
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:4217–4235
https://doi.org/10.1007/s11227-021-04025-7

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats 
on multicore clusters

Jorge González‑Domínguez1  · José M. Martín‑Martínez2 · 
Roberto R. Expósito1

Accepted: 13 August 2021 / Published online: 25 August 2021 
© The Author(s) 2021

Abstract
Tandem Repeats (TRs) are segments that occur several times in a DNA sequence, 
and each copy is adjacent to other. In the last few years, TRs have gained significant 
attention as they are thought to be related with certain human diseases. Therefore, 
identifying and classifying TRs have become a highly important task in bioinformat-
ics in order to analyze their disorders and relationships with illnesses. Dot2dot, a 
tool recently developed to find TRs, provides more accurate results than the previ-
ous state-of-the-art, but it requires a long execution time even when using multiple 
threads. This work presents MPI-dot2dot, a novel version of this tool that combines 
MPI and OpenMP so that it can be executed in a cluster of multicore nodes and 
thus reduces its execution time. The performance of this new parallel implementa-
tion has been tested using different real datasets. Depending on the characteristics 
of the input genomes, it is able to obtain the same biological results as Dot2dot but 
more than 100 times faster on a 16-node multicore cluster (384 cores). MPI-dot2dot 
is publicly available to download from https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.
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1 Introduction

A Tandem Repeat (TR) is defined in genomics as a certain number of repetitions 
formed by one or more bases (motif) that appear adjacent to each other. TRs are 
mutations generated during the DNA duplication process when a certain fragment 
of the sequence is replicated more than once. These structures are very common in 
eukaryote genomes and are considered biologically relevant. For instance, they are 
related to gene expression, evolution and a wide range of human diseases [15, 34]. 
Moreover, the identification of those proteins which are mainly based on TRs is key 
as they can be artificially designed [10, 35].

All these reasons have led to an increasing research interest in finding and char-
acterizing TRs. Scientists consider that TRs are present in biologic functions that 
are still unknown, so much more analyses looking for TRs characterization must be 
made. Thanks to Next Generation Sequencing (NGS) technologies [23], the amount 
of available genetic and genomic data has drastically increased during the last years. 
Furthermore, there is a rich abundance of bioinformatics tools that can be used to 
detect and characterize TRs  [21, 24], and newer ones continue to emerge. How-
ever, the most sensible and accurate tools usually require long computational time 
to analyze those large biologic datasets which can be generated nowadays through 
NGS technologies. Consequently, many scientists limit the size of these datasets in 
order to obtain the results in an affordable time, which can lead to miss interesting 
conclusions.

Dot2dot  [12] is a recently published tool focused on detecting Short Tandem 
Repeats (STRs), which are related to some diseases as spinal and bulbar muscular 
atrophy [19], autism [33], or bipolar disorder  [32]. According to the experimental 
results presented in [12], results provided by Dot2dot are more accurate than those 
of alternative tools present in the state-of-the-art. In fact, this tool has already been 
used in real biologic experiments which have led to interesting conclusions [17, 20]. 
However, its main drawback is that it requires long computational time to analyze 
large NGS datasets, even though it provides parallel support through multithread-
ing. These high computational requirements might force the scientists either to use a 
faster but less accurate tool, or to work with smaller datasets (less biologic informa-
tion). Both alternatives might lead to miss interesting TRs.

In this paper we present MPI-dot2dot, a parallel tool for detecting STRs that pro-
vides the following contributions over the state-of-the-art:

– Up to our knowledge, this is the first parallel application that can exploit modern 
High Performance Computing (HPC) multicore clusters to accelerate the search 
of TRs.

– The parallel approach used in MPI-dot2dot combines Message Passing Interface 
(MPI)  [1] processes, which allow to work on different nodes of a distributed-
memory cluster, and OpenMP [7] threads to reduce the memory overhead within 
each cluster node.

– MPI-dot2dot reduces the memory requirements of the dot plots in order to be 
able to analyze large datasets.
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– The biological results provided by MPI-dot2dot are highly accurate, as they are 
identical to those of Dot2dot.

– This tool is publicly available to download and use under an open-source license 
from https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.

