
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:3976–3997
https://doi.org/10.1007/s11227-021-04005-x

1 3

Top‑k dominating queries on incomplete large dataset

Jimmy Ming‑Tai Wu1 · Min Wei1 · Mu‑En Wu2  · Shahab Tayeb3

Accepted: 17 July 2021 / Published online: 17 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Top-k dominating (TKD) query is one of the methods to find the interesting objects
by returning the k objects that dominate other objects in a given dataset. Incom-
plete datasets have missing values in uncertain dimensions, so it is difficult to obtain
useful information with traditional data mining methods on complete data. BitMap
Index Guided Algorithm (BIG) is a good choice for solving this problem. However,
it is even harder to find top-k dominance objects on incomplete big data. When
the dataset is too large, the requirements for the feasibility and performance of the
algorithm will become very high. In this paper, we proposed an algorithm to apply
MapReduce on the whole process with a pruning strategy, called Efficient Hadoop
BitMap Index Guided Algorithm (EHBIG). This algorithm can realize TKD query
on incomplete datasets through BitMap Index and use MapReduce architecture
to make TKD query possible on large datasets. By using the pruning strategy, the
runtime and memory usage are greatly reduced. What’s more, we also proposed
an improved version of EHBIG (denoted as IEHBIG) which optimizes the whole
algorithm flow. Our in-depth work in this article culminates with some experimen-
tal results that clearly show that our proposed algorithm can perform well on TKD
query in an incomplete large dataset and shows great performance in a Hadoop com-
puting cluster.

Keywords  Top-textitk dominating query · Incomplete data · Dominance
relationship · Big data framework · MapReduce

 *	 Mu‑En Wu
	 mnasia1@gmail.com

1	 College of Computer Science and Engineering, Shandong University of Science
and Technology, Qindao, China

2	 Department of Information and Finance Management, National Taipei University
of Technology, Taipei, Taiwan

3	 Department of Electrical and Computer Engineering, California State University, Fresno, CA,
USA

http://orcid.org/0000-0002-4839-3849
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04005-x&domain=pdf

3977

1 3

Top‑k dominating queries on incomplete large dataset﻿	

1  Introduction

In a given set S with d-dimensional objects, the most valuable and important ele-
ments can be found called top-k objects. Generally, we think an object o domi-
nates other objects in S if it is one of the top-k objects. The domination relationship
between two objects is defined as follows: An object o dominates another object o‘ ,
only if the values in all dimensions of o are no worse than those of o‘ and are better
than o‘ in at least one dimension. For example, there are two objects o = (1, 2, 1, 3)
and o} = (2, 2, 3, 3) with four dimensions, it can be considered that o‘ is dominated
by o, because the values of o are less than o‘ in the first and the third dimension,
and the values of both are equal in the second and the fourth dimension. (In this
study, we conclude that the smaller the value, the better.) According to the defini-
tion of dominance relationship, we can easily find the top-k dominating objects in a
dataset. By analyzing and processing historical data to obtain top-k objects, we can
use this method to build some recommendation systems. For example, if we want to
establish a movie recommendation system, we can dig for top-k movies according to
the audience’s rating of the movie. If one movie dominates another movie, we can
think that it is better. Unfortunately, data in real life is often incomplete especially
the data with multiple dimensions, such as movie rating. Audiences have seen some
movies and rated them, but no audience has seen all of them, and not all of them
are rated by the same audience. Therefore, there are always missing values in some
dimensions in the real data. For instance, a movie o = (−, 2, 3,−) , that means the
second and the third audiences have seen and rated it, but the first and the fourth
audiences have not given it a rate, hence, there are two missing values in the first and
the fourth dimension. In a case of movie rating, take the typical dataset Movielens
from a movie recommendation system (http://www.imdb.com/) as an example, some
movie and the rate from audiences are shown in Table 1. Obviously, due to the pres-
ence of missing values, the definition of the dominant relationship in incomplete
data is different from that in complete data. The presence of missing values makes it
impossible for the two films to be compared in some dimensions, which also makes
top-k dominating queries more difficult.

In this paper, based on the previous work on top-k dominating query, we followed
the original definitions and the representation in the algorithm. In incomplete data,
two objects may not be able to be compared in some dimensions because of miss-
ing value such as a1 = (−, 5,−, 3) and a2 = (−, 3, 2, 1) . Thus, we only compare the
dimensions in which both objects are observed. In general, an object o′ is domi-
nated by another object o, denoted as o ≺ o′ , if the two objects fit the definition of

Table 1   Example of a movie
recommendation system

ID Movie Name a1 a2 a3 a4 a5

m1 Schindler’s List (1993) – – 3 4 2
m2 The Godfather (1972) 5 2 1 – –
m3 The Silence of Lambs (1991) – 3 4 5 3
m4 Star Wars (1977) 3 1 5 3 4

3978	 J. M.-T. Wu et al.

1 3

domination relationship, as we have mentioned before. For example, we can observe
the values in the second and the fourth dimension from a1 and observe the val-
ues in the second, third, and fourth dimensions from a2 , so we can only compare
the value in the second and the fourth dimension. What’s more, a1.[2] > a2.[2] ,
a1.[4] > a2.[4] , thus we consider a2 ≺ a1 . In TKD query, the basis to rank the objects
is the score of each object, so it is important to formulate a score function. Accord-
ing to the previous work, the score of an object score(o) is defined as the number of
objects in S those are dominated by o, that is, score(o) =

{
o� ∈ S|o ≺ o�

}
 . Take the

rating information in Table 1 as an example, we can get m2 ≺ m1 , m2 ≺ m3 , there-
fore, score(m2) = |

