
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:7619–7634
https://doi.org/10.1007/s11227-020-03190-5

1 3

SWEclat: a frequent itemset mining algorithm
over streaming data using Spark Streaming

Wen Xiao1,2 · Juan Hu3

Published online: 4 February 2020
© The Author(s) 2020

Abstract
Finding frequent itemsets in a continuous streaming data is an important data min-
ing task which is widely used in network monitoring, Internet of Things data analy-
sis and so on. In the era of big data, it is necessary to develop a distributed frequent
itemset mining algorithm to meet the needs of massive streaming data processing.
Apache Spark is a unified analytic engine for massive data processing which has
been successfully used in many data mining fields. In this paper, we propose a dis-
tributed algorithm for mining frequent itemsets over massive streaming data named
SWEclat. The algorithm uses sliding window to process streaming data and uses
vertical data structure to store the dataset in the sliding window. This algorithm is
implemented by Apache Spark and uses Spark RDD to store streaming data and
dataset in vertical data format, so as to divide these RDDs into partitions for distrib-
uted processing. Experimental results show that SWEclat algorithm has good accel-
eration, parallel scalability and load balancing.

Keywords Frequent itemset mining · Streaming data · Sliding window ·
Distributed · Spark Streaming

1 Introduction

Frequent itemset mining (FIM) is one of the most basic and important data mining
tasks. Since it was proposed [1], it has attracted more and more attention. Classical
FIM algorithms for mining static data include: Apriori [2] based on Generation-Test
and its series of improved algorithms [3–5]; Frequent Pattern Growth (FP-Growth)

 * Wen Xiao
 cyees@163.com

1 College of Computer Science and Information, HOHAI University, Nanjing, China
2 Key Laboratory of Unmanned Aerial Vehicle Development and Data Application of Anhui

Higher Education Institutes, Wanjiang University of Technology, Maanshan, China
3 Ma’anshan Engineering Technology Research Center for Wireless Sensor Network

and IntelliSense, Wanjiang University of Technology, Maanshan, China

http://orcid.org/0000-0003-1444-908X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03190-5&domain=pdf

7620 W. Xiao, J. Hu

1 3

[6] algorithm and other algorithms based on Pattern Growth; and Equivalence Class
Transformation (Eclat) [7], Diffset Eclat (dEclat) [8] and other algorithms based on
vertical data format. Mining frequent itemsets from data streams is one of the most
important issues in FIM. It is widely used in retail chain data analysis, network traf-
fic analysis, click-stream mining, IOT data analysis and other fields. Data stream is a
continuous, unbounded, timely ordered sequence of data elements with high speed;
these characteristics lead to some special limitations in Mining frequent itemsets:
All elements in the data stream can only be visited once; data streams grow continu-
ously, but memory during processing is limited and only part of the elements in data
streams can be processed; the high speed of data stream also requires the high speed
of mining. Therefore, the aim to design FIM algorithm for streaming data is gener-
ally required to complete the mining only by scanning the data stream once, and the
complexity of time and space is relatively low to ensure that it can be completed in
limited memory. Some elements accessed are generally the most recently arrived
elements [9].

Using time-sensitive window to represent the most recently arrived part of the
data stream is the main technique to process the data stream. There are three com-
monly used window models, including landmark model, the damped model and slid-
ing window model. In the landmark model, only the data between the landmark time
point and the current time point in the data stream are considered. Typical algo-
rithms are Lossy Counting [10], Frequent Data stream Pattern Mining (FDPM) [11]
and Data Stream Mining for Frequent Itemsets (DSM-FI) [12]. In damped model,
different weights are given according to the order of arrival of elements in data
stream. The typical algorithms are estDec [13] and so on. In sliding window model,
we need to specify a fixed length time window to represent the latest arrival data.
Typical algorithms are Moment [14] and Compact Pattern Stream Tree (CPS-Tree)
[15]. Because the sliding window model not only extracts part of the data stream for
processing, but also fully considers the value of the latest data, the sliding window
model is the most commonly used in streaming data process. In this model, with the
window sliding, the old elements in the data stream are deleted from the window;
the newly arrived elements are inserted into the window for processing.

