
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:4852–4870
https://doi.org/10.1007/s11227-020-03441-5

1 3

Efficient implementation of modular multiplication
over 192‑bit NIST prime for 8‑bit AVR‑based sensor node

Dong‑won Park1 · Seokhie Hong1 · Nam Su Chang2 · Sung Min Cho3

Accepted: 25 September 2020 / Published online: 27 October 2020
© The Author(s) 2020

Abstract
Modular multiplication is one of the most time-consuming operations that account
for almost 80% of computational overhead in a scalar multiplication in elliptic curve
cryptography. In this paper, we present a new speed record for modular multiplica-
tion over 192-bit NIST prime P-192 on 8-bit AVR ATmega microcontrollers. We
propose a new integer representation named Range Shifted Representation (RSR)
which enables an efficient merging of the reduction operation into the subtrac-
tive Karatsuba multiplication. This merging results in a dramatic optimization in
the intermediate accumulation of modular multiplication by reducing a significant
amount of unnecessary memory access as well as the number of addition operations.
Our merged modular multiplication on RSR is designed to have two duplicated
groups of 96-bit intermediate values during accumulation. Hence, only one accu-
mulation of the group is required and the result can be used twice. Consequently, we
significantly reduce the number of load/store instructions which are known to be one
of the most time-consuming operations for modular multiplication on constrained
devices. Our implementation requires only 2888 cycles for the modular multiplica-
tion of 192-bit integers and outperforms the previous best result for modular multi-
plication over P-192 by a factor of 17%. In addition, our modular multiplication is
even faster than the Karatsuba multiplication (without reduction) which achieved a
speed record for multiplication on AVR processor.

Keywords Multi-precision modular multiplication · NIST curve P-192 · Efficient
implementation · Wireless sensor networks · AVR ATmega microcontrollers

 * Seokhie Hong
 shhong@korea.ac.kr

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3588-2985
http://orcid.org/0000-0001-7506-4023
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03441-5&domain=pdf

4853

1 3

Efficient implementation of modular multiplication over…

1 Introduction

With the appearance of the rapid advancement of Internet of Things (IoT), wire-
less sensor networks (WSNs) are recognized as important enablers consisting of
a numerous number of resource-constrained sensor nodes. Recently, many con-
strained sensor nodes are widely used to monitor and record physical and envi-
ronmental conditions such as temperature, sound, and pollution levels. Compared
with traditional wired networks, it is harder to obtain security in WSNs where
sensor nodes are easily captured or eavesdropped by adversaries owing to the
environment of wireless communication. Such security issues naturally raise a
requirement for the cryptographic mechanism in WSNs which enables secure and
reliable communication. However, it is difficult to provide sufficient security on
WSNs because of many restrictions on computation capability, energy consump-
tion, and even storage space for constrained sensor nodes. For example, MICAz
mote is widely considered as a representative of constrained 8-bit sensor nodes. It
is equipped with an AVR ATmega128 processor which has 4 Kbytes of RAM and
128 Kbytes of programmable flash memory with clock frequency of 7.3728 MHz.
The energy consumption of cryptographic software executed on a processor is
closely related to its execution time, where faster execution time of cryptographic
algorithm usually translates to savings in energy.

In early days, it is believed that Public-Key Cryptosystems (PKCs) are infeasi-
ble to be implemented for resource-constrained sensor node since they require a
significant amount of computation. Until recently, many types of researches have
been proposed to apply PKCs for secure communication on WSNs by overcom-
ing the restrictions of resource-constrained sensor nodes [1–4]. Elliptic curve
cryptography (ECC) is considered as a better choice for WSNs than conventional
PKCs, such as RSA and DSA owing to its short key length. For example, the 160-
bit key in ECC scheme provides the same level of security in RSA scheme with
1024-bit key. Such small key in ECC allows lower memory footprint and band-
width consumption on WSNs. Moreover, only 5% to 10% of the execution time
of RSA exponentiation is required for a scalar multiplication which is the most
time-consuming part of all ECC-based schemes.

ECC-based schemes such as the Elliptic Curve Diffie–Hellman (ECDH) key
exchange and the Elliptic Curve Digital Signature Algorithm (ECDSA) are com-
posed of three levels of operations as described in Fig. 1. The main operation of
virtually all ECC-based schemes is scalar multiplication which requires elliptic
curve point arithmetic operations such as elliptic curve point addition and elliptic
curve point doubling. These point arithmetic operations are composed of field
arithmetic operations such as multiplication, squaring, addition, and inversion.
Except for field inversion, multiplication is the most time-consuming operation
that accounts for almost 80% of computational overhead in computation of scalar
multiplication. After multiplication, reduction operation should always be exe-
cuted to reduce the double sized result.

For efficient ECC implementation on resource-constrained environ-
ments, careful design of field arithmetic operations is required where the most

4854 D. Park et al.

1 3

performance-critical operation is multi-precision multiplication. Hence, the
majority researches of ECC implementation have been focused on improving the
performance of multi-precision multiplication for constrained sensor nodes.

1.1 Related work and motivation

After the first ECC implementation by Gura et al. [1], there have been a variety of
approaches to optimize ECC implementation for constrained devices. Many studies
have focused on improving the performance of multi-precision multiplication which
is the most critical factor for an efficient implementation of scalar multiplication.

In 1994, Comba described an efficient column-wise approach of multi-precision
multiplication referred as the product scanning method on Intel processor [5]. Until
2004, this method had been known as the fastest multiplication with quadratic com-
plexity on AVR processor. However, this is changed for integers with size larger
than 96 bits.

