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Abstract
With increasing numbers of GPS-equipped mobile devices, we are witnessing a 
deluge of spatial information that needs to be effectively and efficiently managed. 
Even though there are several distributed spatial data processing systems such as 
GeoSpark (Apache Sedona), the effects of underlying storage engines have not been 
well studied for spatial data processing. In this paper, we evaluate the performance 
of various distributed storage engines for processing large-scale spatial data using 
GeoSpark, a state-of-the-art distributed spatial data processing system running on 
top of Apache Spark. For our performance evaluation, we choose three distributed 
storage engines having different characteristics: (1) HDFS, (2) MongoDB, and (3) 
Amazon S3. To conduct our experimental study on a real cloud computing envi-
ronment, we utilize Amazon EMR instances (up to 6 instances) for distributed spa-
tial data processing. For the evaluation of big spatial data processing, we generate 
data sets considering four kinds of various data distributions and various data sizes 
up to one billion point records (38.5GB raw size). Through the extensive experi-
ments, we measure the processing time of storage engines with the following vari-
ations: (1) sharding strategies in MongoDB, (2) caching effects, (3) data distribu-
tions, (4) data set sizes, (5) the number of running executors and storage nodes, and 
(6) the selectivity of queries. The major points observed from the experiments are 
summarized as follows. (1) The overall performance of MongoDB-based GeoSpark 
is degraded compared to HDFS- and S3-based GeoSpark in our experimental set-
tings. (2) The performance of MongoDB-based GeoSpark is relatively improved in 
large-scale data sets compared to the others. (3) HDFS- and S3-based GeoSpark are 
more scalable to running executors and storage nodes compared to MongoDB-based 
GeoSpark. (4) The sharding strategy based on the spatial proximity significantly 
improves the performance of MongoDB-based GeoSpark. (5) S3- and HDFS-based 
GeoSpark show similar performances in all the environmental settings. (6) Caching 
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in distributed environments improves the overall performance of spatial data pro-
cessing. These results can be usefully utilized in decision-making of choosing the 
most adequate storage engine for big spatial data processing in a target distributed 
environment.

Keywords  Spatial data · GeoSpark · Comparative study · Distributed storage 
engines · Query performance

1  Introduction

With the widespread use of GPS-equipped mobile devices such as smartphones, 
smartwatches, and connected vehicles, we are witnessing an explosion of spatial 
data in our everyday lives [1–3]. For example, online social network users can tag 
their fine-grained location to each post (e.g., tweets on Twitter), and trajectory infor-
mation of an individual based on the locations of cell towers and credit card (and/
or transportation card) transactions is being used for contact tracing during the pan-
demic such as COVID-19. With a large number of location-based applications and 
services, the scale of real-world spatial data is growing at an unprecedented rate. For 
example, Uber reported that there were 15 million trips per day on its ride-sharing 
platform in 2017  [4]. In addition, airborne and satellite remote sensing platforms 
are collecting a huge amount of location-aware data every day. For example, on the 
NASA’s Earth Observing System Data and Information System (EOSDIS), its total 
data size in 2017 was 22 petabytes (PB) and expected to increase to about 250 PB 
by 2025.

It is challenging to efficiently and effectively store and process such massive 
amounts of spatial data because of the inherent complexity of spatial data process-
ing. For example, most spatial data processing is based on spatial proximity. With-
out location-aware partitioning, a huge amount of irrelevant data can be evaluated, 
decreasing the overall query processing performance and wasting our computing 
resources. Another challenge for spatial data processing is heterogeneous spatial 
data from various spatial data formats. To address the big spatial data challenges, 
several distributed systems have been developed on top of a general-purpose big 
data framework providing MapReduce-like computation models, such as Apache 
Hadoop and Spark. Hadoop-based systems include Hadoop GIS  [5] and Spatial-
Hadoop [6], and there are several Spark-based systems such as GeoSpark (Apache 
Sedona) [7], LocationSpark [8], SparkGIS [9], Simba [10], and Magellan [11]. Such 
systems generally extend Hadoop or Spark to represent spatial objects and support 
spatial query processing. They often build a spatial index on each data partition to 
expedite spatial data processing. Even though such systems have been evaluated for 
large-scale spatial data processing in recent studies [12], the effects of different stor-
age engines in distributed environments have not been well studied.

In this paper, we evaluate the performance of various distributed storage engines 
for large-scale spatial data processing using a distributed spatial data processing sys-
tem. For our evaluation, we choose GeoSpark as the spatial data processing system 
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because it demonstrates superior performance for large-scale spatial data process-
ing  [12]. There are several options for storing large-scale spatial data, but their 
performance effects in spatial data processing (e.g., processing using GeoSpark) 
have not been well studied in the literature. In cloud computing environments (e.g., 
AWS), we need to choose the best storage option to optimize our spatial data pro-
cessing, but it would be hard to select one without detailed performance metrics on 
a real cluster. To address the current limitations, we evaluate three representative 
storage systems (a distributed file system, a NoSQL store, and an object store) and 
settings on AWS in this paper.

We first select HDFS as a distributed storage engine because this would be a 
logical solution to get benefits from data locality by colocating the Spark cluster 
with the distributed file system. Compared to remote storage systems, we intuitively 
expect some performance improvement because we can minimize the data move-
ment over the network, but we need to experimentally measure the benefits on a real 
cluster to validate (or invalidate) the claim. In this paper, we report some interesting 
results that are not intuitive based on data locality.

