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Abstract
Stroke is one of the leading causes of death as well as results in a massive eco-
nomic burden for society. Stroke is a cerebrovascular disease mainly divided into 
two types: ischemic stroke and hemorrhagic stroke, which, respectively, refer to the 
partial blockage and bleeding inside brain blood vessels. Both stroke types lead to 
nutrient and oxygen deprivation in the brain, which ultimately cause brain damage 
or death. This study focuses on ischemic stroke in rats with middle cerebral artery 
occlusion (MCAO) as experimental subjects, and the volumes of infarct and atrophy 
are calculated based on the brain slice images of rat brains stained with 2,3,5-triph-
enyl tetrazolium chloride. In this study, a stroke rat brain infarct and atrophy vol-
umes computation system (SRBIAVC system) is developed to segment the infarcts 
and atrophies from the rat brain slice images. Based on the segmentation results, 
the infarct and atrophy volumes of a rat brain can be computed. In this study, 168 
images of brain slices cut from 28 rat brains with MCAO are used as the test sam-
ples. The experimental results show that the segmentation results obtained by the 
SRBIAVC system are close to those obtained by experts.

Keywords Stroke · Middle cerebral artery occlusion (MCAO) · 2,3,5-Triphenyl 
tetrazolium chloride (TTC) · Brain infarct · Brain atrophy

1 Introduction

Stroke is now the leading cause of acquired adult disability worldwide [29]. 
Stroke is caused mainly by the internal cerebrovascular obstruction or hemor-
rhagic that causes the brain lack of nutrient and oxygen, leading to brain injury or 
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death eventually. Stroke is classified majorly into two types: ischemic stroke and 
hemorrhagic stroke, in which ischemic stroke accounts for 70–80% of all stroke 
incidences. According to the statistics of World Health Organization (WHO), 
there were about 15.2 million people died of stroke and ischemic heart disease in 
2016 and these diseases are still the leading causes of death over the last decade 
[42]. In 2013, global prevalence of stroke was 25.7 million, in which 10.3 mil-
lion people suffered first attack [10]. In the USA, stroke ranked as No. 5 among 
all causes of death in 2014 and is also a leading cause of long-term disability 
and cognitive impairment; according to the estimates in 1999, there were about 
795,000 American experienced a new or recurrent stroke, in which 610,000 peo-
ple were first attacks and others were recurrent incidences [4]; according to the 
data during 2011–2014, the overall stroke prevalence was estimated 7.2 million 
American over 20 years of age, accounting for 2.7% of the population [4]; from 
2012 to 2013, the estimated overall cost of stroke was US$33.9 billion [4, 26]; it 
is projected that, by 2030, 3.88% of the US population over 18 years of age will 
have had a stroke, and the real total direct annual stroke-related medical costs, in 
2010, are estimated to increase from $71.55 billion to $184.13 billion between 
2012 and 2030 [31]. Age is one of the essential risk factors for stroke. The prob-
ability of suffering a stroke attack is nearly doubled every 10 years over age 55 
[41]. Due to the increasing growth of aging population worldwide, it has been a 
critical challenge to reduce the cost of stroke diagnosis and treatment. Therefore, 
many investigators are highly interested in the research of stroke fields.

In general, the brain has a high demand for oxygen and glucose, i.e., even 
though the brain tissue represents only about 2% of the whole body weight, it 
requires 20% of the body’s total oxygen consumption, and adult cerebral blood 
flow takes up 15% of the cardiac output [6, 27]. The delivery of oxygen and glu-
cose to the brain via cerebral blood flow is essential for normal brain functions. 
Clinically, the most common type of stroke belongs to ischemic infarcts. Among 
the several major vessels in the brain, infarction frequently occurs in the greatest 
branch of internal carotid artery called middle cerebral artery. The sudden loss 
of cerebral blood supply, even a few minutes, initiates a series of cellular and 
molecular cascades that lead to irreversible ischemic brain damage, eventually 
leading to stroke [39].

Although some therapies and drugs have been developed to inhibit or treat ischemic 
stroke [7, 32], there is no effective strategy or medication treatment yet to completely 
prevent or cure the disease. Intravenous thrombolysis using recombinant tissue plas-
minogen activator (rtPA), for example, is now the only approved medical treatment for 
acute ischemic stroke. However, the administration of rtPA is limited up to 4.5 h after 
stroke and its applicable rate is only up to 5% of all patients [11]. Even though for stroke 
patients, the sooner tPA is given to, the greater the benefit they have, and only approxi-
mately one quarter of patients receive timely door-to-needle time ≤ 60 min [12]. There-
fore, there is an urgent need for developing new medical treatments for acute ischemic 
stroke. However, successful translation of preclinical stroke research is rare, which may 
be attributed partially to the complexity of stroke pathobiology or to the inadequate 
choice of animal model. Even though the limited application of animal experiments in 
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stroke study, several animal models have been applied in stroke research, providing a 
better understanding of stroke pathophysiologic mechanisms.

Rodent models have long been employed as one of the important methods for 
understanding ischemic stroke mechanism [3, 18, 25]. For example, middle cerebral 
artery occlusion (MCAO), one of the animal models that can closely simulate human 
ischemic stroke and account for  > 40% ischemic stroke animal experiments, is applied 
in this study to compensate for the flaw of animal model determination. Staining 
ischemic brain slice with 2,3,5-triphenyl tetrazolium chloride (TTC) has been consid-
ered as a common and reliable method for visualizing the infarct region of an animal 
brain to reveal the severity of stroke level [3, 18]. Commonly, images of TTC-staining 
brain slice of MCAO-treated ischemic rats are examined by well-trained experts who 
are familiar with discriminating TTC-staining images, and the infarcted regions are 
then determined and analyzed. These rodent stroke animal models can not only provide 
valuable information of pathophysiology of ischemic brain injury, but also aid in the 
development of novel neuroprotectvie or antioxidant agent against stroke. For example, 
Xu et al. [43] used MCAO mice model to examine the therapeutic potential of Huma-
nin (HNG) in stroke mice. Brain slices of HNG pretreated and posttreated stroke mice 
were stained with TTC, and the infarct region of these images were then determined. 
Their results showed that HNG protects against cerebral ischemia/reperfusion injury 
in mice. Thus, these animal models can help develop stroke translational research from 
bench to bedside.