The core of designing FIM algorithm over data stream based on sliding window
model is to select or design a data structure to store data in the window. This data
structure must meet the following requirements: Because the elements in the data
stream can only be visited once, this data structure can only be created by scanning
the data stream once; window sliding will lead to many operations of deleting and
inserting in data structure, which requires that the data structure has high efficiency
in deletion and insertion; because window sliding brings the problem of “concept
change,” in order to mine the data in the window accurately, this data structure must
store the information of all items (including frequent and infrequent items); in order
to reduce the storage requirement in the mining process, it is necessary to have a
high compression ratio of this data structure and a high efficiency of FIM in this
data structure, that is, a better time–space efficiency. The commonly used data struc-
tures include Data Stream Tree (DS-Tree) [16], CPS-Tree [15], Parallel Stream Data
(PSD-Tree) [9] based on prefix tree, and tidset [7] and diffset [8] based on vertical
data format.

7621

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

With the rapid development of Internet of Things, information transmission and
storage technology, the amount of data generated and needed to be mined has explosive
growth; we have entered the era of big data. The most basic and prominent feature of
big data is the huge amount of data. FIM is a task with high computing load and stor-
age requirements, If there are n items in the dataset, the size of search space is 2n − 1,
and the computing load and storage requirements is extremely heavy. When the amount
of dataset is large, distributed algorithms are needed to meet the above challenges. Pop-
ular big data distributed computing platform such as Hadoop and Spark are based on
the idea of data localization, which can easily realize efficient, automatic balancing and
automatic fault-tolerant distributed mining. Several FIM algorithms based on sliding
window using popular big data platforms have been proposed: Vanteru et al. [17] pro-
pose an algorithm for mining frequent itemsets in data stream using sliding windows. It
uses Canonical-Order Tree (CanTree) [18] to store data in an window, generates GTree
to mine frequent itemsets by projecting CanTree further and implements distributed
mining by Hadoop. Hadoop is mainly used for data batch processing with input, and
intermediate results are stored on Hadoop Distributed File System (HDFS), which is
inefficient for streaming data processing. The algorithm proposed in [19] is similar to
[17]. It also uses Hadoop to realize distributed mining. The difference is that Tail Point
Table Tree (TPT-Tree) is used to store data in windows. Carlos et al. [20] use Spark to
parallelize Frequent Itemset Mining over Time-sensitive Streams (FIMoTS) algorithm.
FIMoTS [21] uses prefix tree to save the data in the window and classifies all itemsets
in the window according to the support degree. It decides whether the itemsets in the
window data are retained or not by the upper and lower limits defined by the user called
Type Transforming Upper/Lower Bound. Obviously, the itemsets below the lower lim-
its will be discarded and it is an approximate mining algorithm.

In this paper, we propose a distributed FIM algorithm over streaming data named
Sliding Window Eclat (SWEclat) which is based on Spark Streaming. Firstly, the
algorithm uses the sliding window which suits for big data to process streaming
data; second, the algorithm uses the vertical data format to store the data in the cur-
rent window; third, the algorithm uses spark RDD to distributed store data in cur-
rent window and uses the functions provided by spark to perform distributed paral-
lel processing. The algorithm includes four main phases: initializing vertical data
format, partitioning equivalent class conditional database, distributed mining condi-
tional database and updating vertical database.

The rest of this paper is organized as follows: Sect. 2 introduces the preliminar-
ies of SWEclat algorithm and discusses the related work. Section 3 proposes the
SWEclat algorithm and implements the algorithm in detail using Spark Streaming.
Section 4 analyzes the experimental results. Finally, conclusion is made in Sect. 5.

2 Preliminaries and related works

2.1 Problem definition

Let I = {i1, i2 ,…, in} be a set of items. Let X = {i1, i2,…, ik} ⊆ I be an itemset; size
k is called a k-itemset. Let T be a transaction, T = {tid, X′} which tid is an identifier

7622 W. Xiao, J. Hu

1 3

and X′ is an itemset. Given an itemset X ⊆ I, an transaction T contains X if and only
if X ⊆ X′.

Let DB = {T1, T2, …, Tn} be a database of transactions, |DB| is the number of
transactions in DB. The vertical format of DB denoted DB′ consists of a set of items
and a list of tids containing it.