Our second choice is MongoDB, a representative NoSQL store. MongoDB is 
a reasonable solution to store spatial data because it provides built-in spatial indi-
ces and query processing. Even though we can run basic spatial queries directly on 
MongoDB, we need to utilize a specialized distributed system for large-scale spatial 
data processing (e.g., GeoSpark). Even though GeoSpark on top of MongoDB can 
be a logical solution for both small- and large-scale spatial processing, we need to 
experimentally measure the effects of using the disk-based NoSQL store on a real 
cluster. We report the performance issues of MongoDB when we use it as a storage 
engine for GeoSpark in this paper.

Our last choice is Amazon S3, a representative cloud-based object store. Most 
cloud providers offer S3-like persistent data storage as the most cost-efficient way 
of storing large-scale data. Despite the benefits of cloud-based object stores such as 
fault tolerance and scalability, there are conflicting reports about their performance 
for large-scale data processing. For example, the official Spark website1 states that 
“Reading and writing data can be significantly slower than working with a normal 
filesystem.” while a performance study insists that S3 is better than HDFS on per-
formance per dollar.2 In this paper, we report that the performance (not performance 
per dollar) of S3 is comparable to that of HDFS for certain workloads, which was 
previously not reported for Spark-based processing to the best of our knowledge.

To evaluate the different storage engines in real cloud computing settings, we 
design and configure our evaluation environments using Amazon EMR clusters. For 
the evaluation of big spatial data processing, we generate data sets considering four 
kinds of data distributions, which include a distribution in the real-world data set, 
and various data sizes up to one billion point records (38.5GB raw size). Through 
the extensive experiments, we measure the processing time on the storage engines 
with the following variations: (1) sharding strategies in MongoDB, (2) caching 

1  https://​spark.​apache.​org/​docs/2.​3.0/​cloud-​integ​ration.​html.
2  https://​datab​ricks.​com/​blog/​2017/​05/​31/​top-5-​reaso​ns-​for-​choos​ing-​s3-​over-​hdfs.​html.

https://spark.apache.org/docs/2.3.0/cloud-integration.html.
https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html.
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effects, (3) data distributions, (4) data set sizes, (5) the number of running executors 
and storage nodes, and (6) the selectivity of queries.

We make the following observations from the experiments. 

1.	 The overall performance of MongoDB-based GeoSpark is degraded compared to 
HDFS- and S3-based GeoSpark in our environmental settings. For example, in 
the experiment where the data distribution follows the real-world data set3 and the 
data set has 10 million records, the performance of MongoDB-based GeoSpark is 
degraded by 2.08 ∼ 7.84 times compared to HDFS-based GeoSpark and by 2.44 
∼ 8.91 times compared to S3-based GeoSpark with various query types.

2.	 The performance of MongoDB-based GeoSpark is relatively improved in large-
scale data sets compared to the others. The performance degradation of Mon-
goDB-based GeoSpark becomes reduced from by 3.51 ∼ 9.40 times to by 1.23 ∼ 
1.96 times compared to HDFS-based GeoSpark when the data set size is varied 
from 1 million to 1 billion records; from by 3.04 ∼ 10.33 times to 1.27 ∼ 1.92 
times compared to S3-based GeoSpark.

3.	 HDFS- and S3-based GeoSpark are more scalable to running executors and stor-
age nodes compared to MongoDB-based GeoSpark. The performance of HDFS-
based GeoSpark increases by 1.55 ∼ 2.65 times as running executors and storage 
nodes increase; S3-based GeoSpark by 1.84 ∼ 2.65 times; however, MongoDB-
based GeoSpark only by 1.09 ∼ 1.48 times.

4.	 The sharding strategy based on the spatial proximity significantly improves the 
performance of MongoDB-based GeoSpark. Data sharding according to the z 
order, which is one of space-filling curves, improves the performance of Mon-
goDB by 1.84 ∼ 3.97 times compared to random data sharding with various query 
types.

5.	 S3- and HDFS-based GeoSpark show similar performances in all the environ-
mental settings.

6.	 Caching in distributed environments improves the overall performance of spatial 
data processing. Caching in MongoDB improves the performance by 2.10 ∼ 15.93 
% compared to the case where the data and indexes do not reside in the memory; 
HDFS-based GeoSpark by 31.70 ∼ 64.43 %; S3-based GeoSpark by 16.72 ∼ 67.71 
%.

In Sect. 2, we describe large-scale spatial data management and storage systems as 
the background of the paper. Specifically, we explain GeoSpark and three underly-
ing storage engines: HDFS, MongoDB, and Amazon S3. In Sect. 3, we present a 
design of distributed experimental environments for big spatial data management 
systems using GeoSpark. In Sect. 4, we define our data and query sets for large-scale 
spatial data processing and report our evaluation results. We summarize the related 
work in Sect. 5 and conclude this paper in Sect. 6.

3  http://​www.​natur​alear​thdata.​com/​downl​oads/​10m-​cultu​ral-​vecto​rs/​10m-​popul​ated-​places/

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/
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2 � Background

In this section, we describe the design concepts and features of GeoSpark and three 
storage engines we evaluate in this study.