{
mi ∈ S|m2 ≺ mi

}
| = |m1,m3| = 2 . So far, the score of an object

is obtained.
Many previous works have provided feasible algorithms for TKD queries, such

as Skyline algorithm, Skyband-Based algorithm, and Upper Bound Based algo-
rithm. These algorithms take advantage of the definition of domination relation-
ship and compare all objects in pairs to determine the dominant number of each
object, thus calculating the score. However, the pairwise comparison is time-con-
suming, and the problem will get worse when the size of the dataset becomes
larger. In order to solve this problem, Miao et al. proposed a new algorithm,
BitMap Index Guided algorithm. It builds bitmap index for the original dataset,
which supports new bitmap pruning and fast bit-wise manipulation to calculate
scores more efficiently. Unfortunately, even though the BitMap Index Guided
algorithm has greatly reduced the time complexity, it is still tough to process
datasets on a single machine when the data volume is enormous. A novel algo-
rithm, MapReduce Enhanced Bitmap Index Guided Algorithm, is proposed to
deal with this issue which applies the MapReduce framework on top-k dominance
queries on large incomplete datasets. Compared with the proposed algorithm, the
processing time of this method in finding TKD query results is twice as fast. This
proves that the MapReduce framework is very effective for dealing with this prob-
lem. We found that the MRBIG algorithm still has a lot to improve in terms of
process. Theoretically, these improvements can make the algorithm more efficient
and also be helpful for handling larger datasets. Therefore, we improved the algo-
rithm on this issue, proposed the EHBIG algorithm. Furthermore, an improved
version also is developed to optimize the process of the algorithm. Experiments
show that our two versions of the algorithm are more efficient than the previous
one. In brief, the main contributions of this paper are introduced as follows.

1.	 In this article, an efficient top-k query algorithm (EHBIG) is proposed to handle
an extensive dataset. The designed algorithm applies the MapReduce framework
to the whole TKD query process, and each time the original dataset is scanned, an
object score is obtained. The number of scanning datasets is reduced to the great-
est extent, thus improving the feasibility of the algorithm in practical application.

2.	 The designed EHBIG algorithm utilizes a new pruning strategy to prune the
unpromising objects, thus reducing the unnecessary computations. Moreover, the
developed EHBIG designs a parallel way to perform the pruning strategy, which
is more efficient in handling large-scale datasets.

3979

1 3

Top‑k dominating queries on incomplete large dataset﻿	

3.	 The developed EHBIG can also reduce the number of database scans since it
could catch all of the information of an object to calculate its score, which is
very efficient in the large-scale environment by reducing the seeking time of the
database.

4.	 An improved version of the algorithm (IEHBIG) is developed to optimize the
algorithm flow, which applies the MapReduce framework to the whole algorithm
process. The algorithm can score all objects by scanning the dataset once, which
minimizes the impact of the limitations of Hadoop’s MapReduce architecture on
the algorithm results.

The rest of this paper is organized as follows. Section 2 reviews related work. The
problem statement is described in Sect. 3. Section 4 introduces our algorithm idea
and algorithm flow in detail. The introduction and results of the experiment are
shown in Sect. 5. Finally, Sect. 6 includes the summary of this paper and the pros-
pect of future work.

2 � Related work

In this section, we review the related work of some related concepts, such as top-k
dominance, incomplete data, bitmap indexing, and MapReduce framework.

2.1 � Top‑k dominance

The TKD query finds the best value in the dataset according to the predefined good
criteria. The original TKD algorithm was designed to process complete datasets,
so this aspect of the work is more focused on complete datasets. Papadias et al. [1]
first introduce the concept of top-k dominating query which is considered as a vari-
ation of skyline queries, and they proposed an algorithm for processing TKD que-
ries based on skyline to process complete dataset indexed by an R-tree. Yiu and
Mamoulis reviewed the works and the challenge of TKD queries on complete mul-
tidimensional datasets [2]. Ge et al. [3] proposed a budget constrained optimization
query algorithm which can help to increase the profitability of products. Mamoulis
et al. [4] developed a new algorithm that refines the object accesses throughout top-k
processing. E. Tiakas and G. Valkanas studies processing top-k dominating queries
over dynamic attribute vectors where finding the distances depends on the defined
metrics between objects [5]. Miao et al. follow the combination of top-k and Skyline
queries that led to top-k dominating query [6]. Furthermore, H Zhu et al. provide a
systematic study of TKD queries on skyline groups and validate our algorithms with
extensive empirical results on synthetic and real-world data [7]. Tiwari et al. [8]
apply four ensemble regressor models Gradient-Boosting Regressor, Extra-Trees
Regressor, Ada-Boost Regressor, and Random-Forest Regressor to analyze the asso-
ciation between dependent and independent variables of a COVID-19 prediction in
India. There’s a lot of other research in this field [9–12].

3980	 J. M.-T. Wu et al.

1 3

2.2 � Incomplete data

The TKD query on the incomplete dataset is completely different from that on the
complete dataset. Due to the existence of missing data, the traditional algorithm
cannot carry out calculation. Therefore, we must consider the impact of missing val-
ues on the dominant relationship on some dimensions. Wang et al. [13] provided
more details and definitions to give a better understanding of top-k and Skyline
queries based on uncertain data. Khalefa et al. [14] propose TKD query process-
ing using the ISkyline algorithm that is especially suitable for incomplete data. Lian
and Chen [15] also consider the uncertain data, so they proposed a new algorithm,
called Probabilistic Top-k Dominating (PTD) to realize the top-k dominating query
in uncertain data. Then, Lian and Chen [16] propose an effective pruning approach
to reduce the PTD search space and present an efficient query procedure to answer
PTD queries. Han et al. [17] worked on TKD queries on massive data, accomplished
by sorting and listing values and making the process faster than other methods.
Zhang et al. [18] proposed incomplete models and estimate probability density func-
tions of missing values on independent, correlated, and anti-correlated distributions,
respectively. Chen et al. [19] proposed a novel algorithm, called High-Utility-Occu-
pancy Pattern Mining in Uncertain databases (UHUOPM) to process the missing
values in utility mining. Some studies use feature engineering and feature extrac-
tion methods to deal with missing data in datasets. Sefidian et al. proposed a novel
technique to impute missing data, which employs a new version of Fuzzy c-Means
clustering algorithm which benefits from advantages of Grey Relational Grade over
Minkowski-like similarity measures [20]. Biessmann et al. release DataWig [21],
a robust and scalable approach for missing value imputation that can be applied to
tables with heterogeneous data types, including unstructured text.

