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Abstract
Human pose estimation is one of the issues that have gained many benefits from 
using state-of-the-art deep learning-based models. Human pose, hand and mesh esti-
mation is a significant problem that has attracted the attention of the computer vision 
community for the past few decades. A wide variety of solutions have been proposed 
to tackle the problem. Deep Learning-based approaches have been extensively stud-
ied in recent years and used to address several computer vision problems. However, 
it is sometimes hard to compare these methods due to their intrinsic difference. This 
paper extensively summarizes the current deep learning-based 2D and 3D human 
pose, hand and mesh estimation methods with a single or multi-person, single or 
double-stage methodology-based taxonomy. The authors aim to make every step in 
the deep learning-based human pose, hand and mesh estimation techniques inter-
pretable by providing readers with a readily understandable explanation. The pre-
sented taxonomy has clearly illustrated current research on deep learning-based 2D 
and 3D human pose, hand and mesh estimation. Moreover, it also provided dataset 
and evaluation metrics for both 2D and 3D HPE approaches.

Keywords 3D pose estimation · Generator · Discriminator · Loss function · Deep 
neural network · Deep learning · Mesh estimation · Evaluation metric · Dataset

1  Human pose estimation

Human pose estimation (HPE) recently has been significantly studied in the AI 
research community. HPE aims to obtain the posture of the human body from given 
sensor inputs. HPE is a crucial research study in the modern computer vision field 
and has been implemented into many applications, such as human–computer interac-
tion (HCI) [14, 20], healthcare, motion analysis, virtual reality (VR) and augmented 
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reality (AR). Novel deep learning (DL) models outperformed classical methods in 
several research fields such as image classification, semantic segmentation, object 
and face detection. Subsequently, the HPE has also achieved outstanding achieve-
ment utilizing the DL methods. With the rapid advancement in the HPE research 
field, this work tracks recent progress and summarizes their achievements to provide 
readers with a clear understanding of current research on DL-based HPE.

Several review works are published on the 2D and 3D HPE topics. The authors 
of [20], in their survey study, presented only 2D HPE methods, including single- 
or multi-person approaches. In [14], the authors provide a review on 2D and 3D 
HPE methods with their related categories. Zheng et al. [124] also covers a simi-
lar context with [124]. However, all the mentioned studies include papers from the 
early DL implementation to the HPE field. Unlike the existing survey papers, this 
research work thoroughly summarizes the recently published DL-based 2D HPE 
and 3D HPE. One of the key points of the current research that previous ones did 
not includes 3D human hand, and mesh estimation approaches, which are impor-
tant for a high rapidly growing AI applications. We have used the novel taxonomy, 
which differs from the previous ones, and it covers state-of-the-art 3D human hand 
with mesh estimation approaches. We have also discussed several recently pub-
lished papers in great detail, which revolutionized in the related research field. This 
research addresses the weaknesses of the existing survey studies in the HPE field, 
covering the key points of HPE methods, advantages and drawbacks, extensive anal-
ysis of their experimental implementation details. We have reviewed the recent HPE 
milestone, which the previous survey studies did not cover. In addition, it includes 
recently published DL-based 3D human hand and mesh estimation approaches, 
which are rapidly growing and gaining a great attraction among the AI researchers.

In this survey study, we have reviewed and discussed the recently published 
research works in the related field in two main divisions: 2D HPE (Sect.  2) and 
3D human pose estimation (Sect. 3). Each of them is also divided into subcatego-
ries based on their respective characteristics. Table 1 shows a taxonomy of all the 
reviewed papers during this research process by their related categories.

Our contribution through this survey study and advantages of the research work 
from the previous similar surveys are: Recently published novel DL-based 2D HPE 
and 3D HPE methods including 3D human hand and mesh estimation approaches 
are extensively reviewed; Provided a taxonomy of all reviewed approaches by a cat-
egory corresponding to 2D single or multiple HPE and 3D single or multiple HPE, 
covering single or double stage, model-based or model-free subcategories. Provided 
extensive performance evaluation of 2D HPE and 3D human hand, pose, mesh esti-
mation approaches; Described mainly used datasets and widely used evaluation met-
rics used in 2D HPE and 3D human hand, pose, mesh estimation; Reviewed vari-
ous types of human pose, hand and mesh estimation applications, such as computer 
gaming, video surveillance, movies and animation, human and computer interaction, 
self-driving, AR/VR, medical assistance and healthcare; Presented vital points of the 
state-of-the-art 2D HPE and 3D human pose, hand and mesh estimation approaches 
extensively compared their pros and cons, input and output data, used dataset, back-
bone, and loss function experimental implementation details and evaluation meas-
ures. Also, it presented an insightful discussion of 2D HPE and 3D human pose, 
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hand and mesh estimation methods regarding open research issues with key chal-
lenges in the HPE field, including future research direction.

The paper is organized as follows. Section 1 Human Pose Estimation describes 
the briefly introduction to the research field with existing problems and includes 
Sect. 1.1 Recent advancements, Sect. 1.2 Impactful Past Papers and Sect. 1.3 Tra-
ditional Human body models. Section 2 extensively describes 2D HPE approaches, 
dividing them into related categories and given a detailed description of some state-
of-the-art methods. Section 3 covers 3D HPE method including single and multi-
view approaches. It also describes in detail several novel methods which made the 
revolution in the research field. Section 4 discusses 3D human hand and mesh esti-
mation approaches in detail, as hand and mesh estimation is important and gain-
ing tremendous interest among the researchers in the AI community. The Datasets 
and Evaluation metrics used in the related field are given and discussed with great 
details in Sect. 5. Section 6 presents Open issues and challenges in the HPE research 
community while Sect. 7 gives Summary and Conclusion of this survey study. And 
Sect. 8 gives the Future research directions in HPE research field.

1.1  Recent advancements

Despite the significant progress and remarkable performance of HPE, challenges 
such as occlusion, lacking training data and the depth ambiguity still cause difficul-
ties that need to be overcome. Moreover, compared with 2D HPE, obtaining pre-
cise 3D pose annotations is much more complicated. For 3D HPE from 2D data, 
the main difficulty is depth ambiguities. Researchers have employed inertial meas-
urement units (IMUs), depth sensors and radiofrequency devices as a solution. 

