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Abstract
The heterogeneous many-core architecture plays an important role in the fields of 
high-performance computing and scientific computing. It uses accelerator cores 
with on-chip memories to improve performance and reduce energy consumption. 
Scratchpad memory (SPM) is a kind of fast on-chip memory with lower energy con-
sumption compared with a hardware cache. However, data transfer between SPM 
and off-chip memory can be managed only by a programmer or compiler. In this 
paper, we propose a compiler-directed multithreaded SPM data transfer model 
(MSDTM) to optimize the process of data transfer in a heterogeneous many-core 
architecture. We use compile-time analysis to classify data accesses, check depend-
ences and determine the allocation of data transfer operations. We further present 
the data transfer performance model to derive the optimal granularity of data trans-
fer and select the most profitable data transfer strategy. We implement the proposed 
MSDTM on the GCC complier and evaluate it on Sunway TaihuLight with selected 
test cases from benchmarks and scientific computing applications. The experimental 
result shows that the proposed MSDTM improves the application execution time by 
5.49× and achieves an energy saving of 5.16× on average.
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1 Introduction

The heterogeneous many-core architecture is widely used in the fields of high-
performance computing and scientific computing [13, 32]. Because it requires a 
large number of cores [5], which can provide a high degree of parallelism and a 
high computing speed, reducing the energy consumption of many-core architec-
tures has become a major challenge. To reduce the energy consumption, accel-
erator cores with local memories are provided in this architecture [13]. However, 
this means that two different kinds of memories are utilized in this architecture, 
i.e., off-chip memory and on-chip memory, which results in a more complex stor-
age system, a profound challenge of which is determining how to handle the data 
transfer between off-chip memory and on-chip memory. For scientific computing 
applications, when using heterogeneous many-core processors to accelerate com-
putations, the efficient use of storage systems is one of the most critical factors in 
improving performance and reducing energy.

Scratchpad memory (SPM) [3] is a kind of fast on-chip memory managed 
by software (a programmer or a compiler), while cache has to query the flag bit 
which is managed by hardware to check cache misses or hits. Compared with 
the hardware cache, SPM does not need to perform flag bit judgment and other 
tasks, and has the advantages of low power consumption and fast access. SPM 
is initially used in embedded systems to meet the real-time and time predictable 
requirements of embedded systems [17]. Besides, the Scratchpad memory is also 
extensively used in FPGAs and is also employed as application-specific caches 
[33, 34]. The current heterogeneous many-core processors, such as Adapteva 
Epiphany, Sunway TaihuLight, and IBM Cell, also use SPM to achieve better per-
formance and lower energy consumption. The characteristic of this type of archi-
tecture is that each accelerator core has its own SPM that can be accessed at high 
speed but has limited space.

The SPM is connected to the off-chip memory through a bus [26]. The accel-
erator cores can only access the data of off-chip memory directly by global load/
store instructions or direct memory access (DMA) [11, 29]. The accelerator cores 
can communicate with each other by a network-on-chip (NoC). However, pro-
grammers need to explicitly manage the data transfer between the SPM and the 
off-chip memory in the application, which hinders program development.

In single-threaded applications, we can use compiler-directed data buffering 
through DMA to optimize the data transfer between SPM and off-chip memory 
[4, 23]. This process requires precise analysis of the access patterns and careful 
management of the data size. With data buffering, global load/store operations 
to off-chip memory can be replaced with direct accesses to local buffers in SPM 
without redundant look-up operations. However, multithreaded applications have 
more synchronization than single-threaded applications. Keeping the coherence 
of multithreaded applications makes the optimization more complex.

Here, we propose a multithreaded SPM data transfer model (MSDTM) to 
optimize the data transfer between SPM and off-chip memory on heterogeneous 
many-core architecture. It first analyzes the application to classify data accesses 
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and determine the allocation of data transfer with the data transfer allocation 
(DTA) algorithm. Next, it uses the data transfer performance (DTP) model to 
derive the optimal granularity of data transfer and select the most profitable data 
transfer strategy. Then, the code is transformed by the MSDTM with loop dis-
tribution and strip-mining. We implement the proposed MSDTM on the GCC 
complier.

Optimizing data transfer operations by the MSDTM can effectively improve the 
performance of multithreaded applications and reduce the energy consumption. 
Since the MSDTM is used in the compilation process, it can also effectively reduce 
the programming difficulty.

The major contributions of this paper are as follows:

• We propose an algorithm to determine the allocation of data transfer for multi-
threaded applications with an analysis of data accesses and dependence check-
ing.