Cij is called the tidset of item ij.
Let DS = {T1, T2,…, Tn} be a data stream of transactions, where Ti, i ∈ [1,m] is

the ith arrived transaction. A window Wij can be referred to as a set of all transac-
tions between the ith and jth timestamp where j > i arrival of transactions, Wij = {Ti,
Ti+1,…, Tj−1, Tj}, and the size of Wij denoted as |Wij| is the number of transactions
contained in the window.

The support of an itemset X in a Window W, denoted as SupW(X), is the number
of transactions in W that contain X. An itemset X is called frequent in W only if its
support is no less than an user-defined threshold minsup s, with SupW(X) ≥ |W| × s.
Given DS, W and s, the problem of FIM over streaming data is to find all the fre-
quent itemsets which denoted as FW in the window W.

2.2 Spark Streaming

Apache Spark [24] is a unified analytic engine for large-scale data processing based
on a cluster, originally developed by AMPLab of UC Berkeley’s. Spark uses Resil-
ient Distributed Datasets (RDDs) as an abstract model of dataset and can distrib-
ute RDD among worker nodes of cluster to implement distributed processing. To
speed up the process, Spark stores the intermediate results in memory rather than in
HDFS like Hadoop. Spark also extends the popular MapReduce computing model
to achieve more complex computing tasks such as iteration and streaming. A typical
Spark cluster consists of a master node and several worker nodes. The master node
manages the resources of the node and assigns tasks to the worker nodes. The work-
ing model of Spark Framework is shown in Fig. 1.

Spark Streaming is a component specially designed by Spark for streaming data.
It allows users to write streaming applications using a set of APIs very close to batch
processing, which is very convenient to use. Spark Streaming uses data stream RDD
to represent data streams, and dataset in each sliding window is still represented by
an RDD, so data stream can be regarded as a sequence of RDDs. Data stream can be
created from multiple input sources, such as file system, Flume, Kafka and HDFS.

2.3 Related works

Data structures which are used to store data in windows must ensure that they can
be created only by scanning data once, and can be inserted, deleted and mined effi-
ciently. The data structures used in existing algorithms can be divided into two
types: prefix tree-based and vertical data format-based.

DB� = {(ij,Cij = {tid| ij ∈ X, (tid,X) ∈ DB})};

7623

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

The most commonly used prefix tree in FIM is the FP-Tree used in FP-Growth
[6], but construct a FP-Tree needs to scan dataset twice, which is not suitable for
streaming data. Most prefix tree for streaming data is extensions or modifications
to FP-Tree. DS-Tree [16] can be constructed by scanning dataset only once, divid-
ing all transactions in the window into several panes. Items in the transaction are
inserted into or deleted from the prefix tree according to canonical order. After the
prefix tree is constructed or adjusted, the traditional FP-Growth algorithm is used
to mine the dataset. Unlike nodes in DS-Tree in canonical order, nodes in CPS-Tree
[15] are arranged in descending order of support, and the descending order of sup-
port of nodes in the tree is maintained by monitored reconstruction. This reconstruc-
tion is time-consuming, especially in the case of concept change frequently, but the
items in the prefix tree in descending order of support can effectively reduce the
need for storage space and accelerate the speed of mining. Experiments in [15] show
that CPS-Tree has better performance than DS-Tree. Similar prefix tree structures
include CanTree [18], PSD-Tree [9] and so on.

There are three main vertical data formats for transaction: Eclat [7] uses the clas-
sical set of {item–tidset} key–value pairs to represent the dataset. Tidset consists of
all tids of transactions which contain this item. The length of tidset is the support
of item or itemset. For dense data, the size of tidset may be very large. In order to
reduce storage space, dEclat [8] proposed the concept of diffset to store tids without
item. Mining frequent itemsets in vertical data format is to get tidset of new candi-
date itemsets by running intersection operation of tidset of two itemsets. In order to
further speed up the intersection operation of tidset, VIPER [22] used bit vector to
represent tidset of itemsets. Every bit in a bit vector is used to indicate whether an
itemset exists in a corresponding transaction. Existence is represented by number 1,
while nonexistence is represented by number 0. The number of 1 in a bit vector is
the support degree of item or itemset. This representation converts the intersection
operation of a set into bit-by-bit AND operation of a bit vector. It has high efficiency
when the data are dense. But when the dataset is sparse, it will waste a lot of space
to store a large number of number 0.

