
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:14502–14524
https://doi.org/10.1007/s11227-021-03853-x

1 3

Compiler‑directed scratchpad memory data transfer
optimization for multithreaded applications
on a heterogeneous many‑core architecture

Xiaohan Tao1 · Jianmin Pang1 · Jinlong Xu1 · Yu Zhu1

Accepted: 29 April 2021 / Published online: 15 May 2021
© The Author(s) 2021

Abstract
The heterogeneous many-core architecture plays an important role in the fields of
high-performance computing and scientific computing. It uses accelerator cores
with on-chip memories to improve performance and reduce energy consumption.
Scratchpad memory (SPM) is a kind of fast on-chip memory with lower energy con-
sumption compared with a hardware cache. However, data transfer between SPM
and off-chip memory can be managed only by a programmer or compiler. In this
paper, we propose a compiler-directed multithreaded SPM data transfer model
(MSDTM) to optimize the process of data transfer in a heterogeneous many-core
architecture. We use compile-time analysis to classify data accesses, check depend-
ences and determine the allocation of data transfer operations. We further present
the data transfer performance model to derive the optimal granularity of data trans-
fer and select the most profitable data transfer strategy. We implement the proposed
MSDTM on the GCC complier and evaluate it on Sunway TaihuLight with selected
test cases from benchmarks and scientific computing applications. The experimental
result shows that the proposed MSDTM improves the application execution time by
5.49× and achieves an energy saving of 5.16× on average.

Keywords Heterogeneous many-core architecture · Scratchpad memory · Direct
memory access · Network-on-chip · Multithreaded application

 * Jianmin Pang
 jianmin_pang@126.com

 Xiaohan Tao
 txh_0119@126.com

 Jinlong Xu
 longkaizh@126.com

 Yu Zhu
 18401653310@163.com

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou,
China

http://orcid.org/0000-0003-1835-5419
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03853-x&domain=pdf

14503

1 3

Compiler‑directed scratchpad memory data transfer…

1 Introduction

The heterogeneous many-core architecture is widely used in the fields of high-
performance computing and scientific computing [13, 32]. Because it requires a
large number of cores [5], which can provide a high degree of parallelism and a
high computing speed, reducing the energy consumption of many-core architec-
tures has become a major challenge. To reduce the energy consumption, accel-
erator cores with local memories are provided in this architecture [13]. However,
this means that two different kinds of memories are utilized in this architecture,
i.e., off-chip memory and on-chip memory, which results in a more complex stor-
age system, a profound challenge of which is determining how to handle the data
transfer between off-chip memory and on-chip memory. For scientific computing
applications, when using heterogeneous many-core processors to accelerate com-
putations, the efficient use of storage systems is one of the most critical factors in
improving performance and reducing energy.

Scratchpad memory (SPM) [3] is a kind of fast on-chip memory managed
by software (a programmer or a compiler), while cache has to query the flag bit
which is managed by hardware to check cache misses or hits. Compared with
the hardware cache, SPM does not need to perform flag bit judgment and other
tasks, and has the advantages of low power consumption and fast access. SPM
is initially used in embedded systems to meet the real-time and time predictable
requirements of embedded systems [17]. Besides, the Scratchpad memory is also
extensively used in FPGAs and is also employed as application-specific caches
[33, 34]. The current heterogeneous many-core processors, such as Adapteva
Epiphany, Sunway TaihuLight, and IBM Cell, also use SPM to achieve better per-
formance and lower energy consumption. The characteristic of this type of archi-
tecture is that each accelerator core has its own SPM that can be accessed at high
speed but has limited space.

The SPM is connected to the off-chip memory through a bus [26]. The accel-
erator cores can only access the data of off-chip memory directly by global load/
store instructions or direct memory access (DMA) [11, 29]. The accelerator cores
can communicate with each other by a network-on-chip (NoC). However, pro-
grammers need to explicitly manage the data transfer between the SPM and the
off-chip memory in the application, which hinders program development.

In single-threaded applications, we can use compiler-directed data buffering
through DMA to optimize the data transfer between SPM and off-chip memory
[4, 23]. This process requires precise analysis of the access patterns and careful
management of the data size. With data buffering, global load/store operations
to off-chip memory can be replaced with direct accesses to local buffers in SPM
without redundant look-up operations. However, multithreaded applications have
more synchronization than single-threaded applications. Keeping the coherence
of multithreaded applications makes the optimization more complex.

Here, we propose a multithreaded SPM data transfer model (MSDTM) to
optimize the data transfer between SPM and off-chip memory on heterogeneous
many-core architecture. It first analyzes the application to classify data accesses

14504 X. Tao et al.

1 3

and determine the allocation of data transfer with the data transfer allocation
(DTA) algorithm. Next, it uses the data transfer performance (DTP) model to
derive the optimal granularity of data transfer and select the most profitable data
transfer strategy. Then, the code is transformed by the MSDTM with loop dis-
tribution and strip-mining. We implement the proposed MSDTM on the GCC
complier.

Optimizing data transfer operations by the MSDTM can effectively improve the
performance of multithreaded applications and reduce the energy consumption.
Since the MSDTM is used in the compilation process, it can also effectively reduce
the programming difficulty.

The major contributions of this paper are as follows:

• We propose an algorithm to determine the allocation of data transfer for multi-
threaded applications with an analysis of data accesses and dependence check-
ing.

• We formulate the data transfer strategy selection problem for multithreaded
applications on an SPM-based heterogeneous many-core architecture and design
a performance model to derive the optimal granularity of data transfer and select
the most profitable strategy.

• We implement and evaluate our proposed model on Sunway TaihuLight with the
kernel of scientific computing programs and applications from general bench-
marks.

The remainder of the paper is organized as follows. In Sect. 2, we mention some
related work, while in Sect. 3, we use a simple example to illustrate our motivation.
Section 4 presents the MSDTM. We evaluate the proposed MSDTM in Sect. 5. Sec-
tion 6 concludes this paper.

