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Abstract
Top-k dominating (TKD) query is one of the methods to find the interesting objects 
by returning the k objects that dominate other objects in a given dataset. Incom-
plete datasets have missing values in uncertain dimensions, so it is difficult to obtain 
useful information with traditional data mining methods on complete data. BitMap 
Index Guided Algorithm (BIG) is a good choice for solving this problem. However, 
it is even harder to find top-k dominance objects on incomplete big data. When 
the dataset is too large, the requirements for the feasibility and performance of the 
algorithm will become very high. In this paper, we proposed an algorithm to apply 
MapReduce on the whole process with a pruning strategy, called Efficient Hadoop 
BitMap Index Guided Algorithm (EHBIG). This algorithm can realize TKD query 
on incomplete datasets through BitMap Index and use MapReduce architecture 
to make TKD query possible on large datasets. By using the pruning strategy, the 
runtime and memory usage are greatly reduced. What’s more, we also proposed 
an improved version of EHBIG (denoted as IEHBIG) which optimizes the whole 
algorithm flow. Our in-depth work in this article culminates with some experimen-
tal results that clearly show that our proposed algorithm can perform well on TKD 
query in an incomplete large dataset and shows great performance in a Hadoop com-
puting cluster.
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1  Introduction

In a given set S with d-dimensional objects, the most valuable and important ele-
ments can be found called top-k objects. Generally, we think an object o domi-
nates other objects in S if it is one of the top-k objects. The domination relationship 
between two objects is defined as follows: An object o dominates another object o‘ , 
only if the values in all dimensions of o are no worse than those of o‘  and are better 
than o‘ in at least one dimension. For example, there are two objects o = (1, 2, 1, 3) 
and o} = (2, 2, 3, 3) with four dimensions, it can be considered that o‘ is dominated 
by o, because the values of o are less than o‘ in the first and the third dimension, 
and the values of both are equal in the second and the fourth dimension. (In this 
study, we conclude that the smaller the value, the better.) According to the defini-
tion of dominance relationship, we can easily find the top-k dominating objects in a 
dataset. By analyzing and processing historical data to obtain top-k objects, we can 
use this method to build some recommendation systems. For example, if we want to 
establish a movie recommendation system, we can dig for top-k movies according to 
the audience’s rating of the movie. If one movie dominates another movie, we can 
think that it is better. Unfortunately, data in real life is often incomplete especially 
the data with multiple dimensions, such as movie rating. Audiences have seen some 
movies and rated them, but no audience has seen all of them, and not all of them 
are rated by the same audience. Therefore, there are always missing values in some 
dimensions in the real data. For instance, a movie o = (−, 2, 3,−) , that means the 
second and the third audiences have seen and rated it, but the first and the fourth 
audiences have not given it a rate, hence, there are two missing values in the first and 
the fourth dimension. In a case of movie rating, take the typical dataset Movielens 
from a movie recommendation system (http://www.imdb.com/) as an example, some 
movie and the rate from audiences are shown in Table 1. Obviously, due to the pres-
ence of missing values, the definition of the dominant relationship in incomplete 
data is different from that in complete data. The presence of missing values makes it 
impossible for the two films to be compared in some dimensions, which also makes 
top-k dominating queries more difficult.

In this paper, based on the previous work on top-k dominating query, we followed 
the original definitions and the representation in the algorithm. In incomplete data, 
two objects may not be able to be compared in some dimensions because of miss-
ing value such as a1 = (−, 5,−, 3) and a2 = (−, 3, 2, 1) . Thus, we only compare the 
dimensions in which both objects are observed. In general, an object o′ is domi-
nated by another object o, denoted as o ≺ o′ , if the two objects fit the definition of 

Table 1   Example of a movie 
recommendation system

ID Movie Name a1 a2 a3 a4 a5

m1 Schindler’s List (1993) – – 3 4 2
m2 The Godfather (1972) 5 2 1 – –
m3 The Silence of Lambs (1991) – 3 4 5 3
m4 Star Wars (1977) 3 1 5 3 4
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domination relationship, as we have mentioned before. For example, we can observe 
the values in the second and the fourth dimension from a1 and observe the val-
ues in the second, third, and fourth dimensions from a2 , so we can only compare 
the value in the second and the fourth dimension. What’s more, a1.[2] > a2.[2] , 
a1.[4] > a2.[4] , thus we consider a2 ≺ a1 . In TKD query, the basis to rank the objects 
is the score of each object, so it is important to formulate a score function. Accord-
ing to the previous work, the score of an object score(o) is defined as the number of 
objects in S those are dominated by o, that is, score(o) =

{
o� ∈ S|o ≺ o�

}
 . Take the 

rating information in Table 1 as an example, we can get m2 ≺ m1 , m2 ≺ m3 , there-
fore, score(m2) = |