The examination of images of TTC-stain rat brain slice is time-consuming and labor 
intensive, and sometimes subjective bias may exist due to manual investigation. There-
fore, in this study a stroke rat brain infarct and atrophy volumes computation (SRBI-
AVC) system is provided to segment the infarcts and atrophies in rat brain slice images. 
Then, the brain infarct and atrophy volumes of the rat can be computed via the segmen-
tation results. Methods including background removal, gamma correction, brain cer-
ebral central line detection, and genetic algorithm will be applied to segment the brain 
infarct and atrophy regions in the rat brain slice images and to precisely estimate the 
infarct and atrophy volumes. In segmenting rat brain infarction, not only gamma correc-
tion but also local gamma correction are proposed to stretch the contrast of an image. 
This system can provide a potential tool for the development of stroke medication.

The remainder of this paper is organized as follows. The next section will intro-
duce related works for literature reviews and the ischemic rat stroke images which 
will be used as the testing data in this paper. Section 3 describes the SRBIAVC Sys-
tem in details. In Sect. 4, two machine learning methods are provided to decide the 
fittest values for the parameters used in the SRBIAVC System. The experimental 
results are illustrated in Sect. 5. The conclusions are given in the last section.

2  Related works and materials

2.1  Literature reviews

In addition to the selection of animal model, how to appropriately interpret the ani-
mal experimental results is another important issue. Some studies, for example, 
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employed well-trained animal physiologist to determine the area of rat ischemic 
stroke, and some employed public image procession program such as ImageJ to 
determine its severity [5, 13, 14, 34]. In the preclinical animal studies of stroke drug 
development, there are massive demands for stroke image analysis. However, few 
attempts have been made to develop automatic calculation algorithms to deal with 
this problem [13, 23, 24]. Therefore, it is critical to develop methods that can assess 
the effects of drugs or treatments on stroke animal models.

In general, the size of infarct region is often examined to determine the sever-
ity of brain damage after stroke. Hence, it is reasonable to assess the effects of a 
regimen by comparing differences in brain infarct regions between stroke patients 
with or without the treatment. Furthermore, the estimation of differences in the daily 
progression of infarct regions can aid doctors to diagnose patients’ stroke condi-
tions. Therefore, the correct estimation of infarct volume is a very important issue 
on stroke therapy. Traditionally, infarct volume is estimated manually by conduct-
ing calculations on images of brain slices. However, these time-consuming tasks 
do not yield precise approximations of infarct volume as the estimation of infarct 
area is often hindered by factors such as background, lighting, and corpus callosum. 
Currently, many methods have been applied to detect the infarct region and various 
studies have constructed many algorithms aiming to correctly compute the infarct 
volume [22–24, 28, 35]. This study is to develop an automatic identification system 
to distinguish infarcts and calculate their volume by utilizing experimental stroke rat 
brain images.

Recently, there are many researches focused on medical image segmentation 
and recognition, in which artificial intelligence has the potential to help civilization 
flourish—as long as we manage to keep the technology beneficial to image analysis 
[15, 16]. Peng et al. [33] proposed an ELBP (extend local binary pattern), a rota-
tion invariant texture; however, ELBP cannot describe the local structural informa-
tion but gradient orientation difference can. ELBP was hence combined with the 
feature of gradient orientation difference to describe the local brightness and struc-
ture of a chest CT image. Then, SVM was used to recognize lung disease. In 2011, 
Somasundaram and Kalaiselvi [38] used an adaptive intensity thresholding method 
to convert a magnetic resonance image of head and brain scan into a binary image, 
and the mathematical morphology and a 3D approach were  applied to eliminate 
noise. After that, the binary images were processed into mask images, and fine brain 
slices were then obtained. Lee et al. [24] developed a program called InfarctSizer 
that can automatically detect the infarct region and compute the infarct volume of 
TTC-stained brain slice images from mice treated with MCAO. In their study, the 
infarct region was determined by collecting the pixels with values greater than the 
average RGB value of the total brain image, and the infarct volume proportional to 
the pixel intensity was calculated. Vanderbeck et al. [40] applied liver biopsy images 
to identify the non-alcoholic fatty liver disease. Each liver biopsy sample was 
stained with an H&E stain. An image was obtained by scanning the sample. Then, 
a gray-level image was created from the green channel of the image. The gray-level 
image was smoothed by the average filter, and the gamma correction method was 
employed to increase the contrast of the gray-level image. After that Otsu’s method 
was used to convert the gray-level image into a binary image. K-means clustering 
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algorithm and 4-neighborhood connectivity were employed to remove the back-
ground of the image. A supervised machine learning classifier was applied to cat-
egorize the white regions in liver biopsies.

From the literature mentioned above, obviously one can find that most of the 
medial image processing follows the steps to pre-select the masks in segmentation 
stage such as using gamma correction to heighten the contrast, and using Otsu’s 
thresholding method and mathematical morphology or LBP (local binary pattern) to 
extract the ROI (region of interest) in the image.

2.2  Materials

Ischemic rat stroke images were obtained from Taichung Veteran General Hospital. 
In this study, rats with ischemic stroke were introduced by performing MCAO and 
were used as experimental subjects [2]. All animal experimental procedures were 
approved by the Institutional Animal Care and Use Committee of Taichung Veteran 
General Hospital. For MCAO procedures, anesthesia was induced with 4% isoflu-
rane (Baxter, U.S.A.) and maintained with 2% isoflurane. A midline cervical inci-
sion was made to isolate the right bilateral common carotid artery. A small incision 
was subsequently made in the proximal portion of the external carotid artery, and 
a 25-mm-long 3-0 nylon monofilament suture was gently inserted (approximately 
18 mm) into the internal right carotid bifurcation. After 60 min MCAO, the nylon 
surgical thread was removed to allow complete reperfusion of the ischemic area. 
The infarction size would be determined by the severity of ischemic brain injury. 
In worst case, the infarct zone may cover half of the whole brain [37]. Twenty-eight 
adult male Wistar rats were used in this study. All of the rats were subjected to the 
MCAO procedure. On the day of operation, ten of the 28 rats were sacrificed for 
brain removal. Coronal sections of each brain were obtained by cutting them into 
six 2 mm-thick slices, which were labeled as “day-1.” Following the same proce-
dures, six rats were randomly selected for brain removal and sectioned on day-7, 
day-14, and day-28, and the obtained brain slices were labeled accordingly. In order 
to distinguish the infarct regions from normal regions in the rat brain, the slices 
were stained with 2% TTC (Sigma, Germany) for 30 min at 37 °C in the dark. After 
the stain developed, tissue blocks were placed into 10% phosphate-buffered forma-
lin for 45 min. TTC does not stain brain regions with neuronal loss, and therefore, 
infarcted tissues remain white in these areas [37]. The six slices obtained from each 
brain were vertically arranged and recorded in Fig. 1, in which each column of brain 
images represents one rat.