2 Related work

2.1 SPM‑based heterogeneous many‑core architectures

For energy consumption and scalability considerations, some heterogeneous many-
core processors choose SPM as a fast on-chip memory. For example, the IBM Cell
[6] processor includes a 64-bit PowerPC general-purpose processor core power pro-
cess element and 8 coprocessor synergistic processor elements (SPEs). Each SPE
contains 256 KB of local storage space for storing code and data executed on the
SPE, the storage address is private, and threads on different SPEs can communicate
only through the main memory. Adapteva Epiphany [15] is an SPM-based many-
core architecture that is energy efficient and suitable for embedded systems. Each
processor in Adapteva Epiphany consists of an RISC core, a DMA engine, a net-
work interface, and a 32 KB SPM, connected using a 2D mesh grid. This architec-
ture provides a shared address space that allows threads to complete communication
by accessing nonlocal SPM. Sunway TaihuLight [12] has a heterogeneous many-
core architecture. Each core group includes one management processing element

14505

1 3

Compiler‑directed scratchpad memory data transfer…

and 8 × 8 computing processing elements, and each computing processing element
contains a 64 KB local data memory.

2.2 SPM data management

A number of works have optimized SPM data management on heterogeneous
many-core architectures. [37] identifies continuous code blocks in memory, such as
functions and basic blocks that are executed, and maps them to the SPM area. To
improve the performance of embedded systems and minimize energy consumption,
[8] performs static analysis on an MPSoC (multicore processor system-on-chip)
shared distributed SPM to obtain the optimal memory allocation method. [24] opti-
mizes the compiler on the basis of OpenMP and distributes the array data of the par-
allel part of applications executed on MPSoC to distributed SPMs. [36] formulates
the SPM data allocation problem for multithreaded applications and proposes the
NoC contention and latency aware compile-time framework to automatically deter-
mine the location of data variables, the replication degree of shared data, and on-
chip placement. [20] maps the SPM management problem for data aggregates into
the well-understood register allocation problem for scalars to automatically assign
static data aggregates in a program to an SPM.

2.3 Data transfer optimization

To optimize SPM data transfer, the direct blocking data buffer (DBDB) [6] is
designed and implemented to optimize the use of local memory while provid-
ing a simple shared memory programming model for the Cell-BE architecture. [7]
develops a model to automatically infer the optimal buffering scheme and size for
static buffering, taking into account the DMA latency and transfer rates and the
amount of computation in the application loop being targeted. [31] presents opti-
mized buffering techniques and evaluates them for two multicore architectures:
quad-core Opteron and the Cell-BE. [30] derives optimal and near-optimal values
for the number of blocks that should be clustered in a single DMA command based
on the computation time and size of the elementary data items as well as the DMA
characteristics.

On heterogeneous many-core architectures, [38] presents an automatic approach
to quickly derive a good solution for hardware resource partition and task granular-
ity for task-based parallel applications, in order to exploit spatial and temporal shar-
ing of the heterogeneous processing units. [28] presents a runtime system that auto-
matically optimizes data management on SPM to achieve performance similar to
that on the fast memory-only system with a much smaller capacity of fast memory.

To the best of our knowledge, ours is the first work to propose an SPM DTP
model for multithreaded applications on SPM-based heterogeneous many-core
architectures to reduce the overall application execution time, with evaluation on a
real platform.

14506 X. Tao et al.

1 3

3 Motivating example

We use a simple motivating example to illustrate the efficiency of optimizing SPM
data transfer for multithreaded applications. For illustration purposes, we use the
system parameters of Sunway TaihuLight as stated in Tables 1 and 2 in this example
[9]. In addition, the start-up overhead of DMA transfers is 300 cycles.

According to Tables 1 and 2, we show the relationship between the time spent on
memory access by NoC and the cost of memory access by the DMA with different
granularities in Fig. 1.

From the trend of the curve in Fig. 1, we can predict that when the granularity is
increased, DMA will result in better transfer efficiency compared to using NoC for
data transfer.

The execution time of a multithreaded program consists of the computation time
and time spent due to memory access. To simplify our illustration, we assume that
Table 1 Cost of ld/st
instructions and NoC

Strategy Cost (cycles)

Global ld/st instruction 278
SPM ld/st instruction 4
Network-on-chip 10

Table 2 Performance of DMA
with different granularities

Granularity Speed of DMA (GB/s) Cost of DMA
(+300 cycles)

8 B 0.99 12
16 B 1.99 12
32 B 3.92 12
64 B 7.96 12
128 B 15.77 12
256 B 28.88 13
512 B 28.98 27
1024 B 27.97 55
2048 B 30.48 101

Fig. 1 The relationship between the time spent on memory access and the granularity of the data transfer

14507

1 3

Compiler‑directed scratchpad memory data transfer…

the computing performance of each thread is the same; thus, the time spent due to
memory access is the only component that reduces the program execution time.

Since we execute multithreaded applications on heterogeneous many-core proces-
sors, the time spent due to memory access can be divided into (1) the latency of data
access, depending on where the variable is located, i.e., SPM or off-chip memory
(AccessLat), (2) the latency spent in data communication via the DMA operation
(DMALat), and (3) the latency spent in data communication via NoC (NoCLat). The
DMA latency and NoC latency can be divided further into the initialization time,
transfer time and delay due to contention among memory requests. The efficiency of
DMA transfers on 64 threads is lower than the efficiency on single threads, which is
caused by the contention among memory requests. This observation means that the
delay due to the contention among DMA requests is already included in the transfer
time of DMA. Because NoC latency can be obtained by multiplying the total num-
ber of Hops and HopLat, we do not need to divide the NoC latency into the initiali-
zation time, transfer time and delay due to the contention among memory requests.