2.1 � GeoSpark

GeoSpark (Apache Sedona) is a distributed spatial data processing engine running 
on top of Apache Spark. As input formats for spatial data, GeoSpark supports vari-
ous file formats including ESRI Shapefile, GeoJSON, well-known text (WKT), well-
known binary (WKB), and NetCDF. GeoSpark can process several geometry types 
such as points, polygons, and rectangles. To process spatial data, GeoSpark extends 
Spark resilient distributed data sets (RDDs), the fundamental unit of data in Spark, 
for spatial data, called Spatial RDDs. GeoSpark supports various Spatial RDD 
types, such as Point RDDs, Polygon RDDs, and Rectangle RDDs, with compact in-
memory representations. We can perform spatial data processing (e.g., spatial range, 
k-NN, and join queries) using the Spatial RDD API or a structured API called Geo-
Spark SQL [13]. Like other Spark RDDs, data in Spatial RDDs can be cached in the 
main memory of the cluster for fast accesses. Figure 1 shows the overall architecture 
of GeoSpark. In a recent benchmark study, GeoSpark exhibits the best performance 
in most cases [12].

To partition spatial objects by their spatial proximity, GeoSpark supports global 
spatial data partitioning. Its basic idea is that GeoSpark randomly samples the 
RDD and builds an index (e.g., KD-Tree, R-Tree, Quad-Tree) on the sample. Next, 
it uses the leaf nodes of the index for repartitioning the RDD by spatial proxim-
ity. The global spatial data partitioning incurs a data shuffle (i.e., wide dependency 
in the RDD transformation). GeoSpark also supports local spatial indexing on each 
Spatial RDD partition using traditional spatial indexing techniques such as R-Tree 
and Quad-Tree. Unlike the global index structure built using sampled data, the local 
index structure is built on all spatial objects in the partition.

Fig. 1   Architecture of Geo-
Spark [7]
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Like Spark, GeoSpark can be used with various storage engines that store raw 
spatial data. For example, we can read spatial data from distributed file systems 
(e.g., HDFS), NoSQL stores (e.g., MongoDB, HBase), and cloud-based object 
storage services (e.g., Amazon S3). Even though GeoSpark can access spatial data 
stored in various types of storage engines having different characteristics, the effects 
of underlying storage engines in terms of spatial data processing performance were 
not well studied. In this study, we evaluate three systems having different character-
istics as underlying storage engines for GeoSpark: (1) HDFS, (2) MongoDB, and (3) 
Amazon S3.

2.2 � HDFS

Hadoop Distributed File System (HDFS) is the representative distributed file sys-
tem designed to run on multiple commodity computers on a cluster [14]. Because 
it is designed as an underlying file system for Hadoop ecosystems, it has been 
also widely used for Apache Spark  [15]. Figure  2 shows the overall architecture 
of HDFS. A large-scale file is partitioned into multiple data blocks, and each data 
block is replicated on multiple nodes. By default, HDFS splits the entire data file in 
the unit of 128 MB and replicates it with a replication factor of 3. Based on the mas-
ter–slave architecture, a typical HDFS cluster configuration consists of one active 
name node and multiple data nodes. The name node manages the metadata that 
describes which data node stores which data blocks and sends a list of data nodes 
storing the requested data blocks to the client. The data node stores actual data 
blocks that are partitioned from the entire data file and provides the requested data 
blocks to the client. To efficiently process the data blocks stored in HDFS, we need 
to consider data distribution stored over the cluster when assigning a given request 
to the nodes. Apache Spark on HDFS tries to utilize the data locality of HDFS, i.e., 
assigning each task into the data node storing the data block required for the task, 
for minimizing the network communication between nodes [16, 17].

Fig. 2   Architecture of HDFS
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HDFS has the following strengths as a storage engine to manage large-scale data 
files in distributed environments. First, it provides the fault tolerance for each data 
block by replicating the same data block in multiple nodes. Second, it is scalable to 
newly added data nodes because it automatically redistributes each data block over 
the cluster considering the added data nodes.

2.3 � MongoDB

MongoDB is one of the most widely used NoSQL stores and is categorized as a doc-
ument store. It can effectively store hierarchical documents such as JSON and XML 
formats. Unlike relational database management systems that require strict schemas 
for storing data, we can import document data into MongoDB without defining any 
schema. To improve the efficiency of search operations, MongoDB supports various 
index types based on a B-tree index structure.

When we store the entire data files in MongoDB on distributed environments 
across multiple machines, we need to consider how to partition the data files 
into multiple machines (i.e., data sharding). Figure  3 shows the architecture 
of MongoDB. MongoDB consists of three components: (1) Config server, (2) 
Router server (i.e., Mongos), and (3) Shard server. The Config server manages 
the metadata storing the information about which data shards are stored in which 
shard servers. The Router server routes the client requests to the shard server 
using the metadata stored in the Config server. Each shard server stores a data 
shard, which is partitioned from the entire data sets and is replicated over the 
cluster where the default replication factor is 3. The most important factor to 
the performance in data sharding of MongoDB is sharding strategies. There 
are two sharding strategies:4 (1) hash-based sharding (i.e., partitioning the data 

Fig. 3   Architecture of MongoDB [18]

4  https://​docs.​mongo​db.​com/​manual/​shard​ing/

https://docs.mongodb.com/manual/sharding/
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evenly over the cluster, but losing data similarity in the same shard server) and 
(2) range-based sharding (i.e., keeping data similarity in the same shard server, 
but resulting in a biased data distribution between the machines in the cluster). 
In this paper, since we deal with spatial data, we need to consider a sharding 
strategy based on spatial proximity of data. As the preliminary evaluation in 
Sect. 4.3.1, we will discuss the performance variation according to two different 
sharding strategies: (1) random sharding and (2) sharding by the spatial proxim-
ity of data.