2.3 � BitMap indexing

Bitmap index refers to bitmap index technology, which is a special database index
technology. Bitmap index USES bitmap array (or bitmap, bit-set, bitString, bit-Vec-
tor) for storage and calculation. A bitmap index is a special database index that uses
bitmaps and is created primarily for a large number of columns with the same value.
Therefore, bitmap indexing technology is suitable for solving TKD query, because
it can use bit-vector operation to replace the traditional algorithm pair comparison,
thus improving the efficiency of the algorithm. Miao et al. [6] proposed a new algo-
rithm, called Bitmap Index Guided (BIG) algorithm as one of the first attempts to
solve this issue. Wu et al. [22] considered the effects of compression on multi-com-
ponent and multi-level compressed bitmap indexes. There are several methods for
compressing bitmap indexes, such as BBC, CONCISE, and WAH methods that is
proposed by Chen et al. [23], and it is the first attempt to apply traditional algo-
rithms to big data environment. For instance, to make the compression more stable,
Wu et al. [24] has proposed their word-aligned hybrid code (WAH) as a compress-
ing method for bitmap indexes that leads to improved performance.

3981

1 3

Top‑k dominating queries on incomplete large dataset﻿	

2.4 � MapReduce framework

MapReduce is a programming model and an associated implementation for pro-
cessing and generating large datasets that are amenable to a broad variety of real-
world tasks. The MapReduce framework can divide the input data into several parts
and deliver them to different nodes for processing, thus solving the large amount
of data that cannot be handled by the single machine algorithm. Manogaran and
Lopez [25] proposed a MapReduce disease surveillance system for analyzing the
correlation between climate data and Dengue fever transmission in real-time. Kamal
et al. [26] suggested a k-nearest neighbor classifier for imbalanced data reduction by
employing MapReduce, applying the method to a big DNA dataset with 90 million
base pairs. In a different paper, Kamal et al. [27] applied MapReduce to de Bruijn
graphs to more efficiently and accurately perform metagenomic gene classification.
Research in improving the MapReduce framework and its encompassing Apache
Hadoop architecture for use in big data has also been conducted; Matallah et al. [28]
proposed enhancements to the storage of metadata in the Hadoop Distributed File
System for improved scalability, demonstrating the continuing value of MapReduce
in modern applications. Ezatpoor et al. [29] proposed MapReduce Enhanced Bit-
map Index Guided Algorithm (MRBIG), which uses the MapReduce framework to
enhance the performance of applying top-k dominance queries on large incomplete
datasets.

3 � Problem statement

This section will explain the dominance relationship and formalize the issue of TKD
query on incomplete data. First, Fig. 1 provides a sample incomplete dataset D with
d dimensions. We are going to represent the value of each object in terms of vectors
with d bits. The “-” represents the missing value of the object in this dimension. For
example, o1 = (−, 1, 2,−) , that means o1 has two missing values in d1 and d4 . Note
that, the smaller evaluating value of one movie means the better ranking from a per-
son. According to the dataset shown in Fig. 1, we can format the data into Table 2.

Fig. 1   An sample incomplete
dataset O1(-,1,2,-)

O3(3,1,-,-)

O5(-,2,1,-)

O7(1,1,-,-)

O9(2,-,2,2)

O2(1,-,3,2)

O4(-,-,-,1)

O6(-,2,-,3)

O8(-,3,2,-)

O10(3,2,-,-)

3982	 J. M.-T. Wu et al.

1 3

As we have introduced before, the TKD query is implemented based on pairings
of objects and determination of the dominance relationship. Given two objects o1
and o2 , if o1 dominates o2 , it is denoted as o1 ≺ o2.The conditions for determining
the dominance relationship between two objects are as follows: In each dimension
where values are observed both at o1 and o2 , (1) the value of o1 cannot be larger than
o2 ; (2) in at least one dimension, the value of o1 is strictly less than the value of o2 .
For example, for o1 = (−, 1, 2,−) and o2 = (1,−, 3, 2) in Fig. 1, we can say o1 ≺ o2
because the values are observed on d3 both at the two objects and the value of o1 is
less than o2.

After determining the dominance relationship between two objects, we need a
method to compare all objects, so as to get the top-k dominant objects. Therefore,
we need a scoring mechanism to calculate the score of each object. For an object o
in a given incomplete dataset D, the score of o ,denoted as score(o) , is the number
of objects it dominates in that dataset. The set of objects dominated by o is R(o) ,
R(o) = {o} ∈ D|o ≺ o}} , then the score of o is expressed as score(o) = |R(o)| . For
instance, R(o1) =

{
o2, o8, o10

}
 , so score(o1) = |R(o1)| = 3.

4 � TKD query on large incomplete dataset

As we have reviewed in the previous sections, traditional data mining algorithms
based on complete datasets are not suitable for incomplete datasets with missing val-
ues. Bitmap indexing provides the possibility of TKD queries on incomplete data-
sets. It is better than other methods in terms of feasibility and performance, such as
Skyband-Based and UpperBound-Based Algorithm. In fact, we can get more infor-
mation from bitmap index table. And the application of MapReduce framework to
the whole algorithm process will greatly improve the performance of the algorithm.
More importantly, we need a more effective pruning strategy to reduce the computa-
tion and improve the performance of the algorithm. In this section, we will introduce
the previous algorithm and our algorithm with a new pruning strategy. First, let’s
review the single machine algorithm, i.e., BitMap Index Guided Algorithm.

Table 2   A sample incomplete
dataset table

object d1 d2 d3 d4

o1 – 1 2 –
o2 1 – 3 2
o3 3 1 – –
o4 – - – 1
o5 – 2 1 –
o6 – 2 – 3
o7 1 1 – –
o8 – 3 2 –
o9 2 – 2 2
o10 3 3 – –

3983

1 3

Top‑k dominating queries on incomplete large dataset﻿	

4.1 � Single machine algorithm (BIG)

In order to visually observe the value of each object in each dimension, we can get
a table as shown in Table 2 according to Fig. 1. Our bitmap index guided algorithm
is based on a bitmap indexing table, so we need to build a bitmap indexing table.
Unlike traditional bitmap index guided algorithms, we need a bitmap index table
with missing values.This bitmap index table is created as follows: (1)For a data-
set, we can first obtain a dimension table, such as Table 2. Then, we analyze the
values of all objects that can be observed on each dimension. We use a vector vi to
represent the values of all objects that can be observed in the i-th dimension. Take
the given dataset as an example, i.e., Table 2. On the first dimension, 1,2,3 can be
observed with missing value. So v1 = {−, 1, 2, 3} . Next, we will insert |vi| columns
after the i-th dimension, each of which represents a value in vi . (2)Initialize all the
values in the table to 1. The bitmap index table is then updated based on the value
of each object on each dimension. Starting from the left, if the value of an object is
not missing on a dimension, change the value of the column corresponding to vi and
all subsequent columns to 0. If the value of an object on a dimension is a missing
value, the columns corresponding to that dimension are not modified. According to
the above steps, we can get the bitmap indexing table corresponding to Table 2 as
shown in Table 3.

