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Abstract
This study aims to solve the issues of nonlinearity, non-integrity constraints, under-
actuated systems in mobile robots. The wheeled robot is selected as the research 
object, and a kinematic and dynamic control model based on Internet of Things 
(IoT) and neural network is proposed. With the help of IoT sensors, the proposed 
model can realize effective control of the mobile robot under the premise of ensur-
ing safety using the model tracking scheme and the radial basis function adaptive 
control algorithm. The results show that the robot can be controlled effectively to 
break the speed and acceleration constraints using the strategy based on the model 
predictive control, thus realizing smooth movement under the premise of safety. The 
self-adapting algorithm based on the IoT and neural network shows notable advan-
tages in parameter uncertainty and roller skidding well. The proposed model algo-
rithm shows a fast convergence rate of about 2  s, which has effectively improved 
performances in trajectory tracking and robustness of the wheeled mobile robot, and 
can solve the difficulties of wheeled mobile robots in practical applications, showing 
reliable reference value for algorithm research in this field.

Keywords Internet of Things · Neural network · Wheeled mobile robots · 
Kinematics · Dynamics model · Trajectory tracking

1 Introduction

With the continuous in-depth research of the Internet of Things (IoT), artificial intel-
ligence (AI), and big data algorithms, more and more emerging technology products 
appear and become an indispensable part of people’s life and production [1]. As a 
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product of the industrialization and informatization of IoT, mobile robots integrate 
the contents and technologies of multiple disciplines, such as biology, informatics, 
electric power, and structural science, and are an important manifestation of the 
development of human wisdom [2]. Mobile robots have been widely used in vari-
ous fields of medicine, space exploration, design and construction, industrial pro-
duction, and teaching practice, bringing great convenience to people’s daily lives 
[3]. In the Chernobyl incident, massive nuclear radiations threatened people’s lives, 
and the cleaning of radiation materials could only be achieved by mobile robots [4]. 
In the 2019 Corona Virus Disease (COVID-19) epidemic, mobile robots are adopted 
to perform blood collection and testing, which can prevent spread of the virus 
[5]. In the Mars exploration mission of China, mobile robots are adopted for sci-
entific experiments and samples collection [6]. Obviously, mobile robots are play-
ing an increasingly important role in our lives. Wheeled mobile robots are typical 
of mobile robots. Because of their simple structure and flexible control, they are 
also used in various fields of civil and military affairs. Although currently wheeled 
mobile robots are widely used, it also has some drawbacks in its application due to 
specific restrictions [7]. Path planning and trajectory tracking control are basic dif-
ficulties. Reasonable path planning can effectively save costs, improve production 
efficiency, and optimize resource allocation. A better trajectory tracking method can 
ensure the stability of the system and ensure the efficiency of task completion [8]. 
Therefore, studying the kinematics and dynamics control of wheeled mobile robots 
has important research value for the practical application of mobile robots.

IoT is an intelligent network that realizes the interconnection of everything. It 
connects all items to the Internet through radio frequency identification and other 
information sensing equipment, which can realize intelligent identification and pro-
vide safe, controllable, and even personalized real-time online management and ser-
vice functions [9]. The main feature of the IoT is that it can obtain various informa-
tion of the physical world through radio frequency identification, sensors, etc., and 
combine the Internet, mobile communication network, and other networks for infor-
mation transmission and interaction. Moreover, it can adopt intelligent computing 
technology to analyze and process information, thereby improving the perception to 
the material world and achieving intelligent decision-making and control [10]. The 
emergence of the IoT has broken the barriers between the physical world and the 
information world and successfully integrated reinforced concrete, machines, and 
the Internet to make them a new whole and better serve human production and life. 
Research on mobile robots focuses on the improvement of its own performance, but 
it is difficult to continue to improve the perception and intelligence of mobile robots 
when they reach a certain height limited by electronic technology such as chips and 
other factors [10]. The research on the IoT focuses on the intelligent recognition, 
object positioning, target monitoring and tracking, and management of sensor net-
works. However, there is a lack of sufficient means for the development of intelligent 
mobility and autonomous control, which severely restricts the application expansion 
of IoT. Therefore, studying the IoT technology and applying it to all aspects of the 
field have become the trend of the IoT development.

Neural network is a mathematical model that imitates the movement mode 
and control system of living organisms, transforms its actual problems into 
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corresponding mathematical models, and uses corresponding functions to realize the 
transmission and control of information [11]. Many scholars have reported on the 
application of neural networks in mobile robots. Singh and Thongam [13] used arti-
ficial neural networks (ANN) to reasonably control the mobile robots and generate 
collision-free, close-to-optimal paths and speed; and the effectiveness of the algo-
rithm was proved by the simulation experiments [12]. Huang et  al. [14] proposed 
a control scheme based on the robust neural network and proved that the algorithm 
can handle the tracking and stabilization of wheeled mobile robots affected by exter-
nal interference and input saturation at the same time [13]. Hu et al. [15] proposed 
an optimized nonlinear model predictive control (MPC) algorithm based on the 
neurodynamic to track the movement trajectory of the mobile robot and proved that 
the method can accurately track the trajectory based on the solver and can maintain 
high robustness [14]. Lobo et al. (2020) proposed a simple spiking neural networks 
(SNN) algorithm, which has the Hebbian rules in the form of spike-time-dependent 
plasticity. Moreover, it used the spatial characteristics of spike-timing-dependent 
plasticity (STDP) to achieve associative learning; and it was proved that when the 
environment changes, the robot has the ability to learn again [15]. Therefore, the 
neural network can effectively solve the difficulties in mobile robot path planning 
and trajectory tracking.

The innovations of this research lie in solving the predictive tracking control of 
wheeled mobile robots under the constraint of speed saturation, proposing an adap-
tive tracking control algorithm for wheeled mobile robots based on radial basis 
function (RBF) neural network, and realizing the automatic disturbance rejection 
tracking control of the wheeled mobile robot against the conditions of sliding and 
skidding. Therefore, it provides important reference value for the practical applica-
tion of wheeled mobile robots. The objective of this study is discovering the current 
difficulties in the practical application of wheeled mobile robots and to propose sci-
entific experimental methods to solve them. For speed saturation constraints, roller 
skidding, and parameter uncertainty, a kinematics and dynamics model of wheeled 
mobile robots based on the neural network is proposed, and the performance of 
which is further verified through actual simulation experiments. This research is of 
imperative value in promoting the practical application of wheeled mobile robots.