As shown in Fig. 2, we choose a multithreaded kernel of a scientific computing
application that is executed on 64 threads.

Arrays A, B and C are global variables, which means that they need to be accessed
from off-chip memory. The variables id, j and coeff are all private variables; thus,
they need to be accessed only from the SPM of each core. Therefore, all we need
to consider is how to optimize the time spent due to memory access for the A, B
and C arrays. From line 6 and 7, we can see that there is a true dependence because
the result of variable B in line 6 need to be used as a source operand in line 7. But
what is different from common true dependence is that the result in line 6 is used by
another thread. Here, we name this kind of true dependence as thread-carried true
dependence.

In this example, variables A, B and C are allocated in off-chip memory by default.
Unlike A and C, variable B is accessed twice in this piece of code. Without any opti-
mization, we need to access the variables from the off-chip memory directly. Each
thread issues 4 × 64 = 256 accesses to variables A, B and C. The access latency is
256 × (off -chip AccessLat) = 256 × 278 = 71168 cycles, which is also the total exe-
cution time due to memory access.

We use a data buffer to optimize the data transfer with DMA operations directly.
After the transformation procedure, the immediate code is as presented in Fig. 3a.

Variable A is explicitly brought from off-chip memory to SPM via DMA. The
off-chip memory access latency becomes the sum of the SPM memory access

Fig. 2 Code without data transfer optimization

14508 X. Tao et al.

1 3

latency and the DMA latency. Because of the thread-carried true depend-
ence, we need to insert DMA operations between the source and the sink to
maintain the dependence. The granularity of the two DMA operations is 8
B. The DMA cost can be obtained from Table 2. In addition to DMA opera-
tions, we also need to read/write data from the SPM via load/store instruc-
tions. The SPM access latency is (Ld∕stLat) × 4 × 64 = 4 × 4 × 64 = 1024
cycles. Therefore, the total execution time due to memory access is
AccessLat + DMALat = 1024 + (327 × 2 + 312 × 2 × 64) = 41614 cycles. Com-
pared to the default strategy, the data buffer has a �.��× lower execution time.

We can see that due to the existence of thread-carried dependences, two DMA
operations need to be inserted in each loop iteration. However, the initialization
time of each DMA operation is relatively long, while the amount of data trans-
ferred is small. This situation leads to no profit being gained from using DMA
to optimize SPM data transfer. Therefore, as shown in Fig. 3b, we can use loop
distribution and strip-mining to transform the code to change the granularity of
the data transfer.

With the code transformation, the granularity of the DMA transfer in
the loop becomes 256 B. The total execution time due to memory access is
AccessLat + DMALat = 1024 + (327 × 2 + 313 × 2 × 2) = 2930 cycles. The larger
granularity yields us a ��.��× acceleration.

Next, we attempt to replace the DMA operation in the loop body with NoC for
two different granularities in the data transfer process. The process of data transfer
using NoC is shown in Fig. 4. Each box means an SPM for a thread. Since NoC can
transfer data only by using XY routing in a row or a column, only one thread can
send data at a time during the data transfer process.

Fig. 3 Code with data transfers by DMA with a granularity of 8 B and 256 B

14509

1 3

Compiler‑directed scratchpad memory data transfer…

The code using NoC to optimize the date transfers is shown in Fig. 5.
Because of the structure of NoC, all threads need 8 Hops to complete the
data transfer in this piece of code. Therefore, when the granularity is 8 B,
NoCLat = 8 × HopLat = 8 × 10 = 80 cycles. The total execution time due to mem-
ory access is AccessLat + DMALat + NoCLat = 1024 + 327 × 3 + 80 × 64 = 7125

Fig. 4 Structure of data transfer
by NoC

Fig. 5 Code with data transfers by NoC with a granularity of 8 B and 256 B

14510 X. Tao et al.

1 3

cycles. When the granularity is 256 B, NoCLat = 8 × 80 = 640
cycles. The total execution time due to memory access is
AccessLat + DMALat + NoCLat = 1024 + 327 × 3 + 640 × 2 = 3285 cycles. The
acceleration is ��.��× , while for a transfer granularity of 8 B, it is �.��×.

Figure 6 shows that using DMA and NoC to optimize data transfer can effectively
optimize the SPM application and effectively improve the execution efficiency of the
multithreaded application. However, when the granularity of the data transfer is dif-
ferent, the optimization effect of using DMA and NoC for data transfer also differs.

Therefore, we propose the MSDTM to achieve more efficient SPM data trans-
fer optimization in multithreaded applications.

4 Multithreaded SPM data transfer model

In this section, we describe in detail the design and implementation of the
MSDTM.

Figure 7 presents a high-level overview of the MSDTM framework. The input
to the framework is a multithreaded application source code with marked ker-
nel regions. Before we input the source code to the MSDTM, we need to port it
to the heterogeneous many-core architecture. To simplify the description of the
MSDTM, we focus only on the perfect loop nest wherein all content is in the
innermost loop. We perform the loop transformation on the innermost loop.

As shown in Fig. 7, the MSDTM framework consists of three components:
application analysis, the DTP model and a code transformation.

4.1 Application analysis

In this stage, we analyze the multithreaded application to obtain the per-thread
kernel region memory access profile as the input to the DTP model.

Fig. 6 The time spent due to memory access for the above three data transfer strategies under two differ-
ent granularities

14511

1 3

Compiler‑directed scratchpad memory data transfer…

4.1.1 Data access classification

We traverse the whole marked kernel region to obtain the memory access pro-
file of the global variables. We identify the access types of the global variables:
read-only, write-only and read-write. While we bring the data only from off-chip
memory to SPM with read-only access, we also need to transfer the data from
SPM to off-chip memory with write-only and read-write access.

Moreover, we also classify the global variables as either regular or irregular
[8]. Because of the predictable inefficiency, irregular access is ignored by the
MSDTM. Furthermore, regular access can be classified as either contiguous or
noncontiguous. We then aggregate the access of a variable to one single buffer
and insert strided DMA operations for noncontiguous access.