The rest of the paper is organized as follows. Section  2 presents previous works 
related to the procedure of finding TRs. Section 3 presents as background some con-
cepts about the original Dot2dot tool that are necessary to understand the goal of 
this work and the implementation of our method. Our parallel implementation is 
described in Sect.  4. Section 5 provides the experimental evaluation. Finally, con-
clusions and future work lines are presented in Sect.  6.

2  Related work

There has been a great effort for many years in the development of tools to search, 
identify and characterize TRs  [21, 24], most of them focused on STRs. All these 
applications can be divided into the following three classes:

– Methods that perform an exhaustive search of all possible TRs. The main draw-
back of this approach is its high computational cost, which makes it unfeasible 
in most scenarios, as the number of possible combinations grows exponentially 
with the length of the motif. For instance, the main algorithm in mreps [18] fol-
lows the exhaustive approach to find all the repetitions that fulfill certain mathe-
matical properties, but the results are then processed with an heuristic to provide 
only those with a biologically relevant representation. This approach is more 
common when searching specifically for microsatellites  [2, 31], as their short 
length makes the exhaustive search still affordable.

– Algorithms based on a dictionary. This approach starts from a set of seeds which 
are later extended into strings that are searched in the sequence. These algorithms 
are suitable for those scenarios where only a limited list of predefined patterns 
must be found. Some examples of this type of tools are TROLL  [6], STAR   [9], 
and BWtrs [29].

– ab-nitio algorithms. They are non-exhaustive methods that use advanced mathe-
matical techniques to improve the results of the search. Unlike the previous class, 
they do not require any previous knowledge about the input sequences. One of 
the most traditionally employed ab-nitio tool is TRF [4], which models the pat-
terns that are repeated according to their similarity and the frequency of their 
differences. TRF then uses statistical criteria to select the proper patterns. Other 
examples of more modern ab-nitio tools are tandemSWAN [5], which is based on 
local autocorrelation analysis; TRStalker [28], which follows a multiphase algo-
rithm where the candidates are sorted according to a score and only the best ones 
reach the next phase; MsDetector [13] and ULTRA  [27], based on hidden Markov 
models; TAREAN  [26], with a graph-based sequence clustering phase followed 
by a reconstruction step from the most frequent k-mers; and TR-ESA [14], based 

https://sourceforge.net/projects/mpi-dot2dot
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on enhanced suffix arrays. Moreover, there even exist methods to find TRs on 
concrete scenarios such as datasets with noisy long reads [16].

As explained in the previous section, MPI-dot2dot is based on Dot2dot, which can 
also be categorized as an ab-nitio tool as it relies on an efficient data representa-
tion and uses heuristics in the search. More details about this tool can be found in 
Sect.  3 and in [12]. One important feature of Dot2dot is its multithreading support 
to reduce its runtime on parallel shared-memory systems.

Besides Dot2dot, we can find in the literature other parallel implementations for 
TR search. For instance, GPUs have been used to accelerate the analyses of TRs 
either thanks to linear algebra parallel routines [30] or during the sequencing pro-
cedure [8]. FPGAs have also been used to search for imperfect TRs, and to signif-
icantly improve the performance when compared to the best CPU algorithm [22]. 
Nevertheless, up to our knowledge, there are no available tools to accelerate the 
search of TRs using several nodes of an HPC cluster.

3  Background: Dot2dot

Dot2dot is a recently developed ab-nitio application based on heuristics to discover 
TRs. It provides results with better precision than other seven state-of-the-art algo-
rithms  [12]. Dot2dot accepts as input multisequence files obtained through NGS 
technologies either with FASTA or FASTQ format, and allows multithreading exe-
cution to reduce its linear computational cost. Moreover, this tool is able to discover 
imperfect TRs and to apply five different filtering levels, which can be selected by 
the user through a configuration file.

3.1  Dot plots

The name Dot2dot comes from the concept “dot plot”, which is the basis of the 
tool. Dot plots are widely used in bioinformatics to compare two sequences and 
identify regions with high similarity. A dot plot is a bidimensional matrix where 
two sequences are represented in the rows and columns, respectively, and each cell 
receives a different color depending on the similarity between their nucleotides. An 
example of a dot plot is shown in Fig.  1.