• We formulate the data transfer strategy selection problem for multithreaded 
applications on an SPM-based heterogeneous many-core architecture and design 
a performance model to derive the optimal granularity of data transfer and select 
the most profitable strategy.

• We implement and evaluate our proposed model on Sunway TaihuLight with the 
kernel of scientific computing programs and applications from general bench-
marks.

The remainder of the paper is organized as follows. In Sect. 2, we mention some 
related work, while in Sect. 3, we use a simple example to illustrate our motivation. 
Section 4 presents the MSDTM. We evaluate the proposed MSDTM in Sect. 5. Sec-
tion 6 concludes this paper.

2  Related work

2.1  SPM‑based heterogeneous many‑core architectures

For energy consumption and scalability considerations, some heterogeneous many-
core processors choose SPM as a fast on-chip memory. For example, the IBM Cell 
[6] processor includes a 64-bit PowerPC general-purpose processor core power pro-
cess element and 8 coprocessor synergistic processor elements (SPEs). Each SPE 
contains 256 KB of local storage space for storing code and data executed on the 
SPE, the storage address is private, and threads on different SPEs can communicate 
only through the main memory. Adapteva Epiphany [15] is an SPM-based many-
core architecture that is energy efficient and suitable for embedded systems. Each 
processor in Adapteva Epiphany consists of an RISC core, a DMA engine, a net-
work interface, and a 32 KB SPM, connected using a 2D mesh grid. This architec-
ture provides a shared address space that allows threads to complete communication 
by accessing nonlocal SPM. Sunway TaihuLight [12] has a heterogeneous many-
core architecture. Each core group includes one management processing element 
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and 8 × 8 computing processing elements, and each computing processing element 
contains a 64 KB local data memory.

2.2  SPM data management

A number of works have optimized SPM data management on heterogeneous 
many-core architectures. [37] identifies continuous code blocks in memory, such as 
functions and basic blocks that are executed, and maps them to the SPM area. To 
improve the performance of embedded systems and minimize energy consumption, 
[8] performs static analysis on an MPSoC (multicore processor system-on-chip) 
shared distributed SPM to obtain the optimal memory allocation method. [24] opti-
mizes the compiler on the basis of OpenMP and distributes the array data of the par-
allel part of applications executed on MPSoC to distributed SPMs. [36] formulates 
the SPM data allocation problem for multithreaded applications and proposes the 
NoC contention and latency aware compile-time framework to automatically deter-
mine the location of data variables, the replication degree of shared data, and on-
chip placement. [20] maps the SPM management problem for data aggregates into 
the well-understood register allocation problem for scalars to automatically assign 
static data aggregates in a program to an SPM.

2.3  Data transfer optimization

To optimize SPM data transfer, the direct blocking data buffer (DBDB) [6] is 
designed and implemented to optimize the use of local memory while provid-
ing a simple shared memory programming model for the Cell-BE architecture. [7] 
develops a model to automatically infer the optimal buffering scheme and size for 
static buffering, taking into account the DMA latency and transfer rates and the 
amount of computation in the application loop being targeted. [31] presents opti-
mized buffering techniques and evaluates them for two multicore architectures: 
quad-core Opteron and the Cell-BE. [30] derives optimal and near-optimal values 
for the number of blocks that should be clustered in a single DMA command based 
on the computation time and size of the elementary data items as well as the DMA 
characteristics.

On heterogeneous many-core architectures, [38] presents an automatic approach 
to quickly derive a good solution for hardware resource partition and task granular-
ity for task-based parallel applications, in order to exploit spatial and temporal shar-
ing of the heterogeneous processing units. [28] presents a runtime system that auto-
matically optimizes data management on SPM to achieve performance similar to 
that on the fast memory-only system with a much smaller capacity of fast memory.

To the best of our knowledge, ours is the first work to propose an SPM DTP 
model for multithreaded applications on SPM-based heterogeneous many-core 
architectures to reduce the overall application execution time, with evaluation on a 
real platform.
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3  Motivating example

We use a simple motivating example to illustrate the efficiency of optimizing SPM 
data transfer for multithreaded applications. For illustration purposes, we use the 
system parameters of Sunway TaihuLight as stated in Tables 1 and 2 in this example 
[9]. In addition, the start-up overhead of DMA transfers is 300 cycles.

According to Tables 1 and 2, we show the relationship between the time spent on 
memory access by NoC and the cost of memory access by the DMA with different 
granularities in Fig. 1.

From the trend of the curve in Fig. 1, we can predict that when the granularity is 
increased, DMA will result in better transfer efficiency compared to using NoC for 
data transfer.