4.1.2 Array partitioning and loop tiling

In most heterogeneous many-core architectures, the SPMs always have restricted
space. However, in general, the kernels in an application may access large var-
iables. Most arrays may not be accommodated in the SPM. Array partitioning
and loop tiling can separate a large array into smaller ones to accommodate them
in SPM [14, 21, 26]. Many mainstream compilers support the use of polyhedral
model by programmers to perform automatic array partitioning and loop tiling
[22]. Polyhedral model is an abstract representation of a loop program as a com-
putation graph in which questions such as program equivalence or the possibility
of parallel execution can be answered [10].

4.1.3 Dependence check

Before we perform the dependence check, we introduce a new kind of dependences,
called input dependence [19], in which both the source and the sink use the same

Fig. 7 Workflow of the proposed multithreaded SPM data transfer model (MSDTM)

14512 X. Tao et al.

1 3

location. As Fig. 8 shows, the input dependence from S1 to S2 clearly indicates the
opportunity to eliminate a load at the second reference.

We traverse all the memory accesses for dependence checking. The dependences
are divided into thread-independent dependences and thread-carried dependences.
Thread-independent dependences are used to check whether code transformations
are legal, while thread-carried dependences are used to guide transfer operation
insertions.

True dependence. The data from the source will be used by the sink; thus, transfer
operations will be inserted before the sink to update the data.

Anti-dependence. Nothing needs to be done to achieve antidependence because
the data used by the source are already brought to the SPM before the sink updates
the data at the same location in the off-chip memory.

Output dependence. If output dependence is the only dependence that exists,
only the last thread that updates the data at the same location in the off-chip mem-
ory needs to use DMA operations to bring the data from the SPM to the off-chip
memory.

Input dependence. The threads with input dependence use the data from the same
location in the off-chip memory; thus, inserting transfer operations before the sink
may result in better efficiency.

We structure a thread-carried dependence graph (TDG) as a result of a depend-
ence check. We take the code shown in Fig. 2 as an example. There are only two
dependences in this piece of code. One is a thread-independent input dependence
due to the read operations of scalar coeff, and the other is a thread-carried true
dependence due to the write and read operations of variable B. So, in the TDG of the
piece of code shown in Fig. 2, there is only one edge from the write of B (S1) to the
read of B (S2). Because thread-carried dependence cannot be backward, no cycle of
dependences will occur in the TDG.

4.1.4 Data transfer allocation (DTA) algorithm

To determine the allocation of data transfer operations in multithreaded applica-
tions, we propose the DTA algorithm (Algorithm 1). After data access analysis and
a dependence check, the loop that needs to be transformed with its data access pro-
file and the TDG are supplied to the DTP algorithm as the input. The main idea
of Algorithm 1 is to insert data transfer operations according to TDG and the kind
of dependences in TDG. In order to reduce the times of data transfer operations,
we only insert one DMA_in or DMA_out operation corresponding to one input
or output dependence at the beginning or the end of the loop. According to true

Fig. 8 Schematic diagram of
input dependency

14513

1 3

Compiler‑directed scratchpad memory data transfer…

dependences in TDG, we insert a couple of data transfer operations to optimize the
process of memory access.

We first divide the TDG into several subgraphs according to the data access pro-
file (lines 6–13). Each subgraph contains all the dependences corresponding to the
same data access. If any antidependence exists in the subgraph, we further divide
the subgraph into two by the antidependence (lines 14–21). Now, we have several
subgraphs without antidependences and a cycle of dependences. The dependences
are then further classified. With true dependences, we insert a couple of data transfer
operations (copy_in & copy_out) between the source and the sink of each depend-
ence (lines 23, 24). Without true dependences, we insert DMA_in operations cor-
responding to the input dependences at the beginning of the loop, while we insert
DMA_out operations corresponding to the output dependences at the end of the
loop (lines 25–29). The strategies of the data transfer operations with true depend-
ences are determined by the DTP model mentioned in Sect. 4.2. Since we need to

14514 X. Tao et al.

1 3

traverse Gi three times and ai once, the worst-case time complexity of Algorithm 1
is O(n).

We use the code in Fig. 2 as an example to illustrate the process of Algorithm 1.
As we mentioned in Sect. 4.1.3, the TDG of the piece of code in Fig. 2 has only one
edge from S1 to S2 which indicates there is only one thread-carried true dependence
from S1 to S2 . According to Algorithm 1, since there is no anti-dependence in TDG,
we do not need any division of the graph. The only thing we need to do is to insert a
couple of data transfer operations between the source (S1) and the sink (S2).

4.2 Data transfer performance (DTP) model

With the allocation of the data transfer, the memory access profile and hardware
configuration of a specific heterogeneous many-core architecture are input into the
DTP model. We first formulate the model for multithreaded applications using a spe-
cific hardware configuration. Next, we use the performance model to derive the opti-
mal granularity and select the most profitable transfer strategy at that granularity.

4.2.1 Model formulation

The execution time of a multithreaded application is determined by the slowest
thread; hence, we need to select the most profitable transfer strategy to minimize
the execution time of the slowest thread. Furthermore, we assume that the execu-
tion time of computation is fixed; thus, reducing the execution time due to memory
access is the only way to minimize the execution time of the slowest thread. Let T be
the execution time due to memory access of the slowest thread in the multithreaded
application. As mentioned above, the execution time due to memory access consists
of data access latency (AccessLat), DMA transfer latency (DMALat) and NoC trans-
fer latency (NoCLat).