Table 1  Sections of deep learning-based human pose estimation approaches [14]

Division Sub-division Section Sub-section

2D HPE 2D Single Regression-based − Direct prediction
− Multi-task

Detection-based − Network design
2D Multiple Top-down − Coarse-to-fine

− Bounding box refinement
Botttom-up − Two-stage

− Single-stage
− Multi-task

3D HPE 3D Single Model-free − Single-stage
− Two-stage

Model-based − SMPL-based
Depth-based − Generative

− Discriminative
3D Multiple − Bottom-up

− Top-down
− SMPL-based
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However, these methods are usually not considered as being cost-effective and need 
special-purpose hardware [124]. A novel Bayesian formulation of Capsule networks 
[88, 93] was implemented for estimating the 3D human pose from a single RGB 
image. The obtained result was that the pose is given by the 3D coordinates of 17 
joints in a human pose skeleton. 3D pose restoration from 2D input is an ill-posed 
optimization problem and should be regularized. They chose J capsules with size S 
as 512 and 8, respectively. Each capsule is cloned K = 17 times to predict 17 human 
pose joints. Another fascinating recent approach is Deep High-Resolution Repre-
sentation Learning for HPE, where the authors proposed that the network maintains 
high-resolution representations through the whole process [44]. The proposed model 
starts from a high-resolution subnetwork as the initial stage. It then gradually adds 
high-to-low-resolution subnetworks one by one to form more stages and connects 
the multi-resolution subnetworks in parallel. They repeat these multi-scale unions. 
Each high-to-low resolution representation receives information from other parallel 
representations, leading to rich, high-resolution representations. The authors argue 
that the predicted key point heatmap is potentially more accurate and spatially more 
precise. Moreover, they have empirically demonstrated the effectiveness of the pro-
posed approach through the superior pose estimation results over the COCO and the 
MPII dataset.

Multi-person HPE is an attractive and compared with the single-person HPE is 
a challenging task. Existing methods are mainly based on two-stage and generally 
suffer from low efficiency. A single-stage-based model, namely Single-stage multi-
person Pose Machine(SPM) [71], was proposed to simplify the pipeline and enhance 
the efficiency for multi-person human pose estimation. The authors propose a Struc-
tured Pose Representation (SPR) to unify human body instance and joint positions. 
The developed SPM based on SPR directly predicts structured poses for multi-per-
son in a single stage. Moreover, the proposed approach offers a more compact pipe-
line and an attractive efficiency advantage than previous state-of-the-art ones. Even 
though the single-stage paradigm aims to simplify the multi-person pose estimation 
and receives much attention, they still have low performance due to the difficulty 
of regressing various full-body poses from a single feature vector. Unlike previous 
solutions involving complex heuristic designs, Shi et al. [97] presented a simple and 
effective solution by employing instance-aware dynamic networks. Specifically, they 
propose an instance-aware module to adaptively adjust (part of) the network param-
eters for each instance. The authors argue that the proposed approach can signifi-
cantly increase the capacity and adaptive-ability of the network for recognizing vari-
ous human poses while maintaining a compact end-to-end trainable pipeline. The 
extensive experiments on the MS-COCO dataset significantly improve existing sin-
gle-stage methods and make a better balance of accuracy and efficiency compared to 
the state-of-the-art two-stage HPE approaches.

1.2  Impactful past papers

HPE is defined as the problem of localization of human joints [122] in images or 
videos or searching for a specific pose in the space of all articulated poses, such 
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as illustrated in Fig. 1. It has already been widely exploited in Action recognition, 
Animation, Gaming applications, such as a very popular Deep Learning app Home-
Court, which uses Pose Estimation to analyze Basketball player movements. Real-
istic 3D HPE aims to localize semantic key points [3] of single or multiple human 
bodies in 3D space. It is an crucial element for human behavior understanding, 
activity recognition with various applications, such as augmented reality or human-
computer interaction. Even though it has been studied for decades in the computer 
vision field, it has attracted significant research interest due to the introduction of 
low-cost depth cameras [55, 75, 117].

Convolutional neural networks (CNNs) [59, 68, 76, 89, 106, 108]-based methods 
outperform existing ones in HPE from a single depth map and achieved noticeable 
performance improvement. Even though they achieved significant advancement in 
3D HPE, they still suffer from inaccurate analysis because of severe self-occlusions, 
highly articulated shapes of target objects, and low-quality depth images. To over-
come these issues, Moon et al. [67] proposed the voxel-to-voxel prediction network 
for pose estimation (V2V-PoseNet). The proposed method takes a voxelized grid as 
input and estimates the per-voxel likelihood for each key point. By converting the 
2D depth image into a 3D voxelized form as input, the network can see objects’ 
actual appearance without perspective distortion. Moreover, estimating each key 
point’s per-voxel likelihood enables the system to learn the desired task more quickly 
than the highly nonlinear mapping that estimates 3D coordinates directly from the 
input. HPE is a vital research field and can be applied to various applications such 
as action/activity detection, action recognition [41, 54, 120], human tracking [19, 

Fig. 1  Pose estimation [3]
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39], virtual reality, video surveillance [2], movies and animation, human–computer 
interaction [85], self-driving, medical assistance [107] and sports motion analysis. 
Table 2 shows and describes a list of the applications that can be done with the pose 
estimations.

1.3  Human body models

Modeling of the human body is a key component of HPE. The human body is a flex-
ible and complex non-rigid object. It has many specific characteristics like kinematic 
structure, surface texture, body shape, the position of body parts or body joints, etc. 
A mature model for the human body does not necessarily need to contain all human 
body attributes. When building the human pose model, only the requirements for a 
specific task need to be met. Based on various application scenarios and levels of 
representations required, three kinds of human body models are commonly used in 
HPE. As presented in Fig. 2, these three types include skeleton based, contour based 
and volume based.

Kinematic model The kinematic model includes a set of joint positions and limb 
orientations to represent the human body structure. The Pictorial Structure Model 
(PSM) is a widely used graph model, also known as the tree-structured model. This 
flexible and intuitive human body model is successfully utilized in 2D HPE and 3D 

Table 2  A list of the applications that can be done with the pose estimations [14]

Application Description

Virtual reality Promising technology that can be applied in both education and entertain-
ment. Estimation of human posture can further clarify the relationship 
between the social and virtual reality world and enhance the interactive 
experience

Video surveillance One of the early applications to adopt HPE technology in tracking, action 
recognition, re-identification of people within a specific range

Movies and animation [42] Generation of various vivid digital characters is inseparable from the 
capture of human movements. A cheap and accurate social motion 
capture system can better promote the digital entertainment develop-
ment industry

Human–computer interaction HPE is very important for computers and robots better to understand 
people’s identification, location, and action. With humans’ posture, 
computers and robots can efficiently execute instructions and be more 
intelligent

Self-driving Advanced self-driving cars with HPE can respond more appropriately 
to pedestrians and offer more comprehensive interaction with traffic 
coordinators

Medical assistance HPE can provide physicians with quantitative human motion information, 
especially for rehabilitation training and physical therapy

Sports motion analysis Estimating players’ posture in sports videos can further obtain the sta-
tistics of athletes’ indicators. HPE can provide a quantitative analysis 
of action details. Instructors can make more objective evaluations of 
students with HPE
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HPE. Moreover, the kinematic model has the advantage of flexible graph represen-
tation even though it is limited in representing texture and shape information.

Planar Model Besides the kinematic model, to capture the relations between dif-
ferent body parts, the planar model represents the shape and appearance of a human 
body. In the planar model, body parts are usually represented by rectangles approxi-
mating the human body contours.

Volumetric Model With the increasing interest in 3D HPE, many human body 
models have been proposed for a wide variety of human body shapes. It is com-
monly used in deep learning-based 3D HPE methods for recovering 3D human 
mesh.