A dynamic model of a mobile robot is established using RBF neural network, 
which doesn’t require to know all the dynamic parameters of the mobile robot 
compared with the conventional torque control method. When the parameters of 
the controlled object change suddenly, the control scheme can adjust its own grid 
structure and parameters to adapt to the change, thereby improving the trajectory 
tracking control performance of the mobile robot and overcoming the model uncer-
tainty and external interference. However, there are some limitations. In many spe-
cial occasions, the accuracy of the neural network model will decrease after the 
system parameters are changed. When the grid and parameters are adjusted online, 
whether the grid structure is streamlined is also the actual situation that need to be 
considered.
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2  Theoretical basis

2.1  Control of mobile robots

The mobile robots adopt the nonlinear time-varying systems and have complex char-
acteristics such as internal parameter perturbation, model uncertainty, and external 
time-varying interference. Therefore, the early classical control theory and linear 
system theory are quite mature and applied widely. However, it is difficult to meet 
the control requirements of mobile robots, so it is necessary to combine other con-
trol methods to cope with the complexity of mobile robots, so as to achieve precise 
control of mobile robots. The common control methods are as follows. I. The cen-
tral idea of self-adaptive control is that some important parameters of the control-
ler can be adjusted by itself during the dynamic change of the system. If a specific 
method is adopted to enable some unknown or real-time changing parameters of the 
system to be estimated during system dynamic changes, then the unknown param-
eters in the adaptive controller are directly replaced by estimators, so that the sys-
tem can maintain good performance even when the model has unknown structural 
parameters [16]. II. Robust control is usually used for control systems with unstable 
models that frequently suffer from parameter perturbations. Its unique feature is that 
a pre-designed controller with constant structure and parameters makes it feasible 
for the system to respond to parameter changes and disturbances. It is as insensitive 
as possible, that is, the system has considerable immunity and performance [17]. 
III. ANNs have excellent recognition and self-learning capabilities for functions 
and unknown features of the outside world. In recent years, they have frequently 
appeared in the fields of control and signal processing. The adaptive neural network 
control method formed by fusing the advantages of adaptive control and neural net-
work can effectively learn and approximate the unknown part of the system model. 
The output of the neural network is added to the controller to form feedback, thereby 
reducing the adverse effects of system model uncertainty on the transient or steady-
state performance of the control system and improving the robustness of the system 
[18]. IV. A transmission strategy without a fixed period instead of the traditional 
fixed period transmission is proposed to balance control accuracy and network bur-
den simultaneously, which is called event-triggered control. In event trigger control, 
whether the signal at a certain sampling moment is transmitted or not is determined 
by an event trigger condition, so the transmission cycle is not fixed [19].

2.2  Movement control of IoT

To achieve the organic integration and complementary advantages of mobile robots 
and the IoT, the execution capabilities of mobile robot on the IoT require to be 
improved, and the IoT should provide necessary information support for mobile 
robots. Of which, the most imperative point is providing positioning services. In 
this study, interaction with the surrounding environment is realized through flexible 
installation of load sensors. AVR meg16 single-chip microcomputer is used as the 
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main control chip to reduce the degree of coupling with the robot control subsystem 
in the sensor subsystem. The sensor can collect environmental information includ-
ing distance and temperature and then transmit them to the robot control subsystem 
through the RS232 serial port. The specific module is shown in Fig. 1, including the 
following three parts.

Ultrasonic ranging module is responsible for avoiding the robot hitting the wall 
when the robot encounters an obstacle after it is too late to control it. It aimed to 
prevent the hardware from being damaged by collision and to delay the service life 
of the robot. The user can change the detection distance by modifying its frequency 
after the ultrasonic ranging is turned on. The single-chip microcomputer immedi-
ately sends the information to the upper system when an obstacle is found within the 
specified distance, which will prompt the user to turn, or otherwise the robot will 
stop.

The smoke detection module is featured with relay control output, level detection 
signal output for controlling the alarm effectively, direct current (DC) 9 V battery as 
power supply, high induction sensitivity, and extremely low false alarm rate. When the 
indicator light of the smoke detection sensor starts to flash, the relay will be closed, 
which indicates that the smoke concentration has exceeded the normal value. The indi-
cator light starts to flash in about three seconds and the relay is closed. When the AVR 
Mega16 microcontroller reads a low level from the I/O port, an abnormal interrupt will 
be triggered, a buzzer alarm is issued, and the dangerous information is transmitted to 
the ARM6410 main control chip through the RS232 interface.

Core master chip

Wheeled mobile robot

Ultrasonic Ranging Smoke detection 
module

Infrared human body 
detection

Fig. 1  Mobile robot control system based on IoT
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There is another model, infrared human body induction detection module. Human 
body sensing is a new technology that uses infrared and pyroelectric principles to sense 
temperature change information. It can automatically and accurately identify, detect, 
and sense information about thermal changes including the human body. It does not 
rely on light, so it can work stably and reliably even in dark. The infrared human body 
sensing detection module is used to detect the function of human activities, and such 
function is adopted in disaster relief scenarios. For example, the robot can provide 
reference information for searching and rescuing trapped persons in some dangerous 
environments.

2.3  Kinematics and dynamics model

For wheeled mobile robots, the most important thing is establishing kinematics and 
dynamics models. In Fig. 2(A), the center line of the left and right wheels of the robot 
is taken as the center point M, which is deemed as the reference point [20], and then, 
the kinematics model established can be expressed as Eq. (1).

A two-wheel differential robot consists of two independently driven wheels of radius 
r, rotating on the same axis, with one or more casters, spherical casters, or low-friction 
sliders to keep the robot level.

According to Fig. 2, the motion equation of the trolley is Eq. (1–3).

In the above equations, v is the linear velocity of the trolley in all directions. 
Therefore, there is the following functions.

