
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:4217–4235
https://doi.org/10.1007/s11227-021-04025-7

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats
on multicore clusters

Jorge González‑Domínguez1 · José M. Martín‑Martínez2 ·
Roberto R. Expósito1

Accepted: 13 August 2021 / Published online: 25 August 2021
© The Author(s) 2021

Abstract
Tandem Repeats (TRs) are segments that occur several times in a DNA sequence,
and each copy is adjacent to other. In the last few years, TRs have gained significant
attention as they are thought to be related with certain human diseases. Therefore,
identifying and classifying TRs have become a highly important task in bioinformat-
ics in order to analyze their disorders and relationships with illnesses. Dot2dot, a
tool recently developed to find TRs, provides more accurate results than the previ-
ous state-of-the-art, but it requires a long execution time even when using multiple
threads. This work presents MPI-dot2dot, a novel version of this tool that combines
MPI and OpenMP so that it can be executed in a cluster of multicore nodes and
thus reduces its execution time. The performance of this new parallel implementa-
tion has been tested using different real datasets. Depending on the characteristics
of the input genomes, it is able to obtain the same biological results as Dot2dot but
more than 100 times faster on a 16-node multicore cluster (384 cores). MPI-dot2dot
is publicly available to download from https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.

Keywords Tandem Repeat · High Performance Computing · MPI · OpenMP ·
Bioinformatics

 * Jorge González-Domínguez
 jgonzalezd@udc.es

 José M. Martín-Martínez
 jmartin@onsager.ugr.es

 Roberto R. Expósito
 rreye@udc.es

1 CITIC, Computer Architecture Group, Universidade da Coruña, A Coruña, Spain
2 Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada,

Spain

http://orcid.org/0000-0002-2602-4874
https://sourceforge.net/projects/mpi-dot2dot
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04025-7&domain=pdf

4218 J. González-Domínguez et al.

1 3

1 Introduction

A Tandem Repeat (TR) is defined in genomics as a certain number of repetitions
formed by one or more bases (motif) that appear adjacent to each other. TRs are
mutations generated during the DNA duplication process when a certain fragment
of the sequence is replicated more than once. These structures are very common in
eukaryote genomes and are considered biologically relevant. For instance, they are
related to gene expression, evolution and a wide range of human diseases [15, 34].
Moreover, the identification of those proteins which are mainly based on TRs is key
as they can be artificially designed [10, 35].

All these reasons have led to an increasing research interest in finding and char-
acterizing TRs. Scientists consider that TRs are present in biologic functions that
are still unknown, so much more analyses looking for TRs characterization must be
made. Thanks to Next Generation Sequencing (NGS) technologies [23], the amount
of available genetic and genomic data has drastically increased during the last years.
Furthermore, there is a rich abundance of bioinformatics tools that can be used to
detect and characterize TRs [21, 24], and newer ones continue to emerge. How-
ever, the most sensible and accurate tools usually require long computational time
to analyze those large biologic datasets which can be generated nowadays through
NGS technologies. Consequently, many scientists limit the size of these datasets in
order to obtain the results in an affordable time, which can lead to miss interesting
conclusions.

Dot2dot [12] is a recently published tool focused on detecting Short Tandem
Repeats (STRs), which are related to some diseases as spinal and bulbar muscular
atrophy [19], autism [33], or bipolar disorder [32]. According to the experimental
results presented in [12], results provided by Dot2dot are more accurate than those
of alternative tools present in the state-of-the-art. In fact, this tool has already been
used in real biologic experiments which have led to interesting conclusions [17, 20].
However, its main drawback is that it requires long computational time to analyze
large NGS datasets, even though it provides parallel support through multithread-
ing. These high computational requirements might force the scientists either to use a
faster but less accurate tool, or to work with smaller datasets (less biologic informa-
tion). Both alternatives might lead to miss interesting TRs.

In this paper we present MPI-dot2dot, a parallel tool for detecting STRs that pro-
vides the following contributions over the state-of-the-art:

– Up to our knowledge, this is the first parallel application that can exploit modern
High Performance Computing (HPC) multicore clusters to accelerate the search
of TRs.

– The parallel approach used in MPI-dot2dot combines Message Passing Interface
(MPI) [1] processes, which allow to work on different nodes of a distributed-
memory cluster, and OpenMP [7] threads to reduce the memory overhead within
each cluster node.

– MPI-dot2dot reduces the memory requirements of the dot plots in order to be
able to analyze large datasets.

4219

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

– The biological results provided by MPI-dot2dot are highly accurate, as they are
identical to those of Dot2dot.

– This tool is publicly available to download and use under an open-source license
from https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.

The rest of the paper is organized as follows. Section 2 presents previous works
related to the procedure of finding TRs. Section 3 presents as background some con-
cepts about the original Dot2dot tool that are necessary to understand the goal of
this work and the implementation of our method. Our parallel implementation is
described in Sect. 4. Section 5 provides the experimental evaluation. Finally, con-
clusions and future work lines are presented in Sect. 6.