{
mi ∈ S|m2 ≺ mi

}
| = |m1,m3| = 2 . So far, the score of an object 

is obtained.
Many previous works have provided feasible algorithms for TKD queries, such 

as Skyline algorithm, Skyband-Based algorithm, and Upper Bound Based algo-
rithm. These algorithms take advantage of the definition of domination relation-
ship and compare all objects in pairs to determine the dominant number of each 
object, thus calculating the score. However, the pairwise comparison is time-con-
suming, and the problem will get worse when the size of the dataset becomes 
larger. In order to solve this problem, Miao et  al.  proposed a new algorithm, 
BitMap Index Guided algorithm. It builds bitmap index for the original dataset, 
which supports new bitmap pruning and fast bit-wise manipulation to calculate 
scores more efficiently. Unfortunately, even though the BitMap Index Guided 
algorithm has greatly reduced the time complexity, it is still tough to process 
datasets on a single machine when the data volume is enormous. A novel algo-
rithm, MapReduce Enhanced Bitmap Index Guided Algorithm, is proposed to 
deal with this issue which applies the MapReduce framework on top-k dominance 
queries on large incomplete datasets. Compared with the proposed algorithm, the 
processing time of this method in finding TKD query results is twice as fast. This 
proves that the MapReduce framework is very effective for dealing with this prob-
lem. We found that the MRBIG algorithm still has a lot to improve in terms of 
process. Theoretically, these improvements can make the algorithm more efficient 
and also be helpful for handling larger datasets. Therefore, we improved the algo-
rithm on this issue, proposed the EHBIG algorithm. Furthermore, an improved 
version also is developed to optimize the process of the algorithm. Experiments 
show that our two versions of the algorithm are more efficient than the previous 
one. In brief, the main contributions of this paper are introduced as follows. 

1.	 In this article, an efficient top-k query algorithm (EHBIG) is proposed to handle 
an extensive dataset. The designed algorithm applies the MapReduce framework 
to the whole TKD query process, and each time the original dataset is scanned, an 
object score is obtained. The number of scanning datasets is reduced to the great-
est extent, thus improving the feasibility of the algorithm in practical application.

2.	 The designed EHBIG algorithm utilizes a new pruning strategy to prune the 
unpromising objects, thus reducing the unnecessary computations. Moreover, the 
developed EHBIG designs a parallel way to perform the pruning strategy, which 
is more efficient in handling large-scale datasets.
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3.	 The developed EHBIG can also reduce the number of database scans since it 
could catch all of the information of an object to calculate its score, which is 
very efficient in the large-scale environment by reducing the seeking time of the 
database.

4.	 An improved version of the algorithm (IEHBIG) is developed to optimize the 
algorithm flow, which applies the MapReduce framework to the whole algorithm 
process. The algorithm can score all objects by scanning the dataset once, which 
minimizes the impact of the limitations of Hadoop’s MapReduce architecture on 
the algorithm results.

The rest of this paper is organized as follows. Section 2 reviews related work. The 
problem statement is described in Sect. 3. Section 4 introduces our algorithm idea 
and algorithm flow in detail. The introduction and results of the experiment are 
shown in Sect. 5. Finally, Sect. 6 includes the summary of this paper and the pros-
pect of future work.

2 � Related work

In this section, we review the related work of some related concepts, such as top-k 
dominance, incomplete data, bitmap indexing, and MapReduce framework.

2.1 � Top‑k dominance

The TKD query finds the best value in the dataset according to the predefined good 
criteria. The original TKD algorithm was designed to process complete datasets, 
so this aspect of the work is more focused on complete datasets. Papadias et al. [1] 
first introduce the concept of top-k dominating query which is considered as a vari-
ation of skyline queries, and they proposed an algorithm for processing TKD que-
ries based on skyline to process complete dataset indexed by an R-tree. Yiu and 
Mamoulis reviewed the works and the challenge of TKD queries on complete mul-
tidimensional datasets [2]. Ge et al. [3] proposed a budget constrained optimization 
query algorithm which can help to increase the profitability of products. Mamoulis 
et al. [4] developed a new algorithm that refines the object accesses throughout top-k 
processing. E. Tiakas and G. Valkanas studies processing top-k dominating queries 
over dynamic attribute vectors where finding the distances depends on the defined 
metrics between objects [5]. Miao et al. follow the combination of top-k and Skyline 
queries that led to top-k dominating query [6]. Furthermore, H Zhu et al. provide a 
systematic study of TKD queries on skyline groups and validate our algorithms with 
extensive empirical results on synthetic and real-world data [7]. Tiwari et  al.  [8] 
apply four ensemble regressor models Gradient-Boosting Regressor, Extra-Trees 
Regressor, Ada-Boost Regressor, and Random-Forest Regressor to analyze the asso-
ciation between dependent and independent variables of a COVID-19 prediction in 
India. There’s a lot of other research in this field [9–12].
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2.2 � Incomplete data