In CHES 2004 [1], Gura et al. presented the hybrid method which combines the
advantage of conventional byte-wise multiplication techniques such as the operand
scanning and product scanning methods. The hybrid method aims at minimizing
the number of load instruction on processor with a large register file by processing
four bytes for each iteration of the inner loop in the calculation. Such a significant
reduction in load instruction in the hybrid method introduced a speed improvement
of up to 25% compared to the product scanning method. Their 160-bit multiplica-
tion requires 3106 clock cycles on 8-bit ATmega128 processor. After that, several
authors applied this method to accelerate the scalar multiplication of ECC imple-
mentation. Most of them focused on optimizing the performance of the hybrid
method and proposed some variants that reported between 2593 and 2881 clock
cycles on 8-bit ATmega128 processor [6–9].

Fig. 1 Hierarchy of ECC-based
scheme

4855

1 3

Efficient implementation of modular multiplication over…

The next milestone belongs to Hutter and Wenger who proposed the operand
caching method [10]. Their technique increases performance of multiplication by
caching the operands in the general-purpose registers to reduce the number of load
instructions. The operand caching method is slightly improved in WISA 2012, where
Seo and Kim introduce an advanced consecutive operand caching method [11, 12].

In 2015, the subtractive Karatsuba method was carefully revisited in [13] by Hut-
ter and Schwabe. This method makes further improvement for the implementation of
subtractive Karatsuba method which costs only 1969 clock cycles for 160-bit oper-
ands and sets the speed record of multi-precision multiplication on ATmega proces-
sor. In [3], it is also proved that Karatsuba method is fastest approach for modular
multiplication on constrained devices.

From the point of view of implementation on constrained devices, load and store
instructions have a huge influence on the performance of multi-precision multipli-
cation. Hence, the main concern of various multiplication methods is reducing the
memory access for operands or intermediate accumulated results during the multi-
plication. Recently, the operand caching method [10] and Karatsuba multiplication
[13] show that careful scheduling of memory access can lead to best performance by
maximizing the use of available registers.

Until now, the reduction is treated as a separate part of multiplication process.
Most studies do not concentrate on optimizing the reduction operation despite that
it always follows multiplication, and consequently, can cause huge memory access
overhead by recalling the previous results. In this paper, we focus on finding an
effective way of reducing unnecessary memory access by considering multiplica-
tions and reductions as a whole.

1.2 Contributions

In this paper, we propose a new method for a fast modular multiplication over 192-
bit prime recommended by the US National Institute of Standards and Technology
(NIST). The result of our work sets a new speed record on an 8-bit AVR ATmega
processor. The following list details the contributions of our work.

• We propose a new integer representation to optimize the implementation of
modular multiplication using the characteristic of modulo prime which has the
term “− 1.” In this regard, we choose the 192-bit NIST standard prime, which
has such characteristic and suitable for constrained devices.

• On the basis of the new integer representation, we present a novel approach for
the 192-bit modular multiplication over the 192-bit NIST prime for 8-bit archi-
tectures. By merging the reduction operations into the subtractive Karatsuba
multiplication on the new integer representation, we optimize the intermediate
accumulation in the modular multiplication. Our merged modular multiplication
has two duplicated groups of 96-bit intermediate results during accumulation.
Hence, only one accumulation of the group is required and the result can be used
twice. Consequently, we significantly reduce the number of load/store instruc-
tions as well as that of addition instructions.

4856 D. Park et al.

1 3

• We present the implementation result of our proposed 192-bit modulo multipli-
cation over the 192-bit NIST prime on an 8-bit AVR ATmega microcontrollers.
The result of our work takes only 2888 clock cycles, which is 17% faster than the
previous best record of modular multiplication by Liu et al. [3]. In addition, our
modular multiplication is even faster than Hutter’s subtractive Karatsuba multi-
plication (without reduction) [13] which achieved a speed record for multiplica-
tion on AVR processor.

This paper is organized as follows: In Sect. 2, we give a brief introduction of ECC
including NIST curve P-192 and review various multi-precision multiplication tech-
niques. In Sect. 3, we propose the new modular multiplication over the 192-bit NIST
prime. Section 4 compares our work with previous works. Finally, we conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Elliptic curve cryptography

Elliptic curve cryptography is first introduced by Koblitz and Miller in 1985 [14,
15]. The security of ECC is based on the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP), and there is no general-purpose subexponential algorithms to solve
the ECDLP. Let �P be a finite field with odd characteristic. An elliptic curve E over
�P can be defined through a short Weierstraßequation of the form y2 = x3 + ax + b ,
where a, b ∈ �P and 4a3 + 27b2 ≠ 0 . It is preferred that the curve parameter a is
fixed to − 3 to optimize the point arithmetic in scalar multiplication.

NIST first proposed five prime-field curves in 1999 [16] for standardization. The
so-called NIST curves E can be defined through a short Weierstraßequation of the
following form:

From the point of view of implementation in resource-constrained devices, the NIST
curve P-192 has a better position than other NIST curves because it provides an
appropriate security level and proper computational cost on small device [3]. This
curve uses prime field �P192

 , defined by prime P192 = 2192 − 264 − 1 . This prime has
the special characteristic that it can be expressed as the sum or difference of a small
number of powers of 2. In addition, the powers are all multiples of 8, 16, or 32. The
reduction algorithm for �P192

 is especially fast and suitable on machines having word
size of 8, 16, or 32. For example, the result of multiplication can be reduced via
three additions modulo P192 using the congruence 2192 ≡ 264 + 1 (mod P192).

2.2 Multi‑precision multiplication techniques

In this section, we briefly review the multi-precision multiplication techniques for
fast execution on constrained device. Throughout this section, we represent X and

(1)E ∶ y2 = x3 − 3x + b.

4857

1 3

Efficient implementation of modular multiplication over…

Y by n-word integers as X = x0 + x1W +⋯ + xnW
n and Y = y0 + y1W +⋯ + ynW

n
where W = 28.