2 Related work

There has been a great effort for many years in the development of tools to search,
identify and characterize TRs [21, 24], most of them focused on STRs. All these
applications can be divided into the following three classes:

– Methods that perform an exhaustive search of all possible TRs. The main draw-
back of this approach is its high computational cost, which makes it unfeasible
in most scenarios, as the number of possible combinations grows exponentially
with the length of the motif. For instance, the main algorithm in mreps [18] fol-
lows the exhaustive approach to find all the repetitions that fulfill certain mathe-
matical properties, but the results are then processed with an heuristic to provide
only those with a biologically relevant representation. This approach is more
common when searching specifically for microsatellites [2, 31], as their short
length makes the exhaustive search still affordable.

– Algorithms based on a dictionary. This approach starts from a set of seeds which
are later extended into strings that are searched in the sequence. These algorithms
are suitable for those scenarios where only a limited list of predefined patterns
must be found. Some examples of this type of tools are TROLL [6], STAR [9],
and BWtrs [29].

– ab-nitio algorithms. They are non-exhaustive methods that use advanced mathe-
matical techniques to improve the results of the search. Unlike the previous class,
they do not require any previous knowledge about the input sequences. One of
the most traditionally employed ab-nitio tool is TRF [4], which models the pat-
terns that are repeated according to their similarity and the frequency of their
differences. TRF then uses statistical criteria to select the proper patterns. Other
examples of more modern ab-nitio tools are tandemSWAN [5], which is based on
local autocorrelation analysis; TRStalker [28], which follows a multiphase algo-
rithm where the candidates are sorted according to a score and only the best ones
reach the next phase; MsDetector [13] and ULTRA [27], based on hidden Markov
models; TAREAN [26], with a graph-based sequence clustering phase followed
by a reconstruction step from the most frequent k-mers; and TR-ESA [14], based

https://sourceforge.net/projects/mpi-dot2dot

4220 J. González-Domínguez et al.

1 3

on enhanced suffix arrays. Moreover, there even exist methods to find TRs on
concrete scenarios such as datasets with noisy long reads [16].

As explained in the previous section, MPI-dot2dot is based on Dot2dot, which can
also be categorized as an ab-nitio tool as it relies on an efficient data representa-
tion and uses heuristics in the search. More details about this tool can be found in
Sect. 3 and in [12]. One important feature of Dot2dot is its multithreading support
to reduce its runtime on parallel shared-memory systems.

Besides Dot2dot, we can find in the literature other parallel implementations for
TR search. For instance, GPUs have been used to accelerate the analyses of TRs
either thanks to linear algebra parallel routines [30] or during the sequencing pro-
cedure [8]. FPGAs have also been used to search for imperfect TRs, and to signif-
icantly improve the performance when compared to the best CPU algorithm [22].
Nevertheless, up to our knowledge, there are no available tools to accelerate the
search of TRs using several nodes of an HPC cluster.

3 Background: Dot2dot

Dot2dot is a recently developed ab-nitio application based on heuristics to discover
TRs. It provides results with better precision than other seven state-of-the-art algo-
rithms [12]. Dot2dot accepts as input multisequence files obtained through NGS
technologies either with FASTA or FASTQ format, and allows multithreading exe-
cution to reduce its linear computational cost. Moreover, this tool is able to discover
imperfect TRs and to apply five different filtering levels, which can be selected by
the user through a configuration file.

3.1 Dot plots

The name Dot2dot comes from the concept “dot plot”, which is the basis of the
tool. Dot plots are widely used in bioinformatics to compare two sequences and
identify regions with high similarity. A dot plot is a bidimensional matrix where
two sequences are represented in the rows and columns, respectively, and each cell
receives a different color depending on the similarity between their nucleotides. An
example of a dot plot is shown in Fig. 1.

Fig. 1 Example of a dot plot

4221

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

Dot2dot searches TRs in the sequences of the input dataset one by one. It creates
one symmetric dot plot per sequence, where both the rows and columns are related
to the same sequence. In this type of dot plots the main diagonal is always in the
same color, and there are a set of parallel secondary diagonals which form certain
patterns that can be used to identify TRs. The amount of secondary diagonals repre-
sents the number of repetitions, while their length is related to the motif size. Dot-
2dot uses an efficient data representation of the symmetric dot plots, instead of using
just a bidimensional array with quadratic memory requirements. More information
can be found in [12].

3.2 Search methodology

Algorithm 1 illustrates the general behavior of a Dot2dot execution to find the TRs
of all the sequences included in an input file. The main loop in Line 3 performs the
same work over different sequences: it reads the sequence (Line 4), creates the dot
plot (Line 5), initializes some data structures that are necessary to represent the TRs
(Lines 6 to 8), performs the proper work to discover TRs (Lines 9 to 16), and finally
writes the TRs found in the corresponding output file (Line 17).

The main work for each sequence consists in searching candidate TRs. This is
performed through two nested loops, which look for these candidates in every posi-
tion of the sequence (Line 9) and for all the allowed motif lengths (Line 11). The

4222 J. González-Domínguez et al.

1 3

best candidate for each position is selected (Line 13), but it is only included in the
output list when it does not overlap to previously selected TRs (Lines 14-16).

3.3 Multithreading approach

As previously explained, Dot2dot performs the same work over all the sequences
contained in a certain input file. The original Dot2dot tool includes a multithreading
implementation using POSIX threads (pthreads) [25] where each thread searches for
TRs on different input sequences.