The TKD query on the incomplete dataset is completely different from that on the 
complete dataset. Due to the existence of missing data, the traditional algorithm 
cannot carry out calculation. Therefore, we must consider the impact of missing val-
ues on the dominant relationship on some dimensions. Wang et  al. [13] provided 
more details and definitions to give a better understanding of top-k and Skyline 
queries based on uncertain data. Khalefa et  al. [14] propose TKD query process-
ing using the ISkyline algorithm that is especially suitable for incomplete data. Lian 
and Chen [15] also consider the uncertain data, so they proposed a new algorithm, 
called Probabilistic Top-k Dominating (PTD) to realize the top-k dominating query 
in uncertain data. Then, Lian and Chen [16] propose an effective pruning approach 
to reduce the PTD search space and present an efficient query procedure to answer 
PTD queries. Han et al. [17] worked on TKD queries on massive data, accomplished 
by sorting and listing values and making the process faster than other methods. 
Zhang et al. [18] proposed incomplete models and estimate probability density func-
tions of missing values on independent, correlated, and anti-correlated distributions, 
respectively. Chen et al. [19] proposed a novel algorithm, called High-Utility-Occu-
pancy Pattern Mining in Uncertain databases (UHUOPM) to process the missing 
values in utility mining. Some studies use feature engineering and feature extrac-
tion methods to deal with missing data in datasets. Sefidian et al. proposed a novel 
technique to impute missing data, which employs a new version of Fuzzy c-Means 
clustering algorithm which benefits from advantages of Grey Relational Grade over 
Minkowski-like similarity measures [20]. Biessmann et  al. release DataWig [21], 
a robust and scalable approach for missing value imputation that can be applied to 
tables with heterogeneous data types, including unstructured text.

2.3 � BitMap indexing

Bitmap index refers to bitmap index technology, which is a special database index 
technology. Bitmap index USES bitmap array (or bitmap, bit-set, bitString, bit-Vec-
tor) for storage and calculation. A bitmap index is a special database index that uses 
bitmaps and is created primarily for a large number of columns with the same value. 
Therefore, bitmap indexing technology is suitable for solving TKD query, because 
it can use bit-vector operation to replace the traditional algorithm pair comparison, 
thus improving the efficiency of the algorithm. Miao et al. [6] proposed a new algo-
rithm, called Bitmap Index Guided (BIG) algorithm as one of the first attempts to 
solve this issue. Wu et al. [22] considered the effects of compression on multi-com-
ponent and multi-level compressed bitmap indexes. There are several methods for 
compressing bitmap indexes, such as BBC, CONCISE, and WAH methods that is 
proposed by Chen et  al.  [23], and it is the first attempt to apply traditional algo-
rithms to big data environment. For instance, to make the compression more stable, 
Wu et al. [24] has proposed their word-aligned hybrid code (WAH) as a compress-
ing method for bitmap indexes that leads to improved performance.
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2.4 � MapReduce framework

MapReduce is a programming model and an associated implementation for pro-
cessing and generating large datasets that are amenable to a broad variety of real-
world tasks. The MapReduce framework can divide the input data into several parts 
and deliver them to different nodes for processing, thus solving the large amount 
of data that cannot be handled by the single machine algorithm. Manogaran and 
Lopez [25] proposed a MapReduce disease surveillance system for analyzing the 
correlation between climate data and Dengue fever transmission in real-time. Kamal 
et al. [26] suggested a k-nearest neighbor classifier for imbalanced data reduction by 
employing MapReduce, applying the method to a big DNA dataset with 90 million 
base pairs. In a different paper, Kamal et al. [27] applied MapReduce to de Bruijn 
graphs to more efficiently and accurately perform metagenomic gene classification. 
Research in improving the MapReduce framework and its encompassing Apache 
Hadoop architecture for use in big data has also been conducted; Matallah et al. [28] 
proposed enhancements to the storage of metadata in the Hadoop Distributed File 
System for improved scalability, demonstrating the continuing value of MapReduce 
in modern applications. Ezatpoor et  al.  [29] proposed MapReduce Enhanced Bit-
map Index Guided Algorithm (MRBIG), which uses the MapReduce framework to 
enhance the performance of applying top-k dominance queries on large incomplete 
datasets.

3 � Problem statement

This section will explain the dominance relationship and formalize the issue of TKD 
query on incomplete data. First, Fig. 1 provides a sample incomplete dataset D with 
d dimensions. We are going to represent the value of each object in terms of vectors 
with d bits. The “-” represents the missing value of the object in this dimension. For 
example, o1 = (−, 1, 2,−) , that means o1 has two missing values in d1 and d4 . Note 
that, the smaller evaluating value of one movie means the better ranking from a per-
son. According to the dataset shown in Fig. 1, we can format the data into Table 2.

Fig. 1   An sample incomplete 
dataset O1(-,1,2,-)

O3(3,1,-,-)

O5(-,2,1,-)

O7(1,1,-,-)

O9(2,-,2,2)

O2(1,-,3,2)

O4(-,-,-,1)

O6(-,2,-,3)

O8(-,3,2,-)

O10(3,2,-,-)
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As we have introduced before, the TKD query is implemented based on pairings 
of objects and determination of the dominance relationship. Given two objects o1 
and o2 , if o1 dominates o2 , it is denoted as o1 ≺ o2.The conditions for determining 
the dominance relationship between two objects are as follows: In each dimension 
where values are observed both at o1 and o2 , (1) the value of o1 cannot be larger than 
o2 ; (2) in at least one dimension, the value of o1 is strictly less than the value of o2 . 
For example, for o1 = (−, 1, 2,−) and o2 = (1,−, 3, 2) in Fig. 1, we can say o1 ≺ o2 
because the values are observed on d3 both at the two objects and the value of o1 is 
less than o2.