After creating the bitmap index table, we can get some information from the
table. We previously described the dominance relationship between two objects and
the scoring mechanism for each object in the TKD query on an incomplete data-
set. From this, we can get that the score of an object is the number of objects it
dominates. However, based on the conditions for judging the dominant relationship
between the two objects, we can conclude that the set of objects dominated by an
object o can be divided into two parts. The first subset contains all objects whose
values on any dimension are greater than o, called Γ(o) . And the other one collects
the objects whose value on one or more dimensions is equal to o, called Λ(o) . Bit-
map indexing table clearly reflects the values of different objects in the same dimen-
sion, so we can easily analyze the dominant relationship between objects.

Table 3   A sample BitMap indexing table

Items d1 – 1 2 3 d2 – 1 2 3 d3 – 1 2 3 d4 – 1 2 3

o1 – 1 1 1 1 1 1 0 0 0 2 1 1 0 0 – 1 1 1 1
o2 1 1 0 0 0 – 1 1 1 1 3 1 1 1 0 2 1 1 0 0
o3 3 1 1 1 0 1 1 0 0 0 – 1 1 1 1 – 1 1 1 1
o4 – 1 1 1 1 – 1 1 1 1 – 1 1 1 1 1 1 0 0 0
o5 – 1 1 1 1 2 1 1 0 0 1 1 0 0 0 – 1 1 1 1
o6 – 1 1 1 1 2 1 1 0 0 – 1 1 1 1 3 1 1 1 0
o7 1 1 0 0 0 1 1 0 0 0 – 1 1 1 1 – 1 1 1 1
o8 – 1 1 1 1 3 1 1 1 0 2 1 1 0 0 – 1 1 1 1
o9 2 1 1 0 0 – 1 1 1 1 2 1 1 0 0 2 1 1 0 0
o10 3 1 1 1 0 3 1 1 1 0 – 1 1 1 1 – 1 1 1 1

3984	 J. M.-T. Wu et al.

1 3

First, we introduce the definition of four sets: Q , P , Φ(o) and nonD(o) . Set Q of an
object o contains the objects whose values on all dimensions are not less than o or are
missing values. Set P of an object contains the objects whose value on all dimensions
are larger than o or are missing values. All objects in set Φ(o) cannot be compared with
o. Set nonD(o) of an object o represents the set of all objects that are not dominated by
o. The containment relationships for these four sets are shown in Fig. 2. By analyzing
the bitmap indexing table, we can conclude that for an object o, the column correspond-
ing to the first 0 appearing from the left in each dimension can be represented as a vec-
tor.This vector represents the set P of o in each dimension. A 1 in a vector represents an
object whose value in that dimension is less than o or a missing value. For example, for
o1 , [P2] = 0101110111 , [P3] = 0111011001 , and[P1] and [P4] are 1111111111 because
the missing values. Similarly, the vector represented by the left column of the column
for which the first 0 appears in each dimension represents the set Q of o. A 1 in a vec-
tor represents an object whose value in that dimension is no larger than o or a missing
value. As in the previous example, for o1 , [Q2] = 1111111111 , [Q3] = 1111011111 ,
and [Q1] and [Q4] are 1111111111 because the missing values. So the set Q and P of o
are the intersection of all the vectors in all the dimensions, expressed as:

According to this formula, we can get the P and Q for o1 . [P] = 0101010001
and [Q] = 1111011111 . That is to say, the P =

{
o2, o4, o6, o10

}
 and the

Q =
{
o1, o2, o3, o4, o6, o7, o8, o9, o10

}
 . After we get Q and P, we can rescan the data-

set to look for Φ(o) and nond(o) .According to the definition of each set, we can get
the following relation:

From this, we can calculate the score of each object according to the bitmap index-
ing table. The BIG algorithm loops through all objects, getting the Q and P of one
object at a time, then rescanns the dataset, finds the Φ(o) and nonD(o) of the object,
and calculates the score of the object. The pseudo-code of the whole algorithm flow
is shown in Algorithm 1.

Q =

d⋂

i=1

Qi

P =

d⋂

i=1

Pi

Γ(o) =P − Φ(o)

Λ(o) =Q − P − nonD(o)

Fig. 2   The containment rela-
tionships

nonD(0)

Q

P Φ(o)

3985

1 3

Top‑k dominating queries on incomplete large dataset﻿	

4.2 � MRBIG

In this section, we will briefly introduce the idea and flow of MRBIG algorithm.
This algorithm is to realize the TKD query in an incomplete large dataset. The
first problem to be solved is that the dataset is too large for the single machine
algorithm to handle. As far as we know, the MapReduce architecture of Hadoop
enables distributed processing of input data in distributed file system HDFS,
thereby reducing the stress of storing and processing data internally.

In the BIG algorithm, the process of calculating the score of an object is
divided into three steps. The first step is to scan the bitmap indexing table to get
the Q and P of an object, the second step is to scan the dataset to find the Φ(o)
and nonD(o) of the object, and the last step is to calculate the score of the object
according to the four sets. MRBIG algorithm applies the MapReduce framework
to the first step of the BIG algorithm for distributed reading of data and calcula-
tion of Q and P. The MapReduce framework splits the input data by dimensions
and submits them to different Mapper nodes for processing. Each node will han-
dle several dimensions and mine the set Q and P of an object. The algorithm
framework is shown in Fig. 3. And the pseudo-code is shown in Algorithm 2.