Although the work done for each sentence is independent, threads must share the
access to the input and output files. Dot2dot protects those accesses with two critical
sections, one for reading the input and another one for writing the output. Moreover,
the threads wait for their proper turn before writing so that the output results are
sorted as in the input file (i.e., TRs related to the i − th sequence in the input file
must be in position i in the output file). Each critical section is implemented with a
condition variable and its respective mutex. Once one thread arrives to the critical
section, it checks whether the condition variable indicates its turn. Otherwise, the
thread is blocked. Once one thread leaves the critical section, it updates the turn in
the condition variable and wakes up the other threads, which then check whether the
new turn corresponds to them before continuing or being blocked again. As exposed
by the authors in the supplementary material of [12], this approach for thread syn-
chronization using turns has a negative impact on the overall performance when the
number of threads increases and the length of the sequences presents high variabil-
ity, which is a very common scenario in genomics datasets.

4 Implementation

MPI-dot2dot is a novel tool to accelerate the search of TRs, which provides exactly
the same output results as Dot2dot (and, thus, its high accuracy), but at significantly
lower runtime thanks to exploiting the computational capabilities of multicore clus-
ters. These parallel computers can be defined as distributed-memory systems that
consist of several nodes interconnected through a network. Each node contains a
memory module and provides several CPU cores for computation (see an example
in Fig. 2).

MPI-dot2dot uses the same configuration mechanism as Dot2dot in order to sim-
plify its adoption by those biologists that already know how to use the original tool.
Both tools require by command line the paths to the input and output files, as well

Fig. 2 Example of a multicore cluster with N nodes, each one containing eight CPU cores

4223

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

as to an additional configuration file where other optional parameters can be set (for
instance, the maximum and minimum motif length). More information about this
configuration file can be found in the reference manual that is available in the same
public repository as the source code of the MPI-dot2dot tool1.

4.1 Reduction in memory requirements for dot plots

As mentioned in Sect. 3.1, Dot2dot uses a novel data representation for the dot plots
instead of a simple two dimensional array [12]. Name N the length of the sequence
whose symbols must belong to the finite alphabet � , then this representation only
needs |�| vectors of length N for the values and an additional vector pointer with
also length N. It means that the size of the dot plot for a certain sequence S is:

As in most architectures float and pointer sizes are 4 and 8 bytes, respectively, the
previous formula can be simplified to:

However, the memory requirements can be too high even with this efficient
implementation, especially when increasing the number of simultaneous threads:
each thread in Dot2dot works with a different sequence, with its respective dot plot,
and the dot plots of all threads must be kept in memory at the same time. Prior to the
parallel implementation, we have analyzed this data structure in order to reduce the
memory requirements in MPI-dot2dot.

The main function used in both tools (SearchTR() in Algorithm 1) requires dot
plots whose values are weights between 0 and 1 for each combination of base pairs.
In Dot2dot, these weights are represented with simple-precision real numbers using
the float datatype (4 bytes per weight). Nevertheless, the precision provided by one
float is not necessary as the algorithm never uses more than two decimal points (100
possible values between 0.01 and 0.99). Instead, MPI-dot2dot uses the char data-
type (1 byte) to represent these 100 points, reducing the total memory requirements
almost by a factor of four:

4.2 MPI parallelization

MPI-dot2dot includes MPI directives in order to search for TRs on distributed-
memory systems. MPI is established as a de-facto standard for message-passing,
and provides a portable, efficient and flexible mechanism to exploit this kind
of parallel systems. A parallel MPI program consists of several processes with

memdp(S) = |�| ⋅ N ⋅ sizeof (float) + N ⋅ sizeof (ptr) = (|�| ⋅ sizeof (float) + sizeof (ptr)) ⋅ N

memdp(S) = (|�| ⋅ 4 + 8) ⋅ N

memdp(S) = (|�| + 8) ⋅ N

1 https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.

https://sourceforge.net/projects/mpi-dot2dot

4224 J. González-Domínguez et al.

1 3

associated local memory. Each process can directly access to its local memory,
but data communication must be performed if one process needs information
stored in a remote memory module. The performance overhead generated by
these inter-process communications heavily depends on the underlying hardware,
especially on the latency and bandwidth of the interconnection cluster network
(Fig. 2).

MPI-dot2dot distributes the sequences of the input file among the processes, and
the process that is in charge of a certain sequence performs all the work related to it.
Concretely, the input file is divided into NP groups of contiguous sequences, being
NP the number of processes of the parallel program. The MPI implementation is
flexible enough to work with any number of processes NP < N (N represents the
number of sequences in the input file).

4225

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

Algorithm 2 gathers the general behavior of the MPI parallelization in MPI-dot-
2dot. The execution starts with the process established as root reading the whole
input file to know the length of each sequence (Lines 4-6). This information is nec-
essary in order to decide which sequences will be assigned to each process. Con-
cretely, two options were implemented:

– A block distribution that assigns the same number of sequences to each process.
Its main advantage is the simplification of the preprocessing step, as the root pro-
cess only needs to know the total number of sequences of the input file. However,
as it does not take into account the length of the sequences, it can cause workload
imbalance in the common scenario where such length is highly variable.

– A balanced distribution that assigns a similar number of bases among the pro-
cesses. In this case, the number of sequences per process can be significantly
different, but the workload is better balanced than in the previous approach. The
main drawback is that it requires the root process to completely read the input file
in order to know the length of each sequence.