After determining the dominance relationship between two objects, we need a 
method to compare all objects, so as to get the top-k dominant objects. Therefore, 
we need a scoring mechanism to calculate the score of each object. For an object o 
in a given incomplete dataset D, the score of o ,denoted as score(o) , is the number 
of objects it dominates in that dataset. The set of objects dominated by o is R(o) , 
R(o) = {o} ∈ D|o ≺ o}} , then the score of o is expressed as score(o) = |R(o)| . For 
instance, R(o1) =

{
o2, o8, o10

}
 , so score(o1) = |R(o1)| = 3.

4 � TKD query on large incomplete dataset

As we have reviewed in the previous sections, traditional data mining algorithms 
based on complete datasets are not suitable for incomplete datasets with missing val-
ues. Bitmap indexing provides the possibility of TKD queries on incomplete data-
sets. It is better than other methods in terms of feasibility and performance, such as 
Skyband-Based and UpperBound-Based Algorithm. In fact, we can get more infor-
mation from bitmap index table. And the application of MapReduce framework to 
the whole algorithm process will greatly improve the performance of the algorithm. 
More importantly, we need a more effective pruning strategy to reduce the computa-
tion and improve the performance of the algorithm. In this section, we will introduce 
the previous algorithm and our algorithm with a new pruning strategy. First, let’s 
review the single machine algorithm, i.e., BitMap Index Guided Algorithm.

Table 2   A sample incomplete 
dataset table

object d1 d2 d3 d4

o1 – 1 2 –
o2 1 – 3 2
o3 3 1 – –
o4 – - – 1
o5 – 2 1 –
o6 – 2 – 3
o7 1 1 – –
o8 – 3 2 –
o9 2 – 2 2
o10 3 3 – –
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4.1 � Single machine algorithm (BIG)

In order to visually observe the value of each object in each dimension, we can get 
a table as shown in Table 2 according to Fig. 1. Our bitmap index guided algorithm 
is based on a bitmap indexing table, so we need to build a bitmap indexing table. 
Unlike traditional bitmap index guided algorithms, we need a bitmap index table 
with missing values.This bitmap index table is created as follows: (1)For a data-
set, we can first obtain a dimension table, such as Table  2. Then, we analyze the 
values of all objects that can be observed on each dimension. We use a vector vi to 
represent the values of all objects that can be observed in the i-th dimension. Take 
the given dataset as an example, i.e., Table 2. On the first dimension, 1,2,3 can be 
observed with missing value. So v1 = {−, 1, 2, 3} . Next, we will insert |vi| columns 
after the i-th dimension, each of which represents a value in vi . (2)Initialize all the 
values in the table to 1. The bitmap index table is then updated based on the value 
of each object on each dimension. Starting from the left, if the value of an object is 
not missing on a dimension, change the value of the column corresponding to vi and 
all subsequent columns to 0. If the value of an object on a dimension is a missing 
value, the columns corresponding to that dimension are not modified. According to 
the above steps, we can get the bitmap indexing table corresponding to Table 2 as 
shown in Table 3.

After creating the bitmap index table, we can get some information from the 
table. We previously described the dominance relationship between two objects and 
the scoring mechanism for each object in the TKD query on an incomplete data-
set. From this, we can get that the score of an object is the number of objects it 
dominates. However, based on the conditions for judging the dominant relationship 
between the two objects, we can conclude that the set of objects dominated by an 
object o can be divided into two parts. The first subset contains all objects whose 
values on any dimension are greater than o, called Γ(o) . And the other one collects 
the objects whose value on one or more dimensions is equal to o, called Λ(o) . Bit-
map indexing table clearly reflects the values of different objects in the same dimen-
sion, so we can easily analyze the dominant relationship between objects.