Fig. 1  Example of a dot plot
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Dot2dot searches TRs in the sequences of the input dataset one by one. It creates 
one symmetric dot plot per sequence, where both the rows and columns are related 
to the same sequence. In this type of dot plots the main diagonal is always in the 
same color, and there are a set of parallel secondary diagonals which form certain 
patterns that can be used to identify TRs. The amount of secondary diagonals repre-
sents the number of repetitions, while their length is related to the motif size. Dot-
2dot uses an efficient data representation of the symmetric dot plots, instead of using 
just a bidimensional array with quadratic memory requirements. More information 
can be found in [12].

3.2  Search methodology

Algorithm 1 illustrates the general behavior of a Dot2dot execution to find the TRs 
of all the sequences included in an input file. The main loop in Line 3 performs the 
same work over different sequences: it reads the sequence (Line 4), creates the dot 
plot (Line 5), initializes some data structures that are necessary to represent the TRs 
(Lines 6 to 8), performs the proper work to discover TRs (Lines 9 to 16), and finally 
writes the TRs found in the corresponding output file (Line 17). 

The main work for each sequence consists in searching candidate TRs. This is 
performed through two nested loops, which look for these candidates in every posi-
tion of the sequence (Line 9) and for all the allowed motif lengths (Line 11). The 



4222 J. González-Domínguez et al.

1 3

best candidate for each position is selected (Line 13), but it is only included in the 
output list when it does not overlap to previously selected TRs (Lines 14-16).

3.3  Multithreading approach

As previously explained, Dot2dot performs the same work over all the sequences 
contained in a certain input file. The original Dot2dot tool includes a multithreading 
implementation using POSIX threads (pthreads) [25] where each thread searches for 
TRs on different input sequences.

Although the work done for each sentence is independent, threads must share the 
access to the input and output files. Dot2dot protects those accesses with two critical 
sections, one for reading the input and another one for writing the output. Moreover, 
the threads wait for their proper turn before writing so that the output results are 
sorted as in the input file (i.e., TRs related to the i − th sequence in the input file 
must be in position i in the output file). Each critical section is implemented with a 
condition variable and its respective mutex. Once one thread arrives to the critical 
section, it checks whether the condition variable indicates its turn. Otherwise, the 
thread is blocked. Once one thread leaves the critical section, it updates the turn in 
the condition variable and wakes up the other threads, which then check whether the 
new turn corresponds to them before continuing or being blocked again. As exposed 
by the authors in the supplementary material of [12], this approach for thread syn-
chronization using turns has a negative impact on the overall performance when the 
number of threads increases and the length of the sequences presents high variabil-
ity, which is a very common scenario in genomics datasets.

4  Implementation

MPI-dot2dot is a novel tool to accelerate the search of TRs, which provides exactly 
the same output results as Dot2dot (and, thus, its high accuracy), but at significantly 
lower runtime thanks to exploiting the computational capabilities of multicore clus-
ters. These parallel computers can be defined as distributed-memory systems that 
consist of several nodes interconnected through a network. Each node contains a 
memory module and provides several CPU cores for computation (see an example 
in Fig.  2).

MPI-dot2dot uses the same configuration mechanism as Dot2dot in order to sim-
plify its adoption by those biologists that already know how to use the original tool. 
Both tools require by command line the paths to the input and output files, as well 

Fig. 2  Example of a multicore cluster with N nodes, each one containing eight CPU cores
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as to an additional configuration file where other optional parameters can be set (for 
instance, the maximum and minimum motif length). More information about this 
configuration file can be found in the reference manual that is available in the same 
public repository as the source code of the MPI-dot2dot tool1.

4.1  Reduction in memory requirements for dot plots

As mentioned in Sect.  3.1, Dot2dot uses a novel data representation for the dot plots 
instead of a simple two dimensional array [12]. Name N the length of the sequence 
whose symbols must belong to the finite alphabet � , then this representation only 
needs |�| vectors of length N for the values and an additional vector pointer with 
also length N. It means that the size of the dot plot for a certain sequence S is:

As in most architectures float and pointer sizes are 4 and 8 bytes, respectively, the 
previous formula can be simplified to:

However, the memory requirements can be too high even with this efficient 
implementation, especially when increasing the number of simultaneous threads: 
each thread in Dot2dot works with a different sequence, with its respective dot plot, 
and the dot plots of all threads must be kept in memory at the same time. Prior to the 
parallel implementation, we have analyzed this data structure in order to reduce the 
memory requirements in MPI-dot2dot.

