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Abstract
Finding frequent itemsets in a continuous streaming data is an important data min-
ing task which is widely used in network monitoring, Internet of Things data analy-
sis and so on. In the era of big data, it is necessary to develop a distributed frequent 
itemset mining algorithm to meet the needs of massive streaming data processing. 
Apache Spark is a unified analytic engine for massive data processing which has 
been successfully used in many data mining fields. In this paper, we propose a dis-
tributed algorithm for mining frequent itemsets over massive streaming data named 
SWEclat. The algorithm uses sliding window to process streaming data and uses 
vertical data structure to store the dataset in the sliding window. This algorithm is 
implemented by Apache Spark and uses Spark RDD to store streaming data and 
dataset in vertical data format, so as to divide these RDDs into partitions for distrib-
uted processing. Experimental results show that SWEclat algorithm has good accel-
eration, parallel scalability and load balancing.

Keywords Frequent itemset mining · Streaming data · Sliding window · 
Distributed · Spark Streaming

1 Introduction

Frequent itemset mining (FIM) is one of the most basic and important data mining 
tasks. Since it was proposed [1], it has attracted more and more attention. Classical 
FIM algorithms for mining static data include: Apriori [2] based on Generation-Test 
and its series of improved algorithms [3–5]; Frequent Pattern Growth (FP-Growth) 
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[6] algorithm and other algorithms based on Pattern Growth; and Equivalence Class 
Transformation (Eclat) [7], Diffset Eclat (dEclat) [8] and other algorithms based on 
vertical data format. Mining frequent itemsets from data streams is one of the most 
important issues in FIM. It is widely used in retail chain data analysis, network traf-
fic analysis, click-stream mining, IOT data analysis and other fields. Data stream is a 
continuous, unbounded, timely ordered sequence of data elements with high speed; 
these characteristics lead to some special limitations in Mining frequent itemsets: 
All elements in the data stream can only be visited once; data streams grow continu-
ously, but memory during processing is limited and only part of the elements in data 
streams can be processed; the high speed of data stream also requires the high speed 
of mining. Therefore, the aim to design FIM algorithm for streaming data is gener-
ally required to complete the mining only by scanning the data stream once, and the 
complexity of time and space is relatively low to ensure that it can be completed in 
limited memory. Some elements accessed are generally the most recently arrived 
elements [9].

Using time-sensitive window to represent the most recently arrived part of the 
data stream is the main technique to process the data stream. There are three com-
monly used window models, including landmark model, the damped model and slid-
ing window model. In the landmark model, only the data between the landmark time 
point and the current time point in the data stream are considered. Typical algo-
rithms are Lossy Counting [10], Frequent Data stream Pattern Mining (FDPM) [11] 
and Data Stream Mining for Frequent Itemsets (DSM-FI) [12]. In damped model, 
different weights are given according to the order of arrival of elements in data 
stream. The typical algorithms are estDec [13] and so on. In sliding window model, 
we need to specify a fixed length time window to represent the latest arrival data. 
Typical algorithms are Moment [14] and Compact Pattern Stream Tree (CPS-Tree) 
[15]. Because the sliding window model not only extracts part of the data stream for 
processing, but also fully considers the value of the latest data, the sliding window 
model is the most commonly used in streaming data process. In this model, with the 
window sliding, the old elements in the data stream are deleted from the window; 
the newly arrived elements are inserted into the window for processing.