2.2.1 Operand scanning method

The operand scanning method is the most simplest approach to implement multi-
precision multiplication. This method is also referred as schoolbook method or
row-wise method. The multiplication consists of two parts, i.e., inner loop and outer
loop. In the outer loop, the operand xi is loaded and held in working register during
the inner loop. Within the inner loop, the multiplicand yi is loaded one by one and
the partial product is computed by multiplying with xi . Once the inner loop is com-
pleted, the next operand yi+1 is loaded and the inner loop is iterated again.

2.2.2 Product scanning method

The product scanning method accumulates partial products in the different way. This
method computes partial product column by column where the intermediate result
in the same column accumulated immediately in working register without storing
and loading. Once the accumulation for a column is completed, the part of final
multiplication result is obtained. This consecutive approach makes easy to handle
carry propagation. In addition, the product scanning method is very suitable for con-
strained device, since a few number of registers are needed to compute partial prod-
ucts and accumulation.

2.2.3 Hybrid scanning method

Another way to compute a multi-precision multiplication is the hybrid scanning
method [1] which combines the advantages of the operand scanning and the prod-
uct scanning. The hybrid scanning method consists of two nested loop structures
where the inner loop follows the operand scanning method and the outer loop accu-
mulates the result of the inner loop, similar to the product scanning method. The
outer loop can be implemented by processing the inner loop as a sequence of partial
product blocks. This method can save the number of load instructions by sharing the
operands within the block. To maximize the shared operands, it is possible to make
full use of available register. However, since the outer loop follows a column-wise
approach, there is no shared operand between two consecutive blocks. Hence, all
operands need to be reloaded again.

2.2.4 Operand caching method

In [10], Hutter and Wenger proposed the operand caching method. This method
is based on the product scanning method, but it separates the computation into sev-
eral rows. All rows can be further divided into four parts. In the first part, all oper-
ands for the first and second part are loaded. In the second part, all operands are kept
constant and reused. Only one word of the multiplicand is loaded between consecutive
two columns. The third part follows the opposite process of previous part. That is, all

4858 D. Park et al.

1 3

multiplicand are kept constant and reused. Only one word of the operands is loaded
for each column. In the last part, no loading of the operand is required, since the work-
ing registers hold the operands. It is an efficient way to reduce a significant amount of
load operations in the computation of the row by reusing operands already loaded from
the previous part. But whenever a row is changed, reload of operand is required since
there is no shared operand between the rows. To overcome this disadvantage, Seo and
Kim proposed the consecutive operand caching method [11, 12] which re-schedules the
rows in order to share the operands when a row is changed.

2.2.5 Subtractive Karatsuba method

In the early 1960s, Karatsuba proposed the notable multiplication technique with sub-
quadratic complexity [17]. This Karatsuba method can effectively reduce a multiplica-
tion of two n-word operands to three multiplication of two k(= n∕2)-word operands.
Any multiplication method mentioned above can be applied to compute the reduced
half-size multiplication. In [13], Hutter and Schwabe highly optimized implementation
of the subtractive Karatsuba method for various ranges of operands on AVR proces-
sor. We can explain the subtractive Karatsuba multiplication on the 8-bit platform as
follows:

Let X = XA + XB ⋅W
k and Y = YA + YB ⋅W

k . Then,

We can compute X ⋅ Y as

The main idea of optimization technique in [13] is to reduce memory access by
using duplicated computation of LB + HA occurred twice in X ⋅ Y . In addition, this
trick saves k addition operations. The subtractive Karatsuba method in [13] shows
the best performance for multi-precision multiplication on an 8-bit processor.

3 Proposed modular multiplication

3.1 Range shifted representation

Generally, we can represent 192-bit integers X, Y and their multiplication Z = X ⋅ Y
based on 8-bit word size (W = 28) as follows:

(2)L = XA ⋅ YA = LA + LB ⋅W
k,

(3)H = XB ⋅ YB = HA + HB ⋅W
k.

(4)X ⋅ Y = L + (L + H − (XA − XB) ⋅ (YA − YB)) ⋅ 2
8k + H ⋅ 28k.

(5)X =

i=23
∑

i=0

xiW
i = x0 + x1W +⋯ + x23W

23,

4859

1 3

Efficient implementation of modular multiplication over…

where xi, yi, zi ∈ [0, 28 − 1].
For simplicity, we can rewrite Z as presented in (10).

For modular reduction, NIST prime P192 = 2192 − 264 − 1 can be used. We can use
the equation W24 ≡ W8 + 1 (mod P192) for modulo P192 reduction. Then, we have

This is not complete reduction. We need to reduce the part
(z40W

24 + z41W
25 +⋯ + z47W

31) of ZB ⋅W8 that is not in the range of the 192-bit
element. Here we omit the complete reduction step for simplicity.

In the following, we propose a new integer representation for 192-bit integer
which ranges from 2−96 to 296 − 1 . We call it Range Shifted Representation (RSR).
We can represent 192-bit integers X, Y and their multiplication Z = X ⋅ Y with RSR
as follows:

where xi, yi, zi ∈ [0, 28 − 1] . An interesting thing about the RSR is that the result
of multiplication is expanded to both sides. The shape of result is symmetric with
respect to W0 . Because we want to represent integers in the range of [2−96, 296 − 1] ,
we have to transform P192 into the range shifted form for modular reduction. We can
use range shifted prime P192 ⋅ 2

−96 = 296 − 2−32 − 2−96 for modular reduction. We
have to reduce the result at both sides such that z0W−24 + z1W

−23 +⋯ + z11W
−13

(6)Y =

i=23
∑

i=0

yiW
i = y0 + y1W +⋯ + y23W

23,

(7)Z = X ⋅ Y =

i=47
∑

i=0

ziW
i = z0 + z1W +⋯ + z47W

47,

(8)ZA = z0 + z1W +⋯ + z23W
23,

(9)ZB = z24 + z25W +⋯ + z47W
23,

(10)Z = ZA + ZB ⋅W
24.