The function to distribute the data (Line 7) stores in two arrays the position in the
input file of the first sequence assigned to each process, and the number of sequences
to analyze, respectively. Then, each process obtains the information of the distribu-
tion related to it with the MPI collective scatter (Lines 8-9). Collectives are MPI
communication routines that involve several processes. They are designed by the
MPI developers in order to adapt themselves to the architecture of the cluster and
then provide good performance.

Once these communications have finished, all processes start to analyze the
sequences assigned to them (Lines 10-24). In this code block, only two minor modi-
fications arise with respect to Algorithm 1. On the one hand, the loop of Line 10
does not go over all sequences, but only through the ones assigned to the process.
On the other hand, the TRs are not written to the final output in Line 24, but to inter-
mediate files (a different output file for each process).

Finally, once an MPI barrier guarantees that all processes have finished their
work and the TRs are written into their corresponding intermediate output files
(Line 25), the root process merges the information of these intermediate files into
the final output file of the tool (Lines 26-28). As the work is assigned to the pro-
cesses in blocks of contiguous sequences, the root process only has to open once
each intermediate file, and then it can copy the information into the final output with
a single I/O routine. This two-level writing (first, write into intermediate files and,
second, copy to the final files) brings with a performance penalization. Nevertheless,
some alternatives such as sending the output information to the root process through
MPI communications, or directly writing in the final files with a mutex synchroniza-
tion, would lead to worse performance.

4226 J. González-Domínguez et al.

1 3

4.3 Hybrid MPI/OpenMP parallelization

In a pure MPI program, each process is generally linked to one hardware CPU core.
For instance, when executing MPI-dot2dot in a cluster such as the one shown in
Fig. 2, each node would have eight processes working at the same time (one process
per core), each of them with its own sequence and dot plot. This approach can lead
to an execution error if the memory of the node is not large enough to simultane-
ously store eight dot plots. The memory requirements per node increase both with
the length of the sequences and with the number of processes per node.

For instance, assume a system as the one described by Fig. 2 (eight cores per
node) and an input dataset with sequences of equal length, whose dot plots require
20 GB of memory each. With the pure MPI parallelization described in the previ-
ous subsection we would need to map eight MPI processes to each node in order
to exploit the eight available CPU cores. As each process works over a different
sequence, each one has to create its own dot plot, which means that the memory
requirements per node are 20 ⋅ 8 = 160 GB, which are not usually available on one
single node of a cluster.

To overcome this issue, MPI-dot2dot includes a hybrid parallel implementa-
tion, where each MPI process can launch several threads that can collaborate in the
work related to the same dot plot. The main goal of this approach is to alleviate the
memory requirements per node. Using again the example of the previous paragraph,
this hybrid approach would allow executions with one MPI process per node which
launches eight threads. It means that the eight cores of the node would be working
but the dot plot of only one sequence is stored in memory at the same time, reducing
the memory requirements per node to just 20 GB.

The multithreading support is implemented with OpenMP [7], an API based on
directives for platform-independent shared-memory parallel programming. Each
MPI process initially only has one CPU core associated, but it is able to spawn an
arbitrary number of threads that can be mapped to other cores in the same node.
This hybrid parallel approach allows MPI-dot2dot to be executed in the cluster of
Fig. 2 not only with a pure MPI configuration (eight processes per node), but also
with intermediate configurations such as four processes per node with two threads
each.

As all threads share the resources of their parent MPI process, they can access
to the same dot plot data structure. Therefore, MPI-dot2dot can exploit the com-
putational resources of the whole node without requiring to store one dot plot per
core. However, OpenMP can provoke situations where two or more threads need to
access the same data simultaneously (race conditions). The programmer must ensure
that data modifications are performed in the correct order, either using mutexes that
serialize shared memory accesses or creating copies of the data for each thread (pri-
vate data). Nevertheless, the use of mutexes can significantly decrease the overall
performance of parallel applications, as in the multithreaded version of Dot2dot (see
Sect. 3.3).

Lines 11 to 24 in Algorithm 2 represent the computation that different processes
must complete for each sequence. The goal of our hybrid approach is to distrib-
ute the work for one single sequence among the different threads spawned by each

4227

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

process. Loops are usually the target of the OpenMP directives, assigning different
iterations to each thread. Concretely, the multithreaded support in MPI-dot2dot is
included in the loop represented by Line 16 in Algorithm 2, so that different threads
can simultaneously search for candidate TRs starting in a different position of the
sequence. As the dot plot is a read-only data structure stored in shared memory, all
threads can independently search for these candidate TRs in their assigned positions.

Nevertheless, a dependency among threads arises as all of them must check
whether the best candidate of the position overlaps to the previous TRs (Lines 20
to 23 in Algorithm 2): all threads would need to know the best candidate for posi-
tions that were analyzed by other threads. To solve this, MPI-dot2dot uses a dou-
ble-checking mechanism that avoids any synchronization among threads. In this
approach each thread has its own lists of previous, current and final TRs. In each
iteration, each thread only checks the overlapping of its best TR to those included
in its private list (i.e., only to those best candidate TRs which were found in posi-
tions of the sequence assigned to the same thread). Once all threads have finished
their work, there are several final lists (one per thread). The main thread of the pro-
cess performs a second check among the TRs included in all those lists in order to
guarantee that no TR overlaps with a previous one, even though they were found by
different threads.