Table 3   A sample BitMap indexing table

Items d1 – 1 2 3 d2 – 1 2 3 d3 – 1 2 3 d4 – 1 2 3

o1 – 1 1 1 1 1 1 0 0 0 2 1 1 0 0 – 1 1 1 1
o2 1 1 0 0 0 – 1 1 1 1 3 1 1 1 0 2 1 1 0 0
o3 3 1 1 1 0 1 1 0 0 0 – 1 1 1 1 – 1 1 1 1
o4 – 1 1 1 1 – 1 1 1 1 – 1 1 1 1 1 1 0 0 0
o5 – 1 1 1 1 2 1 1 0 0 1 1 0 0 0 – 1 1 1 1
o6 – 1 1 1 1 2 1 1 0 0 – 1 1 1 1 3 1 1 1 0
o7 1 1 0 0 0 1 1 0 0 0 – 1 1 1 1 – 1 1 1 1
o8 – 1 1 1 1 3 1 1 1 0 2 1 1 0 0 – 1 1 1 1
o9 2 1 1 0 0 – 1 1 1 1 2 1 1 0 0 2 1 1 0 0
o10 3 1 1 1 0 3 1 1 1 0 – 1 1 1 1 – 1 1 1 1
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First, we introduce the definition of four sets: Q , P , Φ(o) and nonD(o) . Set Q of an 
object o contains the objects whose values on all dimensions are not less than o or are 
missing values. Set P of an object contains the objects whose value on all dimensions 
are larger than o or are missing values. All objects in set Φ(o) cannot be compared with 
o. Set nonD(o) of an object o represents the set of all objects that are not dominated by 
o. The containment relationships for these four sets are shown in Fig. 2. By analyzing 
the bitmap indexing table, we can conclude that for an object o, the column correspond-
ing to the first 0 appearing from the left in each dimension can be represented as a vec-
tor.This vector represents the set P of o in each dimension. A 1 in a vector represents an 
object whose value in that dimension is less than o or a missing value. For example, for 
o1 , [P2] = 0101110111 , [P3] = 0111011001 , and[P1] and [P4] are 1111111111 because 
the missing values. Similarly, the vector represented by the left column of the column 
for which the first 0 appears in each dimension represents the set Q of o. A 1 in a vec-
tor represents an object whose value in that dimension is no larger than o or a missing 
value. As in the previous example, for o1 , [Q2] = 1111111111 , [Q3] = 1111011111 , 
and [Q1] and [Q4] are 1111111111 because the missing values. So the set Q and P of o 
are the intersection of all the vectors in all the dimensions, expressed as:

According to this formula, we can get the P and Q for o1 . [P] = 0101010001 
and [Q] = 1111011111 . That is to say, the P =

{
o2, o4, o6, o10

}
 and the 

Q =
{
o1, o2, o3, o4, o6, o7, o8, o9, o10

}
 . After we get Q and P, we can rescan the data-

set to look for Φ(o) and nond(o) .According to the definition of each set, we can get 
the following relation:

From this, we can calculate the score of each object according to the bitmap index-
ing table. The BIG algorithm loops through all objects, getting the Q and P of one 
object at a time, then rescanns the dataset, finds the Φ(o) and nonD(o) of the object, 
and calculates the score of the object. The pseudo-code of the whole algorithm flow 
is shown in Algorithm 1. 

Q =

d⋂

i=1

Qi

P =

d⋂

i=1

Pi

Γ(o) =P − Φ(o)

Λ(o) =Q − P − nonD(o)

Fig. 2   The containment rela-
tionships

nonD(0)

Q

P Φ(o)
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4.2 � MRBIG

In this section, we will briefly introduce the idea and flow of MRBIG algorithm. 
This algorithm is to realize the TKD query in an incomplete large dataset. The 
first problem to be solved is that the dataset is too large for the single machine 
algorithm to handle. As far as we know, the MapReduce architecture of Hadoop 
enables distributed processing of input data in distributed file system HDFS, 
thereby reducing the stress of storing and processing data internally.

In the BIG algorithm, the process of calculating the score of an object is 
divided into three steps. The first step is to scan the bitmap indexing table to get 
the Q and P of an object, the second step is to scan the dataset to find the Φ(o) 
and nonD(o) of the object, and the last step is to calculate the score of the object 
according to the four sets. MRBIG algorithm applies the MapReduce framework 
to the first step of the BIG algorithm for distributed reading of data and calcula-
tion of Q and P. The MapReduce framework splits the input data by dimensions 
and submits them to different Mapper nodes for processing. Each node will han-
dle several dimensions and mine the set Q and P of an object. The algorithm 
framework is shown in Fig. 3. And the pseudo-code is shown in Algorithm 2. 
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Dataset
n items

*
r dimensions

n * r1

n * r2

n * r3

n * rk

[P1], [Q1]

[P2], [Q2]

[P3], [Q3]

[Pk], [Qk]

[P*], [Q*]

... ...

Input Mapper Reducer

n * r1 [P1], [Q1]

[P2], [Q2]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

[P*], [Q*]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

[P], [Q]

Fig. 3   The algorithm framework of MRBIG
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4.3 � EHBIG

As we mentioned before, the BIG algorithm can only get Q and P of one object 
in one loop, and then, it needs to rescan the dataset to get the score of one object. 
MRBIG algorithm utilizes the flow of the BIG algorithm and applies MapReduce to 
the first step. The disadvantage is also obvious; when the dataset is huge, the scan-
ning process will be very time-consuming. After analyzing the definition of bitmap 
index table and each set, we improve the flow of the algorithm and propose a new 
pruning strategy to reduce the computation time and improve the performance of the 
algorithm. This section mainly introduces the process and details of our new algo-
rithm and the working mechanism of the pruning strategy.