MongoDB also provides spatial query processing based on built-in spatial 
indexing structures and processing algorithms. MongoDB provides two spatial 
index types (2d and 2dsphere) for efficiently processing spatial queries such as 
within, intersects, and near operators. For spatial data formats, it supports not 
only lat/long coordinate pairs but also various GeoJSON objects such as Point, 
LineString, and Polygon. An evaluation study reports that MongoDB is more 
efficient than PostGIS, an extension of PostgreSQL for spatial data management, 
for certain spatial queries [19].

To support MongoDB on Spark, MongoDB provides a MongoDB connec-
tor for Spark. Using this connector, we can read data from MongoDB, as the 
data storage engine, to Spark, as the data processing engine, and write data from 
Spark to MongoDB. The connector also supports aggregation pipelines that can 
filter data and perform aggregations in MongoDB, instead of loading the entire 
data in Spark, reducing the amount of data transferred from MongoDB to Spark. 
As the representative NoSQL store for an underlying storage engine of Geo-
Spark, we evaluate the performance of MongoDB. Figure  4 shows our evalu-
ation setting to use distributed MongoDB as a storage engine for GeoSpark. It 
is worth noting that, even though MongoDB directly provides its MapReduce 
computation operations, we do not evaluate them in this paper because our focus 
is the evaluation of underlying storage engines using GeoSpark.

Fig. 4   Architecture of Mon-
goDB-based GeoSpark [20]
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2.4 � Amazon S3

With the prevalence of cloud services such as Amazon Web Services (AWS), 
Google Cloud Platforms (GCP), and Microsoft Azure, they also provide the 
scalable storage based on cloud environments. The representative cloud-based 
storage engines are Amazon S3,5 Google Cloud Storage,6 and Azure Storage.7 In 
this paper, we consider Amazon S3 as the cloud-based storage engine for spatial 
data processing. Amazon S3 provides a scalable distributed storage and man-
ages the data based on the unit of the object and the bucket. The object contains 
a data file and its associated metadata. The object cannot be relocated in a dis-
tributed environment, and each object has the corresponding URI so that we can 
access it through the SOAP or REST-based interface. The bucket is a container 
to store multiple objects. It has been known that Amazon S3 follows a design 
principle of Amazon Dynamo [21] even if the detailed implementations are not 
disclosed. As a result, it provides scalability, fault tolerance, and availability for 
storing large-scale data.

3 � Design of cloud‑based evaluation environments for distributed 
storage engines using GeoSpark

In this section, we describe how we design our distributed computing environ-
ments to evaluate the performance of different storage engines for large-scale 
spatial data processing. Figure  5 shows the overall framework for distributed 
environments using three different storage engines: HDFS, MongoDB, and 
Amazon S3. Here, we fix the processing engine as GeoSpark and use Amazon 
Elastic MapReduce (Amazon EMR) as a cloud-based platform that supports var-
ious open-source big data tools including Apache Spark, for all the designs in 
common. In this architecture, the master node submits a job to the slave nodes; 
each slave node accesses to three types of storage engines and sends the results 
of the job into the master node.

We configure multiple EMR clusters to run GeoSpark for distributed process-
ing of spatial data by using different storage engines. Figure 5a shows a design 
for using Amazon S3 as the storage engine. Because we cannot configure the 
number of nodes used for Amazon S3, we directly connect from GeoSpark to 
Amazon S3 in EMR. To configure Amazon S3 as a storage engine for spatial 
data, we utilize EMR File System (EMRFS) that is an implementation of HDFS 
extending the ability to directly access data from Amazon EMR to Amazon S3. 
Figure 5b shows a design for using HDFS. We run HDFS on EMR and vary the 
number of data nodes from 2 to 6 to check the performance variation in terms of 

5  https://​aws.​amazon.​com/​s3
6  https://​cloud.​google.​com/​stora​ge/
7  https://​docs.​micro​soft.​com/​azure/​stora​ge/

https://aws.amazon.com/s3
https://cloud.google.com/storage/
https://docs.microsoft.com/azure/storage/
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the scalable storage. Figure 5c shows a design for using MongoDB. We deploy 
sharded MongoDB clusters by increasing the number of Shard servers from 2 to 
6. We run one Config server in each slave and replicate the metadata in Config 
server in all the slaves.

We use EMR version 5.12.1 that is configured with Apache Spark 2.2.1, Geo-
Spark 1.2.0, MongoDB 4.4, YARN-based Ganglia 3.7.2, Zeppelin 0.7.3., and 
Hadoop 2.8.3. We use a master node in EMR equipped with 16 vCPUs and 30 
GB of the memory for all the distributed storage engines. It is communicated 
with slave nodes in EMR. Each slave node is equipped with 8 vCPUs and 30 GB 
of the memory.

Fig. 5   Overall framework for distributed environments
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4 � Comparative performance evaluation

4.1 � Experimental data and query sets

4.1.1 � Data sets

Table 1 shows the characteristics of the spatial data sets used in the experiments. 
We generate multiple data sets for various distributions of the data set, in particular, 
including the distribution of the real-world data set, and for various sizes of the data 
set.