The main function used in both tools (SearchTR() in Algorithm 1) requires dot 
plots whose values are weights between 0 and 1 for each combination of base pairs. 
In Dot2dot, these weights are represented with simple-precision real numbers using 
the float datatype (4 bytes per weight). Nevertheless, the precision provided by one 
float is not necessary as the algorithm never uses more than two decimal points (100 
possible values between 0.01 and 0.99). Instead, MPI-dot2dot uses the char data-
type (1 byte) to represent these 100 points, reducing the total memory requirements 
almost by a factor of four:

4.2  MPI parallelization

MPI-dot2dot includes MPI directives in order to search for TRs on distributed-
memory systems. MPI is established as a de-facto standard for message-passing, 
and provides a portable, efficient and flexible mechanism to exploit this kind 
of parallel systems. A parallel MPI program consists of several processes with 

memdp(S) = |�| ⋅ N ⋅ sizeof (float) + N ⋅ sizeof (ptr) = (|�| ⋅ sizeof (float) + sizeof (ptr)) ⋅ N

memdp(S) = (|�| ⋅ 4 + 8) ⋅ N

memdp(S) = (|�| + 8) ⋅ N

1 https:// sourc eforge. net/ proje cts/ mpi- dot2d ot.

https://sourceforge.net/projects/mpi-dot2dot
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associated local memory. Each process can directly access to its local memory, 
but data communication must be performed if one process needs information 
stored in a remote memory module. The performance overhead generated by 
these inter-process communications heavily depends on the underlying hardware, 
especially on the latency and bandwidth of the interconnection cluster network 
(Fig.  2).

MPI-dot2dot distributes the sequences of the input file among the processes, and 
the process that is in charge of a certain sequence performs all the work related to it. 
Concretely, the input file is divided into NP groups of contiguous sequences, being 
NP the number of processes of the parallel program. The MPI implementation is 
flexible enough to work with any number of processes NP < N (N represents the 
number of sequences in the input file). 
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Algorithm 2 gathers the general behavior of the MPI parallelization in MPI-dot-
2dot. The execution starts with the process established as root reading the whole 
input file to know the length of each sequence (Lines 4-6). This information is nec-
essary in order to decide which sequences will be assigned to each process. Con-
cretely, two options were implemented:

– A block distribution that assigns the same number of sequences to each process. 
Its main advantage is the simplification of the preprocessing step, as the root pro-
cess only needs to know the total number of sequences of the input file. However, 
as it does not take into account the length of the sequences, it can cause workload 
imbalance in the common scenario where such length is highly variable.

– A balanced distribution that assigns a similar number of bases among the pro-
cesses. In this case, the number of sequences per process can be significantly 
different, but the workload is better balanced than in the previous approach. The 
main drawback is that it requires the root process to completely read the input file 
in order to know the length of each sequence.

The function to distribute the data (Line 7) stores in two arrays the position in the 
input file of the first sequence assigned to each process, and the number of sequences 
to analyze, respectively. Then, each process obtains the information of the distribu-
tion related to it with the MPI collective scatter (Lines 8-9). Collectives are MPI 
communication routines that involve several processes. They are designed by the 
MPI developers in order to adapt themselves to the architecture of the cluster and 
then provide good performance.

Once these communications have finished, all processes start to analyze the 
sequences assigned to them (Lines 10-24). In this code block, only two minor modi-
fications arise with respect to Algorithm 1. On the one hand, the loop of Line 10 
does not go over all sequences, but only through the ones assigned to the process. 
On the other hand, the TRs are not written to the final output in Line 24, but to inter-
mediate files (a different output file for each process).

Finally, once an MPI barrier guarantees that all processes have finished their 
work and the TRs are written into their corresponding intermediate output files 
(Line 25), the root process merges the information of these intermediate files into 
the final output file of the tool (Lines 26-28). As the work is assigned to the pro-
cesses in blocks of contiguous sequences, the root process only has to open once 
each intermediate file, and then it can copy the information into the final output with 
a single I/O routine. This two-level writing (first, write into intermediate files and, 
second, copy to the final files) brings with a performance penalization. Nevertheless, 
some alternatives such as sending the output information to the root process through 
MPI communications, or directly writing in the final files with a mutex synchroniza-
tion, would lead to worse performance.
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4.3  Hybrid MPI/OpenMP parallelization

In a pure MPI program, each process is generally linked to one hardware CPU core. 
For instance, when executing MPI-dot2dot in a cluster such as the one shown in 
Fig.  2, each node would have eight processes working at the same time (one process 
per core), each of them with its own sequence and dot plot. This approach can lead 
to an execution error if the memory of the node is not large enough to simultane-
ously store eight dot plots. The memory requirements per node increase both with 
the length of the sequences and with the number of processes per node.