The execution time of a multithreaded program consists of the computation time 
and time spent due to memory access. To simplify our illustration, we assume that 
Table 1  Cost of ld/st 
instructions and NoC

Strategy Cost (cycles)

Global ld/st instruction 278
SPM ld/st instruction 4
Network-on-chip 10

Table 2  Performance of DMA 
with different granularities

Granularity Speed of DMA (GB/s) Cost of DMA 
(+300 cycles)

8 B 0.99 12
16 B 1.99 12
32 B 3.92 12
64 B 7.96 12
128 B 15.77 12
256 B 28.88 13
512 B 28.98 27
1024 B 27.97 55
2048 B 30.48 101

Fig. 1  The relationship between the time spent on memory access and the granularity of the data transfer
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the computing performance of each thread is the same; thus, the time spent due to 
memory access is the only component that reduces the program execution time.

Since we execute multithreaded applications on heterogeneous many-core proces-
sors, the time spent due to memory access can be divided into (1) the latency of data 
access, depending on where the variable is located, i.e., SPM or off-chip memory 
(AccessLat), (2) the latency spent in data communication via the DMA operation 
(DMALat), and (3) the latency spent in data communication via NoC (NoCLat). The 
DMA latency and NoC latency can be divided further into the initialization time, 
transfer time and delay due to contention among memory requests. The efficiency of 
DMA transfers on 64 threads is lower than the efficiency on single threads, which is 
caused by the contention among memory requests. This observation means that the 
delay due to the contention among DMA requests is already included in the transfer 
time of DMA. Because NoC latency can be obtained by multiplying the total num-
ber of Hops and HopLat, we do not need to divide the NoC latency into the initiali-
zation time, transfer time and delay due to the contention among memory requests.

As shown in Fig. 2, we choose a multithreaded kernel of a scientific computing 
application that is executed on 64 threads.

Arrays A, B and C are global variables, which means that they need to be accessed 
from off-chip memory. The variables id, j and coeff are all private variables; thus, 
they need to be accessed only from the SPM of each core. Therefore, all we need 
to consider is how to optimize the time spent due to memory access for the A, B 
and C arrays. From line 6 and 7, we can see that there is a true dependence because 
the result of variable B in line 6 need to be used as a source operand in line 7. But 
what is different from common true dependence is that the result in line 6 is used by 
another thread. Here, we name this kind of true dependence as thread-carried true 
dependence.

In this example, variables A, B and C are allocated in off-chip memory by default. 
Unlike A and C, variable B is accessed twice in this piece of code. Without any opti-
mization, we need to access the variables from the off-chip memory directly. Each 
thread issues 4 × 64 = 256 accesses to variables A, B and C. The access latency is 
256 × (off -chip AccessLat) = 256 × 278 = 71168 cycles, which is also the total exe-
cution time due to memory access.

We use a data buffer to optimize the data transfer with DMA operations directly. 
After the transformation procedure, the immediate code is as presented in Fig. 3a.

Variable A is explicitly brought from off-chip memory to SPM via DMA. The 
off-chip memory access latency becomes the sum of the SPM memory access 

Fig. 2  Code without data transfer optimization
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latency and the DMA latency. Because of the thread-carried true depend-
ence, we need to insert DMA operations between the source and the sink to 
maintain the dependence. The granularity of the two DMA operations is 8 
B. The DMA cost can be obtained from Table  2. In addition to DMA opera-
tions, we also need to read/write data from the SPM via load/store instruc-
tions. The SPM access latency is (Ld∕stLat) × 4 × 64 = 4 × 4 × 64 = 1024 
cycles. Therefore, the total execution time due to memory access is 
AccessLat + DMALat = 1024 + (327 × 2 + 312 × 2 × 64) = 41614 cycles. Com-
pared to the default strategy, the data buffer has a �.��× lower execution time.

We can see that due to the existence of thread-carried dependences, two DMA 
operations need to be inserted in each loop iteration. However, the initialization 
time of each DMA operation is relatively long, while the amount of data trans-
ferred is small. This situation leads to no profit being gained from using DMA 
to optimize SPM data transfer. Therefore, as shown in Fig. 3b, we can use loop 
distribution and strip-mining to transform the code to change the granularity of 
the data transfer.

With the code transformation, the granularity of the DMA transfer in 
the loop becomes 256 B. The total execution time due to memory access is 
AccessLat + DMALat = 1024 + (327 × 2 + 313 × 2 × 2) = 2930 cycles. The larger 
granularity yields us a ��.��× acceleration.