As the real-world data set, we use Natural Earth data.8 The used data set consists 
of points of interest representing populated places in the map such as capitals, major 
cities, and towns, plus a sampling of smaller towns in sparsely inhabited regions. It 
consists of 7343 points, and the total size of data is 5MB. This data set is used to 
generate four synthetic data sets in Table 1 based on the real-world data distribution.

For generating data sets, we consider four types of distributions: (1) exponential, 
(2) uniform, (3) normal, and (4) real-world data distributions. Gunther et  al. have 
proposed to generate a data set based on uniform, normal, and exponential distribu-
tions  [22]. Based on their framework, we add a real-world data distribution. The 
specific method of the data generation for real-world data distribution is as follows. 
First, we divide the entire data range of the Natural Earth data set into 30x30 grids. 
Then, we calculate the proportion of the points belonging to each grid and generate 
points in each grid according to the calculated proportion considering a target distri-
bution. Specifically, by considering the covariance between (x, y) coordinates of the 
real-world data, we generate multivariate normal and exponential data distribution 
using the Python numpy library.9 In addition, we generate uniform data distribution 
by randomly generating spatial points in each grid. As a result, we generate four 
types of data sets with various data distributions as the number of points is fixed as 

Table 1   Characteristic of the spatial data sets used in the experiments

Data sets Description Number of points Size of data

Natural Earth Points of populated places 7343 5MB
RealDist

1M Real-world data distribution 1,000,000 38.5MB
RealDist

10M Real-world data distribution 10,000,000 385.6MB
RealDist

100M Real-world data distribution 100,000,000 3.85GB
RealDist

1B Real-world data distribution 1,000,000,000 38.5GB
ExponentialDist

10M Exponential distribution 10,000,000 385.6MB
UniformDist

10M Uniform distribution 10,000,000 385.6MB
NormalDist

10M Normal distribution 10,000,000 385.6MB

8  http://​www.​natur​alear​thdata.​com/​downl​oads/​10m-​cultu​ral-​vecto​rs/​10m-​popul​ated-​place​s/.
9  https://​numpy.​org/

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/.
https://numpy.org/
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10 million. We also generate four types of data sets with various data set sizes, i.e., 1 
million, 10 million, 100 million, and 1 billion, as the data distribution is fixed as the 
real-world data distribution. Existing studies for evaluating the performance of geo-
graphic information systems have usually used between 5M and 200M numbers of 
POI (Point of Interest) data sets [12, 19, 23, 24] and the total size of data is ranged 
from 1.1GB to 11GB data when dealing with other types of spatial data such as 
polygon and line [19, 23–25]. Therefore, 1 billion of spatial points with 38.5GB is 
considered a sufficiently large-scale spatial data set.

4.1.2 � Query sets

Table 2 shows four types of queries used in the experiments. The circle and bound-
ing box queries are included in basic relations (i.e., Within and Contains) defined 
by dimensionally extended nine-intersection model  (DE-9IM)  [26]. We addi-
tionally define the k-NN query [27], which is useful to find the closest places to a 
given query point in Geographic Information Systems (GIS), and the distance join 
query [28], which leverages the effect of the map–reduce framework [29]. Here, we 
use arbitrary query points and regions for each query.

4.2 � Experimental methods

In the experiments, we compare the performance of distributed storage engines 
using GeoSpark, i.e., HDFS-, MongoDB-, and S3-based GeoSpark, from multiple 
perspectives. As the preliminary evaluation, we conduct the following two evalu-
ations: (1) the performance variation of MongoDB according to different sharding 
strategies and (2) the performance evaluation to check the caching effects of all the 
storage engines in distributed environments. Then, we measure the time of the spa-
tial data processing based on distributed storage engines according to the following 
variations: (1) data distribution, (2) the size of data set, (3) the number of storage 
nodes and running executors in GeoSpark, and (4) the selectivity of the query.

The default settings for the experiments are as follows. We fix the number of data 
nodes in HDFS (or Shard servers in MongoDB) as 6 where one executor is run-
ning for each data node (or Shard server). We run a total of 6 executors in S3-based 

Table 2   Characteristic of the queries used in the experiments (default values are represented in bold)

Queries Description

k-NN queries Find the nearest k points to a query point (k = 10, 100, 1000, 100,000)
Circle queries Find all the points within a circle having a radius r around a query point (r = 

10KM, 100KM, 1000KM)
Bounding box queries Find all the points within a bounding box (10KM × 10KM, 100KM × 100KM, 

1000KM × 1000KM)
Distance join queries Find all the pairs from two spatial data sets A and B where the distance of each 

pair is less or equal than a threshold (0.1KM, 1KM, 10KM). Here, A is a 
variable data set and B is a fixed data set consisting of 100 points
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GeoSpark for the sake of fairness even though we cannot control the number of data 
nodes in S3. We use RealDist

10M
 as the default data set and use four kinds of query 

sets defined in Table  2 for each experiment. For all the experiments, we conduct 
each query 100 times and obtain its average processing time.

We use GeoSpark SQL  [13] to run each kind of queries. That is, we represent 
the query in the SQL form for GeoSpark SQL. Then, GeoSpark SQL transforms the 
query as a set of operations for the map–reduce framework. For all the distributed 
storage engines, we commonly use the same global and local indexes: R-tree for the 
global index and Quad-Tree for the local index.