First of all, EHBIG improved the calculation method of Φ(o) and nonD(o) sets. 
Instead of rescanning the dataset after obtaining Q and P, we obtained them in 
the iteration bitmap indexing table. As mentioned in the previous Q and P, we 
can also obtain these two sets by analyzing the bitmap index table and the already 
obtained sets. When we look at the last column of the bitmap index table, we can 
find that on the dimensions of an objecto where the value can be observed, if the 
value of the last column of o′ is 1, then o′ is missing on that dimension. If o′ is 
missing on all dimensions where the value can be observed of o, then o′ is one of 
the elements of Φ(o) . So the Φ(o) can be expressed as:

According to this formula, we can get [Φ2(o1)] = 0101010010and[Φ3(o1)] =

0011011001 . So the [Φ(o1)] = 0001010000 That is to say, the Φ(o1) =
{
o4, o6

}
.

Furthermore, according to the definitions of Q and P, we can find that for o, if 
Q − P = 1 on a dimension of o′ , it can prove that the value of the two objects on 
this dimension is equaled, so o cannot dominate o′ on this dimension. This shows 
the nonDi(o) = Qi − Pi , so can be expressed as:

According to this formula, we can get [nonD2(o1)] = 1010001000 and 
[nonD3(o1)] = 1000000110 . So the [ nonD(o1)] = 1000000000 . That is to say, the 
nonD(o1) = � . Now, we can get the score of o1 , score(o1) = |0110001111| = 6.

According to the above findings, the EHBIG algorithm can get four sets of an 
object in a loop to calculate the score of the object. In this way, MapReduce can 
be applied to the whole algorithm process, eliminating the process of rescanning 
the dataset, thus greatly reducing the computation time. The whole framework of 
EHBIG is shown in Fig. 4.

In this algorithm, each object runs the MapReduce architecture once as it 
loops through all the objects. However, as far as we know, MapReduce archi-
tecture of Hadoop tends to have some loss of startup time and communication 

Φ(o) =

d⋂

i=1

Φi(o)

nonD(o) =

d⋂

i=1

nonDi(o)
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time. Therefore, reducing the running times of MapReduce can greatly reduce 
the running time of the algorithm. Next, we will introduce our efforts in pruning 
strategies.

We know that by the definition of the dominant relationship, given two objects 
o1 and o2 , if o1 dominates o2 , then o2 will not dominate o1.

So we start with the MaxDominance to represent the objects dominated by an 
object, which is the maximum score that the object can get. If the size of the 
given dataset is n, the MaxDominance of all objects is initialized to n − 1 . The 
other thing is we have an array to represent the top-k dominating objects whose 
size is k. Set a threshold initialized to 0 to represent the minimum score of the 
current top-k dominating objects.

Then, start looping the bitmap index table. If a object o is dominated by another, 
the MaxDominance corresponding to o is reduced by 1, i.e.,

Taking Table  2 as an example, suppose we want to query the top-4 objects. 
According to the above process, in the first and second iterations, we can 
get that: score(o1) = |o2, o7, o8, o10| = 4 , score(o2) = |o3, o6, o10| = 3 , 
score(o3) = |o4, o5, o7, o8, o10| = 5 , score(o4) = |o2, o6, o9| = 3 , 
score(o5) = |o2, o8, o9, o10| = 4 , score(o6) = |o8, o10| = 2 , 
score(o7) = |o2, o3, o5, o8, o9, o10| = 4 . By the end of this iteration, the top-4 objects 
are o7, o3, o1, o4 , and the threshold is updated as 4. In these iterations, we found that 
o10 is dominated by o1, o2, o3, o5, o6, o7 . According to our proposed pruning strategy, 
MaxDominance(o10) = 10 − 1 − 6 = 3 < 4 . So the score of o10 does not need to be 
calculated, thus reducing one iteration of MapReduce.

Update the threshold when the number of loops is larger than or equal to k. If 
theMaxDominance of an object is less than the threshold, it means that the score 
of the object will not exceed the minimum score of the first k objects, so the object 
does not need to loop. This pruning strategy can greatly reduce the running times of 
MapReduce, thus greatly reducing the running time of the algorithm. The running 

MaxDominance(o) = n − 1 − 1

Dataset
n items

*
r dimensions

n * r1

n * r2

n * r3

n * rk

[P1], [Q1]

[P2], [Q2]

[P3], [Q3

[Pk], [Qk

... ...

Input Mapper Reducer

n * r1 [P1], [Q1]

[P2], [Q2]

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1]

[P2], [Q2]

n * r3

n * r1 [P1], [Q1

[P2], [Q2

], [Φ], [nonD]

], [Φ], [nonD]

], [Φ], [nonD]

], [Φ], [nonD]

n * r3

score(o)

Fig. 4   The algorithm framework of EHBIG
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process of the entire algorithm is shown in Fig. 5. And the pseudo-code is shown in 
Algorithm 3. 