Driver Program Cluster

ManageSparkContext

Master Node

Task Task
Cache

Task Task
Cache

Worker

Executor

Executor

Worker

Fig. 1 Working model of Spark

7624 W. Xiao, J. Hu

1 3

Different from static dataset, the processing of streaming data needs to use win-
dow to process part of the dataset in the data stream. With the rapid sliding of win-
dow, a large number of insertion and deletion operations are needed for the data
structure that stores the dataset. Let data stream DS = {T1, T2, T3, T4, T5, T6, T7, T8},
and windows W1 = {T1, T2, T3, T4} and W2 = {T3, T4, T5, T6}, W3 = {T5, T6, T7, T8}.
In the process of window sliding from W1 to W3, two transactions are inserted and
deleted in each sliding. When the data stream is massive, window sliding will bring
huge updating overhead. For data structures based on prefix trees, inserting or delet-
ing a transaction requires access to the prefix tree with time complexity of O(logn),
while for vertical data structures, inserting and deleting transactions only need to
modify the tidset of the corresponding item, with time complexity of O(1). So, the
latter one has more advantages than prefix tree. The experimental results in [23] also
show that the vertical data structure algorithm has greater advantages in execution
time and storage requirement than DS-Tree and CPS-Tree, and is more suitable for
FIM over streaming data with sliding window.

3 SWEclat algorithm

The proposed SWEclat algorithm uses the vertical data structure VDB in the form of
<item, tidset> to represent transaction dataset DB in sliding window. After initiali-
zation, it uses Eclat [7] algorithm to mine VDB distributedly. VDB is modified with
window sliding, and distributed mining is performed. It uses equivalence class (fre-
quent items) to divide VDB into several conditional databases and distribute them to
multiple worker nodes for parallel processing. Based on Spark Streaming, the algo-
rithm SWEclat uses DStream to represent data stream and uses functions provided
by Spark Streaming to operate DStream and RDD which represents dataset in a win-
dow. The algorithm consists of four phases, and the main framework is:

1. Initializing the construction of vertical data format VDB

(a) Scan the horizontal format of streaming data and store it in the correspond-
ing RDD;

(b) Convert horizontal format to vertical format RDD; for example, the hori-
zontal format of {t1, (i1, i2)}{t2, (i2, i3)} is transformed into the vertical
format of {i1, (t1)}{i2, (t1, t2)}{i3,(t2)};

(c) Sort all items in the vertical format VDB in canonical order;

2. Partitioning conditional databases and Distribution

(a) Delete infrequent items in VDB.
(b) Divide VDB into several equivalent class conditional databases VDBx by

frequent items.
(c) Distribute conditional databases VDBx to worker nodes.

7625

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

3. Distributed parallel mining of conditional databases on worker nodes

(a) Mine VDBx using Eclat algorithm on worker node.
(b) Collect the mining result of each worker node to get frequent itemsets.

4. Updating VDB with window sliding

(a) Update VDB using deleted transactions.
(b) Update VDB using inserted transactions.

5. Repeating phase 2–4 until the end of the data stream.

3.1 Phase 1: initialize VDB

The goal of this phase is to convert transactions lines in horizontal format into
vertical data in the form of <item, tidset> and to initialize the construction of
VDB. The detailed procedure is shown in Algorithm 1.

Algorithm 1.InitVDB

Input: lines

Output:VDB

1:

2:

3:

4:

5:

RDD<tid,String> lines ← input

RDD<item,List<tid>> VDB ←

lines.flatMapToPair(f: {tid,String} {item, tid})

.groupByKey();

.partitionBy(HashPartitioner(n))

VDB.sortByKey()

In this algorithm, firstly, the horizontal format of streaming data is arrived
and stored in the RDD named lines (line 1). VDB is represented by a key–value
pair of RDD. All items of transactions in the window are keys, and tidsets of
items are values (line 2). The function f is passed to the flatMapToPair function
of VDB to convert each item in Ti to the output in the form of {item: tid} (line
2). All tids of the identical item are merged through the groupByKey function,
and the tidset of an item is stored in a collection List < tid > (line 3). At this
point, the transaction in the window has been converted from horizontal format
to vertical format and stored in VDB. In order to implement distributed and par-
allel processing, the default partitioner named HashPartitioner is used to divide
VDB into n partitions (line 4). Finally, the elements in VDB are sorted according
to item in canonical order (line 5).