For instance, assume a system as the one described by Fig.  2 (eight cores per 
node) and an input dataset with sequences of equal length, whose dot plots require 
20 GB of memory each. With the pure MPI parallelization described in the previ-
ous subsection we would need to map eight MPI processes to each node in order 
to exploit the eight available CPU cores. As each process works over a different 
sequence, each one has to create its own dot plot, which means that the memory 
requirements per node are 20 ⋅ 8 = 160 GB, which are not usually available on one 
single node of a cluster.

To overcome this issue, MPI-dot2dot includes a hybrid parallel implementa-
tion, where each MPI process can launch several threads that can collaborate in the 
work related to the same dot plot. The main goal of this approach is to alleviate the 
memory requirements per node. Using again the example of the previous paragraph, 
this hybrid approach would allow executions with one MPI process per node which 
launches eight threads. It means that the eight cores of the node would be working 
but the dot plot of only one sequence is stored in memory at the same time, reducing 
the memory requirements per node to just 20 GB.

The multithreading support is implemented with OpenMP [7], an API based on 
directives for platform-independent shared-memory parallel programming. Each 
MPI process initially only has one CPU core associated, but it is able to spawn an 
arbitrary number of threads that can be mapped to other cores in the same node. 
This hybrid parallel approach allows MPI-dot2dot to be executed in the cluster of 
Fig.  2 not only with a pure MPI configuration (eight processes per node), but also 
with intermediate configurations such as four processes per node with two threads 
each.

As all threads share the resources of their parent MPI process, they can access 
to the same dot plot data structure. Therefore, MPI-dot2dot can exploit the com-
putational resources of the whole node without requiring to store one dot plot per 
core. However, OpenMP can provoke situations where two or more threads need to 
access the same data simultaneously (race conditions). The programmer must ensure 
that data modifications are performed in the correct order, either using mutexes that 
serialize shared memory accesses or creating copies of the data for each thread (pri-
vate data). Nevertheless, the use of mutexes can significantly decrease the overall 
performance of parallel applications, as in the multithreaded version of Dot2dot (see 
Sect.  3.3).

Lines 11 to 24 in Algorithm 2 represent the computation that different processes 
must complete for each sequence. The goal of our hybrid approach is to distrib-
ute the work for one single sequence among the different threads spawned by each 



4227

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

process. Loops are usually the target of the OpenMP directives, assigning different 
iterations to each thread. Concretely, the multithreaded support in MPI-dot2dot is 
included in the loop represented by Line 16 in Algorithm 2, so that different threads 
can simultaneously search for candidate TRs starting in a different position of the 
sequence. As the dot plot is a read-only data structure stored in shared memory, all 
threads can independently search for these candidate TRs in their assigned positions.

Nevertheless, a dependency among threads arises as all of them must check 
whether the best candidate of the position overlaps to the previous TRs (Lines 20 
to 23 in Algorithm 2): all threads would need to know the best candidate for posi-
tions that were analyzed by other threads. To solve this, MPI-dot2dot uses a dou-
ble-checking mechanism that avoids any synchronization among threads. In this 
approach each thread has its own lists of previous, current and final TRs. In each 
iteration, each thread only checks the overlapping of its best TR to those included 
in its private list (i.e., only to those best candidate TRs which were found in posi-
tions of the sequence assigned to the same thread). Once all threads have finished 
their work, there are several final lists (one per thread). The main thread of the pro-
cess performs a second check among the TRs included in all those lists in order to 
guarantee that no TR overlaps with a previous one, even though they were found by 
different threads.