3  The SRBIAVC system

Figure 2 portrays the framework of the SRBIAVC System. Each rat brain is cut 
into six slices. A slice image is taken from one brain slice. RBS segmentation 
step is to extract the rat brain slice (RBS) from a slice image. Drawing cerebral 
central line step is to draw the cerebral central line to cut the RBS into cerebral 
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hemisphere and ipsilateral hemisphere. Extracting corpus callosum step is to seg-
ment the corpus callosum from the cerebral hemisphere. Extracting infarct step 
is to segment the infarct from the ipsilateral hemisphere. The step of removing 
corpus callosum from infarct is to eliminate the corpus callosum from the seg-
mented infarct. The step of computing infarct and atrophy volumes is to compute 
the volumes of the infarct and the atrophy based on the segmented infarct, cer-
ebral hemisphere, and ipsilateral hemisphere.

Fig. 1  The slices of rat brains for a Day-1, b Day-7, c Day-14, and d Day-28

Fig. 2  The framework of the 
SRBIAVC system

RBS Segmentation

Drawing central line

Extracting InfarctExtracting Corpus Callosum

Removing Corpus Callosum from Infarct

Computing Infarct and Atrophy Volumes

Rat brain image



10096 Y.-K. Chan et al.

1 3

3.1  RBS segmentation

An RGB image is composed of red, green, and blue independent color channels; an 
HSV image consists of hue, saturation, and bright color channels. In this study, an 
RGB (resp. HSV) color image is first separated into red, green, and blue (reps. hue, 
saturation, and bright) color components. The intensities of color channel C of all 
the pixels in the color image can compose a gray-level image IC for C = R, G, B, H, 
S, and V.

Figure 3 reveals that IH is less affected by the texture of image background; thus 
in this study, IH is applied to remove image background. In order to more effectively 
distinguish the brain from the background, the gray levels of IH is stretched via the 
following formula:

where IH(i, j) denotes the gray level of the pixel located at coordinates (i, j) in IH; 
minH and maxH are, respectively, the minimal and maximal gray levels of the pix-
els in IH. After stretching the contrast, IH in Fig. 3e is converted into the image in 
Fig. 4a.

In Fig. 4a, the gray levels of some pixels in brain slices are greater than and oth-
ers are less than the gray levels of the pixels in background. The SRBIAVC system 
hence changes I ′

H
 into I ′′

H
 by the following formula:

where MH is the mean of the gray levels of all the pixels in I ′
H

 . Figure 4b demon-
strates the result obtained by running this operation on Fig. 4a.

In Fig. 4b, the gray level of the pixel in background region is mostly lower than 
that in slice region. Otsu thresholding operation [30] is a commonly used image 
binarization operation. In this study, Otsu thresholding operation is applied to 

(1)I
�

H
(i, j) =

IH(i, j) −minH

maxH −minH
× 255,

(2)I
��

H
(i, j) = |I �

H
(i, j) −MH|

Fig. 3  The gray-level images IC for C = R, G, B, H, S, and V: a Original image b IR, c IG, d IB, e IH, f IS, 
and g IV
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calculate a suitable threshold TH for binarizing I ′′
H

 . The pixels with gray levels larger 
then TH are regarded as white pixels (their gray levels are set to “1”); otherwise, 
they are considered to black pixels (their gray level are set to “0”). Otsu threshold-
ing operation can convert I ′′

H
 into a binary image Ib. Since there may be some minor 

white or black spots in Ib, erosion operation [17, 36] and then dilation operation [17, 
36] with a 5 × 5 structure element shown in Fig. 4c are used to eliminate the noise 
(minor white and black spots) and smooth the contour of RBS. Figure 4d is the Ib 
obtained by running Otsu thresholding operation and noise removing on the image 
in Fig. 4b. Each white region in Fig. 4d describes a rat brain slice (RBS). We call the 
smallest rectangle containing the whole RBS the RBS rectangle of the brain slice. 
Figure 5 depicts the RBS rectangles obtained from some rat brain slice images.

3.2  Drawing cerebral central line

The aim of the SRBIAVC system is to segment the infarct from each RBS. The cor-
pus callosum, such as the regions indicated by the blue outlines in Fig. 6, resembles 
the infarct in color and is often misidentified as the infarct during image segmenta-
tion. Since the corpus callosum is bilaterally symmetrical in a normal rat brain, the 
SRBIAVC system solves the problem by dividing the brain into two hemispheres 
based on its cerebral central line. The cerebral hemisphere with infarct is called the 
ipsilateral hemisphere, whereas the hemisphere with normal function is called the 
contralateral hemisphere. The SRBIAVC system will segment the brain infarct and 
corpus callosum from the ipsilateral hemisphere, and extracts the corpus callosum 
from the contralateral hemisphere. Then, the area of the infarct obtained in the ipsi-
lateral hemisphere subtracting the area of the corpus callosum in the contralateral 
hemisphere is considered as the actual area of infarct.

Fig. 4  RBS segmentation: a image I′
H

 , b image I′′
H
, c a structure element for erosion and dilation, and d 

the obtained binary image Ib
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Let us call the RBS in the top half of the RBS rectangle the upper half RBS, and 
that in the lower half of the RBS rectangle the lower half RBS. As indicated by the 
blue arrows in Fig. 7, there is a groove at the center of the upper half RBS, and nor-
mally, drawing a vertical line from this point would align with the cerebral central 
line (see the yellow lines in Fig. 7a). Since the image may be taken with different 
shooting angles, the RBS in the brain slice image may be slanted so it may cause 
the shift and rotation variations of the cerebral central line (see the RBSs in Fig. 7b, 
c). To deal with this problem, the SRBIAVC system looks for the concave point in 
the upper half RBS and the convex point in the lower half RBS. The cerebral central 

Fig. 5  The RBS rectangles obtained from some rat brain slice images

Fig. 6  The corpus callosum is outlined in blue line (color figure online)

Fig. 7  A schematic diagram of the cerebral central line
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line is then formed by connecting the concave point and the convex point. The steps 
to detect the convex point and the concave point are described in detail below.