The core of designing FIM algorithm over data stream based on sliding window 
model is to select or design a data structure to store data in the window. This data 
structure must meet the following requirements: Because the elements in the data 
stream can only be visited once, this data structure can only be created by scanning 
the data stream once; window sliding will lead to many operations of deleting and 
inserting in data structure, which requires that the data structure has high efficiency 
in deletion and insertion; because window sliding brings the problem of “concept 
change,” in order to mine the data in the window accurately, this data structure must 
store the information of all items (including frequent and infrequent items); in order 
to reduce the storage requirement in the mining process, it is necessary to have a 
high compression ratio of this data structure and a high efficiency of FIM in this 
data structure, that is, a better time–space efficiency. The commonly used data struc-
tures include Data Stream Tree (DS-Tree) [16], CPS-Tree [15], Parallel Stream Data 
(PSD-Tree) [9] based on prefix tree, and tidset [7] and diffset [8] based on vertical 
data format.
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With the rapid development of Internet of Things, information transmission and 
storage technology, the amount of data generated and needed to be mined has explosive 
growth; we have entered the era of big data. The most basic and prominent feature of 
big data is the huge amount of data. FIM is a task with high computing load and stor-
age requirements, If there are n items in the dataset, the size of search space is  2n − 1, 
and the computing load and storage requirements is extremely heavy. When the amount 
of dataset is large, distributed algorithms are needed to meet the above challenges. Pop-
ular big data distributed computing platform such as Hadoop and Spark are based on 
the idea of data localization, which can easily realize efficient, automatic balancing and 
automatic fault-tolerant distributed mining. Several FIM algorithms based on sliding 
window using popular big data platforms have been proposed: Vanteru et al. [17] pro-
pose an algorithm for mining frequent itemsets in data stream using sliding windows. It 
uses Canonical-Order Tree (CanTree) [18] to store data in an window, generates GTree 
to mine frequent itemsets by projecting CanTree further and implements distributed 
mining by Hadoop. Hadoop is mainly used for data batch processing with input, and 
intermediate results are stored on Hadoop Distributed File System (HDFS), which is 
inefficient for streaming data processing. The algorithm proposed in [19] is similar to 
[17]. It also uses Hadoop to realize distributed mining. The difference is that Tail Point 
Table Tree (TPT-Tree) is used to store data in windows. Carlos et al. [20] use Spark to 
parallelize Frequent Itemset Mining over Time-sensitive Streams (FIMoTS) algorithm. 
FIMoTS [21] uses prefix tree to save the data in the window and classifies all itemsets 
in the window according to the support degree. It decides whether the itemsets in the 
window data are retained or not by the upper and lower limits defined by the user called 
Type Transforming Upper/Lower Bound. Obviously, the itemsets below the lower lim-
its will be discarded and it is an approximate mining algorithm.

In this paper, we propose a distributed FIM algorithm over streaming data named 
Sliding Window Eclat (SWEclat) which is based on Spark Streaming. Firstly, the 
algorithm uses the sliding window which suits for big data to process streaming 
data; second, the algorithm uses the vertical data format to store the data in the cur-
rent window; third, the algorithm uses spark RDD to distributed store data in cur-
rent window and uses the functions provided by spark to perform distributed paral-
lel processing. The algorithm includes four main phases: initializing vertical data 
format, partitioning equivalent class conditional database, distributed mining condi-
tional database and updating vertical database.

The rest of this paper is organized as follows: Sect. 2 introduces the preliminar-
ies of SWEclat algorithm and discusses the related work. Section  3 proposes the 
SWEclat algorithm and implements the algorithm in detail using Spark Streaming. 
Section 4 analyzes the experimental results. Finally, conclusion is made in Sect. 5.

2  Preliminaries and related works

2.1  Problem definition

Let I =  {i1, i2 ,…, in} be a set of items. Let X = {i1, i2,…, ik} ⊆ I be an itemset; size 
k is called a k-itemset. Let T be a transaction, T = {tid, X′} which tid is an identifier 
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and X′ is an itemset. Given an itemset X ⊆ I, an transaction T contains X if and only 
if X ⊆ X′.

Let DB = {T1, T2, …, Tn} be a database of transactions, |DB| is the number of 
transactions in DB. The vertical format of DB denoted DB′ consists of a set of items 
and a list of tids containing it.

Cij is called the tidset of item ij.
Let DS = {T1, T2,…, Tn} be a data stream of transactions, where Ti, i ∈ [1,m] is 

the ith arrived transaction. A window Wij can be referred to as a set of all transac-
tions between the ith and jth timestamp where j > i arrival of transactions, Wij = {Ti, 
Ti+1,…, Tj−1, Tj}, and the size of Wij denoted as |Wij| is the number of transactions 
contained in the window.