SMPL The skinned Multi-Person Linear model (SMPL) is a skinned vertex-based 
model, which depicts a wide range of human body shapes. It can be modeled with 
natural pose-dependent deformations representing soft-tissue dynamics. There are 
1786 high-resolution 3D scans of various poses, including template mesh in SMPL. 
These 3D scans are used to learn how people deform with various poses by opti-
mizing the blend weights, the mean template shape, pose-dependent blend shapes, 
and the regressor from vertices to joint locations. The existing rendering engines 
are compatible with SMPL and easy to utilize; therefore, it is broadly adopted in 3D 
HPE methods.

DYNA Dynamic Human Shape in Motion (DYNA) model represents realistic soft-
tissue motions for different human body shapes. A low-dimensional linear subspace 
approximates motion-related soft-tissue deformation. For predicting the low-dimen-
sional linear coefficients of soft-tissue motion, the whole body’s velocity and accel-
eration, the body part’s angular velocities and accelerations, and the coefficients of 
the soft-tissue shape are used. DYNA utilizes the body mass index (BMI) to generate 
deformations for different shaped people.

Fig. 2  Three types of models for human body modeling [124]
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2  2D human pose estimation approaches

Some solution methods of the 2D HPE task have been reviewed in this section. 2D 
Human pose estimation has received significant attention recently due to its various 
applications in the real world. It aims to locate the human body parts from images 
or videos automatically. All the human parts in the given input image or video 
should be detected, and the key points of the same person, even in a crowded scene, 
should be associated. DL-based 2D HPE methods are capable of extracting more 
sufficient features from metadata. Such methods have resulted in excellent perfor-
mances and outperformed the non-deep state-of-the-art methods with a consider-
able margin. Although the deployment of DL in the HPE field is relatively new, 
several notable works on this issue have been proposed. This section aims to present 
a comprehensive overview of state-of-the-art DL-based 2D human pose estimation 
methodologies.

2.1  2D single‑person pose estimation

2D Single-person HPE refers to the task of localizing human skeletal key points 
of a person from the given input image or video frame. There have been proposed 
several traditional research approaches where was exploited handcrafted feature 
extraction methods—developing the novel DL technique has been widely imple-
menting into the 2D HPE research field also. DeepPose [105] was the first signifi-
cant paper that applied Deep Learning to 2D HPE. It achieved SOTA performance 
and exceeded the existing models. DeepPose formulates the pose estimation as 
a CNN-based regression task toward body joints. Also, the pose estimates are 
refined by using a cascade of regressors to obtain a better result. The proposed 
approach does pose reasoning in a holistic manner. That is, even if certain joints 
are hidden, they can be estimated. The authors argue that CNNs naturally provide 
this sort of holistic reasoning and demonstrate strong results. The key point of the 
proposed model is implementing the refinement of the predictions using cascaded 
regressors. The initial coarse pose is refined, and a better estimate is achieved. 
Images are cropped around the predicted joint and fed to the next stage. In this 
way, the subsequent pose regressors see higher resolution images and thus learn 
finer scales, which ultimately leads to higher precision. In [105], the Cartesian 
coordinates of body joints are directly estimated using a multi-stage deep network 
and produced state-of-the-art achievement. Multi-stage CNN also progressively 
enlarges receptive fields and refines the pose estimation result. In addition, it is 
trainable with a graphical model. The CNN estimated 2D heatmaps [63] for each 
joint, and they were exploited as the unary term for the model. In [70], a stacked 
hourglass network was proposed, which repeats downsampling and upsampling to 
exploit multi-scale information effectively. Chu et al. [18] attempted to enhance 
the stacked hourglass network [70] by integrating it with a multi-context atten-
tion mechanism. In [13], an iterative error feedback-based HPE system was pro-
posed. Ke et al. [43] presented a multi-scale structure-aware network to achieve 
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a leading position in the publicly available HPE benchmark. Mask R-CNN [17] 
was proposed to perform human detection and key point localization in a single 
model. The proposed model crops human features from a feature map via the dif-
ferentiable RoIAlign layer. The schematic view of the proposed DeepPose system 
is represented in Fig. 3. It consists of an AlexNet backed (8 layers) with an extra 
final layer, which outputs 2n coordinates—(xi, yi) ∗ 2 , where i ∈ {1, 2,… , n} , and 
n is total number of joints. For training, the model uses L2 loss for regression 
and applies refinement of the predictions using cascaded regressors, resulting in 
achieving better estimates. Images are cropped around the predicted joint and fed 
to the next stage; in this way, the subsequent pose regressors see higher resolution 
images and thus learn features for finer scales which ultimately leads to higher 
precision.

2.1.1  Regression‑based methods

There have been proposed several research works related to regression model 
predict human joint coordinates from the input image or video frame. AlexNet 
is one of the initial networks for deep learning-based 2D HPE approaches due to 
their simplistic architecture and remarkable performance. It was first trained to 
learn joint coordinates from full input images in a very straightforward manner. 
A cascade structure of multi-stage refining regressors was employed to refine the 
previous stage’s cropped images and showed improved performance. It was also 
applied for predicting the human pose in the videos using a sequence of concat-
enated frames as an input. Networks handling multiple closely related tasks of the 
human body may learn various features to improve the prediction of joint coordi-
nates of the human pose. The AlexNet multi-task framework was also employed 
to handle the joint coordinate prediction task from the given input images regres-
sion. We briefly describe the layers of the AlexNet network as it plays a signifi-
cant role in our research domain.

Figure 4 shows that the Alexnet has eight layers with learnable parameters. It 
consists of five layers with a combination of max-pooling layers followed by three 
fully connected layers and use a Relu activation in each of these layers except the 
output one. It was found that using the Relu as an activation function speeds up 
the training by almost six times. It also uses the dropout layers that prevent over-
fitting. The model is trained on the ImageNet dataset, with 14 million images.

Fig. 3  Schematic view of the proposed DeepPose system [105]
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2.2  2D multi‑person pose estimation

The multi-person pose estimation has two main approaches: Top-down approach 
and Bottom-up approach (Fig. 5). 

Top-down approach The top-down approach relies on a human detector that pre-
dicts bounding boxes of humans. The detected human image is cropped and fed to 
the pose estimation system. In other words, first is a person detection stage followed 
by the key point detection stage. These approaches still dominate the leaderboard of 
public benchmark datasets like MS COCO10 dataset [52, 78] and can be summa-
rized based on the following aspects:

• Context modeling
• Effective training strategy
• Post-processing techniques

[15, 34, 80, 102, 112, 115] researches are based on the top-down approach. Chen 
et al. [15] introduced a cascaded pyramid network whose cascaded structure refines 
an initially estimated pose by focusing on hard key points. Xiao et al. [115] proposed 
a simple pose estimation network that consists of a deep backbone network and sev-
eral upsampling layers. This model achieved state-of-the-art performance based on 
simple network architecture on the commonly used benchmark. Papandreou et  al. 
[81] proposed 2D offset vectors and 2D heatmaps for each joint. They fused the esti-
mated vectors and heatmaps to generate highly localized heatmaps.