Next, we attempt to replace the DMA operation in the loop body with NoC for 
two different granularities in the data transfer process. The process of data transfer 
using NoC is shown in Fig. 4. Each box means an SPM for a thread. Since NoC can 
transfer data only by using XY routing in a row or a column, only one thread can 
send data at a time during the data transfer process.

Fig. 3  Code with data transfers by DMA with a granularity of 8 B and 256 B
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The code using NoC to optimize the date transfers is shown in Fig.  5. 
Because of the structure of NoC, all threads need 8 Hops to complete the 
data transfer in this piece of code. Therefore, when the granularity is 8 B, 
NoCLat = 8 × HopLat = 8 × 10 = 80 cycles. The total execution time due to mem-
ory access is AccessLat + DMALat + NoCLat = 1024 + 327 × 3 + 80 × 64 = 7125 

Fig. 4  Structure of data transfer 
by NoC

Fig. 5  Code with data transfers by NoC with a granularity of 8 B and 256 B



14510 X. Tao et al.

1 3

cycles. When the granularity is 256 B, NoCLat = 8 × 80 = 640 
cycles. The total execution time due to memory access is 
AccessLat + DMALat + NoCLat = 1024 + 327 × 3 + 640 × 2 = 3285 cycles. The 
acceleration is ��.��× , while for a transfer granularity of 8 B, it is �.��×.

Figure 6 shows that using DMA and NoC to optimize data transfer can effectively 
optimize the SPM application and effectively improve the execution efficiency of the 
multithreaded application. However, when the granularity of the data transfer is dif-
ferent, the optimization effect of using DMA and NoC for data transfer also differs.

Therefore, we propose the MSDTM to achieve more efficient SPM data trans-
fer optimization in multithreaded applications.

4  Multithreaded SPM data transfer model

In this section, we describe in detail the design and implementation of the 
MSDTM.

Figure 7 presents a high-level overview of the MSDTM framework. The input 
to the framework is a multithreaded application source code with marked ker-
nel regions. Before we input the source code to the MSDTM, we need to port it 
to the heterogeneous many-core architecture. To simplify the description of the 
MSDTM, we focus only on the perfect loop nest wherein all content is in the 
innermost loop. We perform the loop transformation on the innermost loop.

As shown in Fig.  7, the MSDTM framework consists of three components: 
application analysis, the DTP model and a code transformation.

4.1  Application analysis

In this stage, we analyze the multithreaded application to obtain the per-thread 
kernel region memory access profile as the input to the DTP model.

Fig. 6  The time spent due to memory access for the above three data transfer strategies under two differ-
ent granularities
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4.1.1  Data access classification

We traverse the whole marked kernel region to obtain the memory access pro-
file of the global variables. We identify the access types of the global variables: 
read-only, write-only and read-write. While we bring the data only from off-chip 
memory to SPM with read-only access, we also need to transfer the data from 
SPM to off-chip memory with write-only and read-write access.

Moreover, we also classify the global variables as either regular or irregular 
[8]. Because of the predictable inefficiency, irregular access is ignored by the 
MSDTM. Furthermore, regular access can be classified as either contiguous or 
noncontiguous. We then aggregate the access of a variable to one single buffer 
and insert strided DMA operations for noncontiguous access.

4.1.2  Array partitioning and loop tiling

In most heterogeneous many-core architectures, the SPMs always have restricted 
space. However, in general, the kernels in an application may access large var-
iables. Most arrays may not be accommodated in the SPM. Array partitioning 
and loop tiling can separate a large array into smaller ones to accommodate them 
in SPM [14, 21, 26]. Many mainstream compilers support the use of polyhedral 
model by programmers to perform automatic array partitioning and loop tiling 
[22]. Polyhedral model is an abstract representation of a loop program as a com-
putation graph in which questions such as program equivalence or the possibility 
of parallel execution can be answered [10].

4.1.3  Dependence check

Before we perform the dependence check, we introduce a new kind of dependences, 
called input dependence [19], in which both the source and the sink use the same 

Fig. 7  Workflow of the proposed multithreaded SPM data transfer model (MSDTM)
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location. As Fig. 8 shows, the input dependence from S1 to S2 clearly indicates the 
opportunity to eliminate a load at the second reference.

We traverse all the memory accesses for dependence checking. The dependences 
are divided into thread-independent dependences and thread-carried dependences. 
Thread-independent dependences are used to check whether code transformations 
are legal, while thread-carried dependences are used to guide transfer operation 
insertions.

True dependence. The data from the source will be used by the sink; thus, transfer 
operations will be inserted before the sink to update the data.

Anti-dependence. Nothing needs to be done to achieve antidependence because 
the data used by the source are already brought to the SPM before the sink updates 
the data at the same location in the off-chip memory.