3.2.1  Convex point detecting

The SRBIAVC system cuts the RBS rectangle into upper-left (UL), lower-left (LL), 
upper-right (UR), and bottom-right (BR) four equal-sized regions (such as the yel-
low dotted lines in Fig. 8a). It finds the highest points ULTP and URTP (such as the 
blue points in Fig. 8a) of the RBSs in UL and UR regions, and then considers the 
lowest point on the RBS contour between ULTP and URTP to be the top central 
groove Tg (such as the red points in Fig. 8a).

3.2.2  Concave point detecting

Next, the SRBIAVC system draws a vertical line Lg which passes through Tg and 
at Dg crosses the RBS contour in the lower half RBS (see Fig. 8b). Let Dl be the 
lowest point on the RBS contour at the left side of Dg, and Dr the lowest point on 
the RBS contour at the right side of Dg in the lower half RBS. Also let Dlh(xlh, ylh) 
be the highest point along the RBS contour from Dl to Dg, and Drh(xrh, yrh) be the 
highest point along the RBS contour from Dr to Dg. Dc(xc, yc) is considered to the 
concave point where Dc(xc, yc) is on the RBS contour in the lower half RBS and xc =  (
xrh + xlh

)
∕2 . The SRBIAVC system draws a line Lgc to connect Tg and Dc. Lgc hence 

separates the RBS into the left half region and the right half region (see Fig. 8b). We 
call Lgc the cerebral central line of the RBS. The green line in Fig. 8c is the cerebral 
central line of the RBS.

The obtained cerebral central line divides the RBS into two halves. The corpus 
callosum and the infarct are generally brighter than others in the RBS. Let Dag be 
the difference of the average gray levels in two halves of the RBS, and Srg be the 
average gray level in the RBS. If |Dag/Drg| is greater than a given threshold Tas =  0.2, 
the SRBIAVC system considers that the rat brain is stocked. After that, the half of 

Fig. 8  The steps in finding the cerebral central line of RBS
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the RBS with a greater average gray level is regarded as the ipsilateral hemisphere, 
and the other is considered to the contralateral hemisphere.

3.3  Extracting infarct

The SRBIAVC system then intends to extract the infarct from each the ipsilateral 
hemisphere. In Fig.  9, a color ipsilateral hemisphere RBIH is converted into three 
gray-level ipsilateral hemispheres RIH, GIH, BIH, which, respectively, consist of the 
R, G, and B color components of all the pixels in RBIH. From Fig. 9, one can obvi-
ously observe that GIH provides a higher contrast between infarct and non-infarct in 
ipsilateral hemisphere. Hence, the SRBIAVC system will extract the infarct from 
GIH.

The SRBIAVC system employs gamma correction operation [1, 44] to stretch the 
contrast of GIH, and generates a gray-level image GG:

where MinIH and MaxIH are the minimal and maximal gray levels in GIH, and γIH is a 
given constant. Figure 10a shows the results obtained by running the gamma correc-
tion operation on GIH in Fig. 9c.

Next, Otsu thresholding operation [30] is applied to provide a threshold TO for 
GG to create a binary image GO. If GG[x, y] is greater than TO, then GO[x, y] = 1 
(respecting a white pixel), which indicates that GG[x, y] is an infarct pixel; other-
wise, GO[x, y] = 0 (respecting a black pixel), which indicates that GG[x, y] is a non-
infarct pixel. Taking the images in Fig. 11a as examples, the pink areas should be 
the less severe infarct. Since the mild infarction may lead to brain necrosis in the 
future, the SRBIAVC system also considers the regions outlined by the green closed 
curves in Fig. 11b is the infarct regions. Therefore, in this study, TO is replaced with 
T

′

O
  =  TO−kO× σO where kO is a given constant, and σO is the standard deviation of 

the gray levels of all the pixels in GO. Figure 10b shows the result obtained by run-
ning the binarization operation on GG in Fig. 10a.

(3)GG(x, y) =

(
GIH(x, y) −MinIH

MaxIH −MinIH

)�IH

× 255

Fig. 9  Convert a color ipsilateral hemisphere image RBIH into three gray-level ipsilateral hemispheres 
RIH, GIH, BIH: a Original image (RBIH), b RIH, c GIH, d BIH
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There exist some small white spots and black holes in Fig. 10b. The SRBIAVC 
system applies mode filter to eliminate the small white spots and black holes. For 
each pixel GO[x, y], it gives a window WO consisting of mO ×  mO pixels in GO where 
GO[x, y] is the central pixel of WO. Let n1 and n0, respectively, be the numbers of 
1-bits and 0-bits in WO. If n1> n0, G

′

O
[x, y]  = 1; otherwise G′

O
[x, y] = 0. Figure 10c 

demonstrates the result obtained by running the mode filter on the image in Fig. 10b. 
The contour obtained from Fig. 10c is then applied in Fig. 9a and the result is shown 
in Fig. 10d.

3.4  Extracting corpus callosum

This subsection is to segment the corpus callosum from the contralateral hemisphere 
RBCH. Each pixel in a color image RBCH can be separated into red, green, and blue 
color components. The values of color component c of all the pixels in the RGB 
color contralateral hemisphere compose a gray-level image cCH for c = R, G, and 
B. Figure  12b–d show the RCH, GCH, and BCH of the contralateral hemisphere in 
Fig. 12a. As shown in Fig. 12, GCH has a better contrast. Therefore, the SRBIAVC 
system will extract the corpus callosum from GCH.

Fig. 10  The steps to identify infarct: a gamma correction, b binarization operation, c mode filter, d 
merged image

Fig. 11  A schematic diagram of image binarization: a the results of binarization by TO, b the binarization 
results by using T ′

O
 including the regions surrounded by white and green closed curves
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Similarly, gamma correction is applied to enhance the contrast of GCH, and then, 
Otsu thresholding operation is employed to transform GCH into a binary image. 
Global gamma correction works well on the images containing objects with a uni-
form intensity on a contrasting background. However, it cannot give a good result 
for the image with a low contrast between the object and the background for a noisy 
image or for the image across which the background intensity varies significantly. 
Figure 13a illustrates the results provided by the global gamma correction operation. 
There is a low contrast for part of the corpus callosum in Fig. 13a. In this study, a 
local gamma correction is hence provided to highlight the contrast of the corpus 
callosum.