7626 W. Xiao, J. Hu

1 3

3.2 Phase 2: divide and distribute conditional database

The goal of this phase is to divide VDB into several independent conditional data-
bases according to the method of equivalence class partition [7] and distribute
these conditional databases to worker nodes to distributed and parallel mining.
The detailed procedure is shown in Algorithm 2.

Algorithm 2.DivideAndDistributeVDB

Input: VDB, s

Output:VDBx

1:

2:

3:

4:

5:

VDB ←VDB.filter(f:sup(itemx) s)

RDD<ec,<item,List<tid>>>conVDB←

VDB.flatMapToPair(

f: {item,List<tid>} {ec, (tid,List<tid>)})

.groupByKey()

.partitionBy(HashPartitioner(n))

The algorithm uses the vertical data format VDB obtained in the previous
phase and minimum support s as input and outputs the conditional database with
equivalent classes as key. According to the Apriori property [2], frequent item-
sets must consist of frequent items. If an itemset contain non-frequent items, then
this itemset cannot be frequent. Therefore, items with support less than minimum
support (non-frequent items) in VDB can be filtered out (line 1). A key–value
pair RDD named conVDB represents the conditional database, where the key is
the equivalent class (actually frequent items) and the value is the Set of <item,
tidset> (line 2) in the conditional database. Using the flatMapToPair function,
a function f is passed to generate a conditional database (line 3) according to
the equivalent class. The final conditional databases of equivalence classes are
obtained by merging the results according to equivalence classes (line 4). Finally,
the conditional database is distributed to each worker node (line 5) according to
the equivalent class, which is prepared for the next phase of distributed parallel
mining. N is the number of partitions.

3.3 Phase 3: distributed and parallel mining of conditional databases on work
nodes

The task of this phase is relatively simple. The conditional database generated
in the previous phase is mined using Eclat algorithm, and the final result can
be obtained by collecting frequent itemsets generated by all worker nodes. The
detailed procedure is shown in Algorithm 3.

7627

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

Algorithm 3. DistributedMining

Input: conVDB,s

Output:FrequentItemsets

1: RDD<String,Integer>res

←VDBec.reduceByKey(f:Eclat(s))

2 FrequentItemsets ←res.collect()

Because the conditional database conVDB takes the equivalent class as the key,
reduceByKey can be used to mine each conditional database using Eclat algo-
rithm (line 1), and collect function can be used to collect the results distributed
on every worker node (line 2) and output the final results (line 2).

3.4 Phase 4: update VDB as the window slides

Because of the continuous and unbounded of streaming data, the basic method
of processing streaming data is to use sliding window to process sub dataset in
streaming data. With the sliding of the window, the old transaction leaves the
window, and the new transaction enters into window. VDB needs to be updated
for the next distributed mining. Figure 2 illustrates the above process intuitively
as an example.

There is a data stream and two windows as shown in Fig. 2. When the cur-
rent window is W1, VDB = {a:1, 2, 3, 4; b:1, 2, 4; c:2, 3, 4; d:1, 2, 3}. When the
window slides from W1 to W2, T1 and T2 are removed from the window, while T5
and T6 are inserted into the current window, and VDB needs to be updated. After
removing T1 and T2, VDB = {a:3, 4; b:4; c:3, 4; d:3}, and after inserting T5 and
T6, VDB = {a:3, 4; b:4; c:3, 4, 5, 6; d:3, 5; e:5, 6}. Update VDB is about to remove
the leaving transactions and insert the newly arrived transactions from VDB. The
detailed procedure is shown in Algorithm 4.