(1)x = v ⋅ cos �

(2)y = v ⋅ sin�

Fig. 2  Motion vector diagram of 
a wheeled robot
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In the above equations, � refers to the front wheel deflection angle of the robot, 
which can be positive (left deflection) or negative (right deflection) based on the ref-
erence point, � is the heading angle of the robot, � is the heading angular velocity of 
the robot, d refers to the distance from the center of the front wheel to the reference 
point M, and v represents the speed of the front wheel drive of the robot. The above 
equation can be discretized as the following equation.

In Eq. (3), Ts represents the sampling period.

The driving force of the front wheels is set to f1, then Eq. (5) is acquired.

The dynamic equation of the direct current motor for front wheel drive is given 
as follows.

Eq. (10) is acquired by combining above equations.

(3)

⎧
⎪⎨⎪⎩

x� = v cos � cos �

y� = v cos � sin �

� = �

(4)� =
vsin�

d

(5)

⎧
⎪⎨⎪⎩

x(k + 1) = x(k) + v(k)Ts cos �(k) cos �(k)

y(k + 1) = y(k) + v(k)Ts cos �(k) sin �(k)

�(k + 1) = �(k) + �(k)Ts

(6)�(k) = v(k) sin �(k)∕d

(7)f1 cos � = M
d

dt
(v cos �) = M(v cos � − v� sin �)

(8)f1 sin � = 1 ⋅ �

(9)v = e�1

(10)�=�1

(11)(k2j2)�1 +

(
k2B1 + B2 +

k2
m

Ra

)
�1 =

kmk

Ra

Va1 − rf1

(12)
[
k2j1 + j2Mr2

]
v +

(
k2B1 + B2 +

k2
m

Ra

−Mr2�2 tan �

)
v =

kmkr

Ra

Va1
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The dynamic equation of the direct current motor in the forward direction is 
expressed as follows.

In Eq. (13), � is the front wheel deflection angle of the robot, M is the mass of the 
robot, v is the driving speed of the front wheels of the robot, d is the distance between 
the center of the front wheel of the robot and the reference point C of the robot, j1 is the 
moment of inertia of the motor, and j2 refers to the moment of inertia of the front wheel 
to the rolling axis. j3 is the moment of inertia of the front wheel about the steering 
axis. In addition, B1 is the viscous friction coefficient of the motor shaft, B2 is the vis-
cous friction coefficient of the front wheel, km is the electromagnetic torque constant of 
motor, k is the gear ratio, Va1 and Va2 are the output voltages of the direct current motor. 
r is the radius of the front wheels, �1 is the angular velocity of the front wheel drive, 
�2 is the steering angular velocity of the front wheels, and Ra represents the armature 
resistance.

In Fig. 3B, the center line of the left and right wheels of the robot is taken as the 
center point M, which is determined as the reference point. It is assumed that the angu-
lar velocities of the left and right driving wheels are �1 and �2 , respectively, and then, 
the established kinematics model [21] can be expressed as Eq. (12).

(13)(k2j1 + j3)�2 +

(
k2B1 + B2 +

k2
m

Ra

)
�2 =

kmk

Ra

Va2

(14)

⎧⎪⎨⎪⎩

x = v cos �

y = v sin �

� = �

(15)v=
r

2
(�1 + �2)

M

y

xO ᶿ

ᾠ1 

ᾠ2M

d

v
y

xO ᶿ

ᶳ
A B

Fig. 3  The kinematics and dynamics model of wheeled mobile robots
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After discretizing the above equations, Eq. (16) is acquired.

In Eq. (15), Ts represents the sampling period.

In the above two equations, W is the distance between the two wheels, and � 
refers to the heading angular velocity of the robot. The driving forces of the two 
wheels are assumed as f1 and f2, the dynamics model can be expressed as follows:

In Eq. (19) above, I refers to the moment of inertia of the robot, and the dynamic 
equations on the left and right axles are given as follows:

Combining the above equations can get the following two equations:

(16)�=
r

W
(�2−�l)

(17)

⎧
⎪⎨⎪⎩

x(k + 1) = x(k) + v(k)Ts cos �(k)

y(k + 1) = y(k) + v(k)Ts sin �(k)

�(k + 1) = �(k) + �(k)Ts

(18)v(k) =
r

2
[�1(k) + �2(k)]

(19)�(k) =
r

W
[�2(k)−�l(k)]

(20)f1+f2=Mv

(21)
W

2
(f2 − fl) = Iw

(22)(k2j1 + j2)�1 +

(
k2B1 + B2 +

k2
m

Ra

)
�1 =

kmk

Ra

Va1 − rf1

(23)(k2j1 + j2)�2 +

(
k2B1 + B2 +

k2
m

Ra

)
�2 =

kmk

Ra

Va2 − rf2

(24)
[
k2j1 + j2 +

M

2
r2
]
v +

(
k2B1 + B2 +

k2
m
k2

Ra

)
v =

kmkr

Ra

Va1 + Va2

2

(25)
[
k2j1 + j2 +

2I

W2
r2
]
� +

(
k2B1 + B2 +

k2
m
k2

Ra

)
� =

kmkr

Ra

Va2−Va1

W
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3  3. Research methods

3.1  3.1 Model under speed saturation constraints

In actual work, wheeled mobile robots are subject to many constraints. For exam-
ple, the starting acceleration should not be too large, the angular velocity during 
turning should not be too large, and the linear velocity should be limited. In terms 
of performance, the controller is required to meet the real-time and accuracy, that 
is, the robot can accurately reach the desired position in a short period of time and 
consider the complex and changeable environment where the robot is located [22]. 
The proposed MPC method uses a single-layer recurrent neural network in a general 
projection network to iteratively solve the formulaic quadratic programming prob-
lem when external interference is not explicitly considered. The two-layer recurrent 
neural network is adopted to iteratively solve the reconstructed minimum–maximum 
optimization if disturbances are considered [23]. MPC solves a finite-time open-
loop optimization online at each time of adoption based on the current measure-
ment information obtained, and the first element of the obtained control sequence 
is applied to the controlled object. The above process should be repeated at the next 
sampling moment: The new measured value is undertaken as the initial condition for 
predicting the future dynamics of the system at this time, so as to loop and solve the 
optimization.