Dataset

update the
Max_dominance 

and threshold
Y

N

Whether
Iterate

MapReduce score

Fig. 5   The algorithm flow of EHBIG
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4.4 � IEHBIG

This version of the algorithm improves the algorithm flow, IEHBIG only runs 
MapReduce once and calculates the score of all objects at once, as shown in 
Fig. 6. As we all know, the startup costs of Hadoop are very large, so this version 
avoids the iterative operation of MapReduce, thus saving the start-up and shut-
down time of Hadoop, thus saving time cost and improving algorithm efficiency 
to a large extent. However, the pruning strategy we proposed cannot be used in 
this version because it is based on the MapReduce iterative scenario and therefore 
cannot minimize the running time. In addition, in this version, because each node 
needs to scan all objects, the computing power for each node is high, that is, the 
memory for each node needs to be large enough. Combining time consumption 
and memory consumption, we could not compare the advantages of the two ver-
sions, so we included both versions in the paper so that use cases could choose 
which version to use according to their own requirements.

5 � Experimental evaluation

This section contains the necessary experiments to verify the performance gap 
among the algorithms. These experiments are mainly carried out to compare the 
running time and required memory of each algorithm. Based on the analysis of 
these experimental results, we evaluated the performance of each algorithm, so 
as to intuitively show the advantages and disadvantages of each algorithm. In 
order to obtain more objective and accurate results, we considered several factors 
that might influence the results, including the size of the datasets, the number of 
records and dimensions, and the incompleteness rate of the datasets. Based on 
these factors, we conducted extensive research using both real datasets and syn-
thetic datasets to obtain the following experimental results. As MapReduce archi-
tecture is made to work in a distributed environment, our experiments are also 
done in a distributed cluster of different machines. The experiments were con-
ducted in computing nodes equipped with the Intel Xeon E5-2695 v4 @ 2.10GHz 
CPU and 32GB assigned RAM, running Linux Ubuntu 16.04 LTS. To achieve 
parallelization, the experiment was run under the Hadoop 2.8.5 cluster with one 
master node and five data nodes. The number of nodes can be adjusted according 
to the size of the input data.

Dataset MapReduce score

Fig. 6   The algorithm flow of IEHBIG
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5.1 � Data information and preparation

The real dataset we used references previous work, including MovieLens, NBA and 
Zillows, which contained different records, number of dimensions, and incomplete-
ness rates, which made our experiment more comprehensive and objective. Besides, 
a synthetic dataset was also used to visually show the differences among the algo-
rithms because its parameters can be artificially adjusted to meet our needs for vari-
ous datasets. The main purpose of this paper is to apply a single machine algorithm 
to the big data environment. Therefore, to verify the algorithm’s performance, it is 
essential to select datasets with the appropriate size. The storage mode of the origi-
nal data is shown in Table 4. Before the algorithm starts, we first need to preproc-
ess the data formatting, which can make the data more standardized and facilitate 
the algorithm to process the data so as to get more reasonable and correct results. 
This part of the processing will not count against the running time of the algorithm. 
To improve Hadoop’s performance, we use HBase, a distributed, column-oriented, 
open-source database, to store data. HBase is a sub-project of Apache’s Hadoop 
project, which provides bigtable-like capabilities on top of Hadoop. Using HBase, 
we can access the data more efficiently, thus improving the performance of the 
algorithm.

5.2 � Algorithm development and evaluation

First of all, in order to test the advantages of EHBIG and IEHBIG algorithms in 
the big data environment, the first experiment is to compare the performance of 
each algorithm in processing different datasets. We selected four datasets of differ-
ent sizes in three real datasets for the experiment, which contained 100KB, 1MB, 
10MB, and 100MB, respectively. In this experiment, in order to guarantee the prem-
ise of unique variables, we try to keep the consistency of other parameters, includ-
ing the number of objects, the number of dimensions, and the incompleteness rate. 
The result is shown in Fig. 7. By analyzing the experimental results, we can come 
to the following conclusion: When the dataset is small, single machine algorithms 
obviously have a shorter running time than other algorithms because Hadoop tends 
to take a long time to start. The distributed concept of MapReduce cannot be imple-
mented because the dataset is too small, so the MapReduce architecture is not appli-
cable when the dataset is too small to be segmented. The running time of EHBIG 
Table 4   A sample original 
dataset

User Movie Rating

1 01 3
1 02 4
1 04 2
2 02 2
2 03 3
3 04 3
4 01 1
4 04 2
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algorithm is less than that of MRBIG algorithm, which indicates that the improve-
ment of MRBIG algorithm is successful, and the use of MapReduce framework to 
process big data is very effective. The runtime of IEHBIG is much lower than that 
of EHBIG because IEHBIG only starts Hadoop once. As we mentioned earlier, 
the Hadoop startup process is a waste of time, and the communication cost among 
nodes is inevitable. However, this does not mean that IEHBIG is superior to EHBIG 
because the former requires much more memory to run than the latter, a conclusion 
we will discuss later in the experiment.