To check the caching effects of the systems, we construct environments accord-
ing to the maintenance of caching. The reason for this experiment is to observe the 
performance of the storage systems for the environments with an initial state or 
limited memory that do not utilize the caching effect fully. First, cold cache is an 
environment where data and indexes do not reside in the memory, i.e., queries have 
never been executed. Second, warm cache is an environment where data and indexes 
reside in the memory by executing the same query prior to conducting the experi-
ment. To make the cold cache environment, we execute a Linux command “drop 
caches” before each query is performed on both master and slave nodes. This com-
mand frees page caches in the Linux system [30]. We observe the caching effect of 
the storage system in Sect. 4.3.2.

4.3 � Experimental results

4.3.1 � Data sharding in MongoDB

The sharding strategy of MongoDB significantly affects the performance because 
it partitions the entire data sets into multiple Shard servers according to the shard 
key. However, since built-in spatial indexes supported in MongoDB, i.e., 2d and 

Fig. 6   Performance of Mon-
goDB according to different 
sharding strategies
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2dsphere, cannot be used for a shard key,10 we need to investigate an effective 
sharding strategy for MongoDB. Zhang et  al. have used the Hilbert curve, one of 
the space-filling curves, and k-means clustering to leverage the spatial proximity of 
data  [31]. In this paper, we consider two kinds of sharding strategies: (1) random 
sharing and (2) sharding according to z order [32], one of the space-filling curves. 
The calculation of z-values and obtaining z order according to the z-values are per-
formed once before data sharding. Thus, it does not affect the query performance.

Figure 6 shows an experimental result of MongoDB according to different shard-
ing strategies. The result shows that sharding according to z order significantly 
improves random sharding in all the kinds of queries. Specifically, the processing 
time of sharding according to z order is reduced compared to random sharding by 
2.42 times in the k-NN query, by 1.84 times in the bounding box query, by 3.97 

Fig. 7   Performance of HDFS-, MongoDB-, and S3-based GeoSpark according to the caching effects

10  https://​docs.​mongo​db.​com/​manual/​core/​2dsph​ere.

https://docs.mongodb.com/manual/core/2dsphere.
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times in the circle query, and by 2.07 times in the distance join query, respectively. 
This result indicates that data sharding according to z order clusters the entire data 
into multiple Shard servers effectively by maintaining the spatial proximity of data. 
As a result, we use the z order as the shard key for MongoDB in the remaining 
experiments.

4.3.2 � Caching effects of distributed storage engines

Figure 7 shows the performance of MongoDB-, HDFS-, and S3-based GeoSpark in 
the cold cache and warm cache environments. We indicate that the performance in 
the warm cache environment is improved compared to the cold cache environment 
for all the distributed storage engines. Specifically, MongoDB-based GeoSpark in 
warm cache improves the performance in cold cache by 2.10 ∼ 15.93 %; HDFS-
based GeoSpark by 31.70 ∼ 64.43 %; and S3-based GeoSpark by 16.72 ∼ 67.71 

Fig. 8   Performance of HDFS-, MongoDB-, and S3-based GeoSpark as the distribution of data set is var-
ied
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%. This result shows the caching effects of the used storage engines in distributed 
environments. As a result, we use the warm cache environment in the remaining 
experiments.

4.3.3 � The performance as the data distribution is varied

Figure 8 shows the performance of HDFS-, MongoDB-, and S3-based GeoSpark as 
the data distribution is varied. We observe that the performances of both HDFS- and 
S3-based GeoSpark are better than MongoDB-based GeoSpark for all the distribu-
tions. Specifically, for k-NN queries, HDFS-based GeoSpark shows a better perfor-
mance than MongoDB-based GeoSpark by 7.84 ∼ 9.89 times with a variety of data 
distribution, and S3-based GeoSpark shows a better performance by 6.30 ∼ 10.39 
times. For bounding box queries, HDFS-based GeoSpark shows a better perfor-
mance by 6.84 ∼ 8.86 times, and S3-based GeoSpark shows a better performance by 
5.98 ∼ 8.99 times. For circle queries, HDFS-based GeoSpark shows a better perfor-
mance by 2.08 ∼ 3.04 times, and S3-based GeoSpark shows a better performance by 

Fig. 9   Performance of HDFS- and MongoDB-, and S3-based GeoSpark as the size of data set is varied
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2.42 ∼ 3.47 times. For distance join queries, HDFS-based GeoSpark shows a better 
performance by 4.75 ∼ 5.44 times; S3-based GeoSpark shows a better performance 
by 4.95 ∼ 6.22 times. We also note that the overall query performance of S3-based 
GeoSpark is comparable to that of HDFS-based GeoSpark because it extends the 
HDFS implementation tailored to Amazon EMR.

4.3.4 � The performance as the size of data set is varied

Figure  9 shows the performance of HDFS-, MongoDB-, and S3-based GeoSpark 
as the size of the data set is varied from 1 million to 1 billion objects. Overall, we 
observe that the performances of both HDFS- and S3-based GeoSpark are better 
than MongoDB-based GeoSpark. However, the performance gap between them is 
reduced as the size of the data set increases. Specifically, the performance of Mon-
goDB-based GeoSpark is degraded by 3.51 ∼ 9.40 times compared to HDFS-based 
GeoSpark and by 3.04 ∼ 10.33 times compared to S3-based GeoSpark, respec-
tively, in the case of RealDist

1M
 . However, it is degraded only by 1.23 ∼ 1.96 times 

Fig. 10   Performance of HDFS- and MongoDB-, and S3-based GeoSpark as the total number of execu-
tors in GeoSpark is varied
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compared to HDFS-based GeoSpark and only by 1.27 ∼ 1.92 times compared to 
S3-based GeoSpark, respectively, in the case of RealDist

1B
.