The support of an itemset X in a Window W, denoted as  SupW(X), is the number 
of transactions in W that contain X. An itemset X is called frequent in W only if its 
support is no less than an user-defined threshold minsup s, with  SupW(X) ≥ |W| × s. 
Given DS, W and s, the problem of FIM over streaming data is to find all the fre-
quent itemsets which denoted as FW in the window W.

2.2  Spark Streaming

Apache Spark [24] is a unified analytic engine for large-scale data processing based 
on a cluster, originally developed by AMPLab of UC Berkeley’s. Spark uses Resil-
ient Distributed Datasets (RDDs) as an abstract model of dataset and can distrib-
ute RDD among worker nodes of cluster to implement distributed processing. To 
speed up the process, Spark stores the intermediate results in memory rather than in 
HDFS like Hadoop. Spark also extends the popular MapReduce computing model 
to achieve more complex computing tasks such as iteration and streaming. A typical 
Spark cluster consists of a master node and several worker nodes. The master node 
manages the resources of the node and assigns tasks to the worker nodes. The work-
ing model of Spark Framework is shown in Fig. 1.

Spark Streaming is a component specially designed by Spark for streaming data. 
It allows users to write streaming applications using a set of APIs very close to batch 
processing, which is very convenient to use. Spark Streaming uses data stream RDD 
to represent data streams, and dataset in each sliding window is still represented by 
an RDD, so data stream can be regarded as a sequence of RDDs. Data stream can be 
created from multiple input sources, such as file system, Flume, Kafka and HDFS.

2.3  Related works

Data structures which are used to store data in windows must ensure that they can 
be created only by scanning data once, and can be inserted, deleted and mined effi-
ciently. The data structures used in existing algorithms can be divided into two 
types: prefix tree-based and vertical data format-based.

DB� = {(ij,Cij = {tid| ij ∈ X, (tid,X) ∈ DB})};
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The most commonly used prefix tree in FIM is the FP-Tree used in FP-Growth 
[6], but construct a FP-Tree needs to scan dataset twice, which is not suitable for 
streaming data. Most prefix tree for streaming data is extensions or modifications 
to FP-Tree. DS-Tree [16] can be constructed by scanning dataset only once, divid-
ing all transactions in the window into several panes. Items in the transaction are 
inserted into or deleted from the prefix tree according to canonical order. After the 
prefix tree is constructed or adjusted, the traditional FP-Growth algorithm is used 
to mine the dataset. Unlike nodes in DS-Tree in canonical order, nodes in CPS-Tree 
[15] are arranged in descending order of support, and the descending order of sup-
port of nodes in the tree is maintained by monitored reconstruction. This reconstruc-
tion is time-consuming, especially in the case of concept change frequently, but the 
items in the prefix tree in descending order of support can effectively reduce the 
need for storage space and accelerate the speed of mining. Experiments in [15] show 
that CPS-Tree has better performance than DS-Tree. Similar prefix tree structures 
include CanTree [18], PSD-Tree [9] and so on.

There are three main vertical data formats for transaction: Eclat [7] uses the clas-
sical set of {item–tidset} key–value pairs to represent the dataset. Tidset consists of 
all tids of transactions which contain this item. The length of tidset is the support 
of item or itemset. For dense data, the size of tidset may be very large. In order to 
reduce storage space, dEclat [8] proposed the concept of diffset to store tids without 
item. Mining frequent itemsets in vertical data format is to get tidset of new candi-
date itemsets by running intersection operation of tidset of two itemsets. In order to 
further speed up the intersection operation of tidset, VIPER [22] used bit vector to 
represent tidset of itemsets. Every bit in a bit vector is used to indicate whether an 
itemset exists in a corresponding transaction. Existence is represented by number 1, 
while nonexistence is represented by number 0. The number of 1 in a bit vector is 
the support degree of item or itemset. This representation converts the intersection 
operation of a set into bit-by-bit AND operation of a bit vector. It has high efficiency 
when the data are dense. But when the dataset is sparse, it will waste a lot of space 
to store a large number of number 0.