Actuator saturation is a common phenomenon in actual engineering systems. 
Most actuators will experience saturation, which is not easy to avoid. If the amount 
of input information of the control system actuator reaches a certain limit, it will 
enter a saturated state. If the input amount is increased, it won’t have effect on the 
output of the actuator, and it will also cause the dynamic performance of the con-
trol system to decrease, or make the closed loop system as a whole Deterioration of 
dynamic performance [24]. From the perspective of theoretical research and practi-
cal application, saturation phenomenon makes the system control more complicated. 
Therefore, it is of great significance to study the stability of the constraint system. If 
it is undertaken as a predictive model, then the optimal performance of the wheeled 
mobile robots at all times can be defined as the following equation.

In the equation above, N is the prediction time domain, j refers to the inertia 
moment, q represents the error, and Q and R are the weight matrixes. The optimal 
control sequence that can minimize the performance index Φ(k) is obtained through 
each sampling moment k. The trajectory tracking control structure of wheeled 
mobile robots based on model prediction is shown in Fig. 4 [25]. The tracking error 
and control variable error of wheeled mobile robots in the prediction time domain N 
are defined as follows.

(26)�(k) =
∑N

j=1

[
qT (k + j)k + Qq(k + j)k

]

(27)�(k) =
[
qT (k + 1)k + Qq(k + 1)k

]
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3.2  3.2 Neural network adaptability model

ANN, also known as the connected machine model, is produced based on modern 
neurology, biology, psychology, and other disciplines. It reflects the basic process 
of the biological nervous system processing external things and is simulating the 
human brain nerve tissue. The computing system developed on that is a network sys-
tem composed of massive processing units through extensive interconnection, and 
the multi-layer forward BP network is currently the most widely used form of neural 
network.

RBF neural network is a novel and effective feedforward neural network, which 
owes the best approximation and global optimal performance. In addition, the train-
ing method is fast and easy, and there is no local optimal problem. It has the general 
advantages of neural networks, but it is not perfect either.

Compared with the algorithm used in this study, the advantages of the multi-layer 
antecedent BP grid algorithm include nonlinear mapping capability, self-learning 
and adaptive capability, generalization capability, and fault tolerance. However, 
many shortcomings are also exposed, such as local minimization, slow convergence 
speed of BP neural network algorithm, different choice of BP neural network struc-
ture, contradiction between application examples and network scale, contradiction 
between BP neural network prediction ability and training capacity, and BP neural 
network sample dependence.

The RBF network used for system modeling is generally divided into the fol-
lowing steps of selecting the appropriate learning sample, processing the learning 
sample data, determining the preposition and delay of the model, using the learning 
algorithm in front to complete offline learning of RBF network, verifying and test-
ing the model, and realizing online correction of RBF network using online learning 
method.

RBF networks are used in the design of control systems, generally in the form of 
adaptive control, nonlinear compensation control, internal model control, and pre-
dictive control.

Wheeled mobile robots not only adopt the highly complex nonlinear system with 
multiple inputs and multiple outputs, under-drive, and strong coupling, but also are 
typical incomplete systems. Therefore, the wheeled mobile robots have uncertainties 
such as parameter perturbation and external interference. The uncertainty of wheeled 

Reference trajectory
Zr

MPC

Wheeled robot

qr

Z+

Z-

q+

q-

Fig. 4  Structure diagram of trajectory tracking control based on model prediction
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mobile robots mainly includes parameter uncertainty and non-parameter uncertainty 
[26]. The parameter uncertainty is usually related to the model itself, such as the 
radius of the wheel, the distance between the wheels, the moment of inertia, and the 
distance from the center of mass to the geometric center. The non-parameter uncer-
tainty is mainly caused by measurement noise, external interference, sampling time 
lag, rounding errors in calculations, other non-controlled object factors, and unmod-
eled dynamics (high-frequency unmodeled dynamics) [27]. Uncertainty affects the 
performance of the control tracker, and part of the control algorithm only satisfies 
the deterministic condition of the controlled object. Therefore, the trajectory track-
ing of wheeled mobile robots under uncertain conditions has always been a hot topic 
for scholars [28].

Neural networks can approximate arbitrary nonlinear functions and have strong 
self-learning capabilities. The RBF kernel is adopted in this study to approach 
the uncertainty in the dynamics model of wheeled mobile robots and realizes the 
indirect compensation for the uncertainty of wheeled mobile robots, thus realizing 
the accurate trajectory tracking of wheeled mobile robots [29]. In trajectory track-
ing, it only needs to know the mid-coordinate and azimuth of the pose q, which is 
re-defined as  q =

[
X ⋅ Y�

]T , then the error equation for pose tracking of wheeled 
mobile robots in the local coordinate system is acquired as follows.

After its motion equation is incorporated, the differential equation of the pose 
tracking error can be expressed as Eq. (27).

The principle of Eq. (29) is the same as Eq. (1), and the same principle is sum-
marized in Eq. (1).

The kinematics virtual control law of the mobile robot is written as Eq.  (28) 
below.

In the above Eq. (28), k1, k2, and k3 are all design parameters and meet > 0, Vr is 
the auxiliary speed, and ωr is the tracking speed.

The Lyapunov function is selected for design. Due to the model parameter 
uncertainty and unknown disturbance in the dynamic system modeling of wheeled 
mobile robots, there is an uncertainty f in the dynamic controller. Besides, the 
neural network has a simple structure, can approximate any nonlinear function, 

(28)

⎡⎢⎢⎢⎣

x

y

�

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

cos � sin�0

sin� cos�0

001

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

x − x1

y − y1

� − �1

⎤⎥⎥⎥⎦

(29)

⎧⎪⎨⎪⎩

x = yw + vr cos � − v

y = −xw + vr sin �

� = wr − w

(30)z =

[
vc

wc

]
=

[
k1x + vr cos �

wr + k2yvr + k3vr sin �

]
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and has a strong self-learning ability. Therefore, the neural network is adopted 
in this study to compensate for the uncertainty f. The structure of neural network 
adaptive trajectory tracking control is shown in Fig.  5 [30]. Since the dynamic 
system of wheeled mobile robots will be affected by uncertainty, controllers based 
on kinematics model are often not the true linear and angular speeds of wheeled 
mobile robots. The vc and ωc are assumed as virtual speeds, then a dynamic con-
troller can be designed based on the dynamics model by combining with the neu-
ral network and adaptive control, so as to achieve the gradual convergence of the 
error between the virtual speed and the actual speed of the robot [31].