This double-check approach brings with certain memory overhead, as MPI-
dot2dot creates one copy of all the TRs lists per thread. Nevertheless, its impact is
almost negligible compared to the amount of memory needed to store the dot plots.
Moreover, the performance penalization due to the second check is significantly
lower than other alternatives such as including synchronizations between Lines 20
and 21 in Algorithm 2 to guarantee that the best candidate TRs of all threads have
been calculated prior to the overlapping check.

The loop of Line 18 in Algorithm 2, which searches for TRs of different length
for the same position of the sequence, was discarded as target of parallelization with
OpenMP directives as it would require one thread synchronization per position, sig-
nificantly decreasing performance. Moreover, this loop is generally short (less than
100 iterations) which would reduce the potential benefit of using several threads.

Fig. 3 Workflow of MPI-dot2dot

4228 J. González-Domínguez et al.

1 3

Figure 3 illustrates the approach followed by this hybrid parallel implementation.
Although this algorithm presents two sources of potential performance overhead
related to I/O functions in the root process, it obtains good performance as commu-
nications and synchronizations are minimal.

Finally, remark that the multithreaded approach used in Dot2dot (explained in
Sect. 3.3) was discarded as it distributes the sequences among threads, similarly to
our MPI parallelization described in Sect. 4.2. Therefore, each thread would need
its own dot plot, and thus the same memory problems exposed at the beginning of
this section for the pure MPI approach would also arise.

5 Experimental evaluation

This section presents the experimental evaluation, which is focused on performance
in terms of execution time, as the results of MPI-dot2dot are identical to those of the
original Dot2dot, and thus their accuracy has already been proved in [12].

Four datasets, with assemblies of real genomes downloaded from the GenBank
in the National Center for Biotechnology Information (NCBI) website [3], are
used for evaluation. Their characteristics are shown in Table 1. As previously men-
tioned, these real datasets contain sequences whose length is highly variable. This
table also shows the maximum memory requirements for the original tool and for
MPI-dot2dot, i.e., the size of the dot plot corresponding to the longest sequence. As
explained in Sect. 4.1, the modification of the datatype in the dot plots reduces the
memory requirements of MPI-dot2dot.

5.1 Configuration of the experiments

All the experiments were carried out in 16 nodes of the Finis Terrae II supercom-
puter, installed at the Galician Supercomputing Center (CESGA) [11]. Each node
consists of 24 cores (two 12-core Intel Xeon Haswell E5-2680 processors) and 128
GB of memory. They are interconnected through a low-latency and high-bandwidth
InfiniBand FDR network (56 Gbps). Regarding software settings, gcc version 6.4.0
(which includes support for pthreads and OpenMP) with the -O3 flag was used for

Table 1 Dataset description

Organism Number of
sequences

Millions of
bases

Max Mem (MB)

Dot2dot MPI-dot2dot

Picea Glauca (PG) 4,464,856 21,582 8.11 3.13
Picea Engelmannii (PE) 2,394,260 24,943 333.73 128.94
Pinus Lambertiana (PL) 4,253,097 27,602 170.54 65.89
Ambystoma Mexicanum (AM) 125,724 32,396 85,188.98 32,913.92

4229

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

the compilation of both Dot2dot and MPI-dot2dot, while the support for distributed-
memory execution is provided by the open-source Open MPI library version 2.1.1.

In order to provide a fair comparison, Dot2dot and MPI-dot2dot are executed
with exactly the same configuration. In general, the by-default parameters were
used. The only exception was the maximum motif length, which is changed from 30
(default option) to 50 bases in both tools. Increasing the value of this parameter can
provide interesting results in some scenarios, at the cost of longer execution time.
Therefore, it makes sense to increase this value in HPC systems.

5.2 Experimental results

The experimental evaluation starts with a comparison of Dot2dot and MPI-dot2dot
in a single node, as the original tool only provides support for parallel computation
on shared-memory systems. Figure 4 compares the best runtime that can be obtained
by Dot2dot on a single 24-core node of the Finis Terrae II with different configu-
rations for MPI-dot2dot: only one MPI process and 24 threads (multithreaded);
pure MPI execution with 24 processes using the block distribution (block); pure
MPI execution with 24 processes using the balanced distribution (balanced); and
the best configuration of processes and threads (hybrid). The MPI processes in the
hybrid execution use the balanced workload distribution, as can be seen that its per-
formance is significantly higher than using the block distribution in real genomes,
whose sequences are very variable in length.