4.3.5 � The performance as the number of running executors and storage nodes 
in GeoSpark is varied

Figure 10 shows the performance of HDFS-, MongoDB-, and S3-based GeoSpark as 
the number of running executors and storage nodes (i.e., Data nodes in HDFS and 
Shard servers in MongoDB) in GeoSpark is varied. For this, we vary the number of 
storage nodes from 2 to 6 and we fix one executor for each storage node. We formu-
late this that the total number of executors in GeoSpark is varied from 2 to 6 when 
the number of storage nodes is varied from 2 to 6. For Amazon S3, because we can-
not control the number of storage nodes, we vary the total executors from 2 to 6 for 
the same configuration of S3. Then, the used data nodes for S3 will be internally 
reconfigured.

Fig. 11   Performance of HDFS-, MongoDB-, and S3-based GeoSpark as the selectivity of queries in 
GeoSpark is varied
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The result indicates that the performance improvement of HDFS- and S3-based 
GeoSpark as the total number of running executors becomes large compared to 
MongoDB-based GeoSpark. Specifically, the performance improvement ratio of 
HDFS-based GeoSpark is 1.55 ∼ 2.65 times when the total number of running exec-
utors is varied from 2 to 6; that of MongoDB-based GeoSpark is 1.09 ∼ 1.48 times; 
and that of S3-based GeoSpark is 1.84 ∼ 2.65 times. This result implies that the 
architectures of HDFS- and S3-based GeoSpark are more scalable than that of Mon-
goDB-based GeoSpark to the running executors and data nodes.

4.3.6 � The performance as the selectivity of queries is varied

In this section, we measure the performance of MongoDB-, HDFS-, and S3-based 
GeoSpark varying the selectivity of each query. Figure 11 shows the experimental 
results. In k-NN queries, we vary the number of k from 10 to 100,000. In circle que-
ries, we vary the radius from 10KM to 1000KM. In bounding box queries, we vary 
the bounding box from 10KM x 10KM to 1000KM x 1000KM, respectively. In dis-
tance join queries, we vary the threshold distance from 0.1KM to 10KM.

Overall, the performance of queries gradually degrades as the selectivity of que-
ries increases. Specifically, the performance of MongoDB is degraded by 1.35 ∼ 2.1 
times when we compare the lowest selectivity with the highest selectivity; that of 
HDFS is degraded by 1.69 ∼ 3.65 times; and that of S3 is degraded by 2.38 ∼ 4.29 
times, which is relatively much more affected by the selectivity.

The interesting result is that, unlike other types of queries, k-NN queries show 
consistent performance for a small number of k in all the storage systems. GeoSpark 
partitions the entire data to multiple partitions and builds the spatial index on the 
partitions. Then, it uses branch-and-bound tree traversal algorithm so as to find k 
nearest neighbor from the spatial index [12]. The algorithm finds at least one par-
tition from the spatial index where multiple spatial RDDs are stored. As a result, 
all the spatial RDDs in the partition are loaded in the memory, resulting in the 

Fig. 12   Performance of HDFS and MongoDB, S3 read and scan operations
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constant performance for a small of k in the case of k-NN queries while the other 
queries incrementally require more partitions as the selectivity increases. For actu-
ally checking this mechanism, we dramatically increase k up to 100,000, observing 
the significant performance degradation for all the systems as presented in Fig. 11a.

4.3.7 � The performance analysis of the distributed storage systems

In this section, to analyze the performance difference among distributed stor-
age systems, we have conducted two experiments with primitive operations using 
RealDist

100M
 data set. First, we measure the elapsed time of the read operation from 

the storage in slave nodes to the memory in the master node to check the pure stor-
age overhead in a cloud configuration for all the systems. To implement the read 
operation, we used getObject() supported by AWS SDK for Amazon S3, get() sup-
ported by Java FileSystem API for HDFS, and MongoCollection.find() supported 
by MongoClient API for MongoDB. Figure 12a shows the experimental result. The 
result shows that, even if HDFS shows the best performance, the performance of 
Amazon S3 is comparable to HDFS, indicating that S3 is well clustered and effi-
ciently connected with Amazon EMR considering it is located on remote servers. 
We also note that the storage performance of MongoDB is also comparable to the 
other systems, indicating that its query processing for GeoSpark requires much 
overhead.

Second, to figure out the performance degradation of MongoDB, we compare 
the elapsed time of MongoDB for three kinds of operations: (1) the previous read 
operation, (2) the scan operation for the entire data set, which is the simplest query 
type that retrieves all the entries in a data set, removing the additional complexity 
occurred in GeoSpark, and (3) a type of geospatial queries, i.e., bounding box query. 
Here, for implementing the scan operation, we used MongoCursor() in MongoCli-
ent API, retrieving each record (i.e., each SRDD) from a collection data type. Fig-
ure 12b shows the experimental result. As a result, we observe that the scan opera-
tion takes much more time than the read operation and it occupies approximately 
80% of the elapsed time for the bounding box query. This indicates that interpreting 
of SRDDs for GeoSpark from the collection data type in MongoDB requires much 
time.