Fig. 2 An example of a sliding
window tid items

1 a,b,d

2 a,b,c,d

3 a,c,d,e

4 a,b,c

5 c,d,e

6 c,e

W1

W2

7628 W. Xiao, J. Hu

1 3

Algorithm 4.UpdateVDB

Input: DBdel DBinsert

Output:VDB

1:

2:

3:

4:

5:

6:

7:

8:

9:

DeleteList<item,tidset> ← VDBdel

InsertList<item,tidset> ← VDBinsert

VDB.mapValues(f:x x.tidset.del(DeleteList(x)))

VDB.mapValues(f:(x,tidset)

if VDB.keys().contain(x) tidset.add(InsertList(x)))

else VDB.Add(x,InsertList(x))

end if

)

VDB.sortByKey()

The algorithm uses the removed and inserted dataset as input and outputs the
updated VDB. According to algorithm 1 (line 3–9), VDBdel which contain removed
transactions and VDBinsert which contain inserted transactions are transformed into
vertical data format in the form of <item, tidset> and stored in DeleteList and
InsertList, respectively, to speed up subsequent operations (line 1–2). For removed
transactions, it is relatively simple and just need to modify the tidset of the cor-
responding item in VDB. For inserted transactions, there may be items that are not
included in VDB. In this case, new element is added (line 6). For existing items, just
modify their tidset directly (line 5).

After the VDB is updated, the new VDB is used to re-partition conditional data-
bases for distributed and parallel mining until the end of the data stream.

4 Experimental results and analysis

4.1 Experiments settings

In order to evaluate the performance of SWEclat algorithm, experiments are divided
into three groups. The first group of experiments verifies the acceleration of the
algorithm, that is, the improvement in runtime. Since we did not find a similar algo-
rithm based on Spark Streaming and using sliding window technology to mine all
frequent itemsets in the window, we compared the distributed version with the non-
distributed version of SWEclat algorithm named NoDisSWEclat. The second group
of experiments checked the distributed scalability of the algorithm and the runtime
of the algorithm under different distributed degrees. The third group of experiments
examined the load balancing after using the default HashPartitioner to partition the
related RDDs.

7629

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

In the experiments, mushroom and retail, the standard datasets from FIMI Repos-
itory [25], are selected, and their attributes are shown in Table 1. Mushroom is
dense, while retail is a sparse dataset. To simulate streaming data, the famous NCAT
which is a general-purpose command-line tool for reading, writing, redirecting and
encrypting data across a network in Linux is used to send dataset to a specific port.
The batch time of streaming data is set to 500 ms; the window size is two times
batch size; and the sliding step is 1 batch.

We have conducted all the experiments on a 64-bit architecture with 16 cores on
Intel Xeon E5-2620 and with 64 GB of RAM functioning over an operative system
with CentOS 7.5. The algorithm is implemented in Java with Spark version 2.4.3
and Java version 1.8.0.

4.2 Acceleration

This group of experiments compared the running time of SWEclat and NoDisS-
WEclat under different minimum supports. The experimental results are shown in
Fig. 3.

Figure 3 shows that SWEclat algorithm has better performance than its non-dis-
tributed version, and its acceleration performance is better with the decrease in min-
imum support, which leads to the increase in computation overhead in each window.
Because of the characteristics of RDD used by Spark Streaming, the operation of
RDD can be automatically distributed to worker nodes and run in parallel. For dense
data, its acceleration is more obvious than that for sparse data.

4.3 Scalability

This set of experiments examines the scalability of the algorithm and the runtime
of the algorithm at different degrees of parallelism which realized by adjusting the
number of partitions of VDB and conVDB. The minimum support is set at 40% on
mushroom dataset and 0.5% on retail dataset. The experimental results are shown in
Fig. 4.

Figure 4 shows that the runtime on both datasets decreases with the increase in
the number of RDD partitions. The main steps of SWEclat algorithm can be exe-
cuted in parallel by distributing the corresponding RDD into multiple partitions. As
the number of partitions increases, the processing overhead of each partition will
decrease correspondingly, and the overall performance of the algorithm will be
improved.