This double-check approach brings with certain memory overhead, as MPI-
dot2dot creates one copy of all the TRs lists per thread. Nevertheless, its impact is 
almost negligible compared to the amount of memory needed to store the dot plots. 
Moreover, the performance penalization due to the second check is significantly 
lower than other alternatives such as including synchronizations between Lines 20 
and 21 in Algorithm 2 to guarantee that the best candidate TRs of all threads have 
been calculated prior to the overlapping check.

The loop of Line 18 in Algorithm 2, which searches for TRs of different length 
for the same position of the sequence, was discarded as target of parallelization with 
OpenMP directives as it would require one thread synchronization per position, sig-
nificantly decreasing performance. Moreover, this loop is generally short (less than 
100 iterations) which would reduce the potential benefit of using several threads.

Fig. 3  Workflow of MPI-dot2dot 
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Figure 3 illustrates the approach followed by this hybrid parallel implementation. 
Although this algorithm presents two sources of potential performance overhead 
related to I/O functions in the root process, it obtains good performance as commu-
nications and synchronizations are minimal.

Finally, remark that the multithreaded approach used in Dot2dot (explained in 
Sect.  3.3) was discarded as it distributes the sequences among threads, similarly to 
our MPI parallelization described in Sect.  4.2. Therefore, each thread would need 
its own dot plot, and thus the same memory problems exposed at the beginning of 
this section for the pure MPI approach would also arise.

5  Experimental evaluation

This section presents the experimental evaluation, which is focused on performance 
in terms of execution time, as the results of MPI-dot2dot are identical to those of the 
original Dot2dot, and thus their accuracy has already been proved in [12].

Four datasets, with assemblies of real genomes downloaded from the GenBank 
in the National Center for Biotechnology Information (NCBI) website  [3], are 
used for evaluation. Their characteristics are shown in Table 1. As previously men-
tioned, these real datasets contain sequences whose length is highly variable. This 
table also shows the maximum memory requirements for the original tool and for 
MPI-dot2dot, i.e., the size of the dot plot corresponding to the longest sequence. As 
explained in Sect.  4.1, the modification of the datatype in the dot plots reduces the 
memory requirements of MPI-dot2dot.

5.1  Configuration of the experiments

All the experiments were carried out in 16 nodes of the Finis Terrae II supercom-
puter, installed at the Galician Supercomputing Center (CESGA)  [11]. Each node 
consists of 24 cores (two 12-core Intel Xeon Haswell E5-2680 processors) and 128 
GB of memory. They are interconnected through a low-latency and high-bandwidth 
InfiniBand FDR network (56 Gbps). Regarding software settings, gcc version 6.4.0 
(which includes support for pthreads and OpenMP) with the -O3 flag was used for 

Table 1  Dataset description

Organism Number of 
sequences

Millions of 
bases

Max Mem (MB)

Dot2dot MPI-dot2dot

Picea Glauca (PG) 4,464,856 21,582 8.11 3.13
Picea Engelmannii (PE) 2,394,260 24,943 333.73 128.94
Pinus Lambertiana (PL) 4,253,097 27,602 170.54 65.89
Ambystoma Mexicanum (AM) 125,724 32,396 85,188.98 32,913.92
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the compilation of both Dot2dot and MPI-dot2dot, while the support for distributed-
memory execution is provided by the open-source Open MPI library version 2.1.1.

In order to provide a fair comparison, Dot2dot and MPI-dot2dot are executed 
with exactly the same configuration. In general, the by-default parameters were 
used. The only exception was the maximum motif length, which is changed from 30 
(default option) to 50 bases in both tools. Increasing the value of this parameter can 
provide interesting results in some scenarios, at the cost of longer execution time. 
Therefore, it makes sense to increase this value in HPC systems.

5.2  Experimental results

The experimental evaluation starts with a comparison of Dot2dot and MPI-dot2dot 
in a single node, as the original tool only provides support for parallel computation 
on shared-memory systems. Figure 4 compares the best runtime that can be obtained 
by Dot2dot on a single 24-core node of the Finis Terrae II with different configu-
rations for MPI-dot2dot: only one MPI process and 24 threads (multithreaded); 
pure MPI execution with 24 processes using the block distribution (block); pure 
MPI execution with 24 processes using the balanced distribution (balanced); and 
the best configuration of processes and threads (hybrid). The MPI processes in the 
hybrid execution use the balanced workload distribution, as can be seen that its per-
formance is significantly higher than using the block distribution in real genomes, 
whose sequences are very variable in length.