3.3   Model under active disturbance rejection tracking Control Strategy

Wheeled mobile robot is a highly complex nonlinear system. In order to facilitate 
the study of wheeled mobile robot, scholars generally assume that it satisfies the 
condition of “pure rolling without sliding.” However, the working environment 
of wheeled mobile robots is very complicated. Due to icy roads in winter, wet 
roads in rainy days, or rapid turns, wheeled mobile robots may slide laterally and 
longitudinally, which destroys the ideal imperfect constraints of the robot [32]. 
Therefore, it is meaningful to study the trajectory tracking control of wheeled 
mobile robots under sliding. For wheeled mobile robots in practical applications, 
wheels often slip, which has been reported in many articles [33, 34]. Therefore, 
an active disturbance rejection tracking control strategy is designed to solve this 
problem. The dynamic controller based on active disturbance rejection includes a 
lumped disturbance compensation part and a virtual control speed tracking part. 
The lumped disturbance compensation part is designed as follows.

Auxiliary Kinematics Controller

Zr

WMR
CNN

H-1

d/dt

Adaptive law

S(q)

Kp

qr

Fig. 5  The structure of neural network adaptive trajectory tracking control
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The virtual control speed tracking part can be designed as follows.

Based on relevant literature, the dynamic control law is acquired as Eq. (31).

Based on the previous analysis, the automatic disturbance rejection trajec-
tory tracking control system of wheeled mobile robots is shown in Fig. 5. For the 
dynamic system equation of wheeled mobile robots, the speed tracking error is set as 
ec = z—zc, the linear extended state observer is selected, which is the active distur-
bance rejection dynamics controller type. If d(t) is bounded and derivable, there is a 
constant vector p = [p1,p2]T (pi > 0) for any ω0 > 0 and ωc > 0, so that every element 
in ec in a limited time meets |(ec)i|≤ pi (i = 1, 2). In practical engineering applica-
tions, state variables are sometimes difficult to directly measure with sensors. In this 
case, it is very common to use a state observer to estimate the actual state of the 
system. If the value of each state is required for the linear expansion observer, the 
core is obtaining the system matrix of the system to be observed. This system goes 
beyond the limitation of the linear model required by the Lomberg observer and can 
reconstruct and estimate the state of an unknown nonlinear system. State variables 
are sometimes difficult to directly measure with sensors in practical engineering 
applications. In this case, it is very common to use a state observer to estimate the 
actual state of the system. If the value of each state is required for the linear expan-
sion observer, the core is obtaining the system matrix of the system to be observed. 
This system goes beyond the limitation of the linear model required by the Lomberg 
observer and can reconstruct and estimate the state of an unknown nonlinear system.

It can be transferred into Eq. (33).

In the above equation,

The speed tracking error ec is bounded and decreases with the increase in the con-
troller bandwidth, that is, the active disturbance rejection dynamic control system is 
stable (Fig. 6).

3.4  Performance verification and parameters setting of the model

I. To verify the feasibility of the model predictive controller proposed under speed 
saturation constraints, two reference trajectories (straight line and circle) are 

(31)�1= −H−1x2

(32)�2 = H−1(zc + kp(zc − x1))

(33)�2 = H−1(zc + kp(zc − x1)−x2)

(34)ec = Kp(−ec + x)ec + x2

(35)ec = Aeec + Axx

(36)Ae = −Kp ⋅ Ax =
[
Kp, I2

]
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selected for MATLAB simulation experiments. The sampling time of MPC is set to 
∆T = 0.05, the prediction time domain Np = 40, the weight matrix Q = dm (1,1,1), and 
R = da (0.5,0.5). The constraints that the wheeled mobile robots control input satis-
fies are supposed as 0(m/s) ≤ v ≤ 1.5(m/s) and -1(rad/s) ≤ r ≤ 1(rad/s).

II. To verify the feasibility of the control scheme proposed under the neural net-
work adaptability, two reference trajectories (cosine and circle-straight line) are 
selected for MATLAB simulation experiments. The model parameters are set as fol-
lows: RBF neural network adaptive dynamics controller parameters: Kp = diag(6,6), 
β1 = β2 = 0.1, the number of neurons in the middle layer of the neural network N is 
7, the center cm of Gaussian function hm is determined as the even distribution of 
‖cm‖ with an interval of 5 (the initial value of which is 0), the base width σm is set 
to 8, and the initial value of the weight matrix W is 0.

III. To verify the feasibility of the control scheme proposed under active distur-
bance rejection tracking control strategy, two reference trajectories (double-twisted 
line and circular) are selected for MATLAB simulation experiments. The model 
parameters are set as follows: r = 0.05 m, b = 0.15 m, mc = 3 kg, mw = 0.5 kg, Im = mw, 
r2 = 0.00125  kg ∙ m2, Ic = mc, b2 = 0.0675  kg ∙  m2, Iw = mw, and b2 = 0.01125  kg ∙ 
 m2. The kinematics controller parameters are defined as follows: k1 = 11.7, k2 = 11.1, 
and k3 = 8; the active disturbance rejection dynamics controller parameters are set to 
Kp = diag(8,8), and the linear observer parameter ω0 = 40.

3.5  Radial basis function neural network model parameter setting and structure

The RBF neural network receives training samples xi ∈ Rd from the input layer, and the 
hidden layer maps the input samples to a new space through the radial basis function. 
The number of hidden layer nodes is M. If the radial basis function is a Gaussian func-
tion, then ci ∈ Rd represents the center vector of the Gaussian function, and δi represents 

Auxiliary Kinematics Controller

Zr

WMR

LESO

H-1

d/dt

f

S(q)

Kp

qr

Fig. 6  The structure of automatic disturbance rejection trajectory tracking control system. WMR refers to 
wheeled mobile robot; and LESO refers to linear extended state observer
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the kernel width of the Gaussian function. The mapping from the input space to the 
new space is realized by formula (1).

