems (Table 3)
are smaller as the number of threads is increasing. Assigning 3 threads to Stras-
sen algorithm no longer offers any advantages, except for large sizes.

In any case, it is important to emphasize that the aim of this work is not to
achieve an implementation of Strassen that improves the MKL one, but to show
how the simulator can be a very useful tool in the analysis of the behaviour of the
routines in different execution scenarios. In this way, the simulator can provide
the user with an automatic decision framework for the best resolution option in
each situation.

Table 4 Execution times (in seconds) obtained with the simulator in a traditional multiplication (MAT-
MUL) and using Strassen algorithm without recursion (R0) and with one level of recursion (R1)

Square matrices with 30% dispersion in JUPITER and SATURN, using a single core
For each problem size, the minimum execution time is highlighted in bold

JUPITER SATURN

STRASSEN STRASSEN

nROWS MATMUL R0 R1 MATMUL R0 R1

6000 22.56067 21.20005 22.179228 54.36038 50.13080 58.838894
8000 53.34177 47.80797 48.730221 130.18680 114.81141 122.493195
12000 179.10999 160.26036 157.767395 428.79211 379.44492 410.243134

Table 5 Execution times (in seconds) obtained with the simulator in a traditional multiplication and
using Strassen algorithm without recursion

Square matrices with 30% dispersion in SATURN and in JUPITER, generating 2 and 3 threads
For each problem size, the minimum execution time is highlighted in bold

SATURN

2 threads 3 threads

nROWS×nCOLS MATMUL STRASSEN % MATMUL STRASSEN %

6000 × 6000 29.24644 26.59713 9.1 19.22396 19.84433 -3.2
8000 × 8000 70.83429 66.17148 6.6 44.32339 45.53305 -2.7
12000 × 12000 224.74800 205.56395 8.5 147.06793 143.12148 2.7

JUPITER

2 threads 3 threads

nROWS×nCOLS MATMUL STRASSEN % MATMUL STRASSEN %

6000 × 6000 11.31462 10.67342 5.7 7.69943 7.40049 3.9
8000 × 8000 26.73003 24.68509 7.7 18.07492 17.12385 5.3
12000 × 12000 89.84947 81.57596 9.2 70.71327 66.61833 5.8

17245

1 3

PARCSIM: a parallel computing simulator for scalable software…

4 Conclusions and future work

This paper presents PARCSIM, a simulator for parallel software on heterogene-
ous platforms. This simulator offers the user the ability to analyse the execution
time that their application would obtain depending on the space-time mapping of
each of the tasks that make it up on the different computation units of the avail-
able hardware platform. An autotuning mode is included to help non-expert users
in the selection of the simulation configuration. It has been used to determine
satisfactory configurations of the parallelism parameters (number of OpenMP
threads and of GPUs, and basic linear algebra library). This tool also offers poly-
algorithmic resolution by automatically making the best decision between differ-
ent software approaches. This work also shows the usefulness of this simulator
for efficiently solving hierarchical problems by reusing the optimization informa-
tion of the different subproblems. Experiments show the usefulness of the simula-
tor with different configurations: computational systems composed of multicore
CPU+multi-GPU and several basic linear algebra libraries together with their
combinations with OpenMP through two-level parallelism.

The simulator and the autotuning engine can be adapted to other computational
systems, for example, nodes including Xeon Phi coprocessors and clusters of
multicore CPU+multicoprocessor. The simulator is being applied to other prob-
lems whose computation can be decomposed in DAGs. A comparative study of
the performance that PARCSIM can offer compared to other similar tools is start-
ing. Preliminary results have been obtained comparing it with Chameleon [?], a
task-based dense linear algebra software that internally uses a runtime system to
dynamically manage the execution of the different computational kernels on the
existing hybrid computing units. Using a Strassen multiplication routine for a set
of sizes from 500 × 500 to 12000 × 12000 , in JUPITER, peak performance with
Chameleon reaches about 210 GFlops, whereas with PARCSIM it reaches about
230 GFlops.