Bottom-up approach The bottom-up approach localizes all human body key 
points in an input image and assembles them using proposed clustering algorithms 
in each work. In other words, this approach directly detects all key points from the 
picture and associates them with similar person occurrences. Bottom-up approaches 
are usually faster than top-down methods. [12, 36, 48, 69, 70] works are based on 
the bottom-up approach.

A novel method called DeepCut [84] formulated the assignment of the detected 
key points to each person in a given input image as an integer linear program. It 
improves the performance by introducing image-conditioned pair-wise terms. Part 
affinity fields (PAFs) [12] exposed the association between human body key points 

Fig. 4  AlexNet system [20]
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directly. Authors assembled the localized key points of all the people in the input 
image by using the estimated PAFs. Newell et  al. [69] proposed a pixel-wise tag 
value to assign localized key points to a certain human. Pose residual network (PRN) 
[48] is a pose estimation model that can assign detected key points to each person 
while having the ability to jointly perform key point detection, person detection and 
person segmentation. Chen et al. [15] proposed a cascaded pyramid network (CPN) 
which consists of two structures: GlobalNet; RefineNet.

GlobalNet GlobalNet is based on a deep backbone network and upsampling 
layers with skip connections (Fig. 5).

RefineNet RefineNet is built to refine the estimation results from the GlobalNet 
by focusing on hard key points.

Fig. 5  Two-staged approaches of multi-person pose estimation [71]
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2.3  2D human pose refinement

Many methods endeavored to refine the approximated key point for more realistic 
representation. Chen et  al. [15], Newell et  al. [70], Bulat and Tzimiropoulos [9–11] 
exploited an end-to-end trainable multi-stage architecture-based network. The utilized 
model at each stage tries to refine the pose estimation results of the previous stage via 
end-to-end learning. The model proposed in [13] iteratively estimated error feedback 
from a shared weight model. The previous iteration’s output error feedback is trans-
formed into the input pose of the next iteration, which is repeated several times for 
progressive pose refinement. These methods combine pose estimation and refinement 
into a single model. The refinement module is dependent on the estimation, and models 
have a refinement module with a different structure. Hence, they are not guaranteed to 
work appropriately, combining with other estimation methods. Moon et al. [65] pro-
posed a pose refinement method independent of the estimation, where the results can 
be consistently improved regardless of the prior pose estimation method. Fieraru et al. 
[25] proposed a post-processing network to refine the pose estimation results of other 
methods, which is conceptually similar to [65]. The proposed model synthesizes pose 
for training and uses simple network structure that estimates refined heatmaps and off-
set vectors for each joint. It follows ad hoc rules [8, 96] to generate input pose, while 
the previous [65] approach is based on actual error statistics obtained through empirical 
analysis.

In [65], a refinement network PoseFix was proposed to estimate a refined pose from 
a tuple of an input image and a human pose. It takes pose estimation results of any other 
method with an input image and outputs an elegant pose. Multi-stage architectures have 
mainly performed pose refinement. However, this approach is positively related to the 
pose estimation model and requires careful refinement design. The authors proposed a 
model-agnostic pose refinement method that does not depend on the pose estimation 
model. The proposed model takes the input pose in a coarse form and estimates the 
refined pose in a finer form. The coarse input pose enables the model to focus not only 
on an exact location of the input pose but also around it. Besides, the finer form of the 
output pose enables to localize the location of the pose. PoseFix can be applied to the 
pose estimation results of any single- or multi-person pose estimation method. Figure 6 
shows a pose refinement pipeline of the PoseFix.

The PoseFix model refines the input 2D coordinates of all the persons’ human body 
key points in an input image. It is built based on the top-down pipeline, which pro-
cesses a cropped human image’s tuple and a given pose estimation result of that person. 
In the training stage, the input pose is synthesized on the ground-truth pose realistically 
and diversely. In the testing stage, the pose estimation results of any other methods can 
be the input pose to the system. The overall pipeline of the PoseFix is described in 
Fig. 7.
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3  3D human pose estimation approaches

3D HPE predicts locations of the human body joints in 3D space from the given 
input image sources. The progress of 3D HPE from the input data can further 
improve the multi-view 3D HPE in constrained environments. This section will 
focus on the DL-based methods that estimate 3D human pose from the 2D RGB 
images and videos, including 3D single-person and 3D multi-person pose estimation 
approaches. Most of the previous 3D HPE methods are designed for a single-person 

Fig. 6  Testing pipeline of the PoseFix [65]

Fig. 7  Overall pipeline of the PoseFix [65]
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case. They crop the human area in an input image with a ground-truth bounding box 
that is predicted from a human detection model. The cropped patch of a human body 
is fed into the 3D pose estimation module, which then estimates each key point’s 
3D location. Estimating the absolute camera-centered coordinate of each key point 
is difficult because the models take the cropped image as input. Many approaches 
estimate the relative 3D pose to reference point in the body to manage this prob-
lem. The final 3D pose is obtained by adding the 3D coordinates of the root to the 
estimated root-relative 3D pose. Prior information on the bone length [83] or the 
ground-truth [102] has been commonly used to localize the root.

3.1  3D single‑person pose estimation

3D HPE is challenging as it needs to predict the depth information of human body 
joints. Preparation of the training data is also not easy. The existing datasets for 3D 
HPE are obtained under constrained environments. In 3D single person pose esti-
mation cases, the bounding box of the person is usually provided. 3D single person 
pose estimation is divided mainly into two: model-free and model-based categories.

Model-free methods The model-free 3D single-person pose estimation methods 
do not employ human body models as the predicted target. According to the input 
type, Current 3D single-person pose estimation methods can be categorized into 
three approaches: single-stage approach; two-stage approach; depth-based approach.

Single-stage approach The single-stage approach takes an RGB image as an 
input for the 3D human pose estimation model and directly localizes the 3D body 
key points from the input data. The compositional loss was proposed [100] to con-
sider the joint connection structure. Soft-argmax operation was exploited [102] to 
obtain the 3D coordinates of body joints in a differentiable manner. Moreover, they 
introduced a multi-task framework that jointly trains both the pose regression and 
body part detectors. Tekin et  al. [104] modeled high-dimensional joint dependen-
cies by adopting an auto-encoder structure. Pavlakos et al. [83] extended the U-net 
shaped network to estimate a 3D heatmap for each joint. They used a coarse-to-fine 
approach to boost the performance. Martinez et al. [58] proposed a simple network 
that consists of consecutive fully-connected layers, which lifts the 2D human pose to 
the 3D space. Sharma et al. [95] combined a generative model and depth ordering of 
joints to predict the most reliable 3D pose corresponding to the estimated 2D pose. 
The 2D pose-based approach lifts the 2D human pose to the 3D space. Zhao et al. 
[123] generated a semantic GraphCNN to use spatial relationships between joint 
coordinates. Choi et al. [16] follow the 2D pose-based approach to make the Pose-
2Mesh more robust to the domain difference between the training set’s controlled 
environment and in-the-wild environment of the testing set.