The conclusions that can be obtained from these results depend on the character-
istics of the input datasets (see Table 1). The first group would consists of the Picea 
Glauca, Picea Engelmannii and Pinus Lambertiana genomes, all of them containing 
millions of sequences with some thousands of base pairs as average length. All the 
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Fig. 4  Performance comparison of Dot2dot and different configurations of MPI-dot2dot on a single node
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MPI-dot2dot versions are able to exploit the 24 cores of the node, as well as Dot2dot 
with its multithreaded implementation. Several conclusions can be remarked from 
these datasets:

– The synchronizations required by the inter-sequence multithreaded approach 
of Dot2dot, where complete sequences are assigned to different threads (see 
Sect.  3.3), lead to significant performance overhead, especially for the two data-
sets with more variability in the sequence length (Picea Glauca and Pinus Lam-
bertiana). This overhead is significantly reduced with the intra-sequence multi-
threaded version of MPI-dot2dot. Consequently, the latter is 2.60 times faster on 
average, with a maximum speedup of 4.15 for the Pinus Lambertiana genome.

– The balanced MPI distribution obtains much better results than the block one 
that assigns the same number of sequences per process. This behavior was 
expected as the length of the sequences is highly variable in these real genomic 
datasets. The results of the block distribution are only competitive for the Picea 
Glauca genome, which presents quite regular lengths, but even in this case they 
are worse than using the balanced approach.

– The pure MPI implementation that balances workload distribution achieves bet-
ter performance than any multithreaded approach. Concretely, it is on average 
2.99 and 1.13 times faster than the multithreaded versions of Dot2dot and MPI-
dot2dot, respectively, using the 24 cores of one whole node.

– The hybrid MPI/OpenMP implementation with a correct configuration of pro-
cesses and threads can further improve performance, but its performance gain is 
not quite high (on average, 2.72%).

On the other hand, the genome of the Ambystoma Mexicanum is the largest one but 
with only 125,000 sequences. Therefore, sequences are significantly longer on aver-
age than in the other three datasets. It means that the amount of memory required to 
create and store the dot plots is also larger. In fact, there is no enough space in the 
memory of one Finis Terrae II node to store several instances of dot plots. Conse-
quently, Dot2dot can only use one thread (and one core for computation), while the 
pure MPI implementations fail when using more than two processes per node. The 
intra-sequence multithreaded approach included in the hybrid implementation of 
MPI-dot2dot not only outperforms the inter-sequence one implemented in Dot2dot, 
but also reduces the memory requirements significantly, and thus it can analyze this 
dataset using 24 threads. Then, the benefit of using MPI-dot2dot in this type of data-
sets is impressive, even when using only one node: while Dot2dot requires almost 
13 hours to analyze this dataset (it can only exploit one core), our novel tool is able 
to complete the same work in just 40 minutes by exploiting the whole node (19.07 
times faster).

In order to determine the best configuration of processes/threads for the hybrid 
implementation, previous experiments with different options were executed, 
whose results are shown in Table 2. The configuration using 12 processes, which 
only spawn two threads each, obtained the best performance for the three data-
sets with less average sequence length. This is another proof that the balanced 
MPI distribution is good enough to efficiently exploit the whole node in those 
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scenarios, as no many threads are required. The only exception is the Ambystoma 
Mexicanum dataset. Again, memory problems arise when analyzing this dataset 
with several processes in the same node due to the length of some sequences and, 
consequently, the requirements of their dot plots exceed the memory available in 
one node. Concretely, no more than two MPI processes with their corresponding 
dot plots can be mapped to the same node. The hybrid approach is more ben-
eficial for this type of datasets. For instance, the best results for the Ambystoma 
Mexicanum are obtained using two processes and 12 threads per process.