(11)Z (mod P192) ≡ ZA + ZB + ZB ⋅W
8.

(12)X =

i=23
∑

i=0

xiW
i−12 = x0W

−12 + x1W
−11 +⋯ + x23W

11,

(13)Y =

i=23
∑

i=0

yiW
i−12 = y0W

−12 + y1W
−11 +⋯ + y23W

11,

(14)Z = X ⋅ Y =

i=47
∑

i=0

ziW
i−24 = z0W

−24 + z1W
−23 +⋯ + z47W

23,

4860 D. Park et al.

1 3

and z36W
12 + z37W

13 +⋯ + z47W
23 are reduced by modulo P192 ⋅ 2

−96 . Let
X, Y , Z ∈ �P192

 be represented with RSR where Z = X ⋅ Y . Then, we can reduce Z
using the equation W12 ≡ W−12 +W−4 or W−24 ≡ 1 −W−16 (mod P192 ⋅W

−12).
Let

where zi ∈ [0, 28 − 1].
Then, we can reduce Z as follows:

Note that, for complete reduction, we need to reduce the part
(−z0 − z1W − z2W

2 − z3W
3) of −ZA ⋅W−16 that is not in the range of RSR. Here we

omit the complete reduction step for simplicity.
To utilize RSR in elliptic curve protocol like ECDH or ECDSA scheme, conver-

sions from the original integer representation to RSR and vice versa are required.
For example, let X, Y are coordinates of input point for scalar multiplication, then
conversion from X,Y ∈ [0, 2192 − 1] in Eqs. (5, 6) to X,Y ∈ [2−96, 296 − 1] in
Eqs. (12, 13) is required before conducting scalar multiplication. This conversion
can be simply done by applying modulo P192 ⋅W

−12 for each coordinate. For the
output of the scalar multiplication, conversion from the RSR to original integer rep-
resentation is required. However, compared to computational cost of scalar multi-
plication, these conversions require a negligible cycle counts and are needed only
once. In regard of computation process of other field arithmetic operations on RSR
like addition, subtraction, multiplication, and squaring, it is equal to that on original
representation where P192 ⋅W

−12 is used for reduction.

3.2 Modular multiplication with RSR

We can use Karatsuba method for multiplication with RSR. Let X, Y ∈ �P192
 be rep-

resented with RSR and Z = X ⋅ Y .
Let

(15)ZA = z0 + z1W +⋯ + z11W
11,

(16)ZB = z12 + z13W +⋯ + z35W
23,

(17)ZC = z36 + z37W +⋯ + z47W
11,

(18)Z = ZA ⋅W
−24 + ZB ⋅W

−12 + ZC ⋅W12,

(19)
Z ≡ ZA − ZA ⋅W

−16 + ZB ⋅W
−12 + ZC ⋅W−12 + ZC ⋅W−4

(mod P192 ⋅W
−12).

(20)XA = x0 + x1W +⋯ + x11W
11,

(21)XB = x12 + x13W +⋯ + x23W
11,

4861

1 3

Efficient implementation of modular multiplication over…

where xi, yi ∈ [0, 28 − 1].
Then, X, Y, Z can be represented as

Let low(L), high(H), middle(M) denote XAYA,XBYB, (XA − XB) ⋅ (YA − YB) as
follows:

We can simply denote Z by L, H, M.

Then, the result of Karatsuba multiplication can be reduced by P192 ⋅W
−12 .

We do not need to reduce all part of the result. Because (L + H −M)W−12 of
Eq. (30) just fits in the 192-bit range of RSR, we need to reduce only two parts
LA ⋅W

−24 and HB ⋅W
12 which overflow on both sides of the RSR range. We

can compute Z modulo P192 ⋅W
−12 using the equation W12 ≡ W−12 +W−4 or

W−24 ≡ 1 −W−16 (mod P192 ⋅W
−12) as follows:

(22)YA = y0 + y1W +⋯ + y11W
11,

(23)YB = y12 + y13W +⋯ + y23W
11,

(24)X = XA ⋅W
−12 + XB,

(25)Y = YA ⋅W
−12 + YB,

(26)

Z = X ⋅ Y = (XA ⋅W
−12 + XB) ⋅ (YA ⋅W

−12 + YB)

=XAYA ⋅W
−24 + XBYB + (XAYB + XBYA)W

−12

= XAYA ⋅W
−24 + XBYB

+ (XAYA + XBYB − (XA − XB) ⋅ (YA − YB))W
−12.

(27)
L = XAYA = l0 + l1W +⋯ + l23W

23 = LA + LB ⋅W
12,

(LA = l0 + l1W +⋯ + l11W
11, LB = l12 + l13W +⋯ + l23W

11)

(28)
H =XBYB = h0 + h1W +⋯ + h23W

23 = HA + HB ⋅W
12,

(HA =h0 + h1W +⋯ + h11W
11,HB = h12 + h13W +⋯ + h23W

11)

(29)M = (XA − XB) ⋅ (YA − YB) = m0 + m1W +⋯ + m23W
23.

(30)

Z ≡ L ⋅W−24 + H + (L + H −M)W−12

≡ (LA + LB ⋅W
12)W−24 + HA + HB ⋅W

12 + (HA + HB ⋅W
12

+ LA + LB ⋅W
12 −M)W−12 (mod P192 ⋅W

−12)

4862 D. Park et al.

1 3

The interesting thing in the above equations is that (LA + LB + HA + HB) is expressed
exactly twice. We can make use of this duplicated intermediate result to reduce
memory access and accumulate operations for the efficient implementation of mod-
ular multiplication.