Driver Program Cluster 

ManageSparkContext

Master Node

Task Task
Cache

Task Task
Cache

Worker

Executor

Executor

Worker

Fig. 1  Working model of Spark
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Different from static dataset, the processing of streaming data needs to use win-
dow to process part of the dataset in the data stream. With the rapid sliding of win-
dow, a large number of insertion and deletion operations are needed for the data 
structure that stores the dataset. Let data stream DS = {T1, T2, T3, T4, T5, T6, T7, T8}, 
and windows W1 = {T1, T2, T3, T4} and W2 = {T3, T4, T5, T6}, W3 = {T5, T6, T7, T8}. 
In the process of window sliding from W1 to W3, two transactions are inserted and 
deleted in each sliding. When the data stream is massive, window sliding will bring 
huge updating overhead. For data structures based on prefix trees, inserting or delet-
ing a transaction requires access to the prefix tree with time complexity of O(logn), 
while for vertical data structures, inserting and deleting transactions only need to 
modify the tidset of the corresponding item, with time complexity of O(1). So, the 
latter one has more advantages than prefix tree. The experimental results in [23] also 
show that the vertical data structure algorithm has greater advantages in execution 
time and storage requirement than DS-Tree and CPS-Tree, and is more suitable for 
FIM over streaming data with sliding window.

3  SWEclat algorithm

The proposed SWEclat algorithm uses the vertical data structure VDB in the form of 
<item, tidset> to represent transaction dataset DB in sliding window. After initiali-
zation, it uses Eclat [7] algorithm to mine VDB distributedly. VDB is modified with 
window sliding, and distributed mining is performed. It uses equivalence class (fre-
quent items) to divide VDB into several conditional databases and distribute them to 
multiple worker nodes for parallel processing. Based on Spark Streaming, the algo-
rithm SWEclat uses DStream to represent data stream and uses functions provided 
by Spark Streaming to operate DStream and RDD which represents dataset in a win-
dow. The algorithm consists of four phases, and the main framework is:

1. Initializing the construction of vertical data format VDB

(a) Scan the horizontal format of streaming data and store it in the correspond-
ing RDD;

(b) Convert horizontal format to vertical format RDD; for example, the hori-
zontal format of {t1, (i1, i2)}{t2, (i2, i3)} is transformed into the vertical 
format of {i1, (t1)}{i2, (t1, t2)}{i3,(t2)};

(c) Sort all items in the vertical format VDB in canonical order;

2. Partitioning conditional databases and Distribution

(a) Delete infrequent items in VDB.
(b) Divide VDB into several equivalent class conditional databases VDBx by 

frequent items.
(c) Distribute conditional databases VDBx to worker nodes.



7625

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

3. Distributed parallel mining of conditional databases on worker nodes

(a) Mine VDBx using Eclat algorithm on worker node.
(b) Collect the mining result of each worker node to get frequent itemsets.

4. Updating VDB with window sliding

(a) Update VDB using deleted transactions.
(b) Update VDB using inserted transactions.

5. Repeating phase 2–4 until the end of the data stream.

3.1  Phase 1: initialize VDB

The goal of this phase is to convert transactions lines in horizontal format into 
vertical data in the form of <item, tidset> and to initialize the construction of 
VDB. The detailed procedure is shown in Algorithm 1.