The output layer implements linear weighted summation in the new space, and it 
is set that wi is the connection weight between the hidden layer and the output layer. 
φ(·) is the radial basis function, y ∈ R is the output result, and the mapping function of 
Rd → R is the following equation.

As a result, the RBF neural network completes the nonlinear mapping of f: Rd → R, 
as illustrated in Fig. 7.

As mentioned above, the central vector ci = [ci1,ci2,…,cid]T of the radial basis func-
tion, the kernel width δi and the connection weight wi between the hidden layer and the 
output layer are the parameters of the RBF neural network. Among them, ci and ci can 
be determined by formulas (39) and (40) through the FCM clustering algorithm, and 
the parameter wi uses the gradient descent learning algorithm to obtain the following 
equations.

(37)�
(||||x − ci

||||
)
= exp

{
−
||||x − ci

||||2
�i

}

(38)y = f (x) =

M∑
i=1

wi�
(||||x − ci

||||
)
, i = 1, 2,… ,M

(39)cik =

n∑
j=1

�jixjk∕

n∑
j=1

�ji

Fig. 7  RBF network architecture 
model
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�ji represents the fuzzy membership of the sample xj obtained by the FCM 
clustering algorithm for the i-th category, and n represents the size of the training 
sample.

x~i = �(||x-ci||), i = 1, 2, …, M, and there is the following equation.

Substituting the center ci and kernel width δi of the radial basis function obtained 
from Eqs. (39) and (40) into Eq. (35) realizes f: Rd → R, that is, the nonlinear map-
ping from the input layer to the hidden layer.

It is assumed that P = [w1, w2, …, wM]T, and Eq. (39) is substituted into Eq. (36) 
to obtain the following equation.

It is obtained from Eq. (42) that the hidden layer to the output layer is a f:RM → R 
linear mapping.

When the mapping is established, it first introduces the insensitive loss function 
corresponding to the RBF linear model. To minimize the value of the insensitive 
loss function of ε, ε is solved as the constraint term of the optimization problem, and 
then, it introduces the structural risk term and Gaussian kernel to construct the RBF 
neural network optimization model with large sample processing ability. The steps 
are as follows.

Step 1: the values of ci and δi are obtained from Eqs. (39) and (40), and the model 
input term z is obtained from Eq. (41).
Step 2: insensitive loss function is introduced.

The ε-insensitive loss function LE(x, y, f) is defined as the following equation.

x ∈  Rd, y ∈ R.
For the linear model of Eq.  (42), the corresponding ε-insensitive loss function 

can be expressed as the following equation.

Among them, y0
i
 represents the output of the neural network, and yi represents the 

real output.

(40)�i =

n∑
j=1

�ji
|||
|||xj − ci

|||
|||
2

∕

n∑
j=1

�ji

(41)x∼ = [x∼1, x∼2,… , x∼M]T

(42)y = pTx∼

(43)LE(x, y, f ) = |y − f (x)|E = max(0.|y − (x)|E)

(44)
n∑
i=1

|y0
i
− yi|i =

n∑
i=1

max(0, |y0
i
− yi| − ε)

(45)
n∑
i=1

max(0,
|||p

Tx∼
i
− yi

||| − ε)
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In formulas (44) and (45), the two constraint strips pTx∼
i
− yi < ε and yi − pTx∼

i
 < ε 

may not meet the requirements, so the introduction of relaxation factors ξi and ξ*i 
can obtain Eqs. (44) and (45).

This algorithm minimizes the ε-insensitive loss function value represented by 
Eqs. (44) and (45). The value of the insensitive parameter ε will directly affect the 
accuracy of modeling. Therefore, the parameter λ is introduced, and ε is used as the 
constraint term of the optimization problem to solve. Combining Eqs. (44) and (45), 
the optimization problem can be equivalently expressed as the following equation.

Among them, the parameter μ is the balance factor, where ξi is automatically sat-
isfied, and ξ*i ≥ 0.

Step 3: the structural risk terms and kernel functions are introduced.

The principle of minimizing the structural risk of support vector machines is 
learned, and the regularization term PTP is introduced to ensure that the structural 
risk of the algorithm is minimized. The kernel algorithm is an important component 
of the support vector machine, which is used to improve the computing power of the 
linear learning machine. After the introduction of the regular term and the kernel 
function, the optimization problem can be expressed by Eqs. (51) and (52).

The Lagrange multiplier is introduced, and the Lagrange function of formula 
(51–52) can be expressed as the following equation.

(46)
{
yi − pTx∼

i
< 𝜀 + 𝜉i, 𝜉i ≥ 0

(47)
{
pTx∼

i
− yi < 𝜀 + 𝜉∗i, 𝜉∗i ≥ 0

(48)min 2�� +
�

�n

n∑
i=1

(
�2
i
+ �∗2

i

)

(49)s.t.(yi − pT𝜑
(
x∼
i

)
< 𝜀 + 𝜉i, i = 1, 2,… , n

(50)s.t.(pT𝜑
(
x∼
i

)
− yi < 𝜀 + 𝜉 ∗ i, i = 1, 2,… , n

(51)min
p,�,�i,�

∗
i

||P| |2 + 2�� +
�

�n

n∑
i=1

(
�2
i
+ �∗2

i

)

(52)s.t.

{
yi − pT𝜑

(
x∼
i

)
< 𝜀 + 𝜉i

pT𝜑
(
x∼
i

)
− yi < 𝜀 + 𝜉i

, i = 1, 2,… , n
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The matrix form of the dual problem corresponding to Eq. (53) is the following 
equation.

The value of each variable obtained by the solution is the following equation.

In addition, since 
m∑
i=1

�
�i + �∗

i

�
= 1 , � =

m∑
i=1

�
ξi + ξ∗

i

�
∕n . Therefore, the parameter 

μ is similar to v in v-SVR, which can be interpreted as an expected error.
Step 4: forecast.
The prediction function is shown in Eq. (58–59).