3.3 Implementation of modular multiplication with RSR

We used 2-level Karatsuba recursion for implementation of the 192-bit multipli-
cation which is composed of three 96-bit 1-level Karatsuba multiplication, L, H,
and M, as represented in Eqs. (27), (28) and (29). Let L(1),H(1) and M(1) be the
48-bit small multi-precision multiplications for 96-bit 1-level Karatsuba multi-
plications L, H, and M, respectively. Similarly, let L(2),H(2) and M(2) be the 96-bit
1-level Karatsuba multiplications for 192-bit 2-level Karatsuba multiplications L,
H, and M, respectively.

3.3.1 96‑Bit 1‑level Karatsuba multiplication

Implementation of 96-bit 1-level Karatsuba multiplication L(2),H(2) and M(2) fol-
lows basically the same scheduling as 96-bit multiplication in [13]. Algorithm 1
is a basic implementation of 96-bit 1-level Karatsuba multiplication presented in
[13]. Algorithm 1 is composed of three 48-bit small multi-precision multiplica-
tions L(1),H(1) and M(1) that did not include any load or store instructions, and the
result is kept in 11 registers.

Let

where L(1)
A
, L

(1)

B
,H

(1)

A
,H

(1)

B
,M

(1)

A
 and M(1)

B
 are 6-bytes integers. As described in Algo-

rithm 1, we can obtain the result of 96-bit 1-level Karatsuba multiplications L(2),H(2) ,
and M(2) through the computation of L(1) + (L(1) + H(1) −M(1))W6 + H(1)

⋅W12 . We
can express this computation in detail as follows:

(31)

Z ≡LA − LA ⋅W
−16 + LB ⋅W

−12 + HA + HB ⋅W
−12 + HB ⋅W

−4

+ (HA + HB ⋅W
12 + LA + LB ⋅W

12 −M)W−12

≡ − LA ⋅W
−16 + HB ⋅W

−4 + (LA + LB + HA + HB)

+ (LA + LB + HA + HB −M)W−12 (mod P192 ⋅W
−12).

(32)L(1) = L
(1)

A
+ L

(1)

B
⋅W6,

(33)H(1) = H
(1)

A
+ H

(1)

B
⋅W6,

(34)M(1) = M
(1)

A
+M

(1)

B
⋅W6,

4863

1 3

Efficient implementation of modular multiplication over…

In Eq. (35), the computation of L(1)
B

+ H
(1)

A
 is appeared twice. This duplicated compu-

tation can be utilized in Algorithm 1 to minimize the register allocation and reduce
additional load and store instructions for accumulation process. Let us assume that
the result of L(1)

B
+ H

(1)

A
 in Step 5 is not reused at Step 9, then L(1)

B
 and H(1)

A
 should be

held in registers before the computation of L(1)
B

+ H
(1)

A
 in Step 5 and saved in mem-

ory with store instructions. Moreover, the result of L(1)
B

+ H
(1)

A
 is kept in registers for

next accumulation. In Step 9, because of the calculation of L(1)
B

+ H
(1)

A
 the loading of

L
(1)

B
 and H(1)

A
 which are stored in the memory after Step 5 is required. In Algorithm 1,

however, the store/load instructions for each L(1)
B

 and H(1)

A
 actually are not necessary;

only the result of L(1)
B

+ H
(1)

A
 needs to be kept in registers for reusing at Step 9. Fur-

thermore, six addition instructions for L(1)
B

+ H
(1)

A
 can be saved.

3.3.2 Modified 96‑bit 1‑level Karatsuba multiplication for L(2)

We can represent L(2) as

where L(2)
A
, L

(2)

B
 are 12-byte integers. We want to compute L(2)

A
+ L

(2)

B
 during the

computation of 96-bit 1-level Karatsuba multiplication L(2) = XAYA and reload it to
build the complete duplicated intermediate result (L(2)

A
+ L

(2)

B
+ H

(2)

A
+ H

(2)

B
) in 192-

bit 2-level Karatsuba multiplication with reduction. Through this process, we can
reduce redundant memory access for L(2)

A
 and L(2)

B
 in 2-level Karatsuba multiplica-

tion. In Algorithm 2, we modified 96-bit 1-level Karatsuba multiplication for L(2) by
inserting the computation of L(2)

A
+ L

(2)

B
 into Algorithm 1.

(35)
L
(1)

A
+ (L

(1)

B
+ L

(1)

A
+ H

(1)

A
−M

(1)

A
) ⋅W6

+ (L
(1)

B
+ H

(1)

B
+ H

(1)

A
−M

(1)

B
) ⋅W12 + H

(1)

B
⋅W18.

(36)L(2) = L
(2)

A
+ L

(2)

B
⋅W12,

4864 D. Park et al.

1 3

We can represent L(2) by the 48-bit small multi-precision multiplication L(1),H(1)
and M(1) as follows:

Then

where c is 1-byte carry. We can represent L(2)
A

 and L(2)
B

 as

We can get L(2)
A

 easily by taking only 12-byte without carry byte c from Eq. (38).
L
(2)

A
+ L

(2)

B
 can be represented as

To compute L
(2)

A
+ L

(2)

B
 , we first compute

(L
(1)

A
+ L

(1)

B
+ H

(1)

A
−M

(1)

A
) ⋅W6 + (L

(1)

A
+ L

(1)

B
+ H

(1)

A
+ H

(1)

B
−M

(1)

B
) ⋅W12 + H

(1)

B
⋅W18 .

Then, upper 6-byte of the first computation, which is (H(1)

B
+ c) , is added to upper

6-byte of L(2)
A

.