Data access latency: Let A = {a1, a2, ..., an} be the variables that need to access
the SPM or off-chip memory. Let si represent the size of ai (1 ≤ i ≤ n) . Let � repre-
sent the load/store latency of the SPM, while � represent the load/store latency of
the off-chip memory. Both � and � are defined by the hardware configuration. The
data access latency is:

For heterogeneous many-core architectures, � is much smaller than � . Therefore,
data transfer operations can reduce the data access latency by transferring data from
the off-chip memory to the SPM.

Data transfer granularity: As Table 2 shows, different data transfer granulari-
ties correspond to different DMA and NoC transfer speeds. We let g represent the
granularity of data transfer operations. To obtain the granularity g in a loop, loop
strip-mining and loop distribution are utilized during the code transformation.
Thus, g is subject to the following constraint:

(1)AccessLat =

{
si × �, if ai is on SPM

si × �, if ai is on off-chip memory

14515

1 3

Compiler‑directed scratchpad memory data transfer…

The cost per byte of DMA transfer can be defined relative to the granularity as:

The cost per byte of NoC transfer can be defined relative to the granularity as:

Normally, while v usually reduces by an inverse proportional function, u usually
remains unchanged as g increases for most heterogeneous many-core architectures.
To meet the sizes of variables, each data transfer process requires several data trans-
fer operations. This number of operations (or times) can be computed as:

DMA transfer latency: Each DMA transfer operation can be divided into an initial-
ization and a transfer process. Let I represent the initialization cost. At a transfer
granularity of g, the latency of the DMA transfer per item is:

Both the initialization cost and the speed of the DMA transfer are determined by
hardware parameters.

NoC transfer latency: The NoC transfer experiences contention in a link when
several other transfers are simultaneously trying to utilize the same link. Because
of the contention, all the threads need to transfer data via the NoC step by step.
We let Hops represent the number of steps of the whole NoC transfer process.
The latency of the NoC transfer per item is:

The variable Hops is determined by the analysis of the multithreaded application,
while the speed of the NoC transfer is determined by hardware factors.

Execution time of memory access per data item: Let E be the execution time
of memory access for variable a. For each variable, we have three transfer strate-
gies to select from. Let Edirect represent the execution time of accessing data from
off-chip memory directly. Let EDMA represent the execution time of bringing the
data from off-chip memory via DMA and accessing it from the SPM. Let ENoC
represent the execution time of obtaining data from other threads via NoC and
accessing it from the SPM.

As mentioned in the discussion of the DTA algorithm, we consider data trans-
fer with thread-carried true dependences. E can be computed as:

(2)g ≤ MIN(s1, s2,… , sn)

(3)v = f (g)

(4)u = h(g)

(5)times = ⌈ si
g
⌉

(6)DMALat = [I + g × f (g)] × times

(7)NoCLat = Hops × g × h(g) × times

14516 X. Tao et al.

1 3

For each DTA, each data item needs to be written back to memory and read by
another thread. Furthermore, if we transfer the data via NoC between threads, we
will need to write it back to the off-chip memory by DMA.

Total execution time of memory access: Since we propose MSDTM to derive
the optimal granularity and select the most profitable data transfer strategy
among direct access, DMA and NoC for each variable, the execution time due to
memory accesses of the slowest thread T is the sum of E. The execution time of
the slowest thread due to memory accesses can be computed as:

4.2.2 Deriving the optimal granularity

After the problem formulation, we use the performance model to provide guide-
lines for deriving the optimal granularity and selecting a profitable transfer strat-
egy. To minimize the total execution time of memory access, we need to mini-
mize the execution time of memory access per data item. This process can be
represented as:

In Equation 8, the parameters � , � , and I are defined by the hardware configuration,
while si and Hops are computed by an application analysis. These parameters will
not change during the data transfer optimizations. Functions f and h are also defined
by the hardware configuration. Therefore, during data transfer optimizations, mini-
mizing times will lead to minimizing EDMA and ENoC . The derivation process is:

The optimal granularity g for most heterogeneous many-core architectures is the
minimal size of all the variables that need to be transferred in the loop body.

(8)

E =

⎧
⎪⎨⎪⎩

Edirect

EDMA

ENoC

=

⎧
⎪⎨⎪⎩

AccessLat × 2

AccessLat × 2 + DMALat × 2

AccessLat × 2 + DMALat + NoCLat

=

⎧
⎪⎨⎪⎩

si × � × 2

si × � × 2 + [I + g × f (g)] × ⌈ si

g
⌉ × 2

si × � × 2 + [I + si × f (si)] + Hops × g × h(g) × ⌈ si

g
⌉

(9)
T =

∑
E

=

∑
Edirect +

∑
EDMA +

∑
ENoC

(10)Minimize ∶ T ⇔ Minimize ∶ E

(11)

Minimize ∶ E ⇐ Minimize ∶ EDMA &Minimize ∶ ENoC

⇐ Minimize: times

⇔ g = MIN(s1, s2,… , sn)

14517

1 3

Compiler‑directed scratchpad memory data transfer…

4.2.3 Comparison of strategies

With the optimal granularity g, the MSDTM can provide guidelines for selecting the
most profitable strategy at each allocation of data transfer operations. The computa-
tion of the execution time of memory access per data item can be replaced with:

The relationship between Edirect , EDMA , ENoC and si is plotted in Fig. 9. Their
points of intersections s′ and s′′ split the domain of si into three sub-domains. The
execution time of memory access per data item E can be computed as:

When the variable Hops which is obtained from application analysis changes, the
intersections s′ and s′′ change as well.

4.3 Code transformation

When the application analysis is completed, the optimal granularity is derived, and
the most profitable strategy is selected, the MSDTM transforms the code to optimize
the data transfer operations.