Table 1 Characteristics of datasets used in experiments

Dataset Number of transac-
tions

Number of items Average length of
transactions

Size (KB)

Mushroom 8124 119 29 558
Retail 88,162 16,470 10 4070

7630 W. Xiao, J. Hu

1 3

4.4 Load balancing

As discussed above, algorithms based on Spark Streaming can use Spark RDD
to store data and divide the RDD into multiple partitions so that operations on
RDD can be executed in parallel to improve performance. Specifically to SWE-
clat algorithm, it mainly divides VDB and conVDB, which are used to store verti-
cal transaction data, and realizes parallel operations such as conditional database
mining and VDB updating. In order to achieve load balancing, each partition size
after partitioning is almost equal. In order to verify the validity of using default
HashPartitioner, different partitioning numbers are tested for two datasets. The

(a) mushroom dataset

(b) retail dataset

Fig. 3 Running time of two algorithms under different minimum supports

7631

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

mushroom dataset uses 40% minimum support, and the retail dataset uses 0.5%
minimum support. The experimental results are shown in Table 2.

In Table 2, the first column is the name of the dataset, the second is the No. of
each partition, the third to fifth columns are the size of each partition when VDB
is divided into 4, 8 and 16 partitions, and the sixth to eighth columns are the size
of each partition when conVDB is divided into 4, 8 and 16 partitions. From the
table, we can see that using default HashPartitioner to partition RDD can achieve
better load balancing. VDB and conVDB partitions are basically the same size.
When the amount of data is larger, the effect is better, which creates a better con-
dition for parallel execution of related operations in RDD.

5 Conclusions

In this paper, we study the problem of distributed frequent itemset mining over
streaming data and propose a distributed algorithm named SWEclat based on
Spark Streaming which is a popular streaming data processing platform. SWEclat
algorithm uses sliding window technology to access partial data in the stream-
ing data. Because the vertical data structure used by Eclat algorithm has better
insertion and deletion performance, and can be divided into independent search
space and conditional database, it is used for storing data in current window. The
proposed algorithm use spark RDD to save and partition the data in the current
window, and use functions provided by spark to realize distributed and parallel
mining. Experiments show that the proposed SWEclat algorithm has good accel-
eration and scalability, and can be used to solve many problems based on frequent
itemset mining of streaming data.

Fig. 4 Runtime of SWEclat under different numbers of partitions

7632 W. Xiao, J. Hu

1 3

Acknowledgements This work was supported by the Natural Science Foundation of the universities in
Anhui province (No. KJ2019A1274).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

Table 2 Partition sizes of VDB
and conVDB under different
numbers of partitions

Dataset Partition no. Size of VDB parti-
tions

Size of
conVDB
partitions

Mushroom P0 29 14 11 19 7 1
P1 29 15 9 22 9 0
P2 31 14 6 19 10 1
P3 30 17 8 19 9 0
P4 – 14 10 – 10 0
P5 – 14 6 – 12 1
P6 – 16 5 – 12 1
P7 – 15 7 – 10 1
P8 – – 5 – – 2
P9 – – 6 – – 2
P10 – – 6 – – 1
P11 – – 6 – – 2
P12 – – 8 – – 3
P13 – – 7 – – 2
P14 – – 9 – – 1
P15 – – 10 – – 3

Retail P0 4116 2062 1127 51 27 14
P1 4119 2054 1133 51 27 13
P2 4119 2060 1077 66 26 15
P3 4116 2061 1123 53 24 10
P4 – 2057 965 – 24 23
P5 – 2059 1000 – 26 17
P6 – 2055 939 – 40 14
P7 – 2062 1040 – 27 13
P8 – – 1107 – – 13
P9 – – 980 – – 12
P10 – – 926 – – 14
P11 – – 928 – – 14
P12 – – 947 – – 17
P13 – – 1097 – – 7
P14 – – 1061 – – 11
P15 – – 1020 – – 14

7633

1 3

SWEclat: a frequent itemset mining algorithm over streaming…

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

 1. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, pp 207–216

 2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the
20th International Conference on Very Large Data Bases, VLDB, vol 1215, pp 487–499

 3. Park JS, Chen MS, Yu PS (1997) Using a hash-based method with transaction trimming for mining
association rules. IEEE Trans Knowl Data Eng 9(5):813–825