Output dependence. If output dependence is the only dependence that exists, 
only the last thread that updates the data at the same location in the off-chip mem-
ory needs to use DMA operations to bring the data from the SPM to the off-chip 
memory.

Input dependence. The threads with input dependence use the data from the same 
location in the off-chip memory; thus, inserting transfer operations before the sink 
may result in better efficiency.

We structure a thread-carried dependence graph (TDG) as a result of a depend-
ence check. We take the code shown in Fig. 2 as an example. There are only two 
dependences in this piece of code. One is a thread-independent input dependence 
due to the read operations of scalar coeff, and the other is a thread-carried true 
dependence due to the write and read operations of variable B. So, in the TDG of the 
piece of code shown in Fig. 2, there is only one edge from the write of B ( S1 ) to the 
read of B ( S2 ). Because thread-carried dependence cannot be backward, no cycle of 
dependences will occur in the TDG.

4.1.4  Data transfer allocation (DTA) algorithm

To determine the allocation of data transfer operations in multithreaded applica-
tions, we propose the DTA algorithm (Algorithm 1). After data access analysis and 
a dependence check, the loop that needs to be transformed with its data access pro-
file and the TDG are supplied to the DTP algorithm as the input. The main idea 
of Algorithm 1 is to insert data transfer operations according to TDG and the kind 
of dependences in TDG. In order to reduce the times of data transfer operations, 
we only insert one DMA_in or DMA_out operation corresponding to one input 
or output dependence at the beginning or the end of the loop. According to true 

Fig. 8  Schematic diagram of 
input dependency
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dependences in TDG, we insert a couple of data transfer operations to optimize the 
process of memory access. 

We first divide the TDG into several subgraphs according to the data access pro-
file (lines 6–13). Each subgraph contains all the dependences corresponding to the 
same data access. If any antidependence exists in the subgraph, we further divide 
the subgraph into two by the antidependence (lines 14–21). Now, we have several 
subgraphs without antidependences and a cycle of dependences. The dependences 
are then further classified. With true dependences, we insert a couple of data transfer 
operations (copy_in & copy_out) between the source and the sink of each depend-
ence (lines 23, 24). Without true dependences, we insert DMA_in operations cor-
responding to the input dependences at the beginning of the loop, while we insert 
DMA_out operations corresponding to the output dependences at the end of the 
loop (lines 25–29). The strategies of the data transfer operations with true depend-
ences are determined by the DTP model mentioned in Sect. 4.2. Since we need to 
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traverse Gi three times and ai once, the worst-case time complexity of Algorithm 1 
is O(n).

We use the code in Fig. 2 as an example to illustrate the process of Algorithm 1. 
As we mentioned in Sect. 4.1.3, the TDG of the piece of code in Fig. 2 has only one 
edge from S1 to S2 which indicates there is only one thread-carried true dependence 
from S1 to S2 . According to Algorithm 1, since there is no anti-dependence in TDG, 
we do not need any division of the graph. The only thing we need to do is to insert a 
couple of data transfer operations between the source ( S1 ) and the sink ( S2).

4.2  Data transfer performance (DTP) model

With the allocation of the data transfer, the memory access profile and hardware 
configuration of a specific heterogeneous many-core architecture are input into the 
DTP model. We first formulate the model for multithreaded applications using a spe-
cific hardware configuration. Next, we use the performance model to derive the opti-
mal granularity and select the most profitable transfer strategy at that granularity.

4.2.1  Model formulation

The execution time of a multithreaded application is determined by the slowest 
thread; hence, we need to select the most profitable transfer strategy to minimize 
the execution time of the slowest thread. Furthermore, we assume that the execu-
tion time of computation is fixed; thus, reducing the execution time due to memory 
access is the only way to minimize the execution time of the slowest thread. Let T be 
the execution time due to memory access of the slowest thread in the multithreaded 
application. As mentioned above, the execution time due to memory access consists 
of data access latency (AccessLat), DMA transfer latency (DMALat) and NoC trans-
fer latency (NoCLat).

Data access latency: Let A = {a1, a2, ..., an} be the variables that need to access 
the SPM or off-chip memory. Let si represent the size of ai (1 ≤ i ≤ n) . Let � repre-
sent the load/store latency of the SPM, while � represent the load/store latency of 
the off-chip memory. Both � and � are defined by the hardware configuration. The 
data access latency is:

For heterogeneous many-core architectures, � is much smaller than � . Therefore, 
data transfer operations can reduce the data access latency by transferring data from 
the off-chip memory to the SPM.