Acknowledgements Grant RTI2018-098156-B-C53 funded by MCIN/AEI/10.13039/501100011033 and
by “ERDF A way of making Europe”.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

17246 J. Cámara et al.

1 3

References

 1. Cámara J, Cuenca J, García L, Giménez D (2014) Auto-tuned nested parallelism: a way to reduce
the execution time of scientific software in NUMA systems. Parallel Comput 40(7):309–327

 2. Cuenca J, García L, Giménez D, Herrera F (2017) Guided installation of basic linear algebra rou-
tines in a cluster with manycore components. Concurr Comput Pract Exp. https:// doi. org/ 10. 1002/
cpe. 4112

 3. Cano J-C, Cuenca J, Giménez D, Saura-Sánchez M, Segado-Cabezos P (2018) A parallel simulator
for multibody systems based on group equations. J Supercomput 75:1368–1381

 4. Saura M, Celdrán AI, Dopico D, Cuadrado J (2014) Computational structural analysis of planar
multibody systems with lower and higher kinematic pairs. Mech Mach Theory 71:79–92

 5. Saura M, Segado P, Muñoz B, Dopico D (2015) Multibody kinematics. A topological formulation
based on structural-group coordinates. In: ECCOMAS Thematic Conference on Multibody Dynam-
ics, pp 88–99

 6. Anderson E, Bai Z, Bischof C, Demmel J, Dongarra JJ, Croz JD, Grenbaum A, Hammarling S,
McKenney A, Ostrouchov S, Sorensen D (1995) LAPACK user’s guide. Society for Industrial and
Applied Mathematics, Philadelphia

 7. Intel MKL PARDISO (2018) https:// softw are. intel. com/ en- us/ node/ 470282
 8. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.

Comput Sci Eng IEEE 5(1):46–55
 9. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA.

Queue 6(2):40–53
 10. Cámara J, Cuenca J, Giménez D (2020) Integrating software and hardware hierarchies in an autotun-

ing method for parallel routines in heterogeneous clusters. J Supercomput 76:9922–9941
 11. Batory D (1992) The design and implementation of hierarchical software systems with reusable

components. ACM Trans Softw Eng Methodol 1:355–398
 12. Blackford LS, Choi J, Cleary A, D’cAzevedo E, Demmel J, Dhillon I, Dongarra JJ, Hammarling S,

Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK user’s guide. Society for
Industrial and Applied Mathematics, Philadelphia

 13. Dackland K, Kågström B (1996) A hierarchical approach for performance analysis of ScaLAPACK-
based routines using the distributed linear algebra machine. In: Applied parallel computing, indus-
trial computation and optimization, third international workshop, PARA96, Lyngby, Denmark, pp
186–195

 14. Intel Corporation: Intel Math Kernel Library. https:// softw are. intel. com/ conte nt/ www/ us/ en/ devel
op/ tools/ math- kernel- libra ry. html. Accedido 19 Apr, 2020

 15. Intel Corporation: Intel MKL PARDISO-Parallel Direct Sparse Solver Interface. https:// softw are.
intel. com/ en- us/ node/ 470282. Accedido 16 May, 2020

 16. Computational Mathematics Group at the STFC Rutherford Appleton Laboratory: HSL (2013) A
collection of Fortran codes for large scale scientific computation. http:// www. hsl. rl. ac. uk/. Accedido
16 May, 2020

 17. Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Comput 36:232–240

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1002/cpe.4112
https://doi.org/10.1002/cpe.4112
https://software.intel.com/en-us/node/470282
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/en-us/node/470282
https://software.intel.com/en-us/node/470282
http://www.hsl.rl.ac.uk/

	PARCSIM: a parallel computing simulator for scalable software optimization
	Abstract
	1 Introduction
	2 Description of the simulator
	3 Hierarchical optimization plus polyalgorithm engine
	3.1 Experimental platforms
	3.2 Matrix multiplication: block algorithm
	3.3 Matrix multiplication: strassen algorithm

	4 Conclusions and future work
	Acknowledgements
	References