3986	 J. M.-T. Wu et al.

1 3

Dataset
n items

*
r dimensions

n * r1

n * r2

n * r3

n * rk

[P1], [Q1]

[P2], [Q2]

[P3], [Q3]

[Pk], [Qk]

[P*], [Q*]

... ...

Input Mapper Reducer

n * r1 [P1], [Q1]

[P2], [Q2]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

[P*], [Q*]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

[P], [Q]

Fig. 3   The algorithm framework of MRBIG

3987

1 3

Top‑k dominating queries on incomplete large dataset﻿	

4.3 � EHBIG

As we mentioned before, the BIG algorithm can only get Q and P of one object
in one loop, and then, it needs to rescan the dataset to get the score of one object.
MRBIG algorithm utilizes the flow of the BIG algorithm and applies MapReduce to
the first step. The disadvantage is also obvious; when the dataset is huge, the scan-
ning process will be very time-consuming. After analyzing the definition of bitmap
index table and each set, we improve the flow of the algorithm and propose a new
pruning strategy to reduce the computation time and improve the performance of the
algorithm. This section mainly introduces the process and details of our new algo-
rithm and the working mechanism of the pruning strategy.

First of all, EHBIG improved the calculation method of Φ(o) and nonD(o) sets.
Instead of rescanning the dataset after obtaining Q and P, we obtained them in
the iteration bitmap indexing table. As mentioned in the previous Q and P, we
can also obtain these two sets by analyzing the bitmap index table and the already
obtained sets. When we look at the last column of the bitmap index table, we can
find that on the dimensions of an objecto where the value can be observed, if the
value of the last column of o′ is 1, then o′ is missing on that dimension. If o′ is
missing on all dimensions where the value can be observed of o, then o′ is one of
the elements of Φ(o) . So the Φ(o) can be expressed as:

According to this formula, we can get [Φ2(o1)] = 0101010010and[Φ3(o1)] =

0011011001 . So the [Φ(o1)] = 0001010000 That is to say, the Φ(o1) =
{
o4, o6

}
.

Furthermore, according to the definitions of Q and P, we can find that for o, if
Q − P = 1 on a dimension of o′ , it can prove that the value of the two objects on
this dimension is equaled, so o cannot dominate o′ on this dimension. This shows
the nonDi(o) = Qi − Pi , so can be expressed as:

According to this formula, we can get [nonD2(o1)] = 1010001000 and
[nonD3(o1)] = 1000000110 . So the [ nonD(o1)] = 1000000000 . That is to say, the
nonD(o1) = � . Now, we can get the score of o1 , score(o1) = |0110001111| = 6.

According to the above findings, the EHBIG algorithm can get four sets of an
object in a loop to calculate the score of the object. In this way, MapReduce can
be applied to the whole algorithm process, eliminating the process of rescanning
the dataset, thus greatly reducing the computation time. The whole framework of
EHBIG is shown in Fig. 4.

In this algorithm, each object runs the MapReduce architecture once as it
loops through all the objects. However, as far as we know, MapReduce archi-
tecture of Hadoop tends to have some loss of startup time and communication

Φ(o) =

d⋂

i=1

Φi(o)

nonD(o) =

d⋂

i=1

nonDi(o)

3988	 J. M.-T. Wu et al.

1 3

time. Therefore, reducing the running times of MapReduce can greatly reduce
the running time of the algorithm. Next, we will introduce our efforts in pruning
strategies.

We know that by the definition of the dominant relationship, given two objects
o1 and o2 , if o1 dominates o2 , then o2 will not dominate o1.

So we start with the MaxDominance to represent the objects dominated by an
object, which is the maximum score that the object can get. If the size of the
given dataset is n, the MaxDominance of all objects is initialized to n − 1 . The
other thing is we have an array to represent the top-k dominating objects whose
size is k. Set a threshold initialized to 0 to represent the minimum score of the
current top-k dominating objects.

Then, start looping the bitmap index table. If a object o is dominated by another,
the MaxDominance corresponding to o is reduced by 1, i.e.,

Taking Table 2 as an example, suppose we want to query the top-4 objects.
According to the above process, in the first and second iterations, we can
get that: score(o1) = |o2, o7, o8, o10| = 4 , score(o2) = |o3, o6, o10| = 3 ,
score(o3) = |o4, o5, o7, o8, o10| = 5 , score(o4) = |o2, o6, o9| = 3 ,
score(o5) = |o2, o8, o9, o10| = 4 , score(o6) = |o8, o10| = 2 ,
score(o7) = |o2, o3, o5, o8, o9, o10| = 4 . By the end of this iteration, the top-4 objects
are o7, o3, o1, o4 , and the threshold is updated as 4. In these iterations, we found that
o10 is dominated by o1, o2, o3, o5, o6, o7 . According to our proposed pruning strategy,
MaxDominance(o10) = 10 − 1 − 6 = 3 < 4 . So the score of o10 does not need to be
calculated, thus reducing one iteration of MapReduce.

Update the threshold when the number of loops is larger than or equal to k. If
theMaxDominance of an object is less than the threshold, it means that the score
of the object will not exceed the minimum score of the first k objects, so the object
does not need to loop. This pruning strategy can greatly reduce the running times of
MapReduce, thus greatly reducing the running time of the algorithm. The running

MaxDominance(o) = n − 1 − 1

Dataset
n items

*
r dimensions

n * r1

n * r2

n * r3

n * rk

[P1], [Q1]

[P2], [Q2]

[P3], [Q3

[Pk], [Qk

... ...

Input Mapper Reducer

n * r1 [P1], [Q1]

[P2], [Q2]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1

[P2], [Q2

], [Φ], [nonD]

], [Φ], [nonD]

], [Φ], [nonD]

], [Φ], [nonD]

n * r3

score(o)

Fig. 4   The algorithm framework of EHBIG

3989

1 3

Top‑k dominating queries on incomplete large dataset﻿	

process of the entire algorithm is shown in Fig. 5. And the pseudo-code is shown in
Algorithm 3.