(37)
L(2) = L

(1)

A
+ (L

(1)

A
+ L

(1)

B
+ H

(1)

A
−M

(1)

A
) ⋅W6

+ (L
(1)

B
+ H

(1)

A
+ H

(1)

B
−M

(1)

B
) ⋅W12 + H

(1)

B
⋅W18.

(38)L
(1)

A
+ (L

(1)

A
+ L

(1)

B
+ H

(1)

A
−M

(1)

A
) ⋅W6 = L

(2)

A
+ c ⋅W12

(39)L
(2)

A
=L

(1)

A
+ (L

(1)

A
+ L

(1)

B
+ H

(1)

A
−M

(1)

A
) ⋅W6 − c ⋅W12,

(40)L
(2)

B
= (L

(1)

B
+ H

(1)

A
+ H

(1)

B
+ c −M

(1)

B
) + H

(1)

B
⋅W6.

(41)
L
(2)

A
+ L

(2)

B
=(L

(1)

A
+ L

(1)

B
+ H

(1)

A
+ H

(1)

B
+ c −M

(1)

B
)

+ (L
(1)

A
+ L

(1)

B
+ H

(1)

A
+ H

(1)

B
−M

(1)

A
) ⋅W6 − c ⋅W12.

4865

1 3

Efficient implementation of modular multiplication over…

In Algorithm 2, L(1)
A

 is added to L(1)
B

 at Step 3. In Step 6, (L(1)
A

+ L
(1)

B
+ H

(1)

A
)

is computed and carry c′ , which is different from c of (38), is propagated
through (h̄6,… , h̄11) . In Step 9, (h̄0,… , h̄5) is copied to represent the dupli-
cate partial result (L(1)

A
+ L

(1)

B
+ H

(1)

A
) of Eq. (41) such that (h̄0,… , h̄5, h̄0,… , h̄5) .

On the right half of it, (H(1)

B
+ c�) is added. In Step 10, M(1) is subtracted.

(L
(1)

A
+ L

(1)

B
+ H

(1)

A
−M

(1)

A
) = (t0,… , t5) is added to (H(1)

B
+ c) in Step 13. Then, we

can store L(2)
A

+ L
(2)

B
 in (z12,… , z23, carry) . In comparison with Algorithm 1, we can

save 6 load instructions for L(1)
A

 and compute L(2)
A

+ L
(2)

B
 in Algorithm 2 through this

process.

3.3.3 192‑Bit 2‑level Karatsuba multiplication with reduction

We combined Karatsuba multiplication with reduction on RSR to generate more
duplicated intermediate results. The graphical illustrations of 192-bit 2-level Karat-
suba multiplication with reduction on RSR are shown in Fig. 2. Figure 2a shows that
L
(2)

A
= l0 +⋯ + l11W

11 and H(2)

B
= h12 +⋯ + h11W

23 need to be reduced for modu-
lar reduction. Figure 2b shows the reduced result of L(2)

A
 and H(2)

B
 by P192 ⋅W

−12 .
Now, we can visualize which one is accumulated for computing the final result of
Eq. (31). As mentioned earlier, (L(2)

A
+ L

(2)

B
+ H

(2)

A
+ H

(2)

B
) is duplicated so that we

can use it for reducing memory access and optimize the register usage by inserting
accumulated value of the duplicated intermediate results into Karatsuba multiplica-
tion with reduction.

Algorithm 3 shows the implementation of 192-bit×192-bit 2-level Karatsuba mul-
tiplication with reduction over �P192⋅W

−12 . For computing (L(2)
A

+ L
(2)

B
+ H

(2)

A
+ H

(2)

B
) ,

at first L(2)
A

+ L
(2)

B
 is computed during the evaluation of L(2) through Algo-

rithm 2 and saved. After the multiplication of XB ⋅ YB in Step 4, we get the result
H(2) = H

(2)

A
+ H

(2)

B
⋅W12 and compute H(2)

A
+ H

(2)

B
 in Step 5. In the next step, we

load L(2)
A

+ L
(2)

B
 and accumulate it to H(2)

A
+ H

(2)

B
 . The accumulated result requires

an additional register for a carry byte. Therefore, we can hold the complete dupli-
cated intermediate result (LA + LB + HA + HB) in 13 registers which is represented
by (T , carry2) = (t0,… , t11, carry2) . In Step 7, we can represent the other half side
of the intermediate result in Fig. 2b by just copying T of duplicated intermediate

Fig. 2 Process of modular multiplication with RSR

4866 D. Park et al.

1 3

results without carry2 . This is a very efficient way to decrease the number of load
and save operations for previous computation results. Moreover, the number of addi-
tion operation is reduced. These advantages save clock cycle counts significantly. In
Step 10, carry2 is added for complete accumulation.

Because we cannot always hold the 192-bit result of 1-level Karatsuba multiplica-
tion, careful handling of the 32 registers is required to minimize the memory access
between 96-bit Karatsuba multiplication L(2),H(2) , and M(2) . We reordered the order
of computation from L(2) → H(2)

→ M(2) in [13] to M(2)
→ L(2) → H(2) . Since H(2)

B
 is

kept in registers after Step 4, we can directly reduce H(2)

B
 without any memory access

at Step 7. This generates carry3 at which carries from Step 8, Step 9, and Step 10 are
accumulated for reducing all carries together at Step 11.

4 Result

In this section, we present the implementation result of our 192-bit modular multi-
plication on 8-bit AVR ATmega128 processors providing the execution time (cycle
counts). The timing of our work is obtained by simulation with Atmel studio 7.0. We
refer the cycle counts represented in [18] to compare with various multiplications.