The conclusions that can be obtained from these results depend on the character-
istics of the input datasets (see Table 1). The first group would consists of the Picea
Glauca, Picea Engelmannii and Pinus Lambertiana genomes, all of them containing
millions of sequences with some thousands of base pairs as average length. All the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

R
un

tim
e

(s
ec

on
ds

)
Picea Glauca

dot2dot
multithreaded

block
balanced

hybrid

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

R
un

tim
e

(s
ec

on
ds

)

Picea Engelmannii

dot2dot
multithreaded

block
balanced

hybrid

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

R
un

tim
e

(s
ec

on
ds

)

Pinus Lambertiana

dot2dot
multithreaded

block
balanced

hybrid

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

R
un

tim
e

(s
ec

on
ds

)

Ambystoma Mexicanum

dot2dot
multithreaded

block
balanced

hybrid

Fig. 4 Performance comparison of Dot2dot and different configurations of MPI-dot2dot on a single node

4230 J. González-Domínguez et al.

1 3

MPI-dot2dot versions are able to exploit the 24 cores of the node, as well as Dot2dot
with its multithreaded implementation. Several conclusions can be remarked from
these datasets:

– The synchronizations required by the inter-sequence multithreaded approach
of Dot2dot, where complete sequences are assigned to different threads (see
Sect. 3.3), lead to significant performance overhead, especially for the two data-
sets with more variability in the sequence length (Picea Glauca and Pinus Lam-
bertiana). This overhead is significantly reduced with the intra-sequence multi-
threaded version of MPI-dot2dot. Consequently, the latter is 2.60 times faster on
average, with a maximum speedup of 4.15 for the Pinus Lambertiana genome.

– The balanced MPI distribution obtains much better results than the block one
that assigns the same number of sequences per process. This behavior was
expected as the length of the sequences is highly variable in these real genomic
datasets. The results of the block distribution are only competitive for the Picea
Glauca genome, which presents quite regular lengths, but even in this case they
are worse than using the balanced approach.

– The pure MPI implementation that balances workload distribution achieves bet-
ter performance than any multithreaded approach. Concretely, it is on average
2.99 and 1.13 times faster than the multithreaded versions of Dot2dot and MPI-
dot2dot, respectively, using the 24 cores of one whole node.

– The hybrid MPI/OpenMP implementation with a correct configuration of pro-
cesses and threads can further improve performance, but its performance gain is
not quite high (on average, 2.72%).

On the other hand, the genome of the Ambystoma Mexicanum is the largest one but
with only 125,000 sequences. Therefore, sequences are significantly longer on aver-
age than in the other three datasets. It means that the amount of memory required to
create and store the dot plots is also larger. In fact, there is no enough space in the
memory of one Finis Terrae II node to store several instances of dot plots. Conse-
quently, Dot2dot can only use one thread (and one core for computation), while the
pure MPI implementations fail when using more than two processes per node. The
intra-sequence multithreaded approach included in the hybrid implementation of
MPI-dot2dot not only outperforms the inter-sequence one implemented in Dot2dot,
but also reduces the memory requirements significantly, and thus it can analyze this
dataset using 24 threads. Then, the benefit of using MPI-dot2dot in this type of data-
sets is impressive, even when using only one node: while Dot2dot requires almost
13 hours to analyze this dataset (it can only exploit one core), our novel tool is able
to complete the same work in just 40 minutes by exploiting the whole node (19.07
times faster).

In order to determine the best configuration of processes/threads for the hybrid
implementation, previous experiments with different options were executed,
whose results are shown in Table 2. The configuration using 12 processes, which
only spawn two threads each, obtained the best performance for the three data-
sets with less average sequence length. This is another proof that the balanced
MPI distribution is good enough to efficiently exploit the whole node in those

4231

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

scenarios, as no many threads are required. The only exception is the Ambystoma
Mexicanum dataset. Again, memory problems arise when analyzing this dataset
with several processes in the same node due to the length of some sequences and,
consequently, the requirements of their dot plots exceed the memory available in
one node. Concretely, no more than two MPI processes with their corresponding
dot plots can be mapped to the same node. The hybrid approach is more ben-
eficial for this type of datasets. For instance, the best results for the Ambystoma
Mexicanum are obtained using two processes and 12 threads per process.

Although being faster than Dot2dot on one node with shared memory, the
main advantage of MPI-dot2dot is that it can exploit distributed-memory systems
to further reduce runtime. Figure 5 shows the evolution of the speedup compared

Table 2 Runtime (in seconds) in one node of the Finis Terrae II supercomputer obtained by the hybrid
parallel implementation of MPI-dot2dot with balanced workload distribution and using different configu-
rations of threads and processes. Symbol “−” means that the execution did not finish due to memory
problems. The best configuration for each dataset is highlighted in bold letter

Config. PG PE PL AM

1P–24Th 1857 1886 2214 2512
2P–12Th 1831 1810 1957 2444
4P–6Th 1864 1688 1852 –
8P–3Th 1779 1615 1794 –
12P–2Th 1746 1598 1768 –
24P–1Th 1808 1625 1824 –

Fig. 5 Speedups of the best
MPI-dot2dot configuration com-
pared to Dot2dot. The baseline
for the Ambystoma Mexicanum
is the runtime of the original
tool using only one core, as
it fails when using multiple
threads due to the high memory
requirements

 0

 20

 40

 60

 80

 100

 120

1 2 8 16

S
pe

ed
up

 o
ve

r
do

t2
do

t

Number of nodes

AM
PL
PE
PG

Table 3 Best runtime of both
tools. Dot2dot was executed on
one whole node except for the
Ambystoma Mexicanum dataset,
when only single-core execution
was possible. MPI-dot2dot was
executed for a varying number
of nodes

Dot2dot MPI-dot2dot

1 node 2 nodes 4 nodes 8 nodes 16 nodes

PG 1h 10m 29m 6s 15 m 31s 8m 37s 4m 53s 3m 8s
PE 43m 26m 38s 14m 1s 7m 48s 4m 51s 3m 26s
PL 2h 33m 29m 28s 17m 1s 9m 12s 5m 23s 3m 54s
AM 12h 57m 41m 44s 22m 27s 13m 14s 9m 20s 7m 9s

4232 J. González-Domínguez et al.

1 3

to the best Dot2dot execution (when possible, using the 24 cores of one node)
when increasing the number of nodes up to 16. MPI-dot2dot was executed with
the hybrid implementation using the balanced workload distribution and the best
processes/threads configuration according to the experiments shown in Table 2.
The performance benefit of MPI-dot2dot increases with the number of nodes,
so that the parallel implementation scales properly with the amount of hardware
resources used.