Dataset

update the
Max_dominance

and threshold
Y

N

Whether
Iterate

MapReduce score

Fig. 5   The algorithm flow of EHBIG

3990	 J. M.-T. Wu et al.

1 3

4.4 � IEHBIG

This version of the algorithm improves the algorithm flow, IEHBIG only runs
MapReduce once and calculates the score of all objects at once, as shown in
Fig. 6. As we all know, the startup costs of Hadoop are very large, so this version
avoids the iterative operation of MapReduce, thus saving the start-up and shut-
down time of Hadoop, thus saving time cost and improving algorithm efficiency
to a large extent. However, the pruning strategy we proposed cannot be used in
this version because it is based on the MapReduce iterative scenario and therefore
cannot minimize the running time. In addition, in this version, because each node
needs to scan all objects, the computing power for each node is high, that is, the
memory for each node needs to be large enough. Combining time consumption
and memory consumption, we could not compare the advantages of the two ver-
sions, so we included both versions in the paper so that use cases could choose
which version to use according to their own requirements.

5 � Experimental evaluation

This section contains the necessary experiments to verify the performance gap
among the algorithms. These experiments are mainly carried out to compare the
running time and required memory of each algorithm. Based on the analysis of
these experimental results, we evaluated the performance of each algorithm, so
as to intuitively show the advantages and disadvantages of each algorithm. In
order to obtain more objective and accurate results, we considered several factors
that might influence the results, including the size of the datasets, the number of
records and dimensions, and the incompleteness rate of the datasets. Based on
these factors, we conducted extensive research using both real datasets and syn-
thetic datasets to obtain the following experimental results. As MapReduce archi-
tecture is made to work in a distributed environment, our experiments are also
done in a distributed cluster of different machines. The experiments were con-
ducted in computing nodes equipped with the Intel Xeon E5-2695 v4 @ 2.10GHz
CPU and 32GB assigned RAM, running Linux Ubuntu 16.04 LTS. To achieve
parallelization, the experiment was run under the Hadoop 2.8.5 cluster with one
master node and five data nodes. The number of nodes can be adjusted according
to the size of the input data.

Dataset MapReduce score

Fig. 6   The algorithm flow of IEHBIG

3991

1 3

Top‑k dominating queries on incomplete large dataset﻿	

5.1 � Data information and preparation

The real dataset we used references previous work, including MovieLens, NBA and
Zillows, which contained different records, number of dimensions, and incomplete-
ness rates, which made our experiment more comprehensive and objective. Besides,
a synthetic dataset was also used to visually show the differences among the algo-
rithms because its parameters can be artificially adjusted to meet our needs for vari-
ous datasets. The main purpose of this paper is to apply a single machine algorithm
to the big data environment. Therefore, to verify the algorithm’s performance, it is
essential to select datasets with the appropriate size. The storage mode of the origi-
nal data is shown in Table 4. Before the algorithm starts, we first need to preproc-
ess the data formatting, which can make the data more standardized and facilitate
the algorithm to process the data so as to get more reasonable and correct results.
This part of the processing will not count against the running time of the algorithm.
To improve Hadoop’s performance, we use HBase, a distributed, column-oriented,
open-source database, to store data. HBase is a sub-project of Apache’s Hadoop
project, which provides bigtable-like capabilities on top of Hadoop. Using HBase,
we can access the data more efficiently, thus improving the performance of the
algorithm.

5.2 � Algorithm development and evaluation

First of all, in order to test the advantages of EHBIG and IEHBIG algorithms in
the big data environment, the first experiment is to compare the performance of
each algorithm in processing different datasets. We selected four datasets of differ-
ent sizes in three real datasets for the experiment, which contained 100KB, 1MB,
10MB, and 100MB, respectively. In this experiment, in order to guarantee the prem-
ise of unique variables, we try to keep the consistency of other parameters, includ-
ing the number of objects, the number of dimensions, and the incompleteness rate.
The result is shown in Fig. 7. By analyzing the experimental results, we can come
to the following conclusion: When the dataset is small, single machine algorithms
obviously have a shorter running time than other algorithms because Hadoop tends
to take a long time to start. The distributed concept of MapReduce cannot be imple-
mented because the dataset is too small, so the MapReduce architecture is not appli-
cable when the dataset is too small to be segmented. The running time of EHBIG
Table 4   A sample original
dataset

User Movie Rating

1 01 3
1 02 4
1 04 2
2 02 2
2 03 3
3 04 3
4 01 1
4 04 2

3992	 J. M.-T. Wu et al.

1 3

algorithm is less than that of MRBIG algorithm, which indicates that the improve-
ment of MRBIG algorithm is successful, and the use of MapReduce framework to
process big data is very effective. The runtime of IEHBIG is much lower than that
of EHBIG because IEHBIG only starts Hadoop once. As we mentioned earlier,
the Hadoop startup process is a waste of time, and the communication cost among
nodes is inevitable. However, this does not mean that IEHBIG is superior to EHBIG
because the former requires much more memory to run than the latter, a conclusion
we will discuss later in the experiment.

The number of objects and the number of dimensions in a dataset also have an
impact on the running time of the algorithm. Theoretically, the number of objects
has an even greater impact on the result because it directly determines the number of
iterations of the algorithm and the size of the dataset. So we did two experiments to
verify this statement. In these two experiments, we changed the number of objects
and the number of dimensions, respectively, while keeping the other parameter
unchanged. In this round of experiments, we use the synthetic dataset as the input
because its parameters are easy to change. The experimental results are shown in
Fig. 8. By observing the experimental results, we can intuitively see that these two
parameters significantly impact the running time of the algorithm. On the one hand,
as the number of objects or dimensions increases, the dataset gets larger and larger
because another parameter remains the same; on the other hand, each object corre-
sponds to one iteration, so for both MRBIG and EHBIG algorithms, Hadoop will be
started once more for each additional object, so the increase in the number of objects
will lead to a sharp increase in the running time.

In this study, the TKD algorithm is implemented based on incomplete datasets,
and the incomplete data will directly affect the results of the algorithm. In order to
verify the impact of data incompleteness rate on algorithm performance, we used
synthetic datasets and obtained three datasets with different incompleteness by mod-
ification, 0.05, 0.2, and 0.4. The result is shown in Fig. 9. Experimental results show
that the data incompleteness does affect the performance of the algorithm.