Algorithm 1.InitVDB

Input: lines

Output:VDB

1:

2:

3:

4:

5:

RDD<tid,String> lines ← input

RDD<item,List<tid>> VDB ←

lines.flatMapToPair(f: {tid,String} {item, tid})

.groupByKey();

.partitionBy(HashPartitioner(n))

VDB.sortByKey()

In this algorithm, firstly, the horizontal format of streaming data is arrived 
and stored in the RDD named lines (line 1). VDB is represented by a key–value 
pair of RDD. All items of transactions in the window are keys, and tidsets of 
items are values (line 2). The function f is passed to the flatMapToPair function 
of VDB to convert each item in Ti to the output in the form of {item: tid} (line 
2). All tids of the identical item are merged through the groupByKey function, 
and the tidset of an item is stored in a collection List < tid > (line 3). At this 
point, the transaction in the window has been converted from horizontal format 
to vertical format and stored in VDB. In order to implement distributed and par-
allel processing, the default partitioner named HashPartitioner is used to divide 
VDB into n partitions (line 4). Finally, the elements in VDB are sorted according 
to item in canonical order (line 5).
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3.2  Phase 2: divide and distribute conditional database

The goal of this phase is to divide VDB into several independent conditional data-
bases according to the method of equivalence class partition [7] and distribute 
these conditional databases to worker nodes to distributed and parallel mining. 
The detailed procedure is shown in Algorithm 2.

Algorithm 2.DivideAndDistributeVDB

Input: VDB, s

Output:VDBx

1:

2:

3:

4:

5:

VDB ←VDB.filter(f:sup(itemx) s)

RDD<ec,<item,List<tid>>>conVDB←

VDB.flatMapToPair(

f: {item,List<tid>} {ec, (tid,List<tid>)})

.groupByKey()

.partitionBy(HashPartitioner(n))

The algorithm uses the vertical data format VDB obtained in the previous 
phase and minimum support s as input and outputs the conditional database with 
equivalent classes as key. According to the Apriori property [2], frequent item-
sets must consist of frequent items. If an itemset contain non-frequent items, then 
this itemset cannot be frequent. Therefore, items with support less than minimum 
support (non-frequent items) in VDB can be filtered out (line 1). A key–value 
pair RDD named conVDB represents the conditional database, where the key is 
the equivalent class (actually frequent items) and the value is the Set of <item, 
tidset> (line 2) in the conditional database. Using the flatMapToPair function, 
a function f is passed to generate a conditional database (line 3) according to 
the equivalent class. The final conditional databases of equivalence classes are 
obtained by merging the results according to equivalence classes (line 4). Finally, 
the conditional database is distributed to each worker node (line 5) according to 
the equivalent class, which is prepared for the next phase of distributed parallel 
mining. N is the number of partitions.

3.3  Phase 3: distributed and parallel mining of conditional databases on work 
nodes

The task of this phase is relatively simple. The conditional database generated 
in the previous phase is mined using Eclat algorithm, and the final result can 
be obtained by collecting frequent itemsets generated by all worker nodes. The 
detailed procedure is shown in Algorithm 3.
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Algorithm 3. DistributedMining

Input: conVDB,s

Output:FrequentItemsets

1: RDD<String,Integer>res 

←VDBec.reduceByKey(f:Eclat(s))

2 FrequentItemsets ←res.collect()

Because the conditional database conVDB takes the equivalent class as the key, 
reduceByKey can be used to mine each conditional database using Eclat algo-
rithm (line 1), and collect function can be used to collect the results distributed 
on every worker node (line 2) and output the final results (line 2).

3.4  Phase 4: update VDB as the window slides

Because of the continuous and unbounded of streaming data, the basic method 
of processing streaming data is to use sliding window to process sub dataset in 
streaming data. With the sliding of the window, the old transaction leaves the 
window, and the new transaction enters into window. VDB needs to be updated 
for the next distributed mining. Figure 2 illustrates the above process intuitively 
as an example.

There is a data stream and two windows as shown in Fig. 2. When the  cur-
rent window is W1, VDB = {a:1, 2, 3, 4; b:1, 2, 4; c:2, 3, 4; d:1, 2, 3}. When the 
window slides from W1 to W2, T1 and T2 are removed from the window, while T5 
and T6 are inserted into the current window, and VDB needs to be updated. After 
removing T1 and T2, VDB = {a:3, 4; b:4; c:3, 4; d:3}, and after inserting T5 and 
T6, VDB = {a:3, 4; b:4; c:3, 4, 5, 6; d:3, 5; e:5, 6}. Update VDB is about to remove 
the leaving transactions and insert the newly arrived transactions from VDB. The 
detailed procedure is shown in Algorithm 4.