Data transfer granularity: As Table 2 shows, different data transfer granulari-
ties correspond to different DMA and NoC transfer speeds. We let g represent the 
granularity of data transfer operations. To obtain the granularity g in a loop, loop 
strip-mining and loop distribution are utilized during the code transformation. 
Thus, g is subject to the following constraint:

(1)AccessLat =

{
si × �, if ai is on SPM

si × �, if ai is on off-chip memory
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The cost per byte of DMA transfer can be defined relative to the granularity as:

The cost per byte of NoC transfer can be defined relative to the granularity as:

Normally, while v usually reduces by an inverse proportional function, u usually 
remains unchanged as g increases for most heterogeneous many-core architectures. 
To meet the sizes of variables, each data transfer process requires several data trans-
fer operations. This number of operations (or times) can be computed as:

DMA transfer latency: Each DMA transfer operation can be divided into an initial-
ization and a transfer process. Let I represent the initialization cost. At a transfer 
granularity of g, the latency of the DMA transfer per item is:

Both the initialization cost and the speed of the DMA transfer are determined by 
hardware parameters.

NoC transfer latency: The NoC transfer experiences contention in a link when 
several other transfers are simultaneously trying to utilize the same link. Because 
of the contention, all the threads need to transfer data via the NoC step by step. 
We let Hops represent the number of steps of the whole NoC transfer process. 
The latency of the NoC transfer per item is:

The variable Hops is determined by the analysis of the multithreaded application, 
while the speed of the NoC transfer is determined by hardware factors.

Execution time of memory access per data item: Let E be the execution time 
of memory access for variable a. For each variable, we have three transfer strate-
gies to select from. Let Edirect represent the execution time of accessing data from 
off-chip memory directly. Let EDMA represent the execution time of bringing the 
data from off-chip memory via DMA and accessing it from the SPM. Let ENoC 
represent the execution time of obtaining data from other threads via NoC and 
accessing it from the SPM.

As mentioned in the discussion of the DTA algorithm, we consider data trans-
fer with thread-carried true dependences. E can be computed as:

(2)g ≤ MIN(s1, s2,… , sn)

(3)v = f (g)

(4)u = h(g)

(5)times = ⌈ si
g
⌉

(6)DMALat = [I + g × f (g)] × times

(7)NoCLat = Hops × g × h(g) × times
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For each DTA, each data item needs to be written back to memory and read by 
another thread. Furthermore, if we transfer the data via NoC between threads, we 
will need to write it back to the off-chip memory by DMA.

Total execution time of memory access: Since we propose MSDTM to derive 
the optimal granularity and select the most profitable data transfer strategy 
among direct access, DMA and NoC for each variable, the execution time due to 
memory accesses of the slowest thread T is the sum of E. The execution time of 
the slowest thread due to memory accesses can be computed as:

4.2.2  Deriving the optimal granularity

After the problem formulation, we use the performance model to provide guide-
lines for deriving the optimal granularity and selecting a profitable transfer strat-
egy. To minimize the total execution time of memory access, we need to mini-
mize the execution time of memory access per data item. This process can be 
represented as:

In Equation 8, the parameters � , � , and I are defined by the hardware configuration, 
while si and Hops are computed by an application analysis. These parameters will 
not change during the data transfer optimizations. Functions f and h are also defined 
by the hardware configuration. Therefore, during data transfer optimizations, mini-
mizing times will lead to minimizing EDMA and ENoC . The derivation process is:

The optimal granularity g for most heterogeneous many-core architectures is the 
minimal size of all the variables that need to be transferred in the loop body.

(8)

E =

⎧
⎪⎨⎪⎩

Edirect

EDMA

ENoC

=

⎧
⎪⎨⎪⎩

AccessLat × 2

AccessLat × 2 + DMALat × 2

AccessLat × 2 + DMALat + NoCLat

=

⎧
⎪⎨⎪⎩

si × � × 2

si × � × 2 + [I + g × f (g)] × ⌈ si

g
⌉ × 2

si × � × 2 + [I + si × f (si)] + Hops × g × h(g) × ⌈ si

g
⌉

(9)
T =

∑
E

=

∑
Edirect +

∑
EDMA +

∑
ENoC

(10)Minimize ∶ T ⇔ Minimize ∶ E

(11)

Minimize ∶ E ⇐ Minimize ∶ EDMA &Minimize ∶ ENoC

⇐ Minimize: times

⇔ g = MIN(s1, s2,… , sn)



14517

1 3

Compiler‑directed scratchpad memory data transfer…

4.2.3  Comparison of strategies

With the optimal granularity g, the MSDTM can provide guidelines for selecting the 
most profitable strategy at each allocation of data transfer operations. The computa-
tion of the execution time of memory access per data item can be replaced with:

The relationship between Edirect , EDMA , ENoC and si is plotted in Fig.  9. Their 
points of intersections s′ and s′′ split the domain of si into three sub-domains. The 
execution time of memory access per data item E can be computed as:

When the variable Hops which is obtained from application analysis changes, the 
intersections s′ and s′′ change as well.