Table 3 summarizes the performance improvement of MPI-dot2dot over Dot2dot.
As can be seen, our tool is significantly faster than the original one for all data-
sets, even when using the same hardware (one node of the Finis Terrae II super-
computer). The performance difference is more remarkable for datasets with long
sequences, where Dot2dot cannot be executed with multiple threads due to its high
memory requirements. Moreover, MPI-dot2dot can be executed on 16 nodes of the
supercomputer, proving that the MPI implementation can further reduce runtime.
For instance, it only needs around 7 minutes to find the TRs of the Ambystoma Mex-
icanum genome, while Dot2dot requires almost 13 hours.

Finally, remark that the output of MPI-dot2dot and dot2dot was identical for all
the experiments carried out during this experimental evaluation, which proves that
the accuracy of the parallel version is as high as the original tool.

6 Conclusions and future work

It is believed that the identification of TRs can have great positive impact in the
diagnostic and treatment of genetic diseases. Tools to efficiently find these TRs on
large genomic datasets are thus required. This work presented MPI-dot2dot, a paral-
lel application that obtains the same biologic results as the previously tested Dot2dot
tool, but at significantly reduced runtime thanks to fully exploiting the hardware of
modern multicore clusters.

MPI-dot2dot is based on a hybrid MPI/OpenMP parallel implementation. On the
one hand, the MPI routines allow the exploitation of distributed-memory systems
thanks to a balanced workload distribution that assigns similar number of bases per
MPI process. On the other hand, the OpenMP directives are included within the
function that searches for TRs in a certain sequence, significantly reducing the mem-
ory requirements compared to using several processes in the same node.

The experimental evaluation was performed on 16 nodes of the Finis Terrae II
supercomputer (a total of 384 cores) using four datasets with real genomes and
different characteristics. MPI-dot2dot is faster than Dot2dot in all scenarios, even
using the same hardware resources. Our experiments also determined that MPI-dot-
2dot is more beneficial for datasets with long sequences, where Dot2dot can only
be executed with one thread due to memory problems. For instance, the original
tool needed almost 13 hours to analyze the Ambystoma Mexicanum genome, while
MPI-dot2dot was able to find the same TRs in only 7 minutes using 16 nodes of the
supercomputer (i.e., 108 times faster).

4233

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

As future work, we will study the possibility of using Big Data processing frame-
works such as Hadoop or Spark in order to further accelerate the search of TRs in
different types of distributed-memory systems. Moreover, we will try to develop an
autotuning technique to provide information in advance about the possible best com-
bination of MPI processes and OpenMP threads depending on the characteristics of
both the hardware and the input dataset.

Acknowledgements This work was supported by the Ministry of Science and Innovation of Spain
(PID2019-104184RB-I00 / AEI / 10.13039/501100011033), and by Xunta de Galicia and FEDER funds
(Centro de Investigación de Galicia accreditation 2019-2022 and Consolidation Program of Competi-
tive Reference Groups, under Grants ED431G 2019/01 and ED431C 2021/30, respectively). The authors
would like to thank the Galician Supercomputing Center (CESGA) for providing access to the Finis Ter-
rae II supercomputer.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.1 (2015).
[Online] Available: http:// www. mpi- forum. org/ docs/ mpi-3. 1/ mpi31- report. pdf

 2. Avvaru AK, Sowpati DT, Mishra RK (2018) PERF: an exhaustive algorithm for ultra-fast and effi-
cient identification of microsatellites from large DNA sequences. Bioinformatics 34(6):943–948

 3. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012)
GenBank. Nucleic Acids Research 41(D1):D36–D42

 4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Research 27(2):573–580

 5. Boeva V, Regnier M, Papatsenko D, Makeev V (2006) Short fuzzy tandem repeats in genomic
sequences, identification, and possible role in regulation of gene expression. Bioinformatics
22(6):676–684

 6. Castelo AT, Martins W, Gao GR (2002) TROLL-tandem repeat occurrence locator. Bioinformatics
18(4):634–636

 7. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
Comput Sci Eng IEEE 5(1):46–55

 8. De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, Van Dongen J, D’Hert S, De Rijk P,
Strazisar M, Van Broeckhoven C et al (2019) NanoSatellite: accurate characterization of expanded
tandem repeat length and sequence through whole genome long-read sequencing on PromethION.
Genome Biol 20(1):239

 9. Delgrange O, Rivals E (2004) STAR: an algorithm to search for tandem approximate repeats. Bioin-
formatics 20(16):2812–2820

 10. Doyle L, Hallinan J, Bolduc J, Parmeggiani F, Baker D, Stoddard BL, Bradley P (2015) Rational
design of �-helical tandem repeat proteins with closed architectures. Nature 528(7583):585–588