Table 1 shows the execution time of previous works for 192-bit multiplication (only)
and 192-bit modular multiplication over NIST P192 . The results for multiplication cover
various multiplication methods including operand scanning, product scanning, hybrid
scanning, operand caching, consecutive operand caching, and Karatsuba method.
Among them, the implementation of Karatsuba method by Hutter and Schwabe [13]
sets the speed record for 192-bit multiplication. In [3], it is also verified that modular

4867

1 3

Efficient implementation of modular multiplication over…

multiplication using the Karatsuba method achieves better performance than other
methods for 192-bit modular multiplication over NIST P192.

The Karatsuba multiplication (only) [13] needs 241 LD/LDD instructions, 108 ST/
STD instructions, 46 PUSH instructions, and 21 POP instructions. Our modular mul-
tiplication requires 212 LD/LDD instructions, 104 ST/STD instructions, 20 PUSH
instructions, and 20 POP instructions. Even though our implementation includes a
reduction step, it requires fewer LDD/STD instructions and PUSH instructions. This
is due to the fact that we can reduce the redundant memory access effectively using
duplicate intermediate results of multiplication which are generated from combining
Karatsuba multiplication with reduction on RSR.

In [3], Liu et al. present two types of implementation for modular multiplication over
NIST P192 using consecutive operand caching and Karatsuba method. Bu comparison,
our work is about 26% faster than the one using consecutive operand caching method
which requires 4042 cycles. The other one applies Karatsuba method of [13] for modu-
lar multiplication and requires 3597 cycles which is the previous best result. Our work
saves 17% cycles than that and even faster than the multiplication (only) in [13]. Our
modular multiplication achieves the best speed record for 192-bit modular multiplica-
tion over NIST prime P192 on the 8-bit AVR ATmega microcontroller.

In Table 2, we also compare the performance of the modular multiplications in
PKCs on 8-bit AVR processor. The basic operation underlying RSA is modular expo-
nentiation where the complexity of the exponentiation is decided by the size of modu-
lus and the exponent. Chinese Remainder Theorem (CRT) can be utilized to reduce the

Table 1 Cycle counts of
multiplication and modular
multiplication for 192-bit
operands on 8-bit ATmega128
processor

aMultiplication (only
bModular multiplication over NIST P

192

Approach Including
reduction

Cycle counts

Operand scanninga X 7760
Product scanninga X 5614
Hybrid scanninga [1] X 4133
Operand cachinga [10] X 3470
Consecutive operand cachinga [11] X 3437
Subtractive Karatsubaa [13] X 2987

Consecutive operand cachingb [3] O 4042

Subtractive Karatsubab [3] O 3597

This paperb O 2958

Table 2 Comparison of modular
multiplications in PKCs on 8-bit
ATmega128 processor

Literature Input size PKCs Cycle counts

In [21] 512-bit RSA-1024 65,649
In [20] 160-bit ECC (OPFs) 3237
This paper 192-bit ECC (NIST P

192
) 2958

4868 D. Park et al.

1 3

size of both modulus and the exponent. For example, the exponentiation of RSA-1024
can be decomposed into two 512-bit modular exponentiations by applying CRT where
512-bit modular multiplication can be used instead of 1024-bit modular multiplication
to speed up by a factor of four. The 512-bit modular multiplication is most time-con-
suming operation in RSA-1024 where Montgomery reduction [19] is commonly used
to avoid trial division by using simple shift instruction which accelerates reduction
operation. For comparison between RSA and ECC, we choose 160-bit key size of ECC
system to achieve comparable security level to RSA-1024. The 160-bit ECC imple-
mentation in [20] uses Optimal Prime Fields(OPFs) which are represented by low-
weight primes. This specific primes allow for simplification of the modular arithme-
tic. The result of 160-bit modular multiplication makes a big difference with the result
of 512-bit modular multiplication used in RSA-1024 [21]. This difference shows why
ECC is better choice for the implementation of PKCs on constrained devices. Our 192-
bit modular multiplication is even faster than the 160-bit modular multiplication which
uses also Montgomery method to perform reduction efficiently. In our work, instead of
using Montgomery reduction, we focused on merging reduction operation into Karat-
suba multiplication having two duplicated groups of intermediate results which result
in reduction in the memory access.

5 Conclusion

Many studies focus on improving the performance of multi-precision multiplication,
which is the most critical factor for an efficient ECC implementation on constrained
devices. Among various methods for multi-precision multiplications, the Karatsuba
multiplication of Hutter and Schwabe in [13] is to be considered the best choice for
an efficient implementation on the 8-bit AVR ATmega family of microcontrollers.
However, these studies do not consider the reduction operation followed by multi-
plication thoroughly although this process introduces significant amount of memory
access for recalling the multiplication result.

In this paper, we concentrated on reducing unnecessary memory access related to
accumulation of intermediate results by merging reduction process into multiplica-
tion. In this context, we proposed a new integer representation named range shifted
representation and optimized the modular multiplication over 192-bit NIST prime
P192 . Our work shows that Karatsuba multiplication with reduction on RSR gener-
ates duplicated intermediate results during accumulation which have many advan-
tages for an efficient implementation of modular multiplication. Careful ordering of
computation routines also saves load/save instructions. Our proposed modular multi-
plication surpasses the multiplication (only) in [13] and achieved a new speed record
for 192-bit modulo multiplication over NIST prime P192 on an 8-bit AVR ATmega
processor.

Acknowledgements This work was supported by Institute for Information and communications Technol-
ogy Planning and Evaluation (IITP) grant funded by the Korea government (MSIT). (No. 2019-0-00033,
Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity).