Two-stage approach The two-stage methods utilize the high accuracy of 2D HPE. 
They localize body key points in a 2D space and lift them to a 3D area. Motivated 
by the recent success of 2D HPE, 2D pose-based 3D HPE estimation approaches 
that infer 3D human pose from the intermediately estimated 2D human pose have 
become a popular 3D HPE solution. Benefiting from the excellent performance of 
state-of-the-art 2D pose detectors, 2D pose-based 3D HPE approaches generally 
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outperform direct image-based 3D HPE approaches. In the beginning stage, off-the-
shelf 2D HPE models are applied to estimate 2D pose from the input data, and then 
in the next stage, 2D pose-based 3D HPE model is used to obtain the 3D pose. Mar-
tinez et al. [58] proposed a simple network that directly regresses the 3D coordinates 
of body joints from 2D coordinates. Yang et  al. [118] utilized adversarial loss to 
handle the wild’s 3D HPE. Park et al. [82] estimated the initial 2D pose and utilized 
it to regress the 3D pose. Zhou et al. [125] introduced a geometric loss to facilitate 
weakly supervised learning of the depth regression module.

Depth-based 3D human pose estimation With the recent success of networks in 
the image generation process has been demonstrated the use of generative networks 
to guide the 3D HPE during the training process. Depth-based 3D HPE exploits 
depth maps from estimated skeletons of the human body. Depth-based 3D HPE 
methods also rely on: generative models and discriminative models.

Generative models The generative models estimate the posture by finding the 
similarities between the pre-defined body and input 3D point clouds. The ICP [64] 
algorithm is usually used for 3D body tracking problems. Template fitting with 
Gaussian mixture models also was proposed.

Discriminative models The discriminative models directly estimate the positions 
of body joints without requiring body templates. Conventional discriminative meth-
ods are mostly based on random forests. Haque et al. [30] proposed the viewpoint-
invariant pose estimation method using CNN and multiple recurrent neural network 
rounds. The proposed approach learns viewpoint-invariant features, which makes 
the model robust to viewpoint variations.

3.2  3D multi‑person pose estimation

3D multi-person HPE for crowded scenes is essential in many computer vision 
applications such as autonomous driving, surveillance, and robotics. However, esti-
mating the 3D human pose from a crowded real-world setting is still challenging. 
A three-step process is commonly used in the multi-person 3D HPE problem: (1) 
detecting human body key points; (2) matching people across different views; (3) 
reconstructing 3D human pose. Unfortunately, the critical second step of match-
ing people across different views is non-trivial. Pose estimation in group pictures 
with severe occlusions attracts much attention. The 3D multi-person pose estimation 
from multiview images aims to estimate each key point’s 3D coordinate rather than 
the 2D coordinate on the group image. Some joints may be more relevant to spe-
cific actions than others. Attention mechanism has been used to discover informative 
joints.

Estimation of a human pose can be very useful in many real-world AIoT scenar-
ios, such as rehabilitation exercises monitoring and assessment, dangerous behavior 
monitoring and human–machine interaction. Some researches have been done on 3D 
multi-person pose estimation from a single RGB image. Mehta et al. [62] presented 
a bottom-up approach system. They proposed an occlusion-robust pose-map formu-
lation that supports pose inference for more than one person through PAFs. In [91] 
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was introduced a top-down approach called LCR-Net. The proposed system consists 
of: localization part; classification part; regression parts.

Localization part The first localization part detects a human from an input image.
Classification part And the next classification part classifies the detected human 

into several anchor-poses. The anchor-pose is defined as a pair of 2D and root-rela-
tive 3D pose. It is generated by clustering poses in the training set.

Regression part Then, the last regression part refines the anchor-poses.
A novel and general framework was proposed by Moon et al. [64] for 3D multi-

person pose estimation from a single RGB image. The presented framework consists 
of three Networks: human detection DetectNet, 3D human root localization Root-
Net and root-relative 3D single-person pose estimation PoseNet models. The authors 
declared that existing human detection and 3D single-person pose estimation models 
could be plugged into their proposed framework as it is very flexible and easy to use.

DetectNet. Mask R-CNN was exploited as the framework of Detect-Net. Mask 
R-CNN consists of three parts: backbone; region proposal network; classification 
head network.

• Backbone. It extracts useful local and global features from the input image by 
using a deep residual network (ResNet) [23, 31] and feature pyramid network 
[22, 24, 98].

• Region proposal network. It proposes human bounding box candidates based on 
the extracted features.

• Classification head network. The RoIAlign layer extracts each proposal’s features 
and passes them to the third part, which is the classification head network. The 
head network determines whether the given proposal is a human or not and esti-
mates the bounding box refinement offsets.

RootNet. The RootNet localizes the human’s root R = (xR, yR, ZR) from a cropped 
human image, where xR and yR are pixel coordinates, ZR is absolute depth value. Root-
Net estimates the 2D image coordinates (xR, yR) and the human root’s depth value sepa-
rately. The 2D image coordinates are back-projected to the camera-centered coordinate 
space using the estimated depth value. The image provides sufficient information on 

Fig. 8  Network architecture of the RootNet [64]
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where the human root is located in the image space. The 2D estimation part can learn 
to localize it easily. By contrast, estimating the depth only from a cropped human image 
is difficult because the input does not provide information on the camera and human’s 
relative position. The network architecture of the RootNet is visualized in Fig. 8.

RootNet is trained by minimizing the L1 distance between the estimated and ground-
truth coordinates. The loss function Lroot is defined as follows:

where ∗ indicates the ground-truth.
PoseNet. The PoseNet estimates the root-relative 3D pose from a cropped human 

image as follows:

where j is the number of human joints. It was exploited by Sun et al. [102], as a cur-
rent state-of-the-art method, and it consists of two parts: Backbone; Pose estimation.

• Backbone. The first part, which is the backbone, extracts a useful global feature 
from the cropped human image using ResNet.

• Pose estimation. It takes a feature map from the backbone part and upsamples it 
using three consecutive deconvolutional layers with batch normalization layers [5, 
37, 74] and ReLU [35, 53] activation function. A 1-by-1 convolution is applied to 
the upsampled feature map to produce the 3D heatmaps for each joint. The soft-arg-
max operation is used to extract the 2D image coordinates (xj, yj) and the root-rela-
tive depth values Zrel

j

PoseNet is trained by minimizing the L1 distance between the estimated and ground-
truth coordinates. The loss function Lpose is defined as follows:

where ∗ indicates the ground truth, and J is the total number of coordinates.

(1)Lroot = ‖R − R∗‖1

(2)Prel
j

=

(
xj, yj, Z

rel
j

)

(3)Lpose =
1

J

J∑

j=1

‖‖‖P
rel
j

− Prel∗
j

‖‖‖

Fig. 9  Overall pipeline of the proposed framework for 3D multi-person pose estimation from a single 
RGB image [64]
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The network architecture of the proposed work, which consists of three compo-
nents, is visualized in Fig. 9:

• A human detection network (DetectNet) detects the bounding boxes of humans 
in an input image.