(53)

L =||p| |2 + 2�� +
�

�n

n∑
i=1

(
�2
i
+ �∗2

i

)

+

n∑
i=1

ai(yi − pT�
(
x∼
i

)
− � − �i)

+

n∑
i=1

a∗
i
(pT�

(
x∼
i

)
− yi − � − � ∗ i)

(54)

⎧
⎪⎨⎪⎩

max
�
aTa∗T

�
[
2

y
y

−
2

y
y
]−[aTa∗T

�
K∼[a

a∗

�

s.t.
�
aTa∗T

�
1 = 1, a, a∗ ≥ 0

(55)y =

⎡⎢⎢⎣

y1
…

yn

⎤⎥⎥⎦
, a =

⎡⎢⎢⎣

a1
…

an

⎤⎥⎥⎦
, a∗ =

⎡⎢⎢⎣

a∗
1

…

a∗
n

⎤⎥⎥⎦

(56)K∼ =
[
k∼
(
x∼
i
, x∼

j

)]
=

[
K +

�n

�
I −K

−K K
�n

�
I

]

(57)

⎧⎪⎨⎪⎩

p = �
m∑
i=1

�
�i − �∗

i

�
�
�
x∼
i

�

ξi = �i�n

ξ∗
i
= �∗

i
�n

(58)y = pT�
(
x∼
test

)
= �

n∑
i=1

(
ai − a∗

i

)
�T

(
x∼
i

)
�
(
x∼
test

)

(59)pT�
(
x∼
test

)
= �

n∑
i=1

(
ai − a∗

i

)
K∼

(
x∼
i
, x∼

test

)
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Equations  (58) and (59) are equivalent in theory. If used for classification, 
y = sign 

(
pT�

(
x∼
test

))
 . If y > 0, it belongs to the positive class, and if y < 0, it belongs 

to the negative category.

Results and analysis

3.6  Performance under speed saturation constraints

Fig. 8A –C shows the tracking error curves of wheeled mobile robots with differ-
ent trajectories (x-axis, y-axis, and �-axis). In Fig. 8D, the predicted trajectory is 

Fig. 8  The movement trajectory of the mobile robot under a straight path
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consistent with the actual trajectory, and the maximum difference is about 5 m. 
In online speed prediction, although the trend of the gap between the actual value 
and the predicted value is different, the maximum difference does not exceed 
1 rad/s. In the angular velocity test, the maximum difference is about 0.98 rad/s, 
which is within the error range. The wheeled mobile robots can effectively con-
verge the tracking error to zero in a relatively short time, and almost all direc-
tional trajectories reach convergence in about ten seconds. It indicates that the 
predictive controller designed has the advantage of fast convergence. Figure 8D 
illustrates the trajectory tracking pose curve. For the predictive controller of the 
model, wheeled mobile robots under speed saturation constraints also have a good 

Fig. 9  The trajectory movement of the mobile robot under the circular path
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control effect. The actual orbit is basically consistent with the reference orbit. 
Figure 8E–F are the trajectory control curves. It is found that the input of MPC is 
still within the specified range and does not deviate from the actual expectations 
under the constraints.

Figure 9A –C shows the tracking error curves of wheeled mobile robots’ trajecto-
ries (x-axis, y-axis, and � -axis) under a circular trajectory. In Fig. 9D, the predicted 
trajectory is almost the same as the actual trajectory. In the linear velocity and angu-
lar velocity tests, the maximum difference in linear velocity is 1  rad/s. The maxi-
mum angular velocity difference is about 0.995 rad/s, which is within the acceptable 

Fig. 10  The movement trajectory of the mobile robot under the control of neural network
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error range. They reveal that for a circular trajectory, the wheeled mobile robots 
also can quickly converge. Figure 9D shows the posture curve following a circular 
trajectory, and the actual circular trajectory is basically consistent with the refer-
ence trajectory. Figure 9E–F shows the control curves under the circular trajectory. 
The input of MPC is still within the prescribed range under constraints. The above 
results show that the control algorithm under constraints proposed in this study can 
effectively break the speed constraints.

3.7  Performance under neural network adaptability

Figure 10A –C shows the tracking error curves under the cosine trajectory, Fig. 10D 
is the cosine trajectory tracking pose, and Figs. 10E–F shows the cosine trajectory 
tracking control curves. In Fig. 10D, the predicted trajectory is almost the same as 
the actual trajectory. In Fig.  10E, in the linear velocity and angular velocity test, 
the maximum difference in linear velocity is 20  rad/s. In Fig.  10F, the maximum 
angular velocity difference is about 17.5 rad/s, which is within the acceptable error 
range. The neural network adaptive control system can also have ideal convergence, 
and the convergence speed is fast. When the time is 2 s, the data in all directions are 
effectively converged. For the actual trajectory, the algorithm has good stability in 
the curved trajectory tracking; and the linear velocity, angular velocity, and the cor-
responding expected value are kept within a reasonable range. It suggests that the 
neural network can effectively guarantee the accuracy of movement trajectory.

Figure  11A –H shows the comparisons in tracking error, pose curve, trajectory 
tracking speed, and control torque curve under different axial trajectories. Accord-
ing to the analysis of the above eight result graphs, the performance results under 
the two optimization strategies of CNN and BKCPID are close. The predicted value 
and error value of the angular velocity in Fig. 11F and the torque of the right wheel 
in Fig.  11G have a significant gap after five seconds. The angular velocity differ-
ence is generally maintained within 1  rad/s, and the difference between the right 
wheel torque and BKCPID under the CNN optimization strategy is generally within 
5  rad/s, which is within the acceptable error range. Notably, the proposed algo-
rithm and the latest researched BKCPID algorithm have some fluctuations after 
the wheeled mobile robots are subject to unknown external interference or volt-
age changes, but the proposed algorithm is superior in data processing and solution 
of complex issues. Thus, the range of change is smaller, especially in the control 
torque. After a short period of fluctuation, the right torque can quickly recover to 
a certain level. This is also because the proposed algorithm has the ability of self-
adaptation. Therefore, it is concluded that the neural network algorithm can adjust 
the parameters of the controller in real time, and the algorithm proposed is more 
robust than the latest research algorithm.
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Fig. 11  Performance comparisons of algorithms under different optimization strategies
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3.8  Performance of active disturbance rejection tracking Control strategy