For each pixel GCH(x, y), the local gamma correction operation is given a 
mCH× mCH window WCH in GCH, where GCH(x, y) is the central pixel of WCH. Let 
MinCH, MaxCH and MeanCH be the minimal gray level, the maximal gray level, and 
the mean of gray levels in GCH. Then, the local gamma correction operation converts 
GCH into GlG by the following formula:

where γCH is a given constant. Figure  11b shows the result obtained by the local 
gamma correction operation on GCH to create a gray-level image GlG.

There are some small bright regions which are not the corpus callosum in 
Fig. 11b. The SRBIAVC system hence uses gray-level opening operation [17, 36] 
to remove the small bright spots where the structure element is a 5 × 5 small win-
dow in which all the gray levels are zero. Figure 13c displays the result obtained by 
running the gray-level opening operation on the image in Fig. 13b. After that, Otsu 
thresholding operation is used to compute the fittest threshold from the gray levels 
of all the pixels in the image and then to change the image into a binary image Gb 
based on the threshold. Figure  13d is the binary image Gb obtained by executing 
Otsu thresholding operation on the image in Fig. 13c. In addition, the small regions 

(4)GlG(x, y) =

⎧
⎪⎨⎪⎩

�
GCH (x,y)−MinCH

MaxCH−MinCH

� 1

𝛾CH
, if GCH(x, y) > meanCH , and�

GCH (x,y)−MinCH

MaxCH−MinCH

�𝛾CH

× 255, otherwiseGCH(x, y) ≤ meanCH .

Fig. 12  The contralateral hemisphere in different color components: a original image RBCH, b RCH, c 
GCH, and d BCH
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with the area less then Ta are eliminated from Gb. Figure 13e is the Gb after getting 
rid of the small regions from Fig. 13d.

There may be the arachnoid mater, long white strips near the boundary of the 
brain (see Fig. 13e). If the average minimal distance of each pixel in one region in 
Gb to the contour of the brain is less than a threshold Td, then the region is elimi-
nated. Figure 13f is the result after removing the long white strips closed to the con-
tour of the brain in Fig. 13e. Figure 13g displays the result obtained by applying the 
contour in Fig. 13f to the image in Fig. 12a.

3.5  Removing corpus callosum from infarct

Since the color of corpus callosum is very close to the color of the infarct in a rat 
brain, the SRBIAVC system cannot effectively separate the corpus callosum from 
the infarct in the ipsilateral hemisphere; while the color of corpus callosum is quite 
different from others in the contralateral hemisphere, extracting the corpus callosum 
in contralateral hemisphere is much easier. Moreover, the corpus callosum is bilat-
erally symmetrical in the normal brain. The SRBIAVC system hence replaces the 
corpus callosum in ipsilateral hemisphere with the corpus callosum in contralateral 
hemisphere.

Fig. 13  The steps of identifying the corpus callosum: a the segmentation result obtained by global 
gamma correction operation, b the result obtained by local gamma correction operation, c the result 
obtained by opening operation, d converting GCH into a binary image, e after removing small regions, f 
after removing the long strip closed to the boundary of the brain, g the segmentation result
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Assume that the ipsilateral hemisphere is the right hemisphere of an RBS RB. If 
RB(x, y) is in the contralateral hemisphere and a corpus callosum pixel RB(x + d, y) is in 
the cerebral central line, the SRBIAVC system sets RB(x + 2d, y) to a corpus callosum 
pixel, too. Assume that the ipsilateral hemisphere is the left hemisphere of an RBS RB. 
If RB(x, y) is in the contralateral hemisphere and a corpus callosum pixel RB(x + d, y) 
is in the cerebral central line, the SRBIAVC system also sets RB(x-d, y) to a corpus 
callosum pixel. Figure 14a is the segmented infarcts (in the right half side) combined 
with the segmented corpus callosum (in the left half side). Figure 14b is the segmented 
infarct after removing the corpus callosum. Figure 14c is the segmentation result.

3.6  Computing infarct and atrophy volumes

The SRBIAVC system calculates the volumes of the stroke and atrophy of a rat brain 
based on the segmented RBS and infarcts on the six slices of a rat brain. Let Ai1, Ai2,…, 
Ai6, respectively, be the areas of the segmented infarcts in the six slices. The infarct vol-
ume Vi of the rat brain is defined as:

where TH is the thickness of each slice, and in this study TH  = 2 mm.
The left half and the right half of a normal rat brain are bilaterally symmetrical. 

It means that the volumes of the left half and the right half of a normal rat brain are 
very close. Since the volume of ipsilateral hemisphere may shrink, the proportion of 
the infarct volume to the volume of contralateral hemisphere is more helpful for a doc-
tor. The proportion of the infarct volume to the volume of contralateral hemisphere can 
be defined as:

(5)Vi =

6∑
j=1

Awij
× TH,

(6)Vi =

∑6

j=1
Awij∑6

j=1
Awpj

,

Fig. 14  The steps of removing corpus callosum from infarct: a the segmented infarct (on the right half) 
combined with the segmented corpus callosum (on the left half), b the infarct after removing corpus cal-
losum, c the segmented infarct
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where Ap1, Ap2, …, Ap6, respectively, are the areas of the segmented contralateral 
hemisphere in the six slices of the bat brain. Since the volume of ipsilateral hemi-
sphere may shrink, it is very difficult to measure the original volume of the ipsilat-
eral hemisphere. The SRBIAVC system hence determines the percentage Pa of the 
atrophy volume in ipsilateral hemisphere by

3.7  Time complexity

Assume that SI is the size of the input image. The time complexity of each step in 
the SRBIAVC system is described as follows:

(a) In step RBS Segmentation: The SRBIAVC system spends time SI to filter out 
the hue color component of the input image and create a new image IH, and 
time 2 × SI to execute Eqs. (1) and (2). It also takes time  2553 to perform Otsu’s 
thresholding method. Hence, the time complexity of this step is O(3 × SI).

(b) In step Drawing Cerebral Central Line: The time complexity in this step is far 
less than SI.

(c) In step Extracting Infarct: The SRBIAVC system spends time SI/2 to filter out 
the green color component of image RBIH and create a new image GIH, and time 
SI/2 to execute Eq. (3). It also takes time  2553 to perform Otsu’s thresholding 
method. Hence, the time complexity of this step is O((2 × SI)/2).