The number of objects and the number of dimensions in a dataset also have an 
impact on the running time of the algorithm. Theoretically, the number of objects 
has an even greater impact on the result because it directly determines the number of 
iterations of the algorithm and the size of the dataset. So we did two experiments to 
verify this statement. In these two experiments, we changed the number of objects 
and the number of dimensions, respectively, while keeping the other parameter 
unchanged. In this round of experiments, we use the synthetic dataset as the input 
because its parameters are easy to change. The experimental results are shown in 
Fig. 8. By observing the experimental results, we can intuitively see that these two 
parameters significantly impact the running time of the algorithm. On the one hand, 
as the number of objects or dimensions increases, the dataset gets larger and larger 
because another parameter remains the same; on the other hand, each object corre-
sponds to one iteration, so for both MRBIG and EHBIG algorithms, Hadoop will be 
started once more for each additional object, so the increase in the number of objects 
will lead to a sharp increase in the running time.

In this study, the TKD algorithm is implemented based on incomplete datasets, 
and the incomplete data will directly affect the results of the algorithm. In order to 
verify the impact of data incompleteness rate on algorithm performance, we used 
synthetic datasets and obtained three datasets with different incompleteness by mod-
ification, 0.05, 0.2, and 0.4. The result is shown in Fig. 9. Experimental results show 
that the data incompleteness does affect the performance of the algorithm.

As we mentioned before, we put both versions of the algorithm in the paper 
because both algorithms have advantages in performance, which is caused by the 
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algorithm flow. In addition to the elapsed time verified in previous experiments, 
another important factor in evaluating algorithm performance is memory. Next, we 
will introduce new experiments, because this experiment is to verify EHBIG and 
IEHBIG both the performance of the algorithm, so only of these two algorithms, an 
experiment is carried out in the experiment, we consider the algorithm implemen-
tation of memory, you need to get the results more objective and comprehensive, 
mentioned in the first experiment we use four different sizes of datasets, and the four 
datasets from the real dataset, MovieLens. And the result is shown in Fig. 10. Obvi-
ously, IEHBIG requires a lot more memory than EHBIG because IEHBIG only runs 
Mapreduce once and calculates the score for all objects at this run time, which is 
bound to produce many intermediate data, so sufficient memory is required. We can 
choose these two versions of the algorithm as needed.

Also, we experimented with verifying the effectiveness of our proposed pruning 
strategy. Since our pruning strategy is based on a given k value, the size of k value 
will also affect the algorithm performance. In this experiment, we used the synthetic 
dataset as the input. We carried out three experiments, respectively, changing the k 
value. The experimental results are shown in Fig. 11. As we see, the change of the 
k value for MRBIG algorithm has no effect because MRBIG algorithm to calculate 
the score for each object, first, get top - k sorted, and pruning strategy is used in 
EHBIG algorithm, which sets threshold according to the scanned k-th value, thus, 
the smaller the k value, the setting of the threshold value, the greater the off this 
object will be more, so the algorithm, and even fewer iteration times and running 
time of the algorithm is less.

To sum up, the performance of EHBIG algorithm is better than that of MRBIG 
algorithm on large datasets. As can be seen from the above experimental results, 
firstly, the running time of EHBIG improves by 20%-30% compared with that of 
MRBIG; second, EHBIG also requires less memory to run. The larger the dataset, 
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the more obvious the advantage is. Therefore, EHBIG is more suitable for TKD que-
ries in large datasets and improves its feasibility in practical applications.

6 � Conclusion and future work

In this paper, we proposed an algorithm(EHBIG) to apply top-k dominating queries 
using MapReduce framework on incomplete big data, and we developed a new prun-
ing strategy for the algorithm. What‘s more, an improved version of the algorithm 
(IEHBIG) is developed to optimize the algorithm flow, which applies the MapRe-
duce framework to the whole algorithm process. The two algorithms have their own 
advantages in performance and improves the performance of the original algorithm 
to some extent. In the above sections, we have introduced the whole algorithm pro-
cess, detailed algorithm details, comparisons, and experiments. The experiments 
show that a stand-alone algorithm is not the optimal TKD query method for large 
files. When searching for the top-k values in a large-scale incomplete dataset, low 
resource efficiency, process failure caused by insufficient resources, and exponential 
processing time are the main defects, which are precisely solved by the distributed 
concept of MapReduce framework. By dividing the input data into several parts and 
handing them to different nodes for processing, the pressure on a single machine is 
alleviated, and the computing speed is also improved. This research has great sig-
nificance for the practical application of TKD query.

Our algorithm has some shortcomings because the Hadoop MapReduce archi-
tecture has some disadvantages, such as the inevitable startup time and communica-
tion time consumption. Besides, you can apply this algorithm to Spark to overcome 

0.01 0.05 0.1
k/dimensions

0

2

4

6

8

10

12

14

16

18

R
un

tim
e 

(M
in

)

MRBIG EHBIG

Fig. 11   The runtime of algorithms with different k 



3996	 J. M.-T. Wu et al.

1 3

some of Hadoop’s shortcomings. It is worth mentioning that the search for top-K 
advantages for incomplete data is an area that has not been fully addressed. With 
the emergence of big data, EHBIG can be well used in the design of a recommenda-
tion system to provide an approximate real-time solution for TKD query processing. 
TKD query plays an important role in real life, and this study is of great signifi-
cance. With the development of big data, it is precious to conduct deeper research in 
this field.
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