Fig. 2  An example of a sliding 
window tid items

1 a,b,d

2 a,b,c,d

3 a,c,d,e

4 a,b,c

5 c,d,e

6 c,e

W1

W2
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Algorithm 4.UpdateVDB

Input: DBdel DBinsert

Output:VDB

1:

2:

3:

4:

5:

6:

7:

8:

9:

DeleteList<item,tidset> ← VDBdel

InsertList<item,tidset> ← VDBinsert

VDB.mapValues(f:x x.tidset.del(DeleteList(x)))

VDB.mapValues(f:(x,tidset)

if VDB.keys().contain(x) tidset.add(InsertList(x)))

else VDB.Add(x,InsertList(x))

end if

)

VDB.sortByKey()

The algorithm uses the removed and inserted dataset as input and outputs the 
updated VDB. According to algorithm 1 (line 3–9), VDBdel which contain removed 
transactions and VDBinsert which contain inserted transactions are transformed into 
vertical data format in the form of <item, tidset> and stored in DeleteList and 
InsertList, respectively, to speed up subsequent operations (line 1–2). For removed 
transactions, it is relatively simple and just need to modify the tidset of the cor-
responding item in VDB. For inserted transactions, there may be items that are not 
included in VDB. In this case, new element is added (line 6). For existing items, just 
modify their tidset directly (line 5).

After the VDB is updated, the new VDB is used to re-partition conditional data-
bases for distributed and parallel mining until the end of the data stream.

4  Experimental results and analysis

4.1  Experiments settings

In order to evaluate the performance of SWEclat algorithm, experiments are divided 
into three groups. The first group of experiments verifies the acceleration of the 
algorithm, that is, the improvement in runtime. Since we did not find a similar algo-
rithm based on Spark Streaming and using sliding window technology to mine all 
frequent itemsets in the window, we compared the distributed version with the non-
distributed version of SWEclat algorithm named NoDisSWEclat. The second group 
of experiments checked the distributed scalability of the algorithm and the runtime 
of the algorithm under different distributed degrees. The third group of experiments 
examined the load balancing after using the default HashPartitioner to partition the 
related RDDs.
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In the experiments, mushroom and retail, the standard datasets from FIMI Repos-
itory [25], are selected, and their attributes are shown in Table  1. Mushroom is 
dense, while retail is a sparse dataset. To simulate streaming data, the famous NCAT 
which is a general-purpose command-line tool for reading, writing, redirecting and 
encrypting data across a network in Linux is used to send dataset to a specific port. 
The batch time of streaming data is set to 500  ms; the window size is two times 
batch size; and the sliding step is 1 batch.

We have conducted all the experiments on a 64-bit architecture with 16 cores on 
Intel Xeon E5-2620 and with 64 GB of RAM functioning over an operative system 
with CentOS 7.5. The algorithm is implemented in Java with Spark version 2.4.3 
and Java version 1.8.0.

4.2  Acceleration

This group of experiments compared the running time of SWEclat and NoDisS-
WEclat under different minimum supports. The experimental results are shown in 
Fig. 3.

Figure 3 shows that SWEclat algorithm has better performance than its non-dis-
tributed version, and its acceleration performance is better with the decrease in min-
imum support, which leads to the increase in computation overhead in each window. 
Because of the characteristics of RDD used by Spark Streaming, the operation of 
RDD can be automatically distributed to worker nodes and run in parallel. For dense 
data, its acceleration is more obvious than that for sparse data.

4.3  Scalability

This set of experiments examines the scalability of the algorithm and the runtime 
of the algorithm at different degrees of parallelism which realized by adjusting the 
number of partitions of VDB and conVDB. The minimum support is set at 40% on 
mushroom dataset and 0.5% on retail dataset. The experimental results are shown in 
Fig. 4.