• The proposed 3D human root localization network (RootNet) estimates the 
detected human roots’ camera-centered coordinates.

• A root-relative 3D single-person pose estimation network (PostNet) estimates the 
root-relative 3D pose for each detected human.

3.3  Volumetric representation using depth information

Wu et  al. proposed a depth image’s volumetric representation that surpassed the 
existing hand-crafted descriptor-based methods in 3D shape classification and 
retrieval problems. Each voxel was represented as a binary random variable and 
employed a convolutional deep belief network to learn the probability distribution 
for each voxel. Recent work [116] also represented 3D input data as a volumetric 
form for 3D object classification and detection. In [67], several types of volumet-
ric representations were proposed to fully utilize the rich source of 3D information 
and efficiently deal with large amounts of point cloud data. Their presented CNN 
architecture and occupancy grids outperform state-of-the-arts in several available 
datasets.

4  3D human hand and mesh estimation methods

3D human pose and mesh estimation models were proposed to recover 3D human 
joint and mesh vertex locations simultaneously. This is a challenging task due to the 
depth and scale ambiguity, complexity of the human body and hand articulation. 
Recent deep learning-based methods have shown distinct performance improvement 
in solving this problem and outperformed all previous approaches. The deep learn-
ing-based methods rely on human mesh models and can be generally categorized 
into two approaches: model-based approach and model-free approach.

 Model-based approach In the model-based approach, a network is trained to pre-
dict the model parameters and to generate a human mesh by decoding them [4, 6, 7, 
38, 49, 77, 79].

 Model-free approach In contrast, the model-free approach regresses a 3D human 
mesh coordinates directly [28, 50, 51]. Both given approaches compute the 3D 
human pose by multiplying the output mesh with a joint regression matrix defined in 
the human mesh models [16, 29, 32, 46, 86, 87, 92, 94].

Deep learning-based 3D human pose and mesh estimation models regress the 
pose and shape parameters of human mesh models. Even though they recently have 
shown significant improvement, they still have weaknesses: suffering from domain 
gap and unapproprite parameters.
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Suffering from domain gap When tested on in-the-wild data, the models suffer 
from the gap that exists between the controlled and in-the-wild environment data. 
The data obtained from the controlled environments [7, 33, 60, 90, 113, 114] are 
considered as valuable train data in 3D human pose and estimation because it con-
tains accurate 3D annotations. However, due to the significant difference in image 
appearance between the two domains, such as backgrounds and clothes, an image-
based approach cannot fully benefit from the data.

Unapproprite parameters The pose parameters of the human mesh models might 
not be an appropriate regression target [50, 51]. The SMPL [6, 56] pose parameters 
represent 3D rotations in an axis-angle, resulting from the non-unique problem (i.e., 
periodicity). Although scientists [38, 77] tried to avoid the periodicity by utilizing 
a rotation matrix as the prediction target, it still has a non-minimal representation 
problem. Choi et al. [16] proposed Pose2Mesh as a solution to the above problems. 
Pose2Mesh is a graph convolutional network that recovers 3D human pose and mesh 
from the 2D human pose, in a model-free fashion. It has two advantages over exist-
ing methods: 2D poses from controlled and in-the-wild environments, and avoiding 
the representation issues. Tables 3, 4, 5 give a complete understanding of the dis-
cussed models and describe the taxonomy of the models, exploited networks, and 
experimental details, respectively. 

2D poses from controlled and in-the-wild environments The proposed method 
benefits from a relatively homogeneous geometric property of the input 2D pose 
from controlled and in-the-wild environments. They alleviate the appearance of 
domain gap problem and provide essential geometric information on human articu-
lation. 2D poses can be estimated accurately from in-the-wild images since many 
well-performing methods [15, 65, 99, 115] are trained on large-scale in-the-wild 2D 
human pose datasets [1].

Avoiding the representation issues The next advantage is that the proposed 
method avoids the pose parameters’ representation issues while exploiting the 
human mesh topology. Pose2Mesh directly regresses the 3D coordinates of mesh 
vertices using a graph convolutional neural network (Graph CNN) with graphs con-
structed from the mesh topology.

Pose2Mesh. Pose2Mesh is designed in a cascaded architecture, which consists 
of PoseNet and MeshNet. The PoseNet lifts the 2D human pose to the 3D human 
pose. Moreover, the MeshNet takes both 2D and 3D human poses to estimate the 3D 
human mesh in a coarse-to-fine manner. The mesh features are initially processed in 
a coarse resolution and gradually upsampled to a fine resolution during the forward 
propagation. The overall pipeline of the proposed Pos2Mesh system is represented 
in Fig. 10.

4.1  Depth‑based 3D hand pose estimation

Depth-based 3D hand pose estimation methods can be divided into: generative 
methods; discriminative methods; hybrid methods.

Generative methods appropriate a pre-defined hand shape and fit it to the input 
depth image by minimizing hand-crafted cost functions. Particle swam optimization 
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(PSO), iterative closest point (ICP), and their combination are the familiar algo-
rithms used to obtain optimal hand pose [47] results.

Discriminative methods directly localize hand joints from an input depth map. 
Random forest-based methods [45] provide quick and precise representation. The 
CNN-based approaches outperform the existing methods and can learn useful fea-
tures by themselves. CNN primarily was utilized to localize hand key points by 
estimating 2D heatmaps for each hand joint and then was extended by exploiting 
multi-view CNN to estimate 2D heatmaps. In [26, 27], the 2D input depth map was 
transformed to the 3D form and the 3D coordinates were calculated directly via 3D 
CNN.

Hybrid methods are a combination of the generative and discriminative approach. 
Oberweger et al. [73] suggested training the discriminative and generative CNNs by 
a feedback loop. Zhou et al. [126] proposed defining a hand model and estimating 
the model’s parameter then regress to 3D coordinates. Furthermore, in [119], the 
spatial attention mechanism and hierarchical PSO were utilized. Wan et  al. [110] 
used two deep generative models with a shared latent space and training discrimina-
tor to estimate the posterior of the latent pose.