(d) In step Extracting Corpus Callosum: In this step, the SRBIAVC system takes 
time SI/2 to run gamma correction and  2553 to perform Otsu’s thresholding 
method.

(e) In step Removing Corpus Callosum from Infarct: Time SI/2 is consumed to 
remove the corpus callosum.

(f) In step Computing Infarct and Atrophy Volumes: Time SI is taken to compute 
the areas of Infarct and Atrophy.

Therefore, the SRBIAVC system spends time about 6 × SI to extract the brain 
infarct and atrophy and compute their areas.

4  Fittest parameters determining

In this study, two algorithms are provided to decide the fittest parameters used in 
the SRBIAVC system. In this section, we will describe them in details.

(7)Pa =

∑6

j=1
Awpj

−
∑6

j=1
Awij∑6

j=1
Awpj
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4.1  Genetic algorithm‑based parameters determining

In this study, a genetic algorithm [19]-based parameters detector (GABPD) is 
provided to determine the fittest values of the parameters used in the SRBIAVC 
system; we call it the SRBIAVC system with GABPD. If there are np parameters 
in a system, the GABPD gives each chromosome np substrings s1, s2,…, snp which, 
respectively, consist of n1, n2, …, nnp binary bits and their corresponding decimal 
values are v1, v2, …, vnp . Each chromosome composes of n1+ n2+··· + nnp binary 
bits and vi is employed to describe the value of the i-th parameter in the system. 
Hence, each chromosome will give np values mapping to all the parameters in the 
system, and then, the system can provide a performance based on the test data 
collected in advance. The performance is considered to the fitness of the 
chromosome.

In the initial step, GABPD randomly generates Ni chromosomes. We call the 
Ni chromosomes the reserved chromosomes. To evolve the best solution, GABPD 
repeatedly and alternately executes three operations mutation, crossover, and selec-
tion, until the fitness of all the reserved chromosomes is similar or the number of 
iterations is equal to a given constant MAX_NO_RUN.

For the crossover operation, GABPD randomly assigns Nc chromosome pairs 
from the reserved chromosomes. For each chromosome pair (Ch1, Ch2), a binary 
string SM, consisting of n1+ n2+ ···,+ nnp binary bits, is offered. GABPD then ran-
domly selects (n1+ n2+ ···,+ nnp)/2 binary bits in SM and sets all the selected bits to 1-
bits, and sets others in SM to 0-bits. After that, GABPD runs the following formula 
to create a new chromosome Ch:

 where ˄ is the logical AND operator, ˅ is the logical OR operator, and SM  is the 
logical NOT operator.

For the mutation operation, for each of the Ni reserved chromosomes, GABPD 
uses a random number generator to specify one bit b for each of its substrings, and 
replaces b with ¬b to generate a new chromosome, where ¬ signifies the logical 
NOT operator. Therefore, in this operation, Ni new chromosomes are created.

For the selection operation, 0.9 × Ni chromosomes with the best fitness are 
selected from the reserved chromosomes and the chromosomes generated by the 
crossover and mutation operations. The selection operation also randomly creates 
0.1 × Ni chromosomes. Moreover, the 0.9 × Ni selected chromosomes and 0.1 × Ni 
created chromosomes are used as the reserved chromosomes in next iteration. The 
GABPD repeatedly and alternately executes the operations crossover, mutation, and 
selection, until the fitness of all reserved chromosomes is very simliar, or the num-
ber of iterations is equal to a given constant MAX_NO_RUN.

GABPD trains the fittest parameters used in a system based on the accumulated 
historical data. When given a chromosome, the values of the parameters used in the 
system can be determined. The system then extracts the ROI (region of interest) via 
the values of the parameters. Let X be the segmentation result and Y the ground truth 

Ch = (Ch1∧SM)∨(Ch2∧¬SM),
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(the result drawn by the experts). Jaccard coefficient (JC) [20] can be used to meas-
ure the segmentation result:

The average Jaccard coefficients obtained by the systems based on the parameters 
decided by the chromosome are considered to the fitness of the chromosome.

GABPD is helpful for a system with multiple parameters. In the SRBIAVC sys-
tem, the parameters γI, kO, mO are used in the extracting infarct step, and the param-
eters γCH, Ta, Td are employed in the extracting corpus callosum step. In this study, 
GABPD is hence applied to determine the fittest parameters used in the extracting 
infarct step and in the extracting corpus callosum step:

4.1.1  The fittest values of γI, kO, mO

To determine the fittest the parameters used in the extracting infarct step, γI, kO, and 
mO is mapped to s1, s2, s3, where n1 =  n2 =  6, n3 =  3, γI =  v1× 0.05, kO =v2×  0.05, 
and mO =  3+v3.

4.1.2  The fittest values of γCH, Ta, Td

To determine the fittest parameters used in the corpus callosum step, γCH, Ta, Td is 
related to s1, s2, s3, and n1 =  n2= 6, and n3 =  3. γCH =  v1×  0.05, Ta =  v2×  0.05, and 
Td =  3+v3.

4.2  PSO‑based parameters determining

In this study, a particle swarm optimization (PSO) algorithm [9]-based parameters 
detector (PSOBPD) is also provided to determine the fittest values of the parameters 
used in the SRBIAVC system; we call it the SRBIAVC system with PSO. Particle 
swarm optimization (PSO) searches the optimal solution by iteratively improving a 
set of candidate solutions with regard to a given quality measure. Each particle has 
its own position, and the i-th particle position in t-th iteration can be expressed as 
Xi(t) =  (xi1(t), xi2(t),…, xinp(t)), where xid(t) is the position of the d-th dimension of 
the i-th particle in the t-th iteration. Assume Vi(t) = (vi1(t), vi2(t), …, vinp(t)) is the 
velocity of the i-th particle in the t-th iteration, where vid(t) is the velocity of the d-th 
dimension of the i-th particle in the t-th iteration; Pbesti is the obtained local best 
solution of the i-th particle obtained thus far, and Gbest is the global best solution 
obtained until now from all the particles in the population.