4869

1 3

Efficient implementation of modular multiplication over…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Gura N, Patel A, Wander A, Eberle H, Shantz SC (2004) Comparing elliptic curve cryptography and RSA
on 8-bit CPUs. In: Joye M, Quisquater JJ (eds) Cryptographic hardware and embedded systems (lecture
notes in computer science), vol 3156. Springer, Berlin, pp 119–132

 2. Liu A, Ning P (2008) TinyECC: a configurable library for elliptic curve cryptography in wireless sensor
networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor Net-
works (IPSN), pp 245–256

 3. Liu Z, Seo H, Großschädl J, Kim H (2016) Efficient implementation of NIST-compliant elliptic curve
cryptography for 8-bit AVR-based sensor nodes. IEEE Trans Inf Forensics Secur 11(7):1385–1397

 4. Seo SC, Seo H (2018) Highly efficient implementation of NIST-compliant Koblitz curve for 8-bit AVR-
based sensor nodes. IEEE Access 6:67637–67652

 5. Comba PG (1990) Exponentiation cryptosystems on the IBM PC. IBM Syst J 29(4):526–538
 6. Scott M, Szczechowiak P (2007) Optimizing multiprecision multiplication for public key cryptography.

Cryptology ePrint archive, report 2007/299
 7. Szczechowiak P, Oliveira LB, Scott M, Collier M, Dahab R (2008) NanoECC: testing the limits of elliptic

curve cryptography in sensor networks. In: Proceedings of the International Conference on Wireless
Sensor Networks’08). Springer, Berlin, pp 305–320

 8. Uhsadel L, Poschmann A, Paar C (2007) Enabling full-size public-key algorithms on 8-bit sensor nodes.
In: Proceedings of the International Conference on Security and Privacy in Ad-Hoc and Sensor Net-
works (ESAS’07). Springer, Berlin, pp 73–86

 9. Yang Z, Johann G (2011) Efficient prime-field arithmetic for elliptic curve cryptography on wireless sen-
sor nodes. In: Proceedings of the International Conference on Computer Science and Network Technol-
ogy, pp 459–466

 10. Hutter M, Wenger E (2011) Fast multi-precision multiplication for publickey cryptography on embed-
ded microprocessors. In: Preneel B, Takagi T (eds) Cryptographic hardware and embedded systems
(lecture notes in computer science), vol 6917. Springer, Berlin, pp 459–474

 11. Seo H, Kim H (2012) Multi-precision multiplication for public-key cryptography on embedded micro-
processors. In: MotiYung DHL (ed) Information security applications, vol 7690. Lecture notes in com-
puter science. Springer, Berlin, pp 55–67

 12. Seo H, Kim H (2013) Optimized multi-precision multiplication for public-key cryptography on embed-
ded microprocessors. Int J Comput Commun Eng 2(3):255

 13. Hutter M, Schwabe P (2015) Multiprecision multiplication on AVR revisited. J Cryptogr Eng
5(3):201–214

 14. Miller VS (1985) Use of elliptic curves in cryptography. In: Proceedings of the Conference on the
Theory and Application of Cryptographic Techniques, Santa Barbara, CA, USA. Springer, Berlin, pp
417–426 (1985)

 15. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209
 16. National Institute of Standards and Technology (1999) Recommended elliptic curves for federal gov-

ernment use. http://csrc.nist.gov/encry ption /dss/ecdsa /NISTR eCur.pdf
 17. Karatsuba AA, Ofman YP (1963) Multiplication of multidigit numbers on automata. Sov Phys Dokl

7(7):595–596
 18. Liu Z, Seo H, Kim H (2016) A synthesis of multi-precision multiplication and squaring techniques for

8-bit sensor nodes: state of-the-art research and future challenges. J Comput Sci Technol 31(2):284–299
 19. Montgomery PL (1985) Modular multiplication without trial division. Math Comput 44(170):519–521
 20. Liu Z, Großschädl J, Wong DS (2014) Low-weight primes for lightweight elliptic curve cryptography

on 8-bit AVR processors. In: Information Security and Cryptology—INSCRYPT 2013. LNCS (2014)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf

4870 D. Park et al.

1 3

Affiliations

Dong‑won Park1 · Seokhie Hong1 · Nam Su Chang2 · Sung Min Cho3

 Dong-won Park
 wony86a@gmail.com

 Nam Su Chang
 nschang@sjcu.ac.kr

 Sung Min Cho
 muji0828@korea.ac.kr

1 Center for Information Security Technologies (CIST), Korea University, Seoul 02841,
South Korea

2 Sejong Cyber University, Seoul 05000, South Korea
3 Crypt & Tech, Seoul 02841, South Korea

 21. Liu Z, Großschädl J, Kizhvatov I (2010) Efficient and Side-Channel Resistant RSA Implementation for
8-bit AVR Microcontrollers. In: Workshop on the Security of the Internet of Things—SOCIOT 2010,
1st International Workshop, Tokyo, Japan, November 29. IEEE Computer Society, Los Alamitos

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://orcid.org/0000-0002-3588-2985
http://orcid.org/0000-0001-7506-4023

	Efficient implementation of modular multiplication over 192-bit NIST prime for 8-bit AVR-based sensor node
	Abstract
	1 Introduction
	1.1 Related work and motivation
	1.2 Contributions

	2 Preliminaries
	2.1 Elliptic curve cryptography
	2.2 Multi-precision multiplication techniques
	2.2.1 Operand scanning method
	2.2.2 Product scanning method
	2.2.3 Hybrid scanning method
	2.2.4 Operand caching method
	2.2.5 Subtractive Karatsuba method

	3 Proposed modular multiplication
	3.1 Range shifted representation
	3.2 Modular multiplication with RSR
	3.3 Implementation of modular multiplication with RSR
	3.3.1 96-Bit 1-level Karatsuba multiplication
	3.3.2 Modified 96-bit 1-level Karatsuba multiplication for
	3.3.3 192-Bit 2-level Karatsuba multiplication with reduction

	4 Result
	5 Conclusion
	Acknowledgements
	References