4.2  3D human hand and mesh estimation

A model-based approach trains a neural network to estimate the human mesh model 
parameters [56, 92]. The neural network has been widely used for the 3D human 
mesh estimation since it does not necessarily require 3D annotation for mesh super-
vision. Kanazawa et  al. [38] used the adversarial loss to regress plausible SMPL 
parameters. Baek et  al. [4] trained CNN to estimate the MANO model parameters 
using a neural renderer [40]. Omran et al. [77] introduced training a network with 
2D joint coordinates, which takes human part segmentation as input. The advance-
ment of fitting frameworks [6, 83] has motivated a model-free approach that esti-
mates human mesh coordinates directly. Researchers could obtain 3D mesh annota-
tion, which is essential for the model-free methods, from in-the-wild data. Ge et al. 
[26] utilized a GraphCNN to estimate vertices of hand mesh. Kolotouros et al. [50, 
51] proposed a GraphCNN, which learns the template body mesh’s deformation to 
the target body mesh. Moon et  al. [66] introduced a new heatmap representation, 
called lixel, to recover 3D human meshes. Choi et al. [16] presented a novel method 

Fig. 10  Overall architecture of the Pose2Mesh network [16]
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Pose2Mesh that differs from the previous models, which are image based, in that 
it uses the 2D human pose as an input. The proposed Pose2Mesh system can ben-
efit from the data with 3D annotations captured from controlled environments. As 
described in Fig. 10, it consists of two networks:

• PoseNet
• Meshnet

The network architecture of the MeshNet network model is described in Fig. 11.

4.3  Input and output representation in 3D hand pose estimation

The most massive existing 3D hand pose estimation methods from a single depth map 
are based on taking a 2D depth image and directly regressing 3D coordinates. A 2D 
depth image was recently converted to a truncated signed distance function-based 3D 
volumetric form and directly regressed 3D coordinates [21]. In 3D HPE from an RGB 
image, the per-voxel likelihood for each body key point via 2D CNN was estimated 
by Pavlakos et  al. [83]. The discretized depth value was treated as a channel of the 
feature map, which resulted in different kernels for each depth value. Moon et al. [67] 

Fig. 11  Network architecture of MeshNet [16]

Fig. 12  Overall architecture of the V2V-PoseNet [67]
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proposed to estimate each key point’s per-voxel likelihood from the voxelized input. 
They exploited the 3D fully convolutional network, and it was declared as the first 
model to generate voxelized output from voxelized input using 3D CNN for 3D hand 
pose estimation. To estimate the 3D coordinates of all key points, 2D depth images 
were converted to 3D volumetric forms. Then, V2V − PoseNet takes the 3D voxelized 
data and estimates each key point’s per-voxel likelihood (Fig. 12).

4.4  Refining target object localization

To localize key points, such as hand or human body joints, a cubic box that contains the 
hand or human body in 3D space is essential. This cubic box is usually placed around 
the reference point obtained using ground-truth joint position or the center of mass after 
simple depth thresholding around the hand region. However, in the real-world applica-
tions, using the ground-truth joint part is impractical. Moreover, the usage of center 
of mass calculated by simple depth thresholding does not guarantee that the object is 
correctly contained in the acquired cubic box due to the error in the center-of-mass 
calculations in cluttered scenes. When different items are near the target one, the simple 
depth thresholding method cannot filter the other objects correctly. So, the computed 
center-of-mass cubic box becomes incorrect. These weaknesses were overcome by 
training a simple 2D CNN; then, [72, 73] obtained a valid reference point. The network 
takes a depth image, whose reference point is calculated by the simple depth threshold-
ing, and outputs 3D offset. The refined reference point can be obtained by adding the 
network’s output offset value to the calculated one. Table 6 shows converting the input 
image type from the 2D depth map to 3D voxelized form (from 2D CNN to 3D CNN) 
substantially improves performance.

The power of the localization-refining procedure and the epoch ensemble are 
described in Table 7.

Table 6  Average 3D distance 
error (mm) [67]

InputOutput 3D Coordinates Per-voxel likelihood

2D depth map 18.85 (21.1M) 13.01 (4.6 M)
3D voxelized grid 16.78 (457.5M) 10.37 (3.4M)

Table 7  Effect of localization 
refinement and epoch ensemble 
[67]

Methods Average 
3D distance 
error

Baseline 11.14 mm
+Localization refinement 9.22 mm
+Epoch ensemble 8.42 mm
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4.5  GraphCNN for mesh processing

In current methods, a mesh is considered as a graph structure. It is processed using 
the GraphCNN as it can fully exploit mesh topology. GraphCNN is utilized to learn 
a deformation from an initial ellipsoid mesh to the target object mesh in a coarse-to-
fine manner [111]. Verma et al. [109] introduced a graph convolution operator and 
evaluated it on the correspondence problem. GraphCNN-based VAE was also pro-
posed, which learns a latent space of the human face meshes hierarchically.

5  Datasets and evaluation metrics used in HPE

Datasets and evaluation protocols play a significant role in DL-based HPE. They are 
essential for fair comparison of different algorithms and bring more challenges and 
complexity through their expansion and improvement. With the maturity of com-
mercial motion capture systems and crowdsourcing services, recent datasets are no 
longer limited by the data quantity or lab environments. This section will discuss 
some publicly available datasets for 2D and 3D HPE, with the most used evaluation 
metrics.

5.1  Datasets for 2D human pose estimation

Early created datasets for 2D HPE contain images with relatively simple back-
grounds. However, DL-based models are unsuitable for these datasets because the 
number of images is too small for training. The common datasets used in DL-based 
approaches include MSCOCO, MPII, LSP, FLIC, Pose Track, and AI Challenger, 
which contain more images in more complicated scenes. The HPE datasets, such as 
FLIC and LSP, are relatively small and only contain specific activity categories. The 
images in the FLIC dataset are collected from Hollywood movies. The LSP dataset 
images are from sports scenes. Other datasets, such as AIChallenger and MSCOCO, 
are bigger in both size and number of image categories.

5.2  Datasets for 3D human pose estimation

In contrast with 2D HPE datasets, acquiring accurate 3D annotation for 3D HPE 
datasets is challenging. It requires motion capture systems such as MoCap and wear-
able IMUs. Therefore, many 3D HPE datasets are created in constrained conditions.

HumanEva dataset contains seven calibrated video sequences with ground-truth 
3D annotation captured by a commercial MoCap system. It consists of four subjects 
performing six everyday actions: walking, jogging, gesturing, throwing and catching 
a ball, boxing, and combo. Human3.6M is the mainly used dataset for 3D HPE from 
monocular images and videos. It consists of 11 professional actors performing 17 
activities such as smoking, taking photos, talking on the phone and etc. The dataset 
contains 3.6 million 3D human poses with 3D ground-truth annotation captured by 
an accurate marker-based MoCap system. TNT15 dataset consists of synchronized 
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data streams from eight RGB cameras and ten IMUs. It has been recorded in an 
office environment. It records four actors performing five activities: walking, run-
ning on the spot, rotating arms, jumping and skiing, and dynamic punching. The 
dataset contains about 13k frames, including binary segmented images obtained by 
background subtraction, 3D laser scans and registered meshes of each actor. MPI-
INF-3DHP dataset was collected with a marker- less multi-camera MoCap system 
and includes both indoor and outdoor scenes. It contains over 1.3 M frames from 14 
different views. Eight subjects are recorded performing eight activities such walk-
ing/standing, exercise, sitting, crouch/reach, on the floor, sports, miscellaneous. 
TotalCapture dataset was captured indoors with eight calibrated HD video cameras. 
There are four male and one female subjects performing four diverse performances, 
repeated three times. The variation and body motions within the acting and freestyle 
sequences are very challenging with actions such as yoga, giving directions, bending 
over and crawling performed in both the train and test data.