The new velocities and positions of the i-th particle in the t-th generation are 
evolved by the following equations:

JC =
|X ∩ Y|
|X ∪ Y| .

vid(t + 1) = c
0

× vid(t) + c
1

× rand
1

×
(
Pbestid(t) − xid(t)

)
+ c

2

× rand
2

×
(
Pbestid(t) − xid(t)

)
,

xid(t + 1) = xid(t) + vid(t + 1),
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where c0 is an inertial parameter affecting the movement propagation given by last 
velocity value, and two acceleration coefficients c1 and c2, respectively, are the 
importance of personal best value and the importance of social best value; rand1 
and rand2 are two random numbers between [0, 1]. Shi and Eberhart [21] indicated 
that choosing c0 ϵ [0.8, 1.2] results in faster convergence, hence, in this study, we set 
c0= 1. Generally, c1 and c2 are set to 2. The PSOBPD can be implemented by the fol-
lowing Algorithm PSO():

In this study, each particle Xi(t) is a candidate solution, and xid(t) describes the 
value of the i-th parameter in the SRBIAVC system. Hence, each particle Xi(t) will 
give np values representively mapping to all the parameters in the system, and then 
the system can provide a performance based on the test data collected in advance. 
The performance is considered to the fitness of the particle. In addition, Nump is set 
to 10.

5  Experiments and discussions

In this study, 168 ischemic stroke rat brain images with sizes between 185 × 134 and 
360 × 261 pixels provided by Taichung Veteran General Hospital are used as the test 
images. Twenty-eight rats were subjected to the MCAO procedure approved by the 
Institutional Animal Care and Use Committee of Taichung Veteran General Hos-
pital. On the day of operation, ten of the 28 rats were sacrificed for brain removal. 
Each brain was cut into six coronal sections, each of which was a 2 mm-thick slices 
and was labeled as “day-1.” Following the same procedures, six rats were randomly 
selected for brain removal and sectioned on day 7 and the obtained brain slices 
were labeled as “day-7.” Similarly, other six rats were randomly selected for brain 
removal and sectioned on day 14 and the obtained brain slices were labeled as “day-
14.” The brains of the remaining six rats were also removed and sectioned on day 28 
and the obtained brain slices were labeled as “day-28.”

The first experiment intends to investigate the performance of removing the 
image backgrounds of the 168 ischemic stroke rat brain images. The experimental 
results show that the average dice similarity (DS) provided by the SRBIAVC system 
in removing the image background of the 168 ischemic stroke rat brain images is 
98% which is much higher than the DS = 85.95% obtained by J. Lee’s method [23]. 
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Figure 15 displays the results obtained by J. Lee’s method and the SRBIAVC system 
in removing the image background of some ischemic stroke rat brain images.

The SRBIAVC system automatically draws the cerebral central line but J. 
Lee’s method requires the user to draw the cerebral central line by himself. Let 
line Lgc be the cerebral central line drawn by the SRBIAVC system and line L′

gc
 be 

the ground truth drawn by the expert. Assume that Tg and Dc are the convex point 
and the concave point on Lgc and T ′

g
 , and D′

c
 are the convex point and the concave 

point on L′
gc

 . In this study, MAX(|Tg−T ′
g
 |, |Dc−D′

c
 |) is defined as the difference 

between Lgc and L′
gc

 . The average of the difference between Lgc and L′
gc

 is only 
5.48 pixels. Figure 16 illustrates some cerebral central lines drawn by the SRBI-
AVC system and the expert.

However, the brain slices in Fig.  17 do not contain a recognizable groove. 
Figure 17a depicts the cerebral central lines drawn by the SRBIAVC system and 
Fig. 17b illustrates the cerebral central lines drawn by the expert. The SRBIAVC 
system cannot give good cerebral central lines for both brain slices.

In next experiment, GABPD is employed to train the fittest parameters γI, kO, 
and mO used in the extracting infarct step based on the brain slice images of two 
rats which were randomly selected from the 28 adult male Wistar rats. Moreover, 
the brain slice images of other 26 adult male Wistar rats were used as the test-
ing images. In this experiment, GABPD gives the fittest parameters γI = 0.95,  kO 
= 0.65,  mO =  5.

Fig. 15  The results of image background removal: a original images, b ground truth given by medical 
experts, c obtained by J. Lee’s method, d obtained by the SRBIAVC system
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Apart from Jaccard coefficient (JC), dice similarity (DS) is frequently used to 
evaluate the object segmentation result [8]. DS is defined as:

where X is the segmentation result and Y is the ground truth. In this study, both of JC 
and DS are used to measure the performance of object segmentation. Based on the 

DS =
2|X ∩ Y|
|X| + |Y| ,

day-1 

(a)

Lgc

Lgc
ꞌ

(b)

Lgc

Lgc
ꞌ

day-14 

(a)

Lgc

Lgc
ꞌ

(b)

Lgc

Lgc
ꞌ

Fig. 16  Some cerebral central lines drawn by the SRBIAVC system and the expert, where row Lgc is the 
cerebral central line drawn by the SRBIAVC system and row L′

gc
 is the ground truth drawn by the expert
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fittest parameters γI =  0.9,  kO = 0.65,  mO =  5 and the testing images, the SRBIAVC 
system obtains the experimental results: the average JC = 72.08% and the average 
DS = 81.83%. Figure 18 demonstrates the segmented infarct regions in the ipsilateral 
hemisphere of the brain slice images of some day-1 and day-14 rats. However, the 
SRBIAVC system is sensitive to the mild infarct (pink area) in the extracting infarct, 
so that it cannot give a good result for extracting the infarcts in Fig. 19.

In experiment 4, similarly GABPD is employed to train the fittest parameters γCH, 
Ta, and Td used in the extracting corpus callosum step based on the same training 
data and testing data adopted in experiment 3. In this experiment, GABPD gives 
the fittest parameters γCH= 1.95, Ta= 0.05, Td= 21. Based on the fittest parameters 
γCH= 1.95, Ta= 0.05, Td= 21, and the testing images, the experimental result shows 
that the SRBIAVC system can obtain the average JC = 71.08% and the average 
DS = 77.48%. Figure 20 displays the segmented corpus callosums in the contralat-
eral hemispheres of the brain slice images of some rats. However, the accuracy of 
this method is compromised when the color of the corpus callosum resembled that 
of its surroundings, as shown in Fig. 21. As demonstrated in the middle panel of 
Fig. 21, the white areas pointed by the yellow arrow are misidentified to be the cor-
pus callosum.