First, loop distribution and strip-mining are required to make the size of the
loop suitable for the optimal granularity. Loop distribution can be used to convert a
sequential loop to multiple parallel loops, while strip-mining is a kind of optimiza-
tions to convert the available parallelism into a form more suitable for the hardware

(12)E = MIN(Edirect,EDMA,ENoC)

(13)E =

⎧
⎪⎨⎪⎩

Edirect, si ≤ s�

ENoC, s� < si ≤ s��

EDMA, si > s��

Fig. 9 The dependence of
execution time of memory
access per data item on the size
of data

14518 X. Tao et al.

1 3

by grouping the iterations into sets, each of which is treated as a schedule unit [18].
Then, DMA or NoC transfer operations are inserted for each allocation of data trans-
fer according to the DTP model. Finally, we transform the subscripts of variables
that need to be optimized to access the SPM.

5 Experimental evaluation

This section presents the experimental evaluation of our proposed MSDTM on Sun-
way TaihuLight.

5.1 Sunway TaihuLight

In contrast to other existing heterogeneous supercomputers, which include both
CPU processors and PCIe-connected many-core accelerators, the computing power
of Sunway TaihuLight is provided by heterogeneous many-core SW26010 proces-
sors that include both the management processing elements (MPEs) and computing
processing elements (CPEs) in one chip. The general architecture of the SW26010
processor [9] is shown in Fig. 10.

The processor includes four core groups (CGs). Each CG includes one MPE,
one CPE cluster with 8 × 8 CPEs, and one memory controller. Each CG has its own
memory space, which is connected to the MPE and the CPE cluster through the
memory controller. The processor connects to other outside devices through a sys-
tem interface.

In terms of the memory hierarchy, each MPE has a 32 KB L1 instruction cache
and a 32 KB L1 data cache, with a 256 KB L2 cache for both instructions and data.
Each CPE has its own 16 KB L1 instruction cache and a 64 KB user-controlled
SPM.

As Table 1 shows, while the MPE has access to an 8 GB main memory, the
CPE can directly access the main memory through gld/gst instructions. In addition,
the CPE can implement batch data transfer between the SPM and main memory

Fig. 10 General architecture of the SW26010 processer

14519

1 3

Compiler‑directed scratchpad memory data transfer…

via DMA commands. The efficiency of the DMA transfer is closely related to the
amount of data transferred, the granularity of the DMA commands and the conti-
nuity of data in the memory. The ideal DMA transfer bandwidth of the processor
is 134.4 GB/s. Register communication is used for data transfer as NoC between
CPEs. Since the CPEs are physically arranged in an 8 × 8 array, register communica-
tion can transfer data using only XY routing. In XY routing, an access moves along
the row-axis first and then along the column-axis. Through register communication,
each CPE can perform row or column broadcasting and can send data to another
specific CPE.

5.2 Experimental setup

The proposed MSDTM is implemented on the GCC compiler, which is firstly ported
for Sunway TaihuLight. In the MSDTM implementation process, we reserve the
switches for manual adjustment of the data transfer granularity and manual selection
of the data transfer strategies. At the same time, we automatically obtain the optimal
granularity and the most profitable strategy by the MSDTM.

To evaluate the performance of the proposed MSDTM, we select test cases from
the NAS parallel benchmark suite (NPB) [2] and SPEC benchmarks [16], such as
EP, FT, IS, LU, MG, and SP from the NPB and lbm [25] from the SPEC. In addi-
tion, we choose two representative application kernels, Stencil and PhotoNs. Sten-
cil [1, 21, 27] computations are the foundation of many large applications in scien-
tific computing, while PhotoNs is a cosmic N-body numerical simulation software
developed by the National Observatory. Before the evaluation, we manually port the
benchmarks and kernels for Sunway TaihuLight.

Besides, we select a simple but representative application kernel, 1D-FFT [35], to
verify that the granularity obtained by the MSDTM is optimal and that the strategy
is the most profitable one.

5.3 Experimental results

5.3.1 A case study with FFT

The 1D-FFT kernel is implemented based on butterfly computing with an input data
size of 8192 bytes. We partition the data into 128 bytes to run the kernel on 64
threads and partition the data into 1024 bytes to run the kernel on 8 threads. In the
1D-FFT kernel, the size of the data in each thread limits the granularity of the data
transfer. We manually set the granularity of the data transfer to 8, 16, 32, 64 and 128
bytes. In addition, we set the extra granularities to 256 bytes, 512 bytes and 1024
bytes for the 8-threaded version. We compare the execution time of the kernel at
each granularity. For each granularity, we use the three transfer strategies mentioned
above to optimize the data transfer.

Figure 11 shows the measured values for 8-threaded and 64-threaded kernels. We
can observe that the execution time of the kernel decreases as the granularity of data
transfer increases with DMA transfer or NoC transfer, while it remains basically

14520 X. Tao et al.

1 3

unchanged with direct access. This result means that whether in an 8-threaded appli-
cation or a 64-threaded application, the optimal execution efficiency of the applica-
tion is obtained when the granularity of the data transfer is maximal. In other words,
the optimal granularity of data transfer is the minimum of the sizes of all data in
each thread. In addition, the execution time of the kernel due to the DTP model is
equal to the minimum time spent on the three strategies. This observation proves
that we can select the most profitable strategy at each granularity based on the DTP
model.

Furthermore, the MSDTM selects not only the optimal granularity but also the
most profitable data transfer strategy with the optimal granularity. For the 8-threaded

Fig. 11 Execution time of 1D-FFT on 8 threads and 64 threads for different strategies

14521

1 3

Compiler‑directed scratchpad memory data transfer…

and 64-threaded 1D-FFT kernels, optimizing the data transfer with the MSDTM can
yield speedups of ��.��× and �.��× compared with version which use direct access.

5.3.2 Performance and energy evaluation

We evaluate the performance speedup of the proposed MSDTM compared to that
of the original applications with direct memory accesses. In addition to the perfor-
mance evaluation, we evaluate the energy reduction via a script supported by Sun-
way TaihuLight. The application with data transfer optimization by the MSDTM is
executed on 8 threads, 16 threads and 64 threads.