Figure 4 shows that the runtime on both datasets decreases with the increase in 
the number of RDD partitions. The main steps of SWEclat algorithm can be exe-
cuted in parallel by distributing the corresponding RDD into multiple partitions. As 
the number of partitions increases, the processing overhead of each partition will 
decrease correspondingly, and the overall performance of the algorithm will be 
improved.

Table 1  Characteristics of datasets used in experiments

Dataset Number of transac-
tions

Number of items Average length of 
transactions

Size (KB)

Mushroom 8124 119 29 558
Retail 88,162 16,470 10 4070
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4.4  Load balancing

As discussed above, algorithms based on Spark Streaming can use Spark RDD 
to store data and divide the RDD into multiple partitions so that operations on 
RDD can be executed in parallel to improve performance. Specifically to SWE-
clat algorithm, it mainly divides VDB and conVDB, which are used to store verti-
cal transaction data, and realizes parallel operations such as conditional database 
mining and VDB updating. In order to achieve load balancing, each partition size 
after partitioning is almost equal. In order to verify the validity of using default 
HashPartitioner, different partitioning numbers are tested for two datasets. The 

(a) mushroom dataset

(b) retail dataset

Fig. 3  Running time of two algorithms under different minimum supports
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mushroom dataset uses 40% minimum support, and the retail dataset uses 0.5% 
minimum support. The experimental results are shown in Table 2.

In Table 2, the first column is the name of the dataset, the second is the No. of 
each partition, the third to fifth columns are the size of each partition when VDB 
is divided into 4, 8 and 16 partitions, and the sixth to eighth columns are the size 
of each partition when conVDB is divided into 4, 8 and 16 partitions. From the 
table, we can see that using default HashPartitioner to partition RDD can achieve 
better load balancing. VDB and conVDB partitions are basically the same size. 
When the amount of data is larger, the effect is better, which creates a better con-
dition for parallel execution of related operations in RDD.

5  Conclusions

In this paper, we study the problem of distributed frequent itemset mining over 
streaming data and propose a distributed algorithm named SWEclat based on 
Spark Streaming which is a popular streaming data processing platform. SWEclat 
algorithm uses sliding window technology to access partial data in the stream-
ing data. Because the vertical data structure used by Eclat algorithm has better 
insertion and deletion performance, and can be divided into independent search 
space and conditional database, it is used for storing data in current window. The 
proposed algorithm use spark RDD to save and partition the data in the current 
window, and use functions provided by spark to realize distributed and parallel 
mining. Experiments show that the proposed SWEclat algorithm has good accel-
eration and scalability, and can be used to solve many problems based on frequent 
itemset mining of streaming data.

Fig. 4  Runtime of SWEclat under different numbers of partitions
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Table 2  Partition sizes of VDB 
and conVDB under different 
numbers of partitions

Dataset Partition no. Size of VDB parti-
tions

Size of 
conVDB 
partitions

Mushroom P0 29 14 11 19 7 1
P1 29 15 9 22 9 0
P2 31 14 6 19 10 1
P3 30 17 8 19 9 0
P4 – 14 10 – 10 0
P5 – 14 6 – 12 1
P6 – 16 5 – 12 1
P7 – 15 7 – 10 1
P8 – – 5 – – 2
P9 – – 6 – – 2
P10 – – 6 – – 1
P11 – – 6 – – 2
P12 – – 8 – – 3
P13 – – 7 – – 2
P14 – – 9 – – 1
P15 – – 10 – – 3

Retail P0 4116 2062 1127 51 27 14
P1 4119 2054 1133 51 27 13
P2 4119 2060 1077 66 26 15
P3 4116 2061 1123 53 24 10
P4 – 2057 965 – 24 23
P5 – 2059 1000 – 26 17
P6 – 2055 939 – 40 14
P7 – 2062 1040 – 27 13
P8 – – 1107 – – 13
P9 – – 980 – – 12
P10 – – 926 – – 14
P11 – – 928 – – 14
P12 – – 947 – – 17
P13 – – 1097 – – 7
P14 – – 1061 – – 11
P15 – – 1020 – – 14
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directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.
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