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

4234 J. González-Domínguez et al.

1 3

 11. Galician Supercomputing Center: CESGA. [Online] Available: https:// www. cesga. es. Last visited:
August 2021

 12. Genovese LM, Mosca MM, Pellegrini M, Geraci F (2019) Dot2dot: accurate whole-genome tandem
repeats discovery. Bioinformatics 35(6):914–922

 13. Girgis HZ, Sheetlin SL (2013) MsDetector: toward a standard computational tool for DNA micros-
atellites detection. Nucleic Acids Research 41(1):e22–e22

 14. Gupta S, Prasad R (2018) Searching exact tandem repeats in DNA sequences using enhanced suffix
array. Curr Bioinformat 13(2):216–222

 15. Hannan AJ (2018) Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet
19(5):286

 16. Harris RS, Cechova M, Makova KD (2019) Noise-cancelling repeat finder: uncovering tandem
repeats in error-prone long-read sequencing data. Bioinformatics 35(22):4809–4811

 17. Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J,
Young ND et al (2019) Long-Read Sequencing Reveals a 4.4 kb Tandem Repeat Region in the
Mitogenome of Echinococcus Granulosus (sensu stricto) Genotype G1. Parasites & Vectors 12(1),
1–7

 18. Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats
in DNA. Nucleic Acids Research 31(13):3672–3678

 19. La Spada AR, Wilson EM, Lubahn DB, Harding A, Fischbeck KH (1991) Androgen receptor gene
mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

 20. Li Z, Li M, Xu S, Liu L, Chen Z, Zou K (2020) Complete mitogenomes of three carangidae (perci-
formes) fishes: genome description and phylogenetic considerations. Int J Mol Sci 21(13):4685

 21. Lim KG, Kwoh CK, Hsu LY, Wirawan A (2013) Review of tandem repeat search tools: a systematic
approach to evaluating algorithmic performance. Brief Bioinformat 14(1):67–81

 22. Martínek T, Lexa M (2010) Hardware acceleration of approximate tandem repeat detection. In: pro-
ceedings of the 2010 18th IEEE annual international symposium on field-programmable custom
computing machines (FCCM ’10), pp. 79–86

 23. McCombie WR, McPherson JD, Mardis ER (2019) Next-generation sequencing technologies. Cold
Spring Harbor Perspect Med 9(11):a036798

 24. Merkel A, Gemmell N (2008) Detecting short tandem repeats from genome data: opening the soft-
ware black box. Brief Bioinformat 9(5):355–366

 25. Nichols B, Buttlar D, Farrell JP (1996) Pthreads Programming: A POSIX Standard for Better Mul-
tiprocessing, vol. 19

 26. Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a
computational tool for identification and characterization of satellite DNA from unassembled short
reads. Nucleic Acids Research 45(12):e111–e111

 27. Olson D, Wheeler T (2018) ULTRA: a model based tool to detect tandem repeats. In: proceedings
of the 2018 ACM international conference on bioinformatics, computational biology, and health
informatics (BCB ’18), pp. 37–46

 28. Pellegrini M, Renda ME, Vecchio A (2010) TRStalker: an efficient heuristic for finding fuzzy tan-
dem repeats. Bioinformatics 26(12):i358–i366

 29. Pokrzywa R, Polanski A (2010) BWtrs: a tool for searching for tandem repeats in DNA sequences
based on the burrows-wheeler transform. Genomics 96(5):316–321

 30. Samsi S, Helfer B, Kepner J, Reuther A, Ricke DO (2017) A linear algebra approach to fast DNA
mixture analysis using GPUs. In: proceedings of the 2017 IEEE high performance extreme comput-
ing conference (HPEC ’17), pp. 1–6

 31. Savari, H., Hadiniya, N., Savadi, A., Naghibzadeh, M.: Microsatellite Finder Algorithm with High
Memory Efficiency for Even Super Long Sequences. In: Proceedings of the 2020 10th International
Conference on Computer and Knowledge Engineering (ICCKE), pp. 1–5 (2020)

 32. Song JH, Lowe CB, Kingsley DM (2018) Characterization of a human-specific tandem repeat asso-
ciated with bipolar disorder and schizophrenia. Am J Human Gen 103(3):421–430

 33. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, Mirceta M,
Mojarad BA, Yin Y, Dov A et al (2020) Genome-wide detection of tandem DNA repeats that are
expanded in Autism. Nature 586(7827):80–86

 34. Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion
diseases. Genome Research 18(7):1011–1019

 35. Voet AR, Simoncini D, Tame JR, Zhang KY (2017) Evolution-inspired computational design of
symmetric proteins. In: Computational Protein Design, pp. 309–322. Springer

https://www.cesga.es

4235

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	MPI-dot2dot: A parallel tool to find DNA tandem repeats on multicore clusters
	Abstract
	1 Introduction
	2 Related work
	3 Background: Dot2dot
	3.1 Dot plots
	3.2 Search methodology
	3.3 Multithreading approach

	4 Implementation
	4.1 Reduction in memory requirements for dot plots
	4.2 MPI parallelization
	4.3 Hybrid MPIOpenMP parallelization

	5 Experimental evaluation
	5.1 Configuration of the experiments
	5.2 Experimental results

	6 Conclusions and future work
	Acknowledgements
	References