As we mentioned before, we put both versions of the algorithm in the paper
because both algorithms have advantages in performance, which is caused by the

MovieLensNBA Zillows
0

2

4

6

8

10
R

un
tim

e
(S

ec
.)

BIG MRBIG EHBIG IEHBIG
MovieLensNBA Zillows
0

5

10

15

20

25

30

35

40

R
un

tim
e

(S
ec

.)

MovieLensNBA Zillows
0

500

1000

1500

2000

R
un

tim
e

(S
ec

.)

MovieLensNBA Zillows
0

0.5

1

1.5

2

2.5

R
un

tim
e

(S
ec

.)

104

Fig. 7   The runtime of algorithms processing datasets with different sizes

3993

1 3

Top‑k dominating queries on incomplete large dataset﻿	

2000 3000 4000 5000 6000
Number of Objects

0

5

10

15

20

25

30

35

40

R
un

tim
e

(M
in

)

BIG MRBIG EHBIG IEHBIG

2000 3000 4000 5000 6000
Number of Dimensions

0

5

10

15

R
un

tim
e

(M
in

)

Fig. 8   The runtime of algorithms testing different parameter combinations

100KB 1MB 10MB 100MB
Size of Dataset

0

10

20

30

40

50

60

70

80

R
un

tim
e

(M
in

)

Missing Rate:5%

BIG MRBIG EHBIG IEHBIG

100KB 1MB 10MB 100MB
Size of Dataset

0

10

20

30

40

50

60

70

80

90

100

R
un

tim
e

(M
in

)

Missing Rate:20%

100KB 1MB 10MB 100MB
Size of Dataset

0

10

20

30

40

50

60

70

R
un

tim
e

(M
in

)

Missing Rate:40%

Fig. 9   The runtime of algorithms using different missing rates

3994	 J. M.-T. Wu et al.

1 3

algorithm flow. In addition to the elapsed time verified in previous experiments,
another important factor in evaluating algorithm performance is memory. Next, we
will introduce new experiments, because this experiment is to verify EHBIG and
IEHBIG both the performance of the algorithm, so only of these two algorithms, an
experiment is carried out in the experiment, we consider the algorithm implemen-
tation of memory, you need to get the results more objective and comprehensive,
mentioned in the first experiment we use four different sizes of datasets, and the four
datasets from the real dataset, MovieLens. And the result is shown in Fig. 10. Obvi-
ously, IEHBIG requires a lot more memory than EHBIG because IEHBIG only runs
Mapreduce once and calculates the score for all objects at this run time, which is
bound to produce many intermediate data, so sufficient memory is required. We can
choose these two versions of the algorithm as needed.

Also, we experimented with verifying the effectiveness of our proposed pruning
strategy. Since our pruning strategy is based on a given k value, the size of k value
will also affect the algorithm performance. In this experiment, we used the synthetic
dataset as the input. We carried out three experiments, respectively, changing the k
value. The experimental results are shown in Fig. 11. As we see, the change of the
k value for MRBIG algorithm has no effect because MRBIG algorithm to calculate
the score for each object, first, get top - k sorted, and pruning strategy is used in
EHBIG algorithm, which sets threshold according to the scanned k-th value, thus,
the smaller the k value, the setting of the threshold value, the greater the off this
object will be more, so the algorithm, and even fewer iteration times and running
time of the algorithm is less.

To sum up, the performance of EHBIG algorithm is better than that of MRBIG
algorithm on large datasets. As can be seen from the above experimental results,
firstly, the running time of EHBIG improves by 20%-30% compared with that of
MRBIG; second, EHBIG also requires less memory to run. The larger the dataset,

100KB 1MB 10MB 100MB
Size of Dataset

0

0.5

1

1.5

2

2.5

3

3.5

Si
ze

 o
f M

em
or

y
(K

B)

104

EHBIG
IEHBIG

Fig. 10   The memory needed in algorithms

3995

1 3

Top‑k dominating queries on incomplete large dataset﻿	

the more obvious the advantage is. Therefore, EHBIG is more suitable for TKD que-
ries in large datasets and improves its feasibility in practical applications.

6 � Conclusion and future work

In this paper, we proposed an algorithm(EHBIG) to apply top-k dominating queries
using MapReduce framework on incomplete big data, and we developed a new prun-
ing strategy for the algorithm. What‘s more, an improved version of the algorithm
(IEHBIG) is developed to optimize the algorithm flow, which applies the MapRe-
duce framework to the whole algorithm process. The two algorithms have their own
advantages in performance and improves the performance of the original algorithm
to some extent. In the above sections, we have introduced the whole algorithm pro-
cess, detailed algorithm details, comparisons, and experiments. The experiments
show that a stand-alone algorithm is not the optimal TKD query method for large
files. When searching for the top-k values in a large-scale incomplete dataset, low
resource efficiency, process failure caused by insufficient resources, and exponential
processing time are the main defects, which are precisely solved by the distributed
concept of MapReduce framework. By dividing the input data into several parts and
handing them to different nodes for processing, the pressure on a single machine is
alleviated, and the computing speed is also improved. This research has great sig-
nificance for the practical application of TKD query.

Our algorithm has some shortcomings because the Hadoop MapReduce archi-
tecture has some disadvantages, such as the inevitable startup time and communica-
tion time consumption. Besides, you can apply this algorithm to Spark to overcome

0.01 0.05 0.1
k/dimensions

0

2

4

6

8

10

12

14

16

18

R
un

tim
e

(M
in

)

MRBIG EHBIG

Fig. 11   The runtime of algorithms with different k 

3996	 J. M.-T. Wu et al.

1 3

some of Hadoop’s shortcomings. It is worth mentioning that the search for top-K
advantages for incomplete data is an area that has not been fully addressed. With
the emergence of big data, EHBIG can be well used in the design of a recommenda-
tion system to provide an approximate real-time solution for TKD query processing.
TKD query plays an important role in real life, and this study is of great signifi-
cance. With the development of big data, it is precious to conduct deeper research in
this field.