4.3  Code transformation

When the application analysis is completed, the optimal granularity is derived, and 
the most profitable strategy is selected, the MSDTM transforms the code to optimize 
the data transfer operations.

First, loop distribution and strip-mining are required to make the size of the 
loop suitable for the optimal granularity. Loop distribution can be used to convert a 
sequential loop to multiple parallel loops, while strip-mining is a kind of optimiza-
tions to convert the available parallelism into a form more suitable for the hardware 

(12)E = MIN(Edirect,EDMA,ENoC)

(13)E =

⎧
⎪⎨⎪⎩

Edirect, si ≤ s�

ENoC, s� < si ≤ s��

EDMA, si > s��

Fig. 9  The dependence of 
execution time of memory 
access per data item on the size 
of data
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by grouping the iterations into sets, each of which is treated as a schedule unit [18]. 
Then, DMA or NoC transfer operations are inserted for each allocation of data trans-
fer according to the DTP model. Finally, we transform the subscripts of variables 
that need to be optimized to access the SPM.

5  Experimental evaluation

This section presents the experimental evaluation of our proposed MSDTM on Sun-
way TaihuLight.

5.1  Sunway TaihuLight

In contrast to other existing heterogeneous supercomputers, which include both 
CPU processors and PCIe-connected many-core accelerators, the computing power 
of Sunway TaihuLight is provided by heterogeneous many-core SW26010 proces-
sors that include both the management processing elements (MPEs) and computing 
processing elements (CPEs) in one chip. The general architecture of the SW26010 
processor [9] is shown in Fig. 10.

The processor includes four core groups (CGs). Each CG includes one MPE, 
one CPE cluster with 8 × 8 CPEs, and one memory controller. Each CG has its own 
memory space, which is connected to the MPE and the CPE cluster through the 
memory controller. The processor connects to other outside devices through a sys-
tem interface.

In terms of the memory hierarchy, each MPE has a 32 KB L1 instruction cache 
and a 32 KB L1 data cache, with a 256 KB L2 cache for both instructions and data. 
Each CPE has its own 16 KB L1 instruction cache and a 64 KB user-controlled 
SPM.

As Table  1 shows, while the MPE has access to an 8 GB main memory, the 
CPE can directly access the main memory through gld/gst instructions. In addition, 
the CPE can implement batch data transfer between the SPM and main memory 

Fig. 10  General architecture of the SW26010 processer
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via DMA commands. The efficiency of the DMA transfer is closely related to the 
amount of data transferred, the granularity of the DMA commands and the conti-
nuity of data in the memory. The ideal DMA transfer bandwidth of the processor 
is 134.4 GB/s. Register communication is used for data transfer as NoC between 
CPEs. Since the CPEs are physically arranged in an 8 × 8 array, register communica-
tion can transfer data using only XY routing. In XY routing, an access moves along 
the row-axis first and then along the column-axis. Through register communication, 
each CPE can perform row or column broadcasting and can send data to another 
specific CPE.

5.2  Experimental setup

The proposed MSDTM is implemented on the GCC compiler, which is firstly ported 
for Sunway TaihuLight. In the MSDTM implementation process, we reserve the 
switches for manual adjustment of the data transfer granularity and manual selection 
of the data transfer strategies. At the same time, we automatically obtain the optimal 
granularity and the most profitable strategy by the MSDTM.

To evaluate the performance of the proposed MSDTM, we select test cases from 
the NAS parallel benchmark suite (NPB) [2] and SPEC benchmarks [16], such as 
EP, FT, IS, LU, MG, and SP from the NPB and lbm [25] from the SPEC. In addi-
tion, we choose two representative application kernels, Stencil and PhotoNs. Sten-
cil [1, 21, 27] computations are the foundation of many large applications in scien-
tific computing, while PhotoNs is a cosmic N-body numerical simulation software 
developed by the National Observatory. Before the evaluation, we manually port the 
benchmarks and kernels for Sunway TaihuLight.

Besides, we select a simple but representative application kernel, 1D-FFT  [35], to 
verify that the granularity obtained by the MSDTM is optimal and that the strategy 
is the most profitable one.