Figure  12A ~ 12D shows the tracking results for trajectory of wheeled mobile 
robots under lateral sliding, the change of pose error, and the estimated value of 
the lumped disturbance d. In Fig. 12B, the gap between the movement path in the x 
direction and the y direction starts from 2.5 s, and the gap is generally maintained 
within 0.5 rad/s. In Fig. 12D, the trajectory gap between d and dw is obvious, and 
dw generally remains unchanged after 2.5 s. However, the fluctuation range of d in 
the whole process is relatively large, the maximum value is 0.01 rad/s, and the mini-
mum value is −0.06 rad/s. The lateral sliding algorithm proposed in this study can 
still effectively track the reference trajectory, and the pose error converges quickly 
and stabilizes at the beginning. Although there are some fluctuations at the begin-
ning, the impact is small. The linear expansion observer can also accurately observe 
the lateral sliding time in real time. There is a d-value under the lumped disturbance 
with a finite number of non-derivable points. Such results indicate that the proposed 
active disturbance rejection tracking control strategy can also well solve the roller 
skidding of wheeled mobile robots.

Fig. 12  Actual planning of movement path
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3.9  Comparisonon performances Of different model algorithms

Under different performance optimization strategies, the performance gap of 
the model is relatively small, indicating that the model has a stable advantage. In 
Fig. 13, the performances of different algorithm models are compared on straight 
trajectories and curved trajectories. The spiking neural network PID optimization 
(SNPIDC) algorithm is a robot navigation that can make autonomous decisions to 
overcome obstacles and/or stop the engine, achieving the protective effect. The actu-
ator that drives the robot is not damaged and stops changing directions in the event 
of insurmountable interference. The neuro-fuzzy cognitive map (NFCM) algorithm 
uses the rules for updating the NFCM parameters and uses the Lyapunov method to 
converge the motion control of the mobile robot. The wheeled mobile robot (WMR) 
realizes a novel motion control structure based on visual serving and hybrid algo-
rithms. The algorithm proposed can basically coincide with the original trajectory 
regardless of whether it is in a straight line or a curved trajectory. Compared with 
other algorithms, the algorithm has smaller errors and higher trajectory prediction 
accuracy, which further proves the effectiveness of the model proposed.

Fig. 13  Comparison of the 
performances of different model 
algorithms
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3.10  Control performance analysis based on IoT

According to the analysis in Fig.  13, although the actual trajectory is different 
from the predicted trajectory, the actual trajectory changes tend to be a more reg-
ular trend, similar to the image trajectory of a trigonometric function. The experi-
mental environment is the IoT and Intelligent Control Laboratory, with an area 
of 8 × 12 square meters. There are four anchor nodes installed in the Ultra-Wide 
Band (UWB) positioning system on the four corners of the wall with the coordi-
nates of (4, -2), (− 4, 2), (− 4,10), and (4,10). A tag to be located is marked on the 
mobile robot. In the case of no occlusion, the mobile robot moves slowly along 
a straight line from coordinates (2,0) to (7,0) and sends the measured position-
ing data to the computer via ZigBee, based on which the positioning results can 
be known clearly. In order to verify the effectiveness of the designed software-
based time synchronization method, a set of experiments without time synchroni-
zation is now added, and the positioning experiment results are shown in Fig. 14. 
The positioning accuracy of UWB after time synchronization is significantly 
improved compared to UWB positioning without time synchronization, which 
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Fig. 14  Control performance analysis based on IoT without occlusion
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can reach ± 0.15 m, so the positioning requirements of mobile robots can be basi-
cally met.

Similar to Fig. 14, the actual motion trajectory is close to a trigonometric func-
tion image trajectory, which is far from the predicted trajectory. The above experi-
ment is repeated in the case that there are two channels blocked. Experiment under 
the situation without IoT recognition and processing is carried out to compare the 
superiority of the applied UWB positioning method. The results of the two sets of 
experiments are shown in Fig. 15. Without the identification and processing of the 
IoT, the UWB positioning result has a large positioning error, and the randomness of 
the data is large. After the IoT recognition and positioning through IoT algorithms, 
the positioning results under relatively no IoT conditions have deteriorated, but it is 
still better than the situation without IoT recognition and processing. In summary, 
the UWB wireless positioning system designed shows good accuracy and can meet 
the general needs of mobile robot positioning.

4  Conclusion

Based on the analysis of the kinematics and dynamics models of the existing 
wheeled mobile robots, a corresponding algorithm model is proposed in this study 
via IoT and neural network algorithms. The IoT sensor effectively guarantees the 
positioning accuracy of the mobile robot, and the algorithm model under the speed 
saturation constraint is within the specified range and does not deviate from the 
actual expectations. In addition, the model can reach fast convergence, the neu-
ral adaptive algorithm model can effectively ensure the accuracy of the trajectory 
movement, and the self-anti-interference tracking control strategy can better deal 
with the wheeled mobile robot’s slip. The algorithm model proposed in this paper 
shows obvious advantages compared with the latest research algorithm. The neural 
network is adopted to optimize the existing wheeled mobile robots control system 
algorithm in this study, but there are still many shortcomings. Firstly, a large amount 
of calculation is often required in MPC, which will lead to poor real-time perfor-
mance of the controller, causing slower convergence speed. Secondly, the accuracy 
of the model prediction is improved, but the tracking accuracy of the system is still 
very poor. Third, the roller skidding of wheeled mobile robots has to be studied fur-
ther by adding more actual situations. In the follow-up, we will conduct in-depth 
research on these aspects and continuously improve the performance of the pro-
posed model algorithm.

The online modeling of RBF neural grid has gained a certain degree of attention 
all over the world in recent years. In addition to the research on trajectory tracking 
of mobile robots, there are several issues that need to be further studied in the future.

How to optimize and adjust the grid structure to make it more streamlined has 
to be considered after the grid structure online is adjusted. A reasonable merging 
or deleting mechanism is required after the hidden units of the grid are merged and 
deleted.

In the research and design of the trajectory tracking of mobile robots, many 
parameters have to be set in advance for each controller, and each of these 



8706 Q. Liu, Q. Cong 

1 3

parameters will affect the accuracy of the control system. When the parameters are 
selected, certain experience is required. Therefore, it needs to consider using a rea-
sonable method to select these parameters, which is to further improve the perfor-
mance of the control system.
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