References

	 1.	 Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems.
ACM Trans Database Syst 30(1):41–82

	 2.	 Yiu ML, Mamoulis N (2009) Multi-dimensional top-k dominating queries. VLDB J 18(3):695–718
	 3.	 Ge S, Mamoulis N, Cheung DW et al (2015) Dominance relationship analysis with budget con-

straints. Knowl Inf Syst 42(2):409–440
	 4.	 Mamoulis N, Cheng KH, Yiu ML, Cheung DW (2006) Efficient aggregation of ranked inputs, In:

22nd International Conference on Data Engineering (ICDE’06), pp 72–72, IEEE
	 5.	 Tiakas E, Valkanas G, Papadopoulos AN, Manolopoulos Y, Gunopulos D (2014) Metric-based

top-k dominating queries. In: EDBT, pp 415–426
	 6.	 Miao X, Gao Y, Zheng B, Chen G, Cui H (2015) Top-k dominating queries on incomplete data.

IEEE Trans Knowl Data Eng 28(1):252–266
	 7.	 Zhu H, Li X, Liu Q, Xu Z (2020) Top-k dominating queries on skyline groups. IEEE Trans Knowl

Data Eng 32(7):1431–1444
	 8.	 Tiwari D, Bhati BS (2021) A deep analysis and prediction of covid-19 in India: using ensemble

regression approach. In: Artificial Intelligence and Machine Learning for COVID-19, pp 97–109
	 9.	 Tiwari D, Nagpal B (2020) Ensemble methodsof sentiment analysis: a survey. In: 2020 7th Interna-

tional Conference on Computing for Sustainable Global Development (INDIACom), pp 150–155,
IEEE

	10.	 Zhang X, Fan M, Wang D, Zhou P, Tao D (2020) Top-k feature selection framework using robust
0-1 integer programming. IEEE Trans Neural Netw Learn Syst

	11.	 Schibler T, Suri S (2020) K-dominance in multidimensional data: theory and applications. Comput
Geom 87:101594

	12.	 Xie M, Wong RC-W, Lall A (2020) An experimental survey of regret minimization query and vari-
ants: bridging the best worlds between top-k query and skyline query. VLDB J 29(1):147–175

	13.	 Wang Y, Li X, Li X, Wang Y (2013) A survey of queries over uncertain data. Knowl Inf Syst
37(3):485–530

	14.	 Khalefa ME, Mokbel MF, Levandoski JJ (2008) Skyline query processing for incomplete data, In:
2008 IEEE 24th International Conference on Data Engineering, pp 556–565, IEEE

	15.	 Lian X, Chen L (2009) Top-k dominating queries in uncertain databases, In: Proceedings of the
12th international conference on extending database technology: advances in database technology,
pp 660–671

	16.	 Lian X, Chen L (2013) Probabilistic top-k dominating queries in uncertain databases. Inf Sci
226:23–46

	17.	 Han X, Li J, Gao H (2015) Tdep: efficiently processing top-k dominating query on massive data.
Knowl Inf Syst 43(3):689–718

	18.	 Zhang K, Gao H, Han X, Cai Z, Li J (2020) Modeling and computing probabilistic skyline on
incomplete data. IEEE Trans Knowl Data Eng 32(7):1405–1418

	19.	 Chen C-M, Chen L, Gan W, Qiu L, Ding W (2021) Discovering high utility-occupancy patterns
from uncertain data. Inf Sci 546:1208–1229

	20.	 Sefidian AM, Daneshpour N (2019) Missing value imputation using a novel grey based fuzzy
c-means, mutual information based feature selection, and regression model. Expert Syst Appl
115:68–94

	21.	 Biessmann F, Rukat T, Schmidt P, Naidu P, Schelter S, Taptunov A, Lange D, Salinas D (2019)
Datawig: missing value imputation for tables. J Mach Learn Res 20(175):1–6

3997

1 3

Top‑k dominating queries on incomplete large dataset﻿	

	22.	 Wu K, Shoshani A, Stockinger K (2008) Analyses of multi-level and multi-component compressed
bitmap indexes. ACM Trans Database Syst 35(1):1–52

	23.	 Chen Z, Wen Y, Cao J, Zheng W, Chang J, Wu Y, Ma G, Hakmaoui M, Peng G (2015) A survey of
bitmap index compression algorithms for big data. Tsinghua Sci Technol 20(1):100–115

	24.	 Wu K, Otoo EJ, Shoshani A (2002) Compressing bitmap indexes for faster search operations, In:
Proceedings 14th International Conference on Scientific and Statistical Database Management,
pp 99–108, IEEE

	25.	 Manogaran G, Lopez D (2018) Disease surveillance system for big climate data processing and den-
gue transmission, In: Climate Change and Environmental Concerns: Breakthroughs in Research and
Practice, pp 427–446, IGI Global

	26.	 Kamal S, Ripon SH, Dey N, Ashour AS, Santhi V (2016) A mapreduce approach to diminish
imbalance parameters for big deoxyribonucleic acid dataset. Comput Methods Programs Biomed
131:191–206

	27.	 Kamal MS, Parvin S, Ashour AS, Shi F, Dey N (2017) De-bruijn graph with mapreduce framework
towards metagenomic data classification. Int J Inf Technol 9(1):59–75

	28.	 Matallah H, Belalem G, Bouamrane K (2017) Towards a new model of storage and access to data in
big data and cloud computing. Int J Ambient Comput Intell 8(4):31–44

	29.	 Ezatpoor P, Zhan J, Wu JM-T, Chiu C (2018) Finding top-k dominance on incomplete big data using
mapreduce framework. IEEE Access 6:7872–7887

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Top-k dominating queries on incomplete large dataset
	Abstract
	1 Introduction
	2 Related work
	2.1 Top-k dominance
	2.2 Incomplete data
	2.3 BitMap indexing
	2.4 MapReduce framework

	3 Problem statement
	4 TKD query on large incomplete dataset
	4.1 Single machine algorithm (BIG)
	4.2 MRBIG
	4.3 EHBIG
	4.4 IEHBIG

	5 Experimental evaluation
	5.1 Data information and preparation
	5.2 Algorithm development and evaluation

	6 Conclusion and future work
	References