Furthermore, the MARCOnI dataset contains sequences in a variety of uncon-
trolled indoor and outdoor scenarios. They vary according to different data modali-
ties captured, in the numbers and identities of actors to track, the complexity of the 
motions, the number of cameras used, the existence and number of moving objects 
in the background and the lighting conditions. Cameras differ in the types, hence the 
frame resolutions, and the frame rates. Panoptic dataset was captured with a mark-
erless motion capturing using multiple view systems. It contains 65 sequences of 
social interaction with 1.5 million 3D skeletons. The provided annotations include 
3D key points, cloud points, optical flow, etc. 3DPW dataset was captured using a 
single hand-held camera in natural environments. 3D annotations are estimated from 
IMUs. All subjects in the dataset are provided with 3D scans. It consists of 60 video 
sequences with periodic actions, including walking in the city, going upstairs, hav-
ing coffee, taking the bus, etc. The datasets were collected with MoCap systems. 
Table 8 shows popular 3D HPE datasets which we have described above.

5.3  Evaluation metrics used in 2D HPE

Different datasets have different features and task requirements (single/multi-pose). 
Therefore, several metrics are used evaluate the performance in 2D HPE, which is 
tricky due to many factors that need to be considered. We will describe some of the 
commonly used metrics in the following.

Percentage of Correctly estimated body Parts (PCP) metric evaluates stick pre-
dictions, and it was used in early research studies. PCP reports the localization accu-
racy for human limbs. A human limb is correctly localized if its two endpoints are 
within a threshold from the corresponding ground truth endpoints. Besides, a mean 
PCP, some limbs PCP, such as the torso, upper legs, lower legs, upper arms, fore-
arms, head, are also reported. Moreover, percentage curves for each limb can be 
obtained with the threshold variation in the metric. The similar metrics PCPm use 
50% of the mean ground-truth segment length over the entire test set as a matching 
threshold.
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Percentage of Correct Key points (PCK) measures the accuracy of the localiza-
tion of the human body joints. A human body joint is considered correct if it falls 
within the threshold pixels of the ground-truth joint. Moreover, with the variation in 
a threshold, Area Under the Curve (AUC ) can be generated for further analysis.

The Object Key point Similarity (OKS) and Average Precision (AP) of OKS con-
sider scale and introduce the per-point constant to control falloff.

AP, Average Recall (AR) and their variants are also metrics used in evaluating 
multi-person pose estimation results. AP, AR and their variants are reported based 
on an analogous similarity measure: object key point similarity (OKS), which plays 
the same role as the Intersection over Union (IoU). In addition, AP/AR with different 
human body scales are also reported in the COCO dataset.

5.4  Evaluation metrics used in 3D HPE

There are several evaluation metrics for 3D HPE with different limitation factors. In 
this subsection, we will give a list of widely used evaluation metrics.

Mean Per Joint Position Error (MPJPE) is one of the most popular metrics to 
evaluate the performance of 3D HPE. It is based on Euclidean distance and calcu-
lates the distance from the estimated 3D joints to the ground truth, averaged over all 
joints in one image. In the set of frames cases, the mean error is averaged over all 
frames. Different datasets and protocols have different data post-processing of esti-
mated joints before computing the MPJPE.

PMPJPE measure called a Reconstruction Error is the MPJPE after rigid align-
ment by post-processing between the estimated pose and the ground-truth one.

NMPJPE is defined as the MPJPE after normalizing the predicted positions in 
scale to the reference.

Mean Per Vertex Error (MPVE) measures the Euclidean distances between the 
ground truth vertices and the predicted vertices.

3DPCK is a 3D extended version of the PCK metric used in 2D HPE evaluation. 
An estimated joint is considered correct if the distance between the estimation and 
the ground truth is within a certain threshold, and mainly the threshold is set to 150 
mm.

6  Open issues and challenges

HPE is still a hot topic in computer vision which recently has evolved along with 
DL approaches. Despite the significant development of 2D and 3D human hand, 
pose and mesh estimation with DL, some unresolved open issues and challenges still 
exist between academia and industry, for example issue of the influence of human 
body part occlusion and crowded people. Effective practical models and sufficient 
training data are essential for DL-based methods. The massive interest in HPE and 
its importance can be seen from the workshops and challenges on HPE, increas-
ing. They gather researchers from academia and industry on HPE and discuss the 
current state-of-the-art and future research directions. Here we give some of them 
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as we decide as recent and important ones: ICCV 2017—PoseTrack Challenge: 
Human Pose Estimation and Tracking in the Wild, CVPR 2018—3D humans 2018: 
1st International workshop on Human pose, motion, activities and shape, ECCV 
2018-PoseTrack Challenge: Articulated People Tracking in the Wild, CVPR 2019—
Workshop On Augmented Human: Human-centric Understanding, CVPR 2019-3D 
humans 2019: 2nd International workshop on Human pose, motion, activities and 
shape, ACM Multimedia-2020 Large-scale Human-centric Video Analysis in Com-
plex Events, CVPR 2020-Towards Human-Centric Image/Video Synthesis, ECCV 
2020-3D poses in the wild challenge.

7  Conclusion

This paper reviewed and discussed recent published DL-based papers on the human 
pose, hand and mesh estimation approaches in great detail. We have comprehen-
sively investigated the related theoretical and practical issues compared to existing 
methods in this HPE research field. Moreover, the pose estimation concepts and 
their applications are clearly explained in detail to provide readers with a deeper 
understanding of these topics. We also provided a clear taxonomy of the presented 
survey-based 2D and 3D pose, hand and mesh estimation, including single-person 
or multi-person, single-stage or double-stage categories. In addition, datasets and 
metrics used in the HPE research approaches are provided for both 2D and 3D HPE 
approaches. The taxonomy of the presented paper is based on the methodology, 
which includes single-person or multi-person, single-stage or double-stage pipe-
lines. The comparisons are made among different frameworks and different pipe-
lines of the HPE approaches. Moreover, we also summarized the datasets and evalu-
ation metrics for DL-based 2D and 3D HPE approaches. We hope that the presented 
review work can motivate new research efforts to improve the HPE approaches with 
large-scale applications such as non-verbal and remote communication, including 
hand and body motion, VR, AR, human action recognition and computer games.

8  Future research directions

Despite the remarkable success in the HPE field, there are still various promising 
future directions to promote advances in HPE research. Further, we point out some 
of them:

3D HPE is usually used in visual tracking and analysis fields. Existing 3D human 
hand, pose and mesh estimation from the given videos is not smooth and continuous. 
It is because the evaluation metrics cannot evaluate the smoothness. Suitable frame-
level evaluation metrics focusing on temporary consistency and action smoothness 
should be generated.

The slight noise can significantly affect the performance of the HPE network. 
DL-based networks in computer vision tasks are weak to adversarial attacks. The 
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researches against adversarial attacks can improve the robustness of models and pro-
mote real-world HPE applications.
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