 4. Ozel SA, Guvenir HA (2001) An algorithm for mining association rules using perfect hashing and
database pruning. In: 10th Turkish Symposium on Artificial Intelligence and Neural Networks.
Springer, Berlin, pp 257–264

 5. Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for
market basket data. In: Proceedings of the 1997 ACM SIGMOD International Conference on Man-
agement of Data, pp 255–264

 6. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM Sigmod
Rec 29(2):1–12

 7. Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng
12(3):372–390

 8. Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 326–335

 9. He Y, Yue M (2014) Parallel frequent itemset mining on streaming data. In: 2014 10th International
Conference on Natural Computation (ICNC). IEEE, pp 725–730

 10. Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Morgan Kaufmann, pp
346–357

 11. Yu JX, Chong Z, Lu H, Zhou A (2004) False positive or false negative: mining frequent itemsets
from high speed transactional data streams. In: VLDB, vol 4, pp 204–215

 12. Li HF, Shan MK, Lee SY (2008) DSM-FI: an efficient algorithm for mining frequent itemsets in
data streams. Knowl Inf Syst 17(1):79–97

 13. Chang JH, Lee WS (2003) Finding recent frequent itemsets adaptively over online data streams. In:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp 487–492

 14. Chi Y, Wang H, Yu PS, Muntz RR (2004) Moment: maintaining closed frequent itemsets over a
stream sliding window. In: Fourth IEEE International Conference on Data Mining (ICDM’04).
IEEE, pp 59–66

 15. Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Sliding window-based frequent pattern mining
over data streams. Inf Sci 179(22):3843–3865

 16. Leung CKS, Khan QI (2006) DSTree: a tree structure for the mining of frequent sets from data
streams. In: Sixth International Conference on Data Mining (ICDM’06). IEEE, pp 928–932

 17. Kusumakumari V, Sherigar D, Chandran R, Patil N (2017) Frequent pattern mining on stream data
using Hadoop CanTree-GTree. Procedia Comput Sci 115:266–273

 18. Leung CKS, Khan QI, Li Z, Hoque T (2007) CanTree: a canonical-order tree for incremental fre-
quent-pattern mining. Knowl Inf Syst 11(3):287–311

 19. Bo C, Yong DC, Xiue G (2016) A frequent pattern parallel mining algorithm based on distributed
sliding window. Comput Syst Sci Eng 31(2):101–107

 20. Fernandez-Basso C, Francisco-Agra AJ, Martin-Bautista MJ, Ruiz MD (2019) Finding tendencies
in streaming data using big data frequent itemset mining. Knowl Based Syst 163:666–674

 21. Li H, Zhang N, Zhu J, Cao H, Wang Y (2014) Efficient frequent itemset mining methods over time-
sensitive streams. Knowl Based Syst 56:281–298

 22. Shenoy P, Haritsa JR, Sudarshan S, Bhalotia G, Bawa M, Shah D (2000) Turbo-charging vertical
mining of large databases. ACM Sigmod Rec 29(2):22–33

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

7634 W. Xiao, J. Hu

1 3

 23. Deypir M, Sadreddini MH (2011) EclatDS: an efficient sliding window based frequent pattern min-
ing method for data streams. Intell Data Anal 15(4):571–587

 24. Apache Spark. http://spark .apach e.org/. Accessed 27 Jan 2020
 25. Frequent Itemset Mining Dataset Repository. http://fimi.uantw erpen .be/data/. Accessed 27 Jan 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://spark.apache.org/
http://fimi.uantwerpen.be/data/

	SWEclat: a frequent itemset mining algorithm over streaming data using Spark Streaming
	Abstract
	1 Introduction
	2 Preliminaries and related works
	2.1 Problem definition
	2.2 Spark Streaming
	2.3 Related works

	3 SWEclat algorithm
	3.1 Phase 1: initialize VDB
	3.2 Phase 2: divide and distribute conditional database
	3.3 Phase 3: distributed and parallel mining of conditional databases on work nodes
	3.4 Phase 4: update VDB as the window slides

	4 Experimental results and analysis
	4.1 Experiments settings
	4.2 Acceleration
	4.3 Scalability
	4.4 Load balancing

	5 Conclusions
	Acknowledgements
	References