Figure 12 shows the performance improvement and energy reduction of the
test cases executed on 8 threads, 16 threads and 64 threads. We can observe that
MSDTM performs well with respect to both performance improvement and energy
reduction under all scenarios. However, as we can see from Fig. 12, the test cases we
use perform the best when executed on 8 threads and the worst when executed on 64
threads. This is due to the DMA transfer bandwidth on Sunway TaihuLight, which
results in the roofline curve of the DMA transfer’s efficiency with the varying of
memory transaction granularity, as shown in Table 2. In other words, the efficiency
of DMA transfer is bounded by a threshold of the memory transaction granularity,
and the performance of DMA transfer will not be improved when such a threshold
is hit. This threshold is 128B when experimenting with 64 threads and the value
increases when the number of used threads decreases. One can thus expect better

Fig. 12 Performance improvement and energy reduction on different threads

14522 X. Tao et al.

1 3

performance on 8 threads when using the threshold of 64 threads, i.e., 128B. The
performance of the used test cases executed on 8 threads thus outperforms those of
16 threads and 64 threads, as shown in the figure.

As Fig. 13 shows, the MSDTM yields considerable acceleration of all the test
cases. In particular, the acceleration ratio of MG is �.��× , while the acceleration
ratio of Stencil is ��.��× . The reason that the two test cases get better performance
speedup is they have more thread-carried dependences than others, which lead to
more DMA or NoC transfers, for example, the overlapping of loop tiling in Sten-
cil. In general, the MSDTM provides an average acceleration ratio of �.��× on 64
threads and an energy reduction of �.��×.

Thus, we observe that the proposed MSDTM is effective in reducing the execu-
tion time and energy of the evaluated test cases.

6 Conclusions

In this work, we propose the MSDTM, a compile-time framework for optimizing
multithreaded data transfer between SPM and the main memory on heterogeneous
many-core architectures. This framework determines the allocation of data trans-
fer operations via an application analysis and dependence checking. Next, the DTP
model is used to obtain the optimal granularity of data transfer and select the most
profitable strategy. In the experimental evaluation, the proposed MSDTM improves
the application execution time by �.��× and achieves an energy savings of �.��×.

The future works of this paper include further optimizations for SPM data trans-
fer operations, such as overlapping the process of data transfer with kernel compu-
tation and combining the granularity of data transfer with the size of loop tiling to
achieve higher efficiency.

Acknowledgements This work is supported by National High-tech R&D Program of China (863 Pro-
gram) (No. 2014AA01A301) and National Key Research and Development Project “High Performance
Computing” Key Project (No. 2016YFB0200503).

Fig. 13 Maximal performance improvement and energy reduction of the test cases

14523

1 3

Compiler‑directed scratchpad memory data transfer…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Ao Y, Yang C, Wang X, Xue W, Fu H, Liu F, Gan L, Xu P, Ma W (2017) 26 pflops stencil com-
putations for atmospheric modeling on sunway taihulight. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, pp 535–544

 2. Bailey D, Barszcz E, Barton J, Browning D, Carter R, Dagum L, Fatoohi R, Frederickson P,
Lasinski T, Schreiber R, Simon H, Venkatakrishnan V, Weeratunga S (1991) The NAS parallel
benchmarks. Int J Supercomput Appl 5(3):63–73. https:// doi. org/ 10. 1177/ 10943 42091 00500 306

 3. Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P (2002) Scratchpad memory: a
design alternative for cache on-chip memory in embedded systems. In: Proceedings of the
Tenth International Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat. No.
02TH8627). IEEE, pp 73–78

 4. Bandyopadhyay S (2006) Automated memory allocation of actor code and data buffer in hetero-
chronous dataflow models to scratchpad memory. Master’s thesis, EECS Department, University
of California, Berkeley

 5. Borkar S (2007) Thousand core chips: a technology perspective. In: Proceedings of the 44th
Annual Design Automation Conference, pp 746–749

 6. Chen T, Raghavan R, Dale JN, Iwata E (2007) Cell broadband engine architecture and its first
implementation: a performance view. IBM J Res Dev 51(5):559–572

 7. Chen T, Sura Z, O’Brien K, O’Brien JK (2006) Optimizing the use of static buffers for DMA
on a cell chip. In: International Workshop on Languages and Compilers for Parallel Computing.
Springer, pp 314–329

 8. Cho D, Pasricha S, Issenin I, Dutt N, Paek Y, Ko S (2008) Compiler driven data layout optimi-
zation for regular/irregular array access patterns. In: Proceedings of the 2008 ACM SIGPLAN-
SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, pp 41–50

 9. Dongarra J (2016) Report on the sunway taihulight system. Technical report, UT-EECS-16-742.
http:// www. netlib. org/ utk/ people/ JackD ongar ra/ PAPERS/ sunway- report- 2016. pdf

 10. Feautrier P, Lengauer C (2011) Polyhedron model. Springer, Boston, pp 1581–1592
 11. Francesco P, Marchal P, Atienza D, Benini L, Catthoor F, Mendias JM (2004) An integrated

hardware/software approach for run-time scratchpad management. In: Proceedings of the 41st
Annual Design Automation Conference, pp 238–243

 12. Fu H, Liao J, Yang J, Wang L, Song Z, Huang X, Yang C, Xue W, Liu F, Qiao F et al (2016) The
sunway taihulight supercomputer: system and applications. Sci China Inf Sci 59(7):072001

 13. Gao Y, Zhang P (2016) A survey of homogeneous and heterogeneous system architectures in
high performance computing. In: 2016 IEEE International Conference on Smart Cloud (Smart-
Cloud). IEEE, pp 170–175

 14. Grosser T, Cohen A, Kelly PH, Ramanujam J, Sadayappan P, Verdoolaege S (2013) Split tiling
for gpus: automatic parallelization using trapezoidal tiles. In: Proceedings of the 6th Workshop
on General Purpose Processor Using Graphics Processing Units, pp 24–31