5 � Related work

There have been several research efforts to define the data and query sets for the 
benchmark of spatial data processing and to perform the evaluation. Stonebraker 
et al. have proposed SEQUOIA, which is the first research effort to define the spa-
tial data sets for benchmarking [25]. They have also defined the query sets, which 
are real-world queries on the earth science problem: data loading, raster data man-
agement, selections, spatial joins, and recursive spatial queries  [25]. Using the 
data and query sets, they have conducted the performance evaluation of three sys-
tems, i.e., GRASS, IPW, and Postgres [25]. Gunther et al. have proposed a spatial 
benchmark  [22]. Here, they have considered normal, exponential, and uniform 
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distributions of data sets and have focused on the spatial join queries for the rec-
tangle type and have created a rather small-scale data set comprised of 1 million 
objects. Paton et  al. have proposed a benchmark framework to compare the Post-
gresSQL with the Rock & Roll in functionality and performance perspectives. They 
have also shown that the proposed framework can be applied to other spatial data 
processing systems [23]. Ray et al. have proposed a benchmark for evaluating all the 
databases supporting JDBC [24]. They have defined two kinds of scenarios: micro-
scenarios such as topological relations and macroscenarios such as flood risk.

The previous benchmarks for GeoSpark have focused on the comparison between 
Hadoop- and Spark-based processing systems. Lenka et al. have compared the archi-
tectures between SpatialHadoop and GeoSpark and have shown the superiority of 
GeoSpark by measuring the performance as the number of nodes is varied  [33]. 
Pandey et al. have evaluated Spark-based spatial data processing systems, i.e., Geo-
Spark, Simba, LocationSpark, Magellan, and SpatialSpark [12]. They have used 200 
million point data sets and four types of queries, i.e., k-NN, range queries, distance 
join, and spatial join. They have shown that GeoSpark has the best performance in 
most cases.

There have been several research efforts to evaluate the performance of the stor-
age engines used in this paper in terms of spatial data processing. Agarwal et al. have 
compared the performance of MongoDB with the traditional relational databases, 
i.e., PostGIS and PostgreSQL, on two types of queries: line intersection and point 
containment [19]. As a result, MongoDB outperforms PostGIS and PostgreSQL in 
the experiments according to various data set sizes. Makris et al. have evaluated the 
performance of MongoDB and PostgreSQL to find a better storage system for indus-
trial spatial applications [34]. As a result, they have shown that PostgreSQL outper-
forms MongoDB in every business scenario they defined. Dede et al. have compared 
the performance, scalability, and fault tolerance between HDFS and MongoDB and 
have shown that HDFS outperforms MongoDB [35].

A preliminary version of this work appeared in Proc. 2020 IEEE International 
Conference on Big Data and Smart Computing, pp. 197-200, Feb. 2020 [20]. This 
is a fully rewritten and extended version of the preliminary version. The major 
extensions include (1) the evaluation in cloud-based distributed environments, (2) 
the extended data sets for big spatial data processing, (3) the extended compara-
tive experiments including a cloud-based storage engine, Amazon S3, and (4) the 
detailed and extended study on related work.

6 � Conclusions

In this paper, we have evaluated the performance of big spatial data management 
systems using GeoSpark. We have evaluated its performance using three underly-
ing distributed storage engines: (1) HDFS, (2) MongoDB, and (3) Amazon S3. To 
conduct our experimental study on a real cloud computing environment, we have 
designed and built a distributed experimental environment based on Amazon EMR 
using up to 6 instances. For the evaluation of big spatial data processing, we have 
generated data sets considering four kinds of various data distributions and various 
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data sizes up to one billion point records (i.e., 38.5GB). Through the extensive 
experiments, we have measured the processing time of storage engines as the fol-
lowing variations: (1) sharding strategies in MongoDB, (2) caching effects, (3) data 
distributions, (4) data set sizes, (5) the number of running executors and storage 
nodes, and (6) the selectivity of queries.

The major points observed from the experiments are summarized as follows. 
(1) The overall performance of MongoDB-based GeoSpark is degraded compared 
to HDFS- and S3-based GeoSpark in our environmental settings. (2) The perfor-
mance of MongoDB-based GeoSpark is relatively improved in large-scale data sets 
compared to the others. (3) HDFS- and S3-based GeoSpark are more scalable to 
running executors and storage nodes compared to MongoDB-based GeoSpark. (4) 
The sharding strategy based on the spatial proximity significantly improves the per-
formance of MongoDB-based GeoSpark. (5) S3- and HDFS-based GeoSpark show 
similar performances in all the environmental settings. (6) Caching in distributed 
environments improves the overall performance of spatial data processing. These 
results can be usefully utilized in decision-making of choosing the most adequate 
storage engine for big spatial data processing in a target distributed environment.

In this paper, we conducted the performance evaluation of spatial data manage-
ment systems using GeoSpark for focusing on the map–reduce operation, which has 
the strength in processing large amounts of data. As further work, we plan to extend 
the current evaluation to encompass more general types of spatial queries, not only 
depending on the map–reduce framework. In particular, geospatial queries have 
been integrated with other data types, e.g., graph data on social networks and textual 
data on various map-based services. By extending the query types, we can naturally 
include wider types of systems in the evaluation framework, i.e., ranging from not 
only other types of NoSQL stores such as column stores and graph databases, but 
also RDBMS such as PostgresSQL.
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