Experiment 5 is to explore the performances of infarct segmentation after remov-
ing corpus callosum. The experimental result shows that the SRBIAVC system 
obtaining the average JC = 75.54% and the average DS = 82.22% is much better than 
J. Lee’s method providing the average JC = 51.43% and the average DS = 64.14% in 

(1) (2)
(a) 

(1) (2)
(b) 

Fig. 17  The brain slices containing the difficult recognizable groove: a the cerebral central lines drawn 
by the SRBIAVC system, b the cerebral central lines drawn by the expert
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infarct segmentation after removing corpus callosum. Figure 22 depicts some infarct 
segmentation results after removing corpus callosum from the rat brain slice images.

Experiment 6 is to compute the infarct volumes and the atrophy volumes. Fig-
ure  23a illustrates the results computing the infarct volumes of 28 adult male 

day-1 Segmented by SRBIAVC

Ground truth

day-14 Segmented by SRBIAVC

Ground truth

Fig. 18  The segmented infarcts in the ipsilateral hemisphere for the brain slice images of rats day-1 and 
day-14

(a) (b)

Fig. 19  The bad infarct segmentation: a The infarcts extracted by the SRBIAVC system, b ground truth
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Wistar rats by the SRBIAVC system with PSO, the SRBIAVC system with 
GABPD, J. Lee’s method, and the expert. Figure  23b demonstrates the results 
computing the infarct volumes of the rat brains according to their labels. The 
experimental results shows that the proportions of the infarct volumes to the con-
tralateral hemisphere volumes computed by the SRBIAVC system with GABPD 
are quite closed to those computed by the expert.

J. Lee’s method does not describe how to compute the atrophy volume. Therefore, in 
this experiment, only the atrophy volumes computed by the SRBIAVC system and the 
expert are displayed. Figure 24a shows the results computing the atrophy volumes of 
28 adult male Wistar rats by the SRBIAVC system and the expert. Figure 24b displays 
the results computing the atrophy volumes of the rat brains according to their labels. 

(a)The results obtained by the SRBIAVC system

(b)Ground truth

Fig. 20  The segmented corpus callosums in the contralateral hemispheres of the brain slice images of 
some rats

(a) Results obtained by SRBIAVC system (b) Ground truth

Fig. 21  The bad corpus callosum segmentation
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SRBIAVC system J. Lee’s method Ground truth

Fig. 22  The experimental results of infarct segmentation after removing corpus callosum
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Fig. 22  (continued)
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Similarly, the experimental results show that the proportions of the atrophy volumes 
to the contralateral hemisphere volumes computed by the SRBIAVC system are very 
closed to those computed by the expert.
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Fig. 23  a the proportions of infarct volumes to the contralateral hemisphere volumes computed by the 
SRBIAVC system (red line), J. Lee’s method (blue line), and the expert (gray line); b the proportions of 
infarct volumes to the contralateral hemisphere volumes of the rat brains according to their labels (color 
figure online)
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6  Conclusions

To assess the effectiveness of stroke treatment and diagnosis, the SRBIAVC sys-
tem is proposed to take the place of the manual method in computing the infarct 
volumes and the atrophy volumes of rat brains. First, the SRBIAVC system uses 
H color layer of an HSV color rat brain slice image, in which there is the most 
significant difference of the contrast between the RBS and image background, to 
extract the RBS in the image.

To eliminate the influence of the corpus callosum on infarct volume estimation, 
in this paper, a cerebral central line detection method is provided to automatically 
divide the brain into ipsilateral and contralateral hemispheres. Then, the corpus cal-
losum volume in the contralateral hemisphere is subtracted from the infarct volume 
in the ipsilateral hemisphere. Since the contrast between the infarct region and the 
background is more apparent in the G color layer, this layer is used in infarct region 
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Fig. 24  a the proportions of atrophy volumes to the contralateral hemisphere volumes computed by the 
SRBIAVC system (blue line) and the expert (red line); b the proportion of atrophy volumes to the con-
tralateral hemisphere volumes of the rat brains according to their labels (color figure online)
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segmentation. To make the infarct region segmentation easier, a local gamma cor-
rection method is proposed to enhance the contrast of an image.

In image background removal, the SRBIAVC system obtaining the experimen-
tal result DS = 98% is much better than J. Lee’s method obtaining the experimental 
result DS = 85.95%. In cerebral central line detection, J. Lee’s method requires the 
user manually to draw the cerebral central line, while the SRBIAVC system draws 
the cerebral central line automatically. The experimental results showed that the 
average distance between the cerebral central lines drawn by the SRBIAVC system 
and by the experts is 4.479 pixels.

As mentioned previously, examining TTC-staining images of ischemic rat brain 
slice is time-consuming and labor intensive, and some subjective bias may appear. 
Even though some automated methods were invented to overcome the possible bias 
produced by manual examination, several flaws remain to be taken into account. 
For example, determining the cerebral central line or outlining the infarct region in 
ischemic brain images usually achieves manually. Comparing with J. Lee’s study, 
our SRBIAVC system can determine the central line and outline the infarct region 
automatically. The SRBIAVC system also removes corpus callosum area when cal-
culating ischemic infarct region to avoid interferencing the accuracy. The SRBIAVC 
system further employs two algorithms to determine the fittest parameter values in 
the extracting infarct step. Therefore, the proportion of infarct volume obtained by 
the SRBIAVC system is much closer to the results calculated by experts compar-
ing with J. Lee’s method. In addition, the atrophy volumes computed by the SRBI-
AVC system are in close proximity to that calculated by the experts, while J. Lee’s 
method does not offer atrophy volume calculations. In summary, the SRBIAVC sys-
tem is recommended for assessing the effectiveness of stroke therapy, development 
of stroke medications, and diagnosis of stroke conditions.

Even though our results show that all of these measures can improve the accuracy 
of infarct region detection effectively, there are still some limitations as well. First, 
although the SRBIAVC system can automatically draw the cerebral central line of 
the brain slice images, some images are not regularly shaped and the center groove 
cannot be easily recognized (Fig.  17). Second, such as in Fig.  19, the SRBIAVC 
system is sensitive to the mild infarct area in the extracting step, so if the brain slice 
images are not well-stained or not easily distinguished, it cannot give a good result 
for extracting the infarcts. Therefore, future studies can dedicate to develop new 
algorithms to overcome these shortcomings and provide more precisely evaluating 
programs for stroke animal models analysis.
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