Although being faster than Dot2dot on one node with shared memory, the 
main advantage of MPI-dot2dot is that it can exploit distributed-memory systems 
to further reduce runtime. Figure 5 shows the evolution of the speedup compared 

Table 2  Runtime (in seconds) in one node of the Finis Terrae II supercomputer obtained by the hybrid 
parallel implementation of MPI-dot2dot with balanced workload distribution and using different configu-
rations of threads and processes. Symbol “−” means that the execution did not finish due to memory 
problems. The best configuration for each dataset is highlighted in bold letter

Config. PG PE PL AM

1P–24Th 1857 1886 2214 2512
2P–12Th 1831 1810 1957 2444
4P–6Th 1864 1688 1852 –
8P–3Th 1779 1615 1794 –
12P–2Th 1746 1598 1768 –
24P–1Th 1808 1625 1824 –

Fig. 5  Speedups of the best 
MPI-dot2dot configuration com-
pared to Dot2dot. The baseline 
for the Ambystoma Mexicanum 
is the runtime of the original 
tool using only one core, as 
it fails when using multiple 
threads due to the high memory 
requirements
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Dot2dot MPI-dot2dot

1 node 2 nodes 4 nodes 8 nodes 16 nodes

PG 1h 10m 29m 6s 15 m 31s 8m 37s 4m 53s 3m 8s
PE 43m 26m 38s 14m 1s 7m 48s 4m 51s 3m 26s
PL 2h 33m 29m 28s 17m 1s 9m 12s 5m 23s 3m 54s
AM 12h 57m 41m 44s 22m 27s 13m 14s 9m 20s 7m 9s
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to the best Dot2dot execution (when possible, using the 24 cores of one node) 
when increasing the number of nodes up to 16. MPI-dot2dot was executed with 
the hybrid implementation using the balanced workload distribution and the best 
processes/threads configuration according to the experiments shown in Table 2. 
The performance benefit of MPI-dot2dot increases with the number of nodes, 
so that the parallel implementation scales properly with the amount of hardware 
resources used.

Table 3 summarizes the performance improvement of MPI-dot2dot over Dot2dot. 
As can be seen, our tool is significantly faster than the original one for all data-
sets, even when using the same hardware (one node of the Finis Terrae II super-
computer). The performance difference is more remarkable for datasets with long 
sequences, where Dot2dot cannot be executed with multiple threads due to its high 
memory requirements. Moreover, MPI-dot2dot can be executed on 16 nodes of the 
supercomputer, proving that the MPI implementation can further reduce runtime. 
For instance, it only needs around 7 minutes to find the TRs of the Ambystoma Mex-
icanum genome, while Dot2dot requires almost 13 hours.

Finally, remark that the output of MPI-dot2dot and dot2dot was identical for all 
the experiments carried out during this experimental evaluation, which proves that 
the accuracy of the parallel version is as high as the original tool.

6  Conclusions and future work

It is believed that the identification of TRs can have great positive impact in the 
diagnostic and treatment of genetic diseases. Tools to efficiently find these TRs on 
large genomic datasets are thus required. This work presented MPI-dot2dot, a paral-
lel application that obtains the same biologic results as the previously tested Dot2dot 
tool, but at significantly reduced runtime thanks to fully exploiting the hardware of 
modern multicore clusters.

MPI-dot2dot is based on a hybrid MPI/OpenMP parallel implementation. On the 
one hand, the MPI routines allow the exploitation of distributed-memory systems 
thanks to a balanced workload distribution that assigns similar number of bases per 
MPI process. On the other hand, the OpenMP directives are included within the 
function that searches for TRs in a certain sequence, significantly reducing the mem-
ory requirements compared to using several processes in the same node.

The experimental evaluation was performed on 16 nodes of the Finis Terrae II 
supercomputer (a total of 384 cores) using four datasets with real genomes and 
different characteristics. MPI-dot2dot is faster than Dot2dot in all scenarios, even 
using the same hardware resources. Our experiments also determined that MPI-dot-
2dot is more beneficial for datasets with long sequences, where Dot2dot can only 
be executed with one thread due to memory problems. For instance, the original 
tool needed almost 13 hours to analyze the Ambystoma Mexicanum genome, while 
MPI-dot2dot was able to find the same TRs in only 7 minutes using 16 nodes of the 
supercomputer (i.e., 108 times faster).



4233

1 3

MPI‑dot2dot: A parallel tool to find DNA tandem repeats on…

As future work, we will study the possibility of using Big Data processing frame-
works such as Hadoop or Spark in order to further accelerate the search of TRs in 
different types of distributed-memory systems. Moreover, we will try to develop an 
autotuning technique to provide information in advance about the possible best com-
bination of MPI processes and OpenMP threads depending on the characteristics of 
both the hardware and the input dataset.
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