 15. Gwennap L (2011) Adapteva: more flops, less watts. Microprocess Rep 6(13):11–02
 16. Henning JL (2006) Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput Archit

News 34(4):1–17
 17. Janapsatya A, Parameswaran S, Ignjatovic A (2004) Hardware/software managed scratchpad

memory for embedded system. In: IEEE/ACM International Conference on Computer Aided
Design, 2004. ICCAD-2004. IEEE, pp 370–377

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/109434209100500306
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

14524 X. Tao et al.

1 3

 18. Kelly W, Pugh W (1995) A unifying framework for iteration reordering transformations. In: Pro-
ceedings 1st International Conference on Algorithms and Architectures for Parallel Processing,
vol 1, pp 153–162. https:// doi. org/ 10. 1109/ ICAPP. 1995. 472180

 19. Kennedy K, Allen JR (2001) Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc, Burlington

 20. Li L, Feng H, Xue J (2009) Compiler-directed scratchpad memory management via graph color-
ing. ACM Trans Archit Code Optim 6(3):1–17

 21. Li P, Brunet E, Namyst R (2013) High performance code generation for stencil computation
on heterogeneous multi-device architectures. In: 2013 IEEE 10th International Conference on
High Performance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing. IEEE, pp 1512–1518

 22. Lim AW, Liao SW, Lam MS (2001) Blocking and array contraction across arbitrarily nested loops
using affine partitioning. In: Proceedings of the Eighth ACM SIGPLAN Symposium on Principles
and practices of Parallel Programming, pp 103–112

 23. Liu T, Lin H, Chen T, O’Brien JK, Shao L (2009) Dbdb: optimizing dma transfer for the cell be
architecture. In: Proceedings of the 23rd International Conference on Supercomputing, pp 36–45

 24. Marongiu A, Benini L (2010) An openmp compiler for efficient use of distributed scratchpad mem-
ory in mpsocs. IEEE Trans Comput 61(2):222–236

 25. Pananilath I, Acharya A, Vasista V, Bondhugula U (2015) An optimizing code generator for a class
of lattice-Boltzmann computations. ACM Trans Archit Code Optim 12(2):1–23

 26. Panda PR, Dutt ND, Nicolau A (2000) On-chip vs. off-chip memory: the data partitioning problem
in embedded processor-based systems. ACM Trans Des Autom Electron Syst 5(3):682–704

 27. Rahman SMF, Yi Q, Qasem A (2011) Understanding stencil code performance on multicore archi-
tectures. In: Proceedings of the 8th ACM International Conference on Computing Frontiers, pp
1–10

 28. Ren J, Luo J, Wu K, Zhang M, Li D (2019) Sentinel: Runtime data management on heterogeneous
main memorysystems for deep learning

 29. Riesbeck CK, Martin C (1986) Direct memory access parsing. Experience, memory and reasoning,
pp 209–226

 30. Saidi S, Tendulkar P, Lepley T, Maler O (2012) Optimizing explicit data transfers for data parallel
applications on the cell architecture. ACM Trans Archit Code Optim 8(4):1–20

 31. Sancho JC, Kerbyson DJ (2008) Analysis of double buffering on two different multicore architec-
tures: Quad-core opteron and the cell-be. In: 2008 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, pp 1–12

 32. Sandrieser M, Benkner S, Pllana S (2011) Explicit platform descriptions for heterogeneous many-
core architectures. In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. IEEE, pp 1292–1299

 33. Shao Z, Li R, Hu D, Liao X, Jin H (2019) Improving performance of graph processing on fpga-dram
platform by two-level vertex caching. In: Proceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’19, pp 320–329. Association for Computing
Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 32896 02. 32939 00

 34. Shao Z, Liu C, Li R, Liao X, Jin H (2020) Processing grid-format real-world graphs on dram-based
fpga accelerators with application-specific caching mechanisms. ACM Trans. Reconfig. Technol.
Syst. 13(3):4. https:// doi. org/ 10. 1145/ 33919 20

 35. Van Loan C (1992) Computational frameworks for the fast Fourier transform, vol 10. Siam,
Philadelphia

 36. Venkataramani V, Chan MC, Mitra T (2019) Scratchpad-memory management for multi-threaded
applications on many-core architectures. ACM Trans Embed Comput Syst 18(1):1–28

 37. Verma M, Marwedel P (2006) Overlay techniques for scratchpad memories in low power embedded
processors. IEEE Trans Very Large Scale Integr Syst 14(8):802–815

 38. Zhang P, Fang J, Yang C, Huang C, Tang T, Wang Z (2020) Optimizing streaming parallelism on
heterogeneous many-core architectures. IEEE Trans Parallel Distrib Syst 31:1878–1896

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICAPP.1995.472180
https://doi.org/10.1145/3289602.3293900
https://doi.org/10.1145/3391920

	Compiler-directed scratchpad memory data transfer optimization for multithreaded applications on a heterogeneous many-core architecture
	Abstract
	1 Introduction
	2 Related work
	2.1 SPM-based heterogeneous many-core architectures
	2.2 SPM data management
	2.3 Data transfer optimization

	3 Motivating example
	4 Multithreaded SPM data transfer model
	4.1 Application analysis
	4.1.1 Data access classification
	4.1.2 Array partitioning and loop tiling
	4.1.3 Dependence check
	4.1.4 Data transfer allocation (DTA) algorithm

	4.2 Data transfer performance (DTP) model
	4.2.1 Model formulation
	4.2.2 Deriving the optimal granularity
	4.2.3 Comparison of strategies

	4.3 Code transformation

	5 Experimental evaluation
	5.1 Sunway TaihuLight
	5.2 Experimental setup
	5.3 Experimental results
	5.3.1 A case study with FFT
	5.3.2 Performance and energy evaluation

	6 Conclusions
	Acknowledgements
	References