5.3  Experimental results

5.3.1  A case study with FFT

The 1D-FFT  kernel is implemented based on butterfly computing with an input data 
size of 8192 bytes. We partition the data into 128 bytes to run the kernel on 64 
threads and partition the data into 1024 bytes to run the kernel on 8 threads. In the 
1D-FFT  kernel, the size of the data in each thread limits the granularity of the data 
transfer. We manually set the granularity of the data transfer to 8, 16, 32, 64 and 128 
bytes. In addition, we set the extra granularities to 256 bytes, 512 bytes and 1024 
bytes for the 8-threaded version. We compare the execution time of the kernel at 
each granularity. For each granularity, we use the three transfer strategies mentioned 
above to optimize the data transfer.

Figure 11 shows the measured values for 8-threaded and 64-threaded kernels. We 
can observe that the execution time of the kernel decreases as the granularity of data 
transfer increases with DMA transfer or NoC transfer, while it remains basically 
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unchanged with direct access. This result means that whether in an 8-threaded appli-
cation or a 64-threaded application, the optimal execution efficiency of the applica-
tion is obtained when the granularity of the data transfer is maximal. In other words, 
the optimal granularity of data transfer is the minimum of the sizes of all data in 
each thread. In addition, the execution time of the kernel due to the DTP model is 
equal to the minimum time spent on the three strategies. This observation proves 
that we can select the most profitable strategy at each granularity based on the DTP 
model.

Furthermore, the MSDTM selects not only the optimal granularity but also the 
most profitable data transfer strategy with the optimal granularity. For the 8-threaded 

Fig. 11  Execution time of 1D-FFT  on 8 threads and 64 threads for different strategies
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and 64-threaded 1D-FFT  kernels, optimizing the data transfer with the MSDTM can 
yield speedups of ��.��× and �.��× compared with version which use direct access.

5.3.2  Performance and energy evaluation

We evaluate the performance speedup of the proposed MSDTM compared to that 
of the original applications with direct memory accesses. In addition to the perfor-
mance evaluation, we evaluate the energy reduction via a script supported by Sun-
way TaihuLight. The application with data transfer optimization by the MSDTM is 
executed on 8 threads, 16 threads and 64 threads.

Figure  12 shows the performance improvement and energy reduction of the 
test cases executed on 8 threads, 16 threads and 64 threads. We can observe that 
MSDTM performs well with respect to both performance improvement and energy 
reduction under all scenarios. However, as we can see from Fig. 12, the test cases we 
use perform the best when executed on 8 threads and the worst when executed on 64 
threads. This is due to the DMA transfer bandwidth on Sunway TaihuLight, which 
results in the roofline curve of the DMA transfer’s efficiency with the varying of 
memory transaction granularity, as shown in Table 2. In other words, the efficiency 
of DMA transfer is bounded by a threshold of the memory transaction granularity, 
and the performance of DMA transfer will not be improved when such a threshold 
is hit. This threshold is 128B when experimenting with 64 threads and the value 
increases when the number of used threads decreases. One can thus expect better 

Fig. 12  Performance improvement and energy reduction on different threads
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performance on 8 threads when using the threshold of 64 threads, i.e., 128B. The 
performance of the used test cases executed on 8 threads thus outperforms those of 
16 threads and 64 threads, as shown in the figure.

As Fig.  13 shows, the MSDTM yields considerable acceleration of all the test 
cases. In particular, the acceleration ratio of MG is �.��× , while the acceleration 
ratio of Stencil is ��.��× . The reason that the two test cases get better performance 
speedup is they have more thread-carried dependences than others, which lead to 
more DMA or NoC transfers, for example, the overlapping of loop tiling in Sten-
cil. In general, the MSDTM provides an average acceleration ratio of �.��× on 64 
threads and an energy reduction of �.��×.

Thus, we observe that the proposed MSDTM is effective in reducing the execu-
tion time and energy of the evaluated test cases.

6  Conclusions

In this work, we propose the MSDTM, a compile-time framework for optimizing 
multithreaded data transfer between SPM and the main memory on heterogeneous 
many-core architectures. This framework determines the allocation of data trans-
fer operations via an application analysis and dependence checking. Next, the DTP 
model is used to obtain the optimal granularity of data transfer and select the most 
profitable strategy. In the experimental evaluation, the proposed MSDTM improves 
the application execution time by �.��× and achieves an energy savings of �.��×.

The future works of this paper include further optimizations for SPM data trans-
fer operations, such as overlapping the process of data transfer with kernel compu-
tation and combining the granularity of data transfer with the size of loop tiling to 
achieve higher efficiency.
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Fig. 13  Maximal performance improvement and energy reduction